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Algorithms

• Three MCMC methods for randomizing matrix

while preserving row and columns means and

variances approximately
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Local modification: Swap rotation

• SwapMetropolis:

– Uses Metropolis algorithm to sample from

P (Â) = c exp{−wE(A, Â)}

– Uniform proposal distribution among all

possible swap rotations

– Parameter w is a compromise between

efficiency of mixing and the amount of er-

ror induced in means and variances

• SwapDiscretized:

– Discretize values in N classes

– Require that a and a′ are in the same

class in a swap as well as b and b′
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Local modification: Addition mask

• MaskMetropolis:

– Similar to SwapMetropolis but uses addi-

tion mask instead of swap rotation

– Elements i1, i2, j1, j1 selected uniformly

– Addition α selected from U [−0.1, 0.1]

– Restricts the values to the original range

Abstract

Randomization is an important technique for as-

sessing the significance of data mining results.

We study the problem of generating randomized

real-valued matrices sharing the row and col-

umn means and variances with the original ma-

trix. We describe three alternative algorithms

based on local transformations and evaluate

their performance on real and generated data.

The results imply that the methods are usable

in practice for significance testing of data mining

results on real-valued matrices.

Basic approach

• Problem:

– Original m × n real-valued matrix A

– Data mining result S(A) ∈ R

– For example, clustering error of the matrix

– How to assess the significance of S(A)?

• Solution:

– Randomization based significance testing

– Generate randomized matrices Â which

share some statistics with A

– Compare S(A) against measures S(Â)

– Calculate an empirical p-value

– Randomization approach: preserve row

and column means and variances

Computational task: Given an m×n real-valued

matrix A, generate a matrix Â chosen indepen-

dently and uniformly from the set of m × n real-

valued matrices having approximately the same

row and column means and variances as A.

Empirical p-value

• Â = {Â1, . . . , Âk} a set of randomizations of A

• Empirical p-value of the structural measure

S(A), with the hypothesis of S(A) being small:

p =

∣

∣

{

Â ∈ Â | S(Â) ≤ S(A)
}∣

∣ + 1

k + 1

Why significance testing matters?

x y

.46 .36 .21 .68 .45

.44 .29 .64 .21 .04

.74 .87 .32 .84 .03

.04 .06 .96 .63 .31

.75 .66 .73 .13 .01

.85 .81 .41 .21 .38

.80 .98 .74 .61 .68

.70 .72 .27 .63 .09

.30 .37 .44 .37 .04

.57 .41 .93 .58 .61

Matrix A

x y

.46 .36 .56 .51 .53

.44 .29 .49 .52 .38

.74 .87 .90 .79 .80

.04 .06 .03 .11 .05

.75 .66 .68 .75 .71

.85 .81 .83 .81 .90

.80 .98 .88 .90 .81

.70 .72 .67 .79 .63

.30 .37 .37 .35 .43

.57 .41 .46 .44 .41

Matrix B

The matrices A and B share their first two

columns x and y having a high correlation, 0.92.

In matrix B the values on each row are tightly

distributed around the mean of the row, whereas

in matrix A the variance of each row is high.

The high correlation between x and y is signifi-

cant in A but not significant in B when tested us-

ing the randomization methods introduced. The

corresponding p-values are

pA = 0.001 pB = 0.4156.

Measuring the error in means and variances

Let A be the original m × n real-valued matrix

and Â a randomized matrix. Define row sums ri

and square sums Ri of A as

ri =

n
∑

j=1

Aij , Ri =

n
∑

j=1

A2

ij ,

and similarly column sums cj and square

sums Cj . Let r̂i, ĉj , R̂i, Ĉj be the corresponding

values of Â. The combined error function of row

and column means and variances is

E(A, Â) = wr

m
∑

i=1

(

|ri − r̂i|
2 + ws|Ri − R̂i|

2

)

+

n
∑

j=1

(

|cj − ĉj |
2 + ws|Cj − Ĉj |

2

)

.

Visual examples of randomizations

Original data SwapMetropolis

SwapDiscretized MaskMetropolis
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Original data is 100 × 100. The small top left

artifact has disappeared in the randomizations.

Significance testing of maximum correlation

Method Max. correlation p-value

RANDOM (100 × 100): random N (0, 1) data

Original data 0.363

SwapMetropolis 0.361 0.407

SwapDiscretized 0.361 0.430

MaskMetropolis 0.360 0.406

GAUSSIAN (1000 × 10): N (µ, 1), µ ∼ N10(0, 1)
Original data 0.993

SwapMetropolis 0.992 0.395

SwapDiscretized 0.992 0.398

MaskMetropolis 0.992 0.373

GENE (1375 × 60): real gene expression data

Original data 0.995

SwapMetropolis 0.644 0.001

SwapDiscretized 0.737 0.001

MaskMetropolis 0.657 0.001

• Maximum correlations in RANDOM and GAUS-

SIAN datasets are insignificant as expected

• Max correlation in dataset GENE is significant

• The methods are usable in significance testing


