
HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences
Degree Programme in Engineering Physics

Markus Ojala

Randomization of real-valued matrices for
assessing the significance of data mining results

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

Espoo, February 27, 2008

Supervisor: Academy Professor Heikki Mannila
Instructor: Doctor Kai Puolamäki



HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
Faculty of Information and Natural Sciences

Author: Markus Ojala
Degree Programme: Engineering Physics
Major subject: Mathematics
Minor subject: Computer and Information Science
Title: Randomization of real-valued matrices for assessing the

significance of data mining results
Title in Finnish: Reaalimatriisien satunnaistaminen tiedonlouhinnan

tulosten merkitsevyyden määrittämiseksi
Chair: T-61 Computer and Information Science
Supervisor: Academy Professor Heikki Mannila
Instructor: Doctor Kai Puolamäki

Data mining is the process of analyzing large amounts of data to find out rel-
evant information. Many data mining methods are suitable for analyzing real-
valued matrices, which arise naturally in various application areas such as in
bioinformatics. In this Master’s Thesis the significance testing of data mining
results on real-valued matrices is studied.

A randomization-based significance testing is used. A result is considered to
be significant if it is unlikely to obtain such a result on randomized data which
share some characteristics with the original data. An approach is adopted where
the mean values and variances of the rows and columns of a matrix are pre-
served in randomization. Thus a data mining result is interesting if it is not
explained purely by the row and column means and variances of the matrix.

In this thesis, three methods for generating such randomized matrices are de-
veloped. The methods are analyzed both theoretically and empirically, and they
are shown to be efficient in practice. The performance of the methods is eval-
uated both on real and generated data. The results imply that the methods are
usable in assessing the significance of data mining results.

Pages: vi + 72 Keywords: data mining, significance testing, real-valued
matrix, randomization, gene expression

Faculty fills
Approved: Library code:

ii



TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Informaatio- ja luonnontieteiden tiedekunta

Tekijä: Markus Ojala
Koulutusohjelma: Teknillinen fysiikka
Pääaine: Matematiikka
Sivuaine: Informaatiotekniikka
Työn nimi: Reaalimatriisien satunnaistaminen tiedonlouhinnan

tulosten merkitsevyyden määrittämiseksi
Title in English: Randomization of real-valued matrices for assessing the

significance of data mining results
Professuuri: T-61 Informaatiotekniikka
Työn valvoja: Akatemiaprofessori Heikki Mannila
Työn ohjaaja: Tohtori Kai Puolamäki

Tiedonlouhinta on tapa analysoida suuria määriä tietoaineistoa oleellisen tie-
don löytämiseksi. Monet tiedonlouhinnan menetelmät soveltuvat reaaliarvois-
ten matriisien tutkimiseen. Tällaisia matriiseja esiintyy luonnostaan useissa so-
velluskohteissa kuten bioinformatiikassa. Tässä diplomityössä tutkitaan reaali-
matriiseista saatujen tiedonlouhinnan tulosten merkitsevyyden testausta.

Työssä käytetään satunnaistukseen perustuvaa merkitsevyystestausta. Tulosta
pidetään merkitsevänä, jos on epätodennäköistä saada vastaava tulos satunnais-
tetulla aineistolla, jolla on joitain yhteisiä ominaisuuksia alkuperäisen aineiston
kanssa. Työssä omaksutaan lähestymistapa, jossa matriisin rivien ja sarakkei-
den keskiarvot ja varianssit säilytetään satunnaistuksessa. Täten tiedonlouhin-
nan tulos on kiinnostava, jos se ei selity pelkästään matriisin rivien ja sarakkei-
den keskiarvoilla ja variansseilla.

Tässä diplomityössä kehitetään kolme menetelmää tällaisten satunnaisten mat-
riisien tuottamiseksi. Menetelmiä analysoidaan sekä teoreettisesti että kokeelli-
sesti, ja niiden näytetään olevan tehokkaita käytännössä. Menetelmien toiminta-
kykyä arvioidaan sekä todellisella että keinotekoisella aineistolla. Työn tulokset
näyttävät, että kehitetyt menetelmät ovat käyttökelpoisia tiedonlouhinnan tulos-
ten merkitsevyyden määrittämisessä.

Sivumäärä: vi + 72 Avainsanat: tiedonlouhinta, merkitsevyystestaus, reaali-
matriisi, satunnaistus, geeniekspressio

Täytetään tiedekunnassa
Hyväksytty: Kirjasto:

iii



Acknowledgments

This Master’s Thesis has been done at the Department of Information and Com-

puter Science at Helsinki University of Technology.

First, I would like to thank my supervisor Academy Professor Heikki Man-

nila for suggesting this interesting research topic for me and sharing his useful

insights. I also wish to thank M.Sc. Aleksi Kallio and M.Sc. Niina Haiminen for

collaboration and especially M.Sc. Niko Vuokko for co-operation in developing

and analyzing the methods. I am grateful to my instructor Dr. Kai Puolamäki

for his support and ideas during the writing process. I also want to thank my

colleagues for the pleasant and inspiring working environment.

Finally, I would like to thank my parents, family and friends for their support

during my life and studies. Most of all, I want to thank my lovely wife Paula

Vahermaa for encouraging me and for making my life worthwhile.

Espoo, February 27, 2008

Markus Ojala

iv



Contents

1 Introduction 1

2 Data mining of real-valued matrices 5
2.1 Fields of applications . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Gene expression . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Gene expression dataset GENE . . . . . . . . . . . . . . . 8
2.1.3 Other applications . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data mining methods . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Principal component analysis . . . . . . . . . . . . . . . 18

3 Significance testing 21
3.1 Traditional statistical tests . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Statistical error . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Applying randomization in significance testing . . . . . . . . . . 27
3.2.1 Empirical p-values . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Sequential tests . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Sampling from probability distributions . . . . . . . . . . . . . . 29
3.3.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . 31
3.3.3 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . 32

v



3.3.4 MCMC p-values . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Significance testing on real-valued matrices . . . . . . . . . . . . 35

3.4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Measuring the error of a randomized matrix . . . . . . . . 37
3.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Randomization methods 40
4.1 Methods for 0–1 matrices . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Methods for real-valued matrices . . . . . . . . . . . . . . . . . . 42

4.2.1 Discrete swaps . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Metropolis with swaps . . . . . . . . . . . . . . . . . . . 44
4.2.3 Metropolis with masking . . . . . . . . . . . . . . . . . . 45
4.2.4 Other methods . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Applying the algorithms . . . . . . . . . . . . . . . . . . 47

4.3 Analysis of the methods . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Discrete swaps . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Metropolis with swaps . . . . . . . . . . . . . . . . . . . 49
4.3.3 Metropolis with masking . . . . . . . . . . . . . . . . . . 50

5 Experiments 51
5.1 Examples of randomizations . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Randomization of topographical data . . . . . . . . . . . 51
5.1.2 Importance of preserving variances . . . . . . . . . . . . 53

5.2 Evaluating the methods . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Convergence and performance . . . . . . . . . . . . . . . 54
5.2.2 Error rate . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Significance testing of structural measures . . . . . . . . . . . . . 59
5.3.1 Clustering error . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Maximum correlation . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Principal components . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions and discussion 65

Bibliography 68

vi



Chapter 1

Introduction

The technological revolution in the last century has produced many efficient com-

puting and measuring devices. Everyday, a large amount of data is produced and

collected in the world. To analyze the data automatically, powerful computer sys-

tems and algorithms are needed.

Data mining is the field of research which studies discovering knowledge in

databases. Hand et al. [22] has given the following definition for it:

Data mining is the analysis of (often large) observational data sets

to find unsuspected relationships and to summarize the data in novel

ways that are both understandable and useful to the data owner.

Data mining research has developed several efficient algorithms for automatically

extracting knowledge from large masses of data. They are widely used in many

other fields of science such as bioinformatics where the traditional methods are

not sufficient.

Defining the significance of the obtained results is an important part of science.

There exist various traditional statistical methods for significance testing. They

are commonly used, for example, to assess the quality of poll results or to decide

whether a new drug relieves the symptoms of a disease. However, the significance

testing has been given less attention in the data mining community. There are two

reasons for this: firstly, the data mining research is still quite a new research field,

and secondly the traditional statistical tests are not directly applicable with all data

mining tasks.

1



CHAPTER 1. INTRODUCTION 2

In this thesis we study and develop methods for significance testing of data

mining results [12,16,27,30,31,35,47,49]. In general, the statistical methods can

be divided into two categories: analytical and randomization tests. In analytical

tests the significance is assessed by theoretical calculations of the distributions.

However, the analytical tests are generally applicable only to reasonably simple

problems. Thus we will concentrate on randomization tests [6,7,20] which suit in

more general tasks and are easier to use.

The basic idea in randomization tests is to compare the original result to results

obtained on randomized data which share some statistics with the original data.

If the original result differs substantially from the results on randomized data, the

original result is assessed to be significant. A simple example of randomization

tests is permutation tests which are widely used, for example, in control studies in

medical genetics. In such tests the variable describing whether the patient belongs

to the case or to the control group is permuted randomly, and the original data

analysis is repeated. The original findings are accepted if they are stronger than,

for example, 99% of the findings on the randomized datasets. [19]

In this thesis, we restrict our consideration to real-valued matrices. Addition-

ally we require that the rows of a matrix are similar with each other as well as

the columns. Thus also the values in the matrix are similar with each other and

measured in the same units. Such matrices arise naturally in many research areas

such as in bioinformatics. For example, gene expression measurements produce

matrices whose rows correspond to genes and columns to sample tissues, and the

values in the matrix are the corresponding gene expression levels in the sample tis-

sues. Thus, in this thesis, we study how to assess the significance of data mining

results on real-valued matrices by randomization tests.

