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Abstract

We present an extension of the variational Bayesian namlisg@te-space model
introduced by Valpola and Karhunen in 2002 [1] for continsiditme models. The

model is based on using multilayer perceptron (MLP) netwdokmodel the non-

linearities. Moving to continuous-time requires solvingtachastic differential

equation (SDE) to evaluate the predictive distributionhaf states, but otherwise
all computation happens as in the discrete-time case. & donnection be-
tween the methods allows utilising our new improved staterence method for

both discrete-time and continuous-time modelling.

1 Introduction

The two major types of dynamical systems are discrete tiragys modelled with difference equa-
tions and continuous-time systems modelled with difféae¢euations. Much of machine learning
research in dynamical systems and time series has focugbé tire discrete time case because it is
often easier to handle. The restriction is often not too se@s regularly sampled continuous-time
systems can be modelled as discrete time systems at theesame$. Not all data sets are, how-
ever, regularly sampled and often it would be convenientitmkwhat happens between the sample
times, hence the need for continuous-time models.

The variational Bayesian nonlinear state-space modeddotted by Valpola and Karhunen in [1]
uses a general nonlinear state-space model for the obisersatt)

s(t+1) =s(t) +gat(s(t), Og) +mit) (1)
x(t) = £(s(¢), 0¢) + n(t) (2)

with statess(t), Gaussian innovatiom and noisen, and multi-layer perceptron (MLP) networks to
model the nonlinearitieB andg,;. Inference and learning in the model can be made more reliabl
and efficient than in [1] by using new linearisation [2] analtstinference techniques [3].

In this work we outline an extension of the model for continsiime systems along with prelimi-
nary experimental results. The method can effectivelysatihew developments for the discrete-time
case, such as the improved state inference method [3], vidhjiesented as well.

2 Continuous-time nonlinear state-space model

The general formulation of the state evolution in a contimitime nonlinear state-space model is
given by a stochastic differential equation (SDE)

ds = g(s)dt + VEIW, (3)



wheredW is the differential of a Wiener process [4].

The continuous-time nonlinear state-space model is obday using Eq. (3) to model state evo-
lution instead of Eq. (1). The nonlinear mappiggds again modelled by a MLP network. The
observation equation Eq. (2) remains unchanged.

3 Variational learning

Variational Bayesian learning is based on approximatirggbsterior distribution (6, S| X, H)
with a tractable approximatioq(@, S|¢), whereX = {x(t;)[¢ = 1,...,N} is the data,S =
{s(t;)]i = 1,..., N} are the latent state values at the times of the observatiars, the parameters
of the modeIH andg are the (variational) parameters of the approximation. dp@oximation is
fitted by maximising a lower bound on marginal log-likelittbo

B p(X,S,0/H)
b= <1°g 4(5.008)

where (-) denotes expectation over This is equivalent to minimising the Kullback-Leibler
Dk (¢]|p) divergence betweepandp [5, 6].

> — log p(X[H) — D (¢(5.016) p(S. 01X 7)), (4)

The nonlinear state-space model is learned by numericalkimising the bound (4) with a conju-
gate gradient method. This requires evaluating the valtleeobound and its gradient with respect
to all the variational parameteg¢s

Given a Gaussian approximation similar to the one used irtfig] most difficult part is to evaluate
the expectation

N
(logp(S10)) = (logp(s(t1)|0)) +Z log p(s ti—1)0)), (5)
=2

where the Markov property of the state sequence has been used

Because a Gaussian variational approximation is used,tbalynean and variance sfare needed
to evaluate the bound for the continuous-time model. Wgithre differential equations for the mean
and covariance of a corresponding Gaussian progesgisfying Eq. (3) and using a first order
Taylor approximation og about the mean af yields two separate equations for the megn) and
covarianceP(t) of s as

< ult) = s(ul) ®)
LP(1) = (G(u(1) P (1) + P(1) (G (u(1))) + 3, ™

whereG denotes the Jacobian matrix@f7]. The expected value ¢f and the expected Jacobian
are evaluated using the linearisation technique presém{@dl