For the randomization approach we need to choose the uninteresting properties

of a matrix, that is, the properties we want to preserve in a randomization. We

adopt the approach where the means and variances of the rows and columns in a

matrix are considered to be fixed. These describe the general characteristics of

the underlying phenomenon while not fixing the special features of the original

data. Thus we consider the data mining results on a real-valued matrix to be

interesting if it is highly unlikely to obtain as good results on random matrices

having the same row and column means and variances as the original matrix.



CHAPTER 1. INTRODUCTION 3

Therefore, the results are viewed insignificant if they can be explained by the first

and second order statistics of the rows and columns of the matrix. Hence, the

main computational problem in this thesis is the following:

Problem 1. Given an m × n real-valued matrix A, generate a random matrix Â

chosen independently and uniformly from the set of m × n real-valued matrices

having the same row and column means and variances as A.

We introduce three methods for solving Problem 1 approximately. The meth-

ods are based on doing local modifications on the original matrix while preserving

the row and column sums and variances. The methods actually produce random-

izations which are dependent on each other and share the first and second order

statistics only approximately. However, we show that these disadvantages can be

compensated and that the methods are usable in practice. We evaluate the per-

formance of the methods both on real and artificial data, and use the approach to

measure the significance of a few data mining results. The results imply that the

methods work efficiently and are usable in the significance testing in practice.

The idea of randomizing matrices for assessing the significance of data mining

results is not a completely new idea. However, as far as we know, no one has stud-

ied randomization of real-valued matrices. On the contrary, the binary matrix case,

where the values in the matrix are zeros and ones, is extensively studied in statis-

tics, theoretical computer science and application areas [9, 13, 14, 17, 28, 37, 41],

and it is computationally quite challenging. Also randomization of contingency

tables, where the values are positive integers, is widely studied [10,13–15,44,48].

Our approach of randomizing real-valued matrices while preserving the first and

second order statistics of rows and columns is a generalization of swap random-

ization task of binary matrices where the number of ones in each row and column

is preserved [14, 19, 40].

The rest of this thesis is structured as follows. In Chapter 2 we introduce

application areas where real-valued matrices arise naturally and where our ran-

domization approach is suitable. Gene expression analysis is discussed in detail

and a gene expression dataset used in the experiments is introduced. Addition-

ally, three general data mining methods working on real-valued matrices are in-

troduced. Notice, however that our approach is very general and it can be used



CHAPTER 1. INTRODUCTION 4

almost with any data mining method. In Chapter 3 we review traditional statistical

tests and discuss the problems arising in significance testing. After that the ran-

domization approach in significance testing is discussed. Then we give theoretical

backgrounds of Markov chain Monte Carlo methods for sampling from probabil-

ity distributions. Finally we discuss the problem of randomization of real-valued

matrices and give a simple example why the adopted approach is useful.

After the theoretical introductory parts, our main contributions are introduced.

In Chapter 4 we present three methods for randomizing real-valued matrices while

preserving the row and column sums and variances, and discuss their properties.

For consistency, we also introduce a method for binary matrices whose ideas we

have generalized to real-valued case [19]. In Chapter 5 our main experimental

results are presented. First, some visual examples are shown. After that we study

the properties of the methods empirically. Finally, significance testing of various

data mining results are performed. In Chapter 6 we summarize the thesis and give

conclusions.



Chapter 2

Data mining of real-valued matrices

In this chapter we discuss some research areas where real-valued matrices are used

and explain a few data mining methods on them.

2.1 Fields of applications

In this section we introduce some fields of research where our randomization

methods are applicable. The main application we are using is gene expression.

Thus we explain it in detail in Subsection 2.1.1 and introduce in Subsection 2.1.2

the gene expression dataset GENE we are using in the experiments. Finally, we

discuss other fields of applications.

2.1.1 Gene expression

Next we introduce the biological concept gene expression, explain how it is mea-

sured using microarray technology and discuss general analysis phases of such

data. [4]

The phenomenon

Every cell in an individual contains the same set of chromosomes and genes. How-

ever, in each cell only a fraction of the genes are active. Those genes are expressed

in the corresponding cell and they determine the properties of the cell. Different

5



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 6

Figure 2.1: A hybridized microarray.

cell types have different genes expressed. Thus, gene expression is the process

where the information of a gene is converted into the structures and functions of

a cell.

The operation of cells is controlled by proteins. The translation from DNA to

proteins contains two phases. First, the information in DNA is transcripted into

messenger RNA (mRNA). Then, the mRNA controls the production of proteins.

The amount of mRNA has a direct impact to the amount of the corresponding

protein produced.

The proper expression of a large number of genes is critical to the normal

growth and health of an individual. Disruptions in gene expression levels are

responsible for many diseases. Identifying the abnormally working genes, for

example, in a cancer tissue, can help in developing suitable medication which

affects directly the operation of the abnormal genes.

Microarray measurements

The expression of a gene is measured indirectly by measuring the amount of the

corresponding mRNA in the cell. In the past decade, the new microarray technol-

ogy has made it possible to measure the expression levels of a large amount of



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 7

genes. Earlier, the scientists were able to measure the expression levels of only

few genes.

A microarray is a small glass slide containing samples of multiple known

genes arranged in a regular pattern. Typically, microarrays are used for measuring

relative gene expression levels of multiple genes. First, mRNA is extracted from

test and reference samples. The reference sample is taken from normal, healthy

tissue. The samples are labeled with different fluorescent dyes, for example, the

reference sample with Cy3 (green) and the test sample with Cy5 (red).

Then the samples are combined and hybridized to a microarray; an mRNA

molecule has ability to hybridize, that is, to bind in the microarray to the specific

DNA template from which it originated. After that the microarray is scanned and

the fluorescence intensities are measured for each spot. The ratios between the

average red and green intensities within a spot are used as numerical values for

the expression levels of the corresponding genes.

Thus the result of a microarray is a relative expression level of a gene com-

pared to a normal expression level. This is useful since we want to find the ab-

normalities in the test sample. In Figure 2.1 an artificial example of microarray

measurement is presented. A green spot corresponds to down-regulation in the

test sample and, vice versa, a red corresponds to up-regulation. In the yellow

spots the test and reference samples are equally expressed. In the black spots the

genes are not expressed in either of the samples.

Gene expression analysis

In gene expression analysis usually multiple tissue samples are studied. For each

sample the gene expression levels are measured by microarray technology. From

the measurements a real-valued matrix is formed where the rows correspond to

genes and the columns to different samples. The values in the matrix are the

corresponding gene expression levels of the samples [11].

After the microarray measurements the gene expression analysis is carried out

in multiple steps. In Figure 2.2 a general analysis pipeline is presented. First the

data from microarray measurements is normalized, which contains the calculation

of the ratios between the test and reference average intensities. The missing values



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 8

Microarray
measurements

- Normalization - Filtering - Data
mining

- Annotation

Figure 2.2: The phases of a general gene expression analysis.

are commonly replaced with the average values of the expression levels of the

corresponding genes. Standard technique to equalize the influence of up- and

down-regulated genes is to take logarithms of the ratios. Also scaling of the values

can be done, either globally or locally in genes or in tissues. [43, 46]

Filtering is used to reduce the number of genes. Usually genes with almost no

measurements or genes without significant up- or down-regulation in any sample

are ignored. This can make the data mining step faster and the results more reli-

able. However, filtering should not be the “data mining”, that is, the purpose is to

drop only clearly irrelevant genes.

Data mining is the procedure where new information is extracted from the

data. The idea is to find either global or local structures from the gene expression

matrix. The data mining methods are discussed more in Section 2.2. However, in

this thesis, for simplicity, we are mainly studying global structures. Annotation

is the final step where the data mining results are interpreted and classification of

genes or samples is done.

Significance testing of the results from a gene expression analysis is an im-

portant but usually highly under-weighted part. We are using the randomization

methods to assess the significance of the data mining step of the analysis pipeline.

However, the methods presented in this thesis could be used to assess the normal-

ization and filtering steps as well.

2.1.2 Gene expression dataset GENE

Next, we introduce a real gene expression dataset GENE which we are using in the

experiments in Chapter 5. In addition to this dataset we are using four artificial

datasets introduced in Section 5.3. The GENE dataset is a publicly available data1

which was first studied by Scherf et al. [42].

1See http://discover.nci.nih.gov/nature2000/.



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 9

Scherf et al. used actually multiple datasets, but we are studying only the nor-

malized and filtered gene expression data which have 1375 genes and 60 samples.

The samples are taken from 60 human cancer cell lines used in a drug discovery

screen by the National Cancer Institute. In the original paper also drug activity

data was studied and combined with the gene expression data.

The original data contained 9703 genes. The normalization procedure in-

volved identifying missing values: By visual examination the spots contaminated

with dust were treated as missing values. Also the spots whose intensity was

lower than 1.5 times the local background intensity were considered as missing

values. The genes with more than four missing values were filtered. Finally, only

the genes with at least four of the red-green ratios being > 2.6 or < 0.38 were

accepted. The data was equalized by taking base 2 logarithm.

Around 2% of the values in the normalized and filtered dataset were missing.

We replaced them by the average of the values in the corresponding rows. In

Figure 2.3 the matrix of GENE dataset is plotted as a heat map. We notice that

some samples and genes outstand from the data. In Figure 2.4 the distribution

of the values in dataset GENE is presented. As the values of the matrix were

equalized by taking base 2 logarithm, the expression level of zero means that the

corresponding gene has a normal expression level. We notice that the distribution

is centered around zero and is close to a normal distribution. For needs of the

randomization methods we finally scaled the values in the matrix linearly into the

range [0, 1].

2.1.3 Other applications

Although the only real data we are using in this thesis is the gene expression

dataset GENE, there exist various other application areas where real-valued ma-

trices arise naturally. The only restrictions our randomization methods have are

that the rows as well as the columns of the matrix should be comparable with each

other. Also the distribution of the values should be close to normal.

For example, we could have prices for different products in different stores.

However, the products should be similar, for example, fruits. Then the price would

be the price per kilogram. The rows of a matrix could correspond to the products,



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 10

 

 

10 20 30 40 50 60

200

400

600

800

1000

1200

−8

−6

−4

−2

0

2

4

Figure 2.3: The dataset GENE plotted as a heat map.

−10 −8 −6 −4 −2 0 2 4 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 2.4: The histogram of the values in the dataset GENE with 100 bins.



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 11

the columns to the stores and the entries in the matrix to the corresponding prices.

The further study of other fields of applications is left for future work.

2.2 Data mining methods

In this section, we introduce some traditional data mining methods which work

on real-valued data matrices. Usually, however, the matrix is thought as a set of

points: rows correspond to points and columns to dimensions. Thus an m × n

matrix has m points in n-dimensional space. However, in this section we give

some examples with GENE dataset using the columns as the data points. Hence

the data mining methods work on a set of points; a matrix is just a convenient way

to present the data.

In the thesis, we are interested in assessing the data mining results. Generally,

data mining methods find structures in matrices. As we want to be able to compare

the results, we insist that the structuredness can be expressed in a single real num-

ber. However, a full-ordering between structures would be enough but assuming

the measures of structuredness to be real-values makes the notation clearer. We

give a general definition for the structuredness of a matrix:

Definition 2.1. The structural measure of a matrix A, denoted as S(A), is a real-

valued function measuring the amount of the structure in the matrix A found by a

data mining method.

We introduce three data mining methods which we use also in the experiments:

clustering, correlation and principal component analysis. We explain how they

work and form a structural measure S for each. Usually the structural measure S
is a cost function. Notice, however, that the approach for significance testing

explained in this thesis is applicable with almost any data mining method.

2.2.1 Clustering

Clustering is maybe the most classical and generally used data mining method.

Assume that X is a set of m points in Rn . The idea of clustering is to partition X
into subsets so that in each subset the points are somehow similar. The subsets are



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.5: An example of a clustering with five clusters in two dimensional space.

called clusters. Generally, any distance measure can be used for similarity, but we

will adhere to the traditional Euclidean distance. The quality of the clustering is

used as the structural measure of the set X corresponding to an m × n matrix A.

The number of clusters k is often decided beforehand. There exist methods

for finding a suitable k by calculating the clustering for many different values of

k and selecting the best k by validation. However, in the experiments, we will

use only a fixed k. In Figure 2.5 a clustering with five clusters of artificial data is

presented.

We introduce two different clustering approaches, K-means and hierarchi-

cal clustering, and give various algorithms for calculating them. In the experi-

ments we are using only the K-means clustering with ten clusters computed by

K-means++ algorithm introduced in the following. There exists also so called bi-

clustering algorithms where the rows and columns of a matrix are clustered simul-

taneously [34]. To learn more about clustering algorithms, see references [5, 26].



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 13

K-means

K-means is a specific problem of clustering. It is also a name of a simple algorithm

introduced by Lloyd in 1957 [32] for solving the problem. The task is to find a set

C ⊂ Rn of k points minimizing the error function

φ =
∑
x∈X

min
c∈C
‖x − c‖2. (2.1)

The clustering error (2.1) can be used directly as the structural measure S.

Notice that with such structural measure, smaller value of S means that the matrix

contains actually more structure.

In Algorithm 1 the basic K-means method is presented. It starts by randomly

selecting k cluster centers ci . It repeatedly associates the points into the clusters

Ci such that their distances to the corresponding cluster centers ci are minimized.

After that the cluster centers ci are updated to be the new average of the points in

the corresponding cluster Ci .

Algorithm 1 K-means
Input: Set X of m points in Rn , number of clusters k

1: Randomly pick k cluster centers C = {c1, . . . , ck}

2: while not converged do
3: for i ← 1, k do
4: Ci ←

{
x ∈ X

∣∣ ci = arg minc∈C ‖x − c‖
}

5: end for
6: for i ← 1, k do
7: ci ←

1
|Ci |

∑
x∈Ci

x
8: end for
9: end while

10: return C

Traditionally, the set C of cluster centers is initialized to be a random subset

of the set X . This guarantees that the starting centers are positioned reasonably.

Purely random points in Rn can be used as well but that can lead to empty clus-

ters. However, there exist a better initialization of C which leads to K-means++

algorithm discussed later.

The convergence condition in line 2 of the algorithm is that the partition of



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 14

the points into the clusters has not changed in the last iteration. The cluster-

ing error (2.1) decreases in each iteration [3], thus guaranteeing the convergence.

However, the method usually converges only to a local optimum. Sometimes the

convergence is pretty slow [2] and the process is stopped after some predefined

number of iterations. Since the result of clustering varies from run to run, the

clustering is usually repeated some fixed number of times and the best clustering

found, that is, the best according to the clustering error (2.1), is output.

K-means++

K-means++ is a simple modification of the original K-means algorithm which,

however, provides a significant improvement to the performance of the clustering.

There exist also other methods for solving the K-means problem but they have not

gained substantial popularity in practice [23, 33]. The K-means++ was invented

by Arthur and Vassilvitskii in 2007 [3], and they have even said: “Friends don’t let

friends use K-means!”. This means that the K-means++ is generally better than

the traditional version of the method by Lloyd.

The idea is to modify the initialization of the cluster centers. We choose initial

cluster centers step by step. Let D(x) denote the shortest distance from data point

x ∈ X to the closest center ci which is already chosen. At each step, we assign

a probability for each point in X for being the next new cluster center. The K-

means++ is presented in the Algorithm 2.

Algorithm 2 K-means++
Input: Set X of m points in Rn , number of clusters k

1: Choose the center c1 uniformly at random from X
2: for i ← 2, k do
3: Choose the center ci to be x ∈ X with probability D(x)2∑

x∈X D(x)2

4: end for
5: Proceed as with the standard K-means algorithm from the line 2 on.

The authors of K-means++ have conducted various experiments to show that

their algorithm generally produces better clustering and converges faster than the

original K-means. Furthermore, for K-means++ there exist theoretical results on

the quality of the clustering. With the traditional K-means such results do not



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 15

exist and it may, indeed, produce arbitrarily bad results compared to the optimal

result. Hence, for the K-means++ we have the following theorem:

Theorem 2.2. The expected value of the clustering error φ of a clustering con-

structed with K-means++ algorithm satisfies

E(φ) ≤ 8(ln k + 2)φopt, (2.2)

where φopt is the optimal value of the clustering error.

The proof can be found in literature [3]. The initialization procedure just guar-

antees that we distribute the initial centroids smartly among the points in X .

Hierarchical clustering

The approach of hierarchical clustering differs significantly from K-means. In-

stead of finding a good clustering with fixed k, hierarchical clustering finds a

clustering for all values of k. Hence, the number of clusters wanted can be de-

cided afterwards. Hierarchical clustering is especially good for visualizing the

clustering structure as explained later.

There exist two kinds of methods for performing hierarchical clustering: ag-

glomerative and divisive. The former builds the clustering by combining current

clusters to form new ones whereas the latter divides the clusters to make new

ones. Usually only the agglomerative hierarchical clustering methods are used

since they are computationally more effective. Therefore, we are not discussing

divisive algorithms.

General agglomerative hierarchical clustering is presented in Algorithm 3.

The set Ck is the set of k clusters. The method starts by associating each point

in its own cluster thus forming the clustering Cm . At each iteration a clustering Ck

is formed from the previous clustering Ck+1 by combining the two clusters which

are closest to each other according to some distance measure d.

The only choice in hierarchical clustering is the distance measure d between

two clusters. There exist three commonly used measures: minimum, average

and maximum distance. The method is called in those cases as single-linkage,



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 16

Algorithm 3 Agglomerative hierarchical clustering
Input: Set X of m points in Rn

1: Initialize Cm
=
{
{x1}, . . . , {xm}

}
2: for k ← m − 1, 1 do
3: Find Ci , C j ∈ Ck+1 minimizing the distance d(Ci , C j )
4: Ck

← Ck+1
\ Ci \ C j

5: Ck
← Ck

∪
{
Ci ∪ C j

}
6: end for
7: return C1, . . . , Cm

average-linkage and complete-linkage hierarchical clustering, respectively. They

are defined as

dSL(Ci , C j ) = min
x∈Ci ,y∈C j

‖x − y‖, (2.3)

dAL(Ci , C j ) =
1

|Ci ||C j |

∑
x∈Ci

∑
y∈C j

‖x − y‖, (2.4)

dCL(Ci , C j ) = max
x∈Ci ,y∈C j

‖x − y‖. (2.5)

The hierarchical clustering process forms a binary tree where the nodes cor-

respond to the clusters and edges to combination relations. Such a tree is called

a dendrogram. The height of a node corresponds to the distance between the two

clusters which were combined to form the new cluster. A dendrogram is an easy

way to visualize the clustering. It helps also in deciding the correct number of

clusters.