These equations can be solved numerically using a simpler Bugthod to find required statistics
of p(s(ti+1)|s(t;)). Eg. (6) yields the posterior mean and variance of the predimean o0& (¢;41)

that correspond to the mean and variancg@fs(¢)) in the discrete-time case. Eq. (7), in turn,
yields the expected covariancengs(¢;11)|s(¢;)), corresponding to the expected covariance of the
innovation procesm(t) in the discrete-time case. The main difference here is Heatovariance

of the predictive distribution arises from the process aotdfrom simple additive Gaussian noise.

When a simple Euler method is used, gradients of the costredbect to the variational parameters
governing the distributions of the network weights and ttatesvalues can be derived from the

prediction equations in a similar manner as in the disdiate-case. All these parameters are
updated using the same conjugate-gradient algorithm dseirdiscrete-time case. Higher order
parameters such as the number of hidden units in the MLP mietvaoe optimised by comparing the

marginal likelihood values resulting from runs with diféet values, but more automated methods
like automatic relevance determination could easily bel asawell.



4 Stateinference

Variational Bayesian inference of the stafehappens by maximising in Eq. (4). Doing this
directly with a gradient or a conjugate gradient method $emdsuboptimal performance. This is
because the terms ifithat depend on a particulaft) include only the neighbouring states in time.
Information spreads around slowly because the statesfefelift time slices affect each other only
between updates. Variants of the Kalman smoother propatgfarenation very fast, but we have
found the lack of convergence prohibitive in some cases.

In [3], we proposed a novel update algorithm for the posterieanss(¢). The marginal posterior
approximation is Gaussian

q(s(t) | §) = N (s(t);5(t), diag(s(t))) , 8

wherediag(s(t)) is a diagonal covariance matrix. We replaced partial déviea of B w.r.t. state
meanss(¢) foreacht = 1, ..., T by (approximated) total derivatives:

dB <~ 9B 5(7) ©)
ds(t) 4= 9s(r) O8(t)

The approximation involves linearising the nonlinear magp around the current state estimates.
Assuming linearisations, the optimal state megn (¢) as a function of neighbouring state means

can be solved analyticaftybut we are especially interested in the dependencies:

%t(% = diag(8(t))X,,' Iyt — 1) (10)
aa;(o%:’(ﬁl)) - dlag(g(ﬁ))Jg(t)E;Ll, (11)

wherelJ, is the linearisation matrix [2] of the mappiggandXZ,, is the noise covariance fan(t)

in Eq. (1). The total derivative is then computed by propeggthe gradient forward and backward
through time assuming these dependencies. The compuwbdierhead turns out to be rather small.
Generalisation of the method to the continuous-time casbvsous with proper interpretations of
J, andX,, as the product of the corresponding Jacobi@n®r each step in the solution of Eq. (6)
and as the proper value B(¢;), respectively.

5 Experiments

5.1 Continuous-time NSSM

The continuous-time NSSM is demonstrated with a data setrgéed by a Lorenz process [8]. A
Lorenz process has a three-dimensional state-space withimear chaotic dynamics determined by
the following set of differential equations:

da

dt = O'(Zl — ZQ) (12)
dz
d_t2 = pz1 — 23 — 2123 (13)
dz-
d_; = 2122 — Bz3. (14)

The parameter vectds, p, 5] used in this experiment wds8, 26.5, 1]. The data set was generated
by unevenly sampling the process at random time instantedesi) and20.

A data set with201 samples was used, and the data was normalised to me@mmd standard
deviation ofl. Additive Gaussian observation noise with a standard tieviaf 0.2 was added to
the data set. To make learning more challenging and to demadeshe benefits of the latent state-
space, only the two first components of the observationand z,, were used in this experiment.

1See [3] for derivation.



A three dimensional state-space was used to learn this eat@lse MLPs for both the observation
and the dynamical mapping had 10 hidden units.