In Figure 2.6 we present an example of a dendrogram which was calculated

from the GENE dataset by using the columns as the points. Similar hierarchical

clustering was done in the original paper [42]. Remember that the columns cor-

respond to different cell lines, and there are 60 of those in total. We notice that

similar cell lines have been clustered together.

With hierarchical clustering there exist a few suitable structural measures.

Naturally, we can use the clustering error (2.1) as the structural measure as was

done with K-means. However, then we have to fix the number of clusters. An-

other option is to use the dendrogram to form a structural measure: S can be the



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 17

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n 

di
st

an
ce

  B
R

:M
D

A
−

M
B

−
435

  B
R

:M
D

A
−

N
  M

E
:M

14
  M

E
:U

A
C

C
−

62
  M

E
:M

A
LM

E
−

3M
  M

E
:S

K
−

M
E

L−
28

  M
E

:U
A

C
C

−
257

  M
E

:S
K

−
M

E
L−

2
  M

E
:S

K
−

M
E

L−
5

  M
E

:LO
X

IM
V

I
  LC

:H
O

P
−

62
  C

N
S

:S
F

−
268

  O
V

:O
V

C
A

R
−

8
  U

N
:A

D
R

−
R

E
S

  LC
:H

O
P

−
92

  B
R

:M
D

A
−

M
B

−
231

  O
V

:O
V

C
A

R
−

5
  P

R
:D

U
−

145
  R

E
:S

N
12C

  R
E

:U
O

−
31

  R
E

:C
A

K
I−

1
  R

E
:R

X
F

−
393

  R
E

:786−
0

  R
E

:A
C

H
N

  R
E

:T
K

−
10

  R
E

:A
498

  LC
:A

549/A
T

C
C

  LC
:E

K
V

X
  LC

:N
C

I−
H

460
  C

N
S

:S
N

B
−

19
  C

N
S

:U
251

  C
N

S
:S

F
−

295
  C

N
S

:S
N

B
−

75
  B

R
:H

S
578T

  C
N

S
:S

F
−

539
  B

R
:B

T
−

549
  LC

:N
C

I−
H

23
  LC

:N
C

I−
H

522
  P

R
:P

C
−

3
  LC

:N
C

I−
H

322M
  C

O
:H

T
29

  C
O

:H
C

C
−

2998
  C

O
:C

O
LO

205
  C

O
:K

M
12

  C
O

:H
C

T
−

116
  C

O
:H

C
T

−
15

  C
O

:S
W

−
620

  B
R

:M
C

F
7

  B
R

:T
−

47D
  LE

:C
C

R
F

−
C

E
M

  LE
:M

O
LT

−
4

  LE
:H

L−
60

  LE
:S

R
  LE

:R
P

M
I−

8226
  LE

:K
−

562
  O

V
:O

V
C

A
R

−
3

  O
V

:O
V

C
A

R
−

4
  O

V
:IG

R
O

V
1

  O
V

:S
K

−
O

V
−

3
  LC

:N
C

I−
H

226

Figure 2.6: A dendrogram of an average-linkage hierarchical clustering of the
columns of the GENE dataset with one minus Pearson correlation coefficient as
the distance measure.

sum of the heights of the nodes in a dendrogram. This is then a general measure

where we do not have to fix the number of clusters.

2.2.2 Correlation

Correlation is an important concept in statistics but it can be seen also as a sim-

ple data mining tool. The correlation (a.k.a. correlation coefficient) indicates the

strength of the linear dependence between two random variables X and Y . The

Pearson correlation coefficient is defined as

ρX,Y =
Cov(X, Y )

σXσY
=

E ((X − µX )(Y − µY ))

σXσY
, (2.6)

where µX and µy are the expected values and σX and σY are the standard devia-

tions of X and Y , respectively.

Usually we have just sample measurements and we need to use the Pearson

product-moment correlation coefficient for two vectors x and y in Rn:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n − 1)sxsy
(2.7)



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 18

where x̄ , ȳ, sx and sy are the corresponding sample estimates of µX , µY , σX and

σY , respectively. Correlation coefficient varies in the range [−1, 1]. If the vectors

x and y have a high linear dependence then the correlation coefficient is near to

one and they are said to be highly correlated.

The correlation coefficient can be used directly as a structural measure be-

tween two vectors. There are couple ways to use the correlation as a structural

measure of a real-valued matrix A. First of all, the matrix A is again thought to

consist of a set X of m points in Rn . We define two structural measures, the av-

erage absolute correlation SAC(A) and the maximum correlation SMC(A) of the

matrix A, by using the set X :

SAC(A) =
1

m(m − 1)

∑
x,y∈X

x 6=y

|rxy| (2.8)

SMC(A) = max
x,y∈X

x 6=y

rxy (2.9)

In the experiments we are using the maximum correlation SMC.

2.2.3 Principal component analysis

Principal component analysis (PCA) is again not a pure data mining method. It is

a classical linear dimensionality reduction method [25, 39]. However, the quality

of the dimensionality reduction can be used as a structural measure. We present

how to calculate the projection and to evaluate the quality. For more information

about dimensionality reduction methods see references [29].

In derivation of PCA it is useful to present the set of points as a matrix A ∈

Rm×n corresponding to the m points in Rn . The goal is to find the best linear

projection of the points into a lower dimensional space Rd in some sense. Usually

d is much smaller than n. The PCA can be derived from different view points

but we derive it by maximizing the preserved variance under some constraints as

introduced by Hotelling in 1933 [25].

We assume that the columns of A have a zero mean. The object is to find an

orthonormal axis change W ∈ Rn×d , that is, W T W = Id , such that the points



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 19

in the projected data Â = AW are uncorrelated while preserving as much of the

variance as possible. The covariance matrix of the projected data Â is now

C Â =
1
m

ÂT Â

=
1
m

W T AT AW

= W T CAW

= W T V 3V T W,

where CA = V 3V T is the eigenvalue decomposition [45] of the covariance ma-

trix of A. We assume that the eigenvalues are sorted in decreasing order in the

diagonal of 3. Then the maximum variance is obtained by choosing the first d

eigenvectors of CA as the projection, that is,

W = V In×d, (2.10)

which gives

C Â = Id×n3In×d . (2.11)

The method for PCA is presented in Algorithm 4. In the line 1 the columns

of A are centered, that is, they are made to have zero mean. Then the eigenvalue

decomposition is calculated and the projection is formed. The method outputs

also the fraction ρ of variance explained. If it is close to one, the data contains

clear inner structure and the intrinsic dimension is really close to d. The value of

ρ can be used directly as a structural measure.

Algorithm 4 Principal component analysis
Input: Matrix A in Rm×n , new dimension d < n

1: A← A − 1
m 1m1T

m A
2: A = V 3V T

3: W ← V In×d
4: Â← AW
5: ρ ←

(∑d
i=1 λi

)
/
(∑n

i=1 λi
)

6: return Â, ρ



CHAPTER 2. DATA MINING OF REAL-VALUED MATRICES 20

−3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

   ME

   ME

   ME

   ME   ME

   LC

   ME

   ME

   LC

   LC   LC

   LC

   LC

   LC

   LC   CNS

   CNS

   CNS

   CNS

   CNS

   CNS

   CO

   CO

   CO
   CO

   CO

   CO   OV   OV

   OV    OV

   OV

   LE

   LE

   LE

   LE

   RE

   RE

   RE
   RE

   RE

   RE

   RE   RE

   ME

   LC
   CO

   OV

   LE

   LE

   BR

   UN
   PR

   PR

   BR

   BR

   BR   BR

   BR

   BR

First principal component

S
ec

on
d 

pr
in

ci
pa

l c
om

po
ne

nt

Figure 2.7: The linear projection of the columns of GENE dataset to two dimen-
sions with principal component analysis. The names of the cell lines are abbrevi-
ated for visual clarity.

To get some idea of the power of PCA, we have projected columns of the

GENE data matrix into two dimensions. The result is shown in Figure 2.7. Re-

member that the original dimension was 1375. To reduce overlapping, we give

only part of the names of the cell lines. Comparing the result with the results of

hierarchical clustering in Figure 2.6 suggests that some of the structure is really

preserved in the projection. However, only ρ = 11.5% of variance was explained

by the first two principal components.



Chapter 3

Significance testing

In this chapter we first introduce traditional statistical tests and randomization

tests for assessing the significance of a result. A result is called significant if it

is unlikely to have occurred purely by chance. We use a p-value to measure the

significance level. Then, we discuss generally how to produce random samples

for needs of statistical tests. Finally, we study how the significance testing of data

mining results on real-valued matrices should be done, and give an example of

usefulness of randomization. The discussion is based on references [1, 6, 18, 21].

3.1 Traditional statistical tests

First, we present the general structure of traditional statistical tests. Then we

give an example of using the approach in a simple case. Finally, we discuss the

problems occurring in significance testing: the two different types of statistical

error and the multiple-testing problem.

3.1.1 Overview

Traditional significance testing is based on assessing hypothesis of simple models.

In practice, we have to make generalizing assumptions of the true phenomenon to

fit it into the theoretical models that we can study by traditional methods.

Consider an example where the expression levels of two genes A and B are

studied. We want to know whether the expression levels of genes A and B differ

21



CHAPTER 3. SIGNIFICANCE TESTING 22

significantly from each other. For that purpose, we have measured the gene ex-

pression levels of A and B in n similar tissue samples. In a simple approach, we

can calculate the average expression levels of A and B and compare them directly

with each other. However, if, for instance, the average levels are 2.1 and 2.5,

respectively, it is incorrect to say that B is more expressed as A without further

study, since that may occur purely by chance.

Instead, we have to formulate a precise hypothesis that we will test. We are

interested whether the expression levels of A and B differ in all possible samples,

not only in the sample set which we have for solving the problem. Thus the

question is that how probable it is that the expression levels of A and B equal based

on the sample set collected. This is expressed formally in a null-hypothesis H0,

which can be tested empirically:

H0: The two sample sets are taken from collections with equal means.

The alternative hypothesis H1 constitutes the opposite claim:

H1: The sample sets are taken from collections with different means.

This does not state which one of A and B is larger. Another alternative hypothe-

sis H1 fixing this is

H1: The sample set of A is taken from a collection with larger mean.

The validity of a null-hypothesis is assessed by applying an appropriate sta-

tistical test. There exist various statistical tests for different purposes. A couple

of common statistical tests for testing the equality of means are summarized in

Table 3.1. In each test a test statistic is calculated which is then compared to its

theoretical distribution under the null-hypothesis. In Table 3.1 two different types

of tests are presented: z- and t-test. The test statistic z follows a standard normal

distribution whereas t follows a Student’s t-distribution [21], which resembles a

normal distribution in its shape. Student’s t-distribution has a parameter f which

is called the number of degrees of freedom.

From the value of the test statistic we can calculate a p-value which gives

the probability of getting a result as extreme as the one obtained under the null-

hypothesis. If the p-value is less than a significance level α decided in advance,



CHAPTER 3. SIGNIFICANCE TESTING 23

Name Test statistic Assumptions

One-sample
z-test

z = x̄−µ0
σ
√

n
Normal distribution or n > 30,
σ known

Two-sample
z-test

z = (x̄A−x̄B)−(µA−µB)√
σ2

A
n A
+

σ2
B

nB

Normal distribution, σA and
σB known

One-sample
t-test

t = x̄−µ0
s
√

n
,

f = n − 1

Normal distribution and σ
unknown

Two-sample
t-test

t = x̄A−x̄B√
s2
A

n A
+

s2
B

nB

,

f = (s2
A/n A+s2

B/nB)2

(s2
A/n A)2

n A−1 +
(s2

B/nB )2

nB−1

Normal distribution, σA and
σB unknown and unequal

Table 3.1: Test statistics for testing whether means are equal. The variable z fol-
lows standard normal distribution and t follows Student’s t-distribution with de-
gree of freedom f . Variables x̄ and s are the sample mean and standard deviation,
respectively, and µ and σ are the corresponding true values, respectively.

we can conclude that the result is unlikely to happen under null-hypothesis, and

thus we can reject the null-hypothesis H0 and accept the alternative hypothesis

H1. The significance level is commonly chosen as 0.05, 0.01 or 0.001. The test

can be either one-tailed or two-tailed depending on the alternative hypothesis. If

we make no difference between A > B and B > A the test is two-tailed, and

conversely.

The outline of traditional statistical significance testing is summarized below:

1. Collect data

2. State a null-hypothesis H0 and an alternative hypothesis H1

3. Choose a significance level α

4. Select a test statistic with valid assumptions

5. Calculate a p-value

6. If p < α, reject the null-hypothesis H0



CHAPTER 3. SIGNIFICANCE TESTING 24

3.1.2 Example

We continue the example introduced in the previous subsection. Assume we have

measured the gene expression levels of genes A and B from n = 10 tissue sam-

ples. Let the measured expression values for gene A and B be

A : 2.42, 1.21, 2.13, 1.72, 1.25, 2.65, 2.83, 2.22, 1.55, 3.31

B : 2.68, 2.20, 2.07, 2.83, 3.24, 2.09, 1.86, 3.36, 2.55, 2.10.

The mean values of the measured expression levels of genes A and B are x̄A =

2.13 and x̄B = 2.50, respectively. We want to test whether the difference in their

means is significant. Thus we formulate a null-hypothesis H0 whose significance

we shall test:

H0 : µA = µB ,

where the µA and µB denotes the true, hidden means of gene expression levels of

A and B. We shall use one-tailed test, where the alternative hypothesis is

H1 : µB > µA.

We choose a significance level α = 0.05. We may assume that the distribution

of the gene expression levels is a normal distribution. The normality assumption

may not be true but usually it is justified. As we do not know the true variances

of expression levels of A and B, we must use two-sample t-test. The sample

deviations are sA = 0.70 and sB = 0.52, thus we get the following values for the

test statistics by using the equations in Table 3.1: t = −1.34, f = 16.67.

The p-value is obtained from the cumulative distribution function of Student’s

t-distribution with degree of freedom f = 16.67. At the point t = −1.34, the

cumulative distribution has a value p = 0.099 which is the one-tailed p-value of

our test. Since p = 0.099 > 0.05 = α, we cannot reject the null-hypothesis.

Thus we cannot say that the means x̄A and x̄B differ significantly. However, we

can say that with p-value 0.099 the gene expression level of B is higher than A.

As the two datasets were artificial, we know their true, hidden distributions.

Both were drawn from normal distributions with parameters µA = 2.1, σA = 0.5,

µB = 2.5 and σB = 0.5. Thus we made a wrong conclusion! The difference was

just not significant enough that we could statistically be sure about it.



CHAPTER 3. SIGNIFICANCE TESTING 25

3.1.3 Statistical error

An error produced by randomness is called statistical error. In statistical sig-

nificance testing we distinguish two types of error: type I and type II. They are

defined as rejecting or failing to reject a null-hypothesis incorrectly, respectively.

Type I error is also known as false positive: we reject the null-hypothesis when

it is actually true. Thus we notice a difference in the test variables although it is

only produced by chance. For example, if we claim a drug to relieve symptoms of

a disease when it actually does not affect at all, we make an error of Type I.

Error of type II, also known as false negative, is just the opposite: we accept

a null-hypothesis when the alternative would be true, thus we fail to reject the

null hypothesis. The difference may be so small that our test statistic cannot dis-

tinguish it, or the observed difference is by chance too small. In the example in

the previous subsection we made a type II error. Notice, however, that generally

we cannot know whether our conclusion is right or wrong as we do not have any

additional hidden knowledge.

The selection of significance level α of a test affects directly the probability

of errors of type I and II. If the significance level is α = 0.05, in average one out

of 20 statistical tests, where the null hypothesis is true, is incorrectly regarded as

significant. With significance level α = 0.01 the same happens in average in one

out of 100 tests.

However, when the probability of type I error is decreased by decreasing the

significance level α, the probability of type II error is increased at the same time.

Thus the selection of significance level is a compromise between probabilities of

type I and II errors. Nevertheless, increasing the sample size also decreases the

probability of making type I or type II error. The easiest way to make the results

more reliable is to use a larger sample set.

3.1.4 Multiple testing

Consider a data mining task where we are interested in finding a pair of genes

which have a high correlation between them. It is tempting to try all pairs, find

the pair having the highest correlation and apply directly some statistical test for



CHAPTER 3. SIGNIFICANCE TESTING 26

assessing the significance of the correlation between them. Furthermore, it is

likely that the pair is found to be significantly correlated when the statistical test

is applied as described in Subsection 3.1.1.

The problem in this approach is that we are actually doing multiple tests at the

same time and we should take this into account in the statistical test. For example,

if we test 1000 independent null-hypotheses, it is likely that at least one of them is

found to be false with significance level 0.001 even if they all are correct. If we test

n independent, correct null-hypotheses with significance level α, the probability

of getting at least one false positive is 1−(1−α)n . With n = 1000 and α = 0.001

the probability is 0.6323. In general, a random sample set is likely to contain some

samples which seem significantly different from others.

Thus we have to pay attention when combining data mining and statistical

analysis. If the null-hypothesis is formed based on the data mining task, a plain

significance test may produce incorrect results. If, however, the data mining and

the null-hypothesis are independent from each other, statistical tests can be applied

freely.

There are a couple of different approaches to overcome the multiple-testing

problem. If we want to do multiple tests, we can do a Bonferroni correction to

the significance level α: If we do n independent tests, we should use significance

level α′ = α/n instead of α. This guarantees that the probability of getting a false

positive is less than α since

1− (1− α′)n < 1− (1− α′n) = α.

The problem with Bonferroni correction is that it gives very pessimistic results.

Often it is also hard to find the correct number of independent hypotheses.