The original three-dimensional Lorenz process and theetidimensional state-space can be seenin
Fig. 1. Noiseless and noisy versions of the two-dimensida# set used to train the model and
the reconstructions of this data set can be seen in Fig. 2laféret states and their values predicted
from the previous state are plotted against time in Fig. 3.

The presented results are still preliminary, as the sizénefdata set used in this experiment is
not large enough to properly form the correct state-spade mliably predict even the short term
behavior of the Lorenz process beyond a few time steps. Henyvdwe state-space representation

was still able to capture the original three-dimensionalireaof the Lorenz process using only the
two observed data components.
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Figure 1: Left: The original three-dimensional Lorenz mss without noise. Right: The three-
dimensional latent state-space of the model.
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Figure 2: Left: The original data set without noise. Middlene noisy data set used in the experi-
ment. Right: The reconstruction of the data set by the model.
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Figure 3: Top: The latent state values. Bottom: The valuedipted from the previous time step.
The tick marks on the x-axis correspond to sampling instants

5.2 Stateinference

The presented state inference was tested on a real worldetadé speech spectra [3]. The data set
consisted of 11200 21 dimensional samples which correspimn@0 seconds of continuous human
speech. The first 10000 samples were used to train a sevensional discrete-time state-space
model and the rest of the data was used in the experiments.

The test data set was divided into three parts each corgistiB00 samples and all the algorithms
were run for each data set with four random initialisatiombe final results represent an average
over both the different data sets and initialisations.

Since the true state is unknown, the mean square error oktlumstruction of missing data was
used to compare the different algorithms. Experiments were with sets of both 3 and 30 consec-
utive missing samples. The ability to cope with missing ealis very important when only partial
observations are available or in the case of failures in bservation process. It also has interesting
applications in the field of control as reported in [9].

The results can be seen in Fig. 4. When large gaps of missiugs/are present, the proposed
algorithm (NDFA+TD) performs clearly better than the rektree compared algorithms. The com-
pared methods of iterated extended Kalman smoother (IEK@)4nd iterated unscented Kalman
smoother (IUKS) [11,12] had some stability problems andhegiof these methods could cope very
well with long gaps of missing values.

6 Discussion

Solving the differential equations governing state evolutequires finding a suitable discretisation
of time. Finer discretisation provides more accuracy, Bisrinstability when the model of the
dynamics is still poor. An adaptive scheme starting withgldime steps and decreasing the step
length as the model gets more reliable would most likely g useful in learning problems with
larger time gaps.
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Figure 4: Inference with the speech data with missing val@esthe top one of the data sets used
in the experiments (missing values marked in black), on tittoln root mean square error plotted
against computation time. Left side figures use a small gag sight side figures a large gap size.
(From [3].)

By moving from discrete time to a continuous-time framewarke can more easily model phenom-
ena that have vastly different time scales. It would be aer@sting extension to factor the state
s into two (or more) parts; andss where it is a priori known that the dynamics ©f are slow
compared to the dynamics of. The SDE can be factored into:

d81 = g1 (Sl)dt “+ v/ 21dW (15)
dsy = ga(s1,82)dt + 1/ 32dW, (16)

where one should note that the slow paraffects the dynamics of the fast pastdirectly but not
the other way around. Such a model could in some cases betehyrfirst learnings; with more
coarsely sampled data and keeping that fixed when leagging

7 Conclusion

We have outlined an extension of the discrete-time vanafi®ayesian NSSM of Valpola and
Karhunen [1] to continuous-time systems and presenteihgrelry experimental results with the
method. Evaluation of the method with larger and more reakxamples is a very important item
of further work.

The main differences between continuous-time and dististe variational NSSMs are the differ-
ent method needed to evaluate the predictions of the statktha different form of the dynamical
noise or innovation. By abstracting these suitably, theesaaw faster state inference method may
be applied to both of these methods. The same applies mebttdkalmost all improvements to the
discrete time method, such as speedups of learning andatitex observation models such as ones
including changing variance [13].
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