If we are not interested in a specific hypothesis, we can combine the multiple

tests in a single test and use standard significance testing for the new test statis-

tic. For example, we can measure the average correlation value between pairs of

genes. If this differs significantly from expected, we can conclude that the sam-

ple set in itself contains significant correlation. However, deciding which pairs of

genes are significantly correlated is still impossible.

Randomization tests partly overcome the problem of multiple testing as the



CHAPTER 3. SIGNIFICANCE TESTING 27

same data mining task is performed also to randomized samples. Randomization

approach is discussed in the next section.

3.2 Applying randomization in significance testing

In this section we introduce how randomization can be used in significance test-

ing [6, 7, 20]. In traditional tests the distribution of the underlying phenomenon is

studied theoretically. Even with fairly simple probability distributions this can be

impossible without using harsh approximations. In randomization, the basic idea

is to use Monte Carlo simulation, that is, to draw random, independent samples

from the probability distribution of the null-hypothesis and to use the sample set

as an approximation of the underlying probability distribution.

Although Monte Carlo simulation is applicable to various other cases, we use

it only to approximately calculate the p-value. To get an idea of other applica-

tions, Monte Carlo simulation can be used, for example, to calculate the mean and

variance of a probability distribution π just by approximating them by the mean

and variance of a random sample set drawn from π , respectively.

3.2.1 Empirical p-values

Let A be our original sample. We want to assess the significance of a data min-

ing result on A. We assume that the data mining result can be described by one

number which we call the structural measure of A, written S(A). Some struc-

tural measures were introduced in Section 2.2. The idea is to compare the original

result against the structural measures of randomized samples. For the moment,

we assume that we are able to draw independent random samples Â which share

some statistics with A.

Let Â = { Â1, . . . , Âk} be a set of independent randomizations of A. Then the

one-tailed empirical p-value of the structural measure S(A), with the hypothesis

of S(A) being small, is ∣∣{ Â ∈ Â |S( Â) ≤ S(A)
}∣∣+ 1

k + 1
. (3.1)



CHAPTER 3. SIGNIFICANCE TESTING 28

This captures the fraction of randomized samples that have a smaller value of

the structural measure than the original data A. The one-tailed empirical p-value

with the hypothesis of S(A) being large, and the two-tailed empirical p-value

are defined similarly. The expectation value of the empirical p-value equals the

traditional p-value. Thus, if the p-value is small, we can say that the structural

measure of the original data is significant as it differs substantially from structural

measures of random samples.

More formally, we define a probability distribution π where the randomiza-

tions are drawn. We are testing a null-hypothesis that A is from π . In the real-

valued matrix case, the original data A corresponds to the original real-valued

matrix. The π is ideally a uniform probability distribution among all the real-

valued matrices sharing the same row and column sums and variance with A. The

null-hypothesis corresponds to the case that the structural measure of A can be

explained purely by the first and second order statistics of rows and columns. A

small p-value implies that the structural measure is not due to the row and column

sums and variances.

In Section 3.3 we describe some general approaches for sampling from prob-

ability distribution π by using Markov chains and discuss how the independence

requirement for the samples can be relaxed. In Chapter 4 we further develop the

general approaches into randomization of real-valued matrices.

3.2.2 Sequential tests

Occasionally, we could accept the null-hypothesis by using only a couple of the

first samples instead of all the k samples. In those cases, there is no reason to

produce all the k samples as it can be time consuming. We introduce a sequential

version of calculation of the p-value as developed by Besag et al. [6, 8].

In addition to specifying the maximum number k of samples, a minimum

number h of samples, typically 10–20, is given. Assume that the hypothesis is

that S(A) is small. Then random samples Â1, Â2, . . . are drawn until either h of

the structural measures S( Âi ) of the drawn randomized samples Âi are smaller

than S(A) or until all k samples are drawn. In the former case the p-value is

(h + 1)/(l + 1) where l is the number of samples drawn. In the latter case the



CHAPTER 3. SIGNIFICANCE TESTING 29

normal definition for p-value in Equation 3.1 can be used.

To see that the truncation produces correct p-values, let L be the random vari-

able of the number of samples needed for h exceedings. Then the corresponding

random variable for the p-value is P = (h + 1)/(L + 1). Now under the null-

hypothesis

Pr
(

P ≤
h + 1
l + 1

)
= Pr(L ≥ l) = Pr(L > l − 1) =

h + 1
l + 1

,

since S(A) has to be among the bottom h + 1 structural measures of l random-

ized samples and the original sample, in total l + 1 samples. Thus under the

null-hypothesis the random variable P gets correct values. Hence, the sequential

calculation of p-value is correct.

For example, if k = 1000 and h = 20, the expected sample size is reduced

to 98 if the null-hypothesis is correct [8]. Notice, however, that sequential tests

produce speed up only when the null-hypothesis holds. Furthermore, they are best

suited for preliminary analysis of the data. Thus, in the experiments we are fully

producing the samples.

3.3 Sampling from probability distributions

In this chapter, we discuss how to generate samples from a given probability distri-

bution π for calculation of empirical p-values. We introduce a stochastic concept

Markov chain, and develop sampling methods based on it. Finally, we discuss

how the sampling should be done in order to get valid empirical p-values. For ex-

cellent introduction to Markov chain and its applications, consult references [1,6].

3.3.1 Markov chains

A Markov chain is a discrete-time stochastic process where the next state de-

pends only on the current state. More formally, a sequence of random variables

X1, X2, . . . is called a Markov chain if it fulfills the Markov property

Pr(Xn+1 = x | Xn = xn, . . . , X1 = x1) = Pr(Xn+1 = x | Xn = xn). (3.2)



CHAPTER 3. SIGNIFICANCE TESTING 30

Usually we are only interested in time-homogeneous Markov chains where the

transition probabilities do not depend on time, that is,

Pr(Xn+1 = x | Xn = y) = Pr(Xn = x | Xn−1 = y) (3.3)

for all n. Later on, we will implicitly assume all Markov chains to be time-homo-

geneous. In case of finite state space S we use the transition probability matrix P

whose element Pi j is the probability of moving from state i to state j . A Markov

chain is said to be connected (or irreducible) if every state is reachable in finite

number of steps from every other state. A connected chain is called aperiodic (or

acyclic) if for all two states i and j there exist a time ni j such that P(n)
i j > 0 for all

n ≥ ni j , where P(n)
i j = (Pn)i j is the probability to be in state j after n steps when

starting from state i . The stationary distribution of a time-homogeneous Markov

chain is the distribution where the process converges. The probability vector π of

the stationary distribution fulfills general balance

πT
= πT P. (3.4)

An important special case is a time-reversible Markov chain for which we

cannot identify whether the chain is running forwards or backwards. Note that

the reversed chain, for example, Xm+1, Xm, Xm−1, . . ., also fulfills the Markov

property 3.2 and is thus a Markov chain itself, since if X is independent of Y

then Y is also independent of X . Let R be the transition probability matrix of the

reversed Markov chain. Then a Markov chain is time-reversible if Ri j = Pi j .

For the transition probabilities Ri j of a reversed Markov chain we have

Ri j = Pr(Xm = j |Xm+1 = i)

=
Pr(Xm = j) Pr(Xm+1|Xm = j)

Pr(Xm+1 = i)
=

π j Pj i

πi
. (3.5)

Thus a time-reversible Markov chain fulfills detailed balance

πi Pi j = π j Pj i . (3.6)



CHAPTER 3. SIGNIFICANCE TESTING 31

We have the following lemma:

Lemma 3.1. If π is a probability vector and it fulfills the detailed balance equa-

tion (3.6) for all states i and j of a connected and aperiodic Markov chain, then

the process is time-reversible and π is the stationary distribution of the chain.

Proof. Connectedness and aperiodicity of the Markov chain guarantees that the

process converges and all states have a positive final probability. Time-reversibil-

ity follows directly from detailed balance and from Equation (3.5). By using

detailed balance we get: ∑
i∈S

πi Pi j = π j
∑
i∈S

Pj i = π j , (3.7)

thus π fulfills the general balance condition and is then the stationary distribution

of the chain.

If instead of detailed balance (3.6) we demand symmetry of transition proba-

bilities, Pi j = Pj i , we have

Theorem 3.2. The stationary distribution of a connected, aperiodic Markov chain

with symmetric transition probabilities, PT
= P, is a uniform distribution and the

corresponding chain is time-reversible.

Proof. Let π be a uniform distribution. Since PT
= P , the distribution π trivially

fulfills the detailed balance (3.6). Thus Lemma 3.1 implies that π is the stationary

distribution of the chain and the chain is time-reversible.

The definitions can easily be generalized also to the case of continuous state

space. Then, instead of transition probability matrix P we have transition ker-

nel P defined in the continuous state space. For clarity and to be consistent with

the notation of continuous state space, we will later use notations P(x, y) and

π(x) also for finite state space to mean Pi j and πi , respectively.

3.3.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a general concept for methods for sam-

pling from probability distributions. MCMC is based on constructing a Markov



CHAPTER 3. SIGNIFICANCE TESTING 32

chain with the desired distribution as its stationary distribution. The states of the

Markov chain are then used as samples from the desired distribution.

Optimally, we could draw the starting state randomly from the stationary dis-

tribution. However, this is usually not possible and we have to start just some-

where. Thus, one of the most important steps of the MCMC method is the mixing

time (or burn-in time). It describes the number of steps after which the state

distribution of the Markov chain has approximately converged to the stationary

distribution. Only samples obtained after the mixing time of the chain should be

accepted as random samples from the stationary distribution.

The mixing time is usually hard to evaluate theoretically. In practice, we can

use some distance measure to approximate the mixing time, that is, when the

distance between the starting state and the current state has converged, we can

assume that the distribution has converged. Often it is just enough to be sure that

the chain is functionally mixed which means that the distribution of the values of

some relevant function of the samples has converged.

There exist various ways to draw samples with MCMC methods. We can take

a prescribed number of successive samples after the mixing time. However, then

the samples are likely to depend strongly on each other, but if we will use a lot

of samples this may not be a problem. Nevertheless, we usually prefer fewer

but more independent samples. This can be achieved by taking every kth sample

after the mixing time where k is as large as we can afford, close to the mixing

time. Another way is to produce each sample by starting a new chain from the

beginning state and take the first sample after the mixing time.

However, we will use none of the ways described above to draw samples since

they do not guarantee the exchangeability condition discussed in Subsection 3.3.4.

Shortly put, we want our original state to be comparable with the randomized sam-

ples when calculating p-values. In Subsection 3.3.4 we describe how to achieve

this.

3.3.3 Metropolis-Hastings

Metropolis-Hastings algorithm [24,36] is one of the most used MCMC methods to

sample from probability distributions. It is a rejection sampling algorithm which



CHAPTER 3. SIGNIFICANCE TESTING 33

uses a proposal density Q(y|x) that gives the proposal probability of the new

state y given the current state x . It is assumed that sampling from the proposal

density Q(·|x) is easy, whereas it suffices that the desired probability π(x) can be

calculated only up to a constant factor.

At each step a new proposal y is drawn from the distribution Q(·|x). It is

accepted as the new state if u sampled randomly from uniform distribution U (0, 1)

fulfills

u <
π(y)Q(x |y)

π(x)Q(y|x)
, (3.8)

otherwise the chain stays in the current state x , which is then the new state. As the

symbol π for the desired probability distribution suggests, we have the following

theorem:

Theorem 3.3. The Markov chain produced by Metropolis-Hastings algorithm is

time-reversible, and if the chain is connected and aperiodic, the stationary distri-

bution equals the desired probability distribution π .

Proof. We will prove that π satisfies detailed balance (3.6) in which case we can

apply Lemma 3.1. Due to the rejection sampling defined in Equation (3.8), the

true transition probabilities P(x, y) are

P(x, y) = Q(y|x) min
{

1,
π(y)Q(x |y)

π(x)Q(y|x)

}
if x 6= y, (3.9)

and P(x, x) is defined by subtraction of P(x, y), y 6= x . Then P(x, x) ≥ 0 since

P(x, y) ≤ Q(x, y) and Q(x, y) sums to one over y. Now if x 6= y

π(x)P(x, y) = min {π(x)Q(y|x), π(y)Q(x |y)} = π(y)P(y, x) (3.10)

It also holds trivially for x = y, thus π satisfies the detailed balance condition.

The proposal distribution Q has a huge impact on the mixing time. It should be

as global as possible while allowing a high acceptance rate in Equation (3.8). The

optimal acceptance rate under some reasonable assumptions is around 25% [18].

However, the best case would be if Q(·|x) equalled π for all x . Then the accep-

tance rate would be 100%, but then there is no need for Metropolis-Hastings sam-



CHAPTER 3. SIGNIFICANCE TESTING 34

pling. Often symmetrical proposal distribution is used, that is, Q(y|x) = Q(x |y),

in which case Equation (3.8) reduces to

u <
π(y)

π(x)
. (3.11)

This is the original version of the method by Metropolis [36], and we are using it

in our randomization methods described in Chapter 4.

3.3.4 MCMC p-values

Assume that our task is to validate whether an observation A has been drawn from

a distribution π or not. If we cannot produce samples from π directly, a basic

approach is to produce a Markov chain with the stationary distribution π and use

A to initialize the chain. Samples from the chain are then used for calculating an

empirical p-value as described in Subsection 3.2.1.

However, as discussed in Section 3.3.2, producing independent samples with

MCMC methods is hard. Thus calculating an empirical p-value using samples

produced with any of the sampling schemes introduced in 3.3.2 may not produce a

legitimate p-value. Nevertheless, we can produce a valid p-value without relying

on independence if we can produce exchangeable samples as suggested by Besag

et al. [7] and explained in more detail by Besag [6, p. 46].

Instead of starting the chain from A and running it forwards, we produce a new

starting state A0 by running the chain first I steps backwards from A. Then sam-

ples A1, . . . , Ak are each produced by starting a new chain from A0 and running

it I steps forwards. Running the chain backwards is implemented by reversing the

Markov chain as explained in Section 3.3.1 and in Equation 3.5.

If A is indeed from π , then the samples A1, . . . , Ak are also. Furthermore,

the samples A and A1, . . . , Ak have an underlying joint distribution which is ex-

changeable, i.e, we cannot distinguish any of the samples A and A1, . . . , Ak from

each other since they all could be produced with I steps from A0. Thus if A is

really from π , the rank of S(A) among S(A) and S(A1), . . . ,S(Ak) is distributed

uniformly and the empirical p-value calculated is correct. On the other hand, if A

is not from π , sufficiently large I allows the chain to converge and we are able to



CHAPTER 3. SIGNIFICANCE TESTING 35

confirm that A is not from π .

Thus the exchangeability condition guarantees that we calculate the p-value

correctly even if the samples are dependent. Large number of steps I is still good

for allowing the chain to convergence, and traditional tests can be used for finding

an appropriate mixing time. However, if we use too small I , we get just more

conservative results.

There exists also a serial version of the approach which actually does not guar-

antee exchangeability condition but generally converges faster. In the experiments

we use the parallel version explained above. For more about the serial version, see

references [6, 7]. The approach of sequential tests explained in Subsection 3.2.2

can be used also in calculation of MCMC p-values.

3.4 Significance testing on real-valued matrices

As the main interest in this thesis is the significance testing of real-valued matri-

ces, we discuss it further. In Chapter 4 we introduce methods based on the MCMC

approach discussed in the previous section, and use them to generate random sam-

ples for calculating p-values as explained in 3.3.4. However, we first have to fix

our null-hypothesis, that is, to form a probability distribution π from which the

random real-valued matrices are drawn.

First we discuss generally what kind of randomness we want and how to

achieve it. Then we study specifically the case of randomizing a matrix while

preserving its row and column means and variances. Finally, we give an example

why preserving these statistics is useful in some applications.

3.4.1 Problem definition

In introduction, we formulated the problem as randomly sampling real matrices

with given row and column means and variances. The choice of means and vari-

ances is purely arbitrary: they are just natural characteristics explaining most of

the variation in a matrix. They may also capture the essential parts of the under-

lying phenomenon, but that depends on the application.



CHAPTER 3. SIGNIFICANCE TESTING 36

As it is ambiguous what sort of randomization we prefer, we formulate a gen-

eral problem for randomization of real-valued matrices:

Problem 2. Given an m × n real-valued matrix A, generate a random matrix Â

from probability distribution

π( Â) =

c exp(−wE(A, Â)), Â ∈ S,

0, Â 6∈ S,
(3.12)

where S is the set of allowed matrices, E(A, Â) is an error measure of Â respect

to A, w is an error scaling constant and c is a normalizing constant.

The error function E captures the characteristics we want to preserve. The

probability π( Â) is high for matrices containing small error. The exponential

term in π effectively eliminates matrices with large error. The constant w controls

how steep the distribution is. Notice that the probability distribution π is uniform

among all the matrices having the same error measure. In the next subsection 3.4.2

we develop a function E(A, Â) measuring the error in the row and column means

and variances of Â compared to A. However, the methods developed in Chapter 4

can be used with an arbitrary error function. Nevertheless, we are only studying

the error function explained in the next subsection.

In addition to the error measure E , we are restricting the allowed matrices to

a predefined set S. Naturally, S can be the set of all real-valued matrices having

the same size than A, thereby allowing all real-valued matrices as outcomes. Fur-

thermore, we can restrict the values in randomized matrices into some predefined

range, for instance, into [0, 1] by suitable S. This can be important if, for example,

only positive values are meaningful.

Sometimes also the distribution of the values in the matrix is important. Of

course, this could be embedded in the error measure, but it can be controlled by S

as well. In some of our methods we use a simple way to obtain this: S is the set

of all matrices containing the values in A permuted randomly.

In Chapter 4 we introduce three different methods for randomizing real-valued

matrices. They all use the same error function defined in the next subsection 3.4.2;

only the set S is different for each.



CHAPTER 3. SIGNIFICANCE TESTING 37

3.4.2 Measuring the error of a randomized matrix

Next, we define an error measure on the difference in row and column means and

variances between two matrices. Let A be the original m × n real-valued matrix

whose row and column means and variances we wish to preserve. Let Â be another

m × n real-valued matrix, for example an output of one of our algorithms. Let ri

be the sum of the values in the i th row of A and c j the sum of the values in the j th

column of A. Let Ri and C j be the corresponding sums of squares of the values

in row i and column j . Thus

ri =

n∑
j=1

Ai j , c j =

m∑
i=1

Ai j ,

Ri =

n∑
j=1

A2
i j , C j =

m∑
i=1

A2
i j . (3.13)

Let r̂i , ĉ j , R̂i and Ĉ j be the corresponding values for the randomized matrix Â.

Now let E(ri ), E(c j ), E(Ri ), E(C j ) be the row sum, column sum, row square

sum and column square sum errors respectively, that is,

E(ri ) = |ri − r̂i |, E(c j ) = |c j − ĉ j |,

E(Ri ) = |Ri − R̂i |, E(C j ) = |C j − Ĉ j |. (3.14)

To obtain algorithms for our task, we need to combine the sum and square sum

errors, corresponding to differences in means and variances between A and Â. A

general approach is to allow the importance of rows vs. columns and means vs.

variances to be defined by separate weight parameters. Let wr and ws be row and

square sum weights, respectively. We define the general error function as

E(A, Â) = wr

m∑
i=1

(
E(ri )

2
+ ws E(Ri )

2
)

+

n∑
j=1

(
E(c j )

2
+ ws E(C j )

2
)
. (3.15)



CHAPTER 3. SIGNIFICANCE TESTING 38

This measures the distance in means and variances between the given matrix Â

and the original matrix A. In our experiments, we use parameter values wr = m/n

and ws = 1, treating each of the row and column sum and square sum errors as

equally important.

Note that the error measures are not scale invariant, that is, multiplying A and

Â both by the same constant changes the value of E(A, Â). However, we assume

the values A(i, j) to be in the interval [0, 1]. To obtain this, the values are linearly

scaled into [0, 1].

Similarly, one could define error measures for higher moments or for some

other specific features. The only restriction is that the error in the matrix Â has to

be interpretable with a single number, being a combination of partial errors.

3.4.3 Example

Most of the existing randomization techniques for real-valued matrices are based

on simply permuting the values in a single column (or row). To show why this

is not necessarily enough, consider the two 10 × 5 real-valued matrices A and

B shown in Figure 3.1. They share their first two columns, and the correlation

between these columns is high, 0.92. However, in matrix B the values on each

row are tightly distributed around the mean of the row, whereas in matrix A the

variance of each row is high. If the test of significance of correlation between

columns x and y would consider only the first two columns, the results for the two

matrices would be identical. However, it seems plausible that the high correlation

between the first and second columns in matrix B is due to the general structure

of the matrix, and not some interesting local structure involving the two columns,

as might be the case with matrix A. More specifically, it seems that the correlation

of x and y in B is due to the small variance of each row in B.

To test this observation, we generated randomized matrices: sets A and B
each contain 1000 independent random matrices having approximately the same

row and column means and variances as A and B. Then the correlations between

the x and y in the randomized matrices are as follows: for the matrices in setA the

smallest correlation between x and y is −0.38, the maximum 0.89, average 0.34

and standard deviation 0.25, while in set B corresponding values were 0.82, 0.99,



CHAPTER 3. SIGNIFICANCE TESTING 39

x y
.46 .36 .21 .68 .45
.44 .29 .64 .21 .04
.74 .87 .32 .84 .03
.04 .06 .96 .63 .31
.75 .66 .73 .13 .01
.85 .81 .41 .21 .38
.80 .98 .74 .61 .68
.70 .72 .27 .63 .09
.30 .37 .44 .37 .04
.57 .41 .93 .58 .61

Matrix A

x y
.46 .36 .56 .51 .53
.44 .29 .49 .52 .38
.74 .87 .90 .79 .80
.04 .06 .03 .11 .05
.75 .66 .68 .75 .71
.85 .81 .83 .81 .90
.80 .98 .88 .90 .81
.70 .72 .67 .79 .63
.30 .37 .37 .35 .43
.57 .41 .46 .44 .41

Matrix B

Figure 3.1: Examples with two real-valued data matrices sharing the first two
columns x and y having high correlation. The values on each row of the matrix B
are close to each other whereas in A the variance of each row is large. The high
correlation between x and y is significant in A but not significant in B when tested
using the methods introduced in Chapter 4.

0.93 and 0.03, respectively. This gives empirical p-values of 0.001 for matrix A

and 0.4156 for matrix B. Thus we may conclude that the high correlation between

the first and second columns in A is indeed not due to the row and column sums

and variances, unlike in B.

The example shows that the structure of the entire matrix can have a strong

effect on the significance of even the basic data mining results. The randomiza-

tion approach presented in this paper is applicable in assessing the significance of

structural measures conditional on the knowledge of row and column sums and

variances, but it can be modified directly to other conditions as well.



Chapter 4

Randomization methods

In this chapter, we introduce methods for randomizing real-valued matrices while

preserving row and column sums and variances. However, we first explain ran-

domization of binary matrices as introduced by Gionis et al. [19]. We further de-

velop the ideas of randomizing binary matrices to be applicable with real-valued

case. All methods are based on local transformations. The series of operations in

each method forms a Markov chain, in either discrete or continuous space.

4.1 Methods for 0–1 matrices

In this section, we introduce a randomization method for binary matrices devel-

oped by Gionis et al. [19]. It is based on swapping matrix elements. The idea of

swapping matrix elements as a randomization technique has a long history [14].

Our methods for real-valued matrices, which are introduced in Section 4.2, get

their basic idea from the method introduced next. The method is called the Self-

loop method by the original authors [19] but we will refer it as SwapBinary. There

exist also various other methods for randomizing binary matrices [9,13,14,17] but

they are not introduced in this thesis.

Binary matrices consist of zeros and ones. A real world example of such

matrix is a market basket data. The rows contain customers and the columns

contain products. A cell contains one if the corresponding customer bought the

corresponding product, and zero otherwise. Typical data mining tasks for binary

40



CHAPTER 4. RANDOMIZATION METHODS 41

j1 j2
...

...
i1 · · · 1 · · · 0 · · ·

...
...

i2 · · · 0 · · · 1 · · ·
...

...

⇐⇒

j1 j2
...

...
i1 · · · 0 · · · 1 · · ·

...
...

i2 · · · 1 · · · 0 · · ·
...

...

Figure 4.1: An example of a binary swap. The four elements shown are rotated
and rest of the matrix is kept fixed. The number of ones in each row and column
do not change.

matrices are finding the frequent item sets, that is, the sets of products which

many customers bought, and finding the associative rules, that is, rules such that

if customer bought product A he is likely to buy product B as well.

In randomization of binary matrices, we want to sample matrices uniformly

from all binary matrices with the same number of ones in each row and column

as in the original matrix. Thus we are actually preserving row and column sums

(and also higher moments) and restricting the values to zeros and ones.

The basic idea of randomization of binary matrices is to select four elements

as in Figure 4.1 and swap them to form a new matrix. The swap procedure retains

the number of ones in each row and column. All the binary matrices with the same

margins are reachable with such swap operations from any such matrix.

In Algorithm 5 the SwapBinary method is presented. It starts from the orig-

inal matrix and iteratively performs the swap operation. At each step, it chooses

randomly four elements with ones in the two opposite corners and swaps them if

the two other corners contain zeros.

The first two corners are insisted to contain ones as the binary matrices are

usually sparse, that is, they contain mainly zeros, to make the process faster. The

method SwapBinary samples uniformly from all the binary matrices with the same

margins as the original matrix. In the experiments by Gionis et al. [19], the authors

found that usually a couple of times the number of ones in the matrix is sufficient

to guarantee the convergence.



CHAPTER 4. RANDOMIZATION METHODS 42

Algorithm 5 SwapBinary
Input: Binary matrix A, number of attempts k

1: Â← A
2: for i ← 1, k do
3: Pick i1 and j1 randomly s.t. Âi1 j1 = 1
4: Pick i2 and j2 randomly s.t. Âi2 j2 = 1
5: if Âi1 j2 = 0 and Âi2 j1 = 0 then
6: Â← Swap( Â, i1, i2, j1, j2 )
7: end if
8: end for
9: return Â

4.2 Methods for real-valued matrices

In this section we introduce three algorithms for performing sampling from the

set of real-valued matrices with given row and column sums and variances. All

methods output a randomized version Â of the original m × n matrix A. They

sample from probability distribution π defined in Problem 2 in Subsection 3.4.1.

The methods use the error function E(A, Â) defined in Subsection 3.4.2. We

study three different sets of allowed matrices S and introduce a separate algo-

rithm for each of them. The sets of allowed matrices (or equivalently the pro-

posed algorithms) differ in the amount of structure that is maintained in the value

distribution: in the first set the discretized distribution of the values in the rows

and columns is preserved, in the second set the distribution of the values in the

whole matrix is preserved whereas in the third set only the range of the values is

preserved.

The algorithms are based on doing local modifications on the matrices. The

idea for the type of the modifications comes from binary swaps explained in the

previous section 4.1. Here we use a concept of swap rotations as shown in Fig-

ure 4.2, which degenerates to conventional binary swaps as in Figure 4.1 in the

case of 0–1 data. At each step we randomly choose from the current matrix four

elements a, b, a′, and b′, located at the intersections of two rows i1 and i2 and

two columns j1 and j2. A new matrix is produced by rotating those four elements

clockwise, while keeping the other elements unchanged.

The smaller the difference between (a, b) and (a′, b′), the smaller the change



CHAPTER 4. RANDOMIZATION METHODS 43

j1 j2
...

...
i1 · · · a · · · b · · ·

...
...

i2 · · · b′ · · · a′ · · ·
...

...

⇐⇒

j1 j2
...

...
i1 · · · b′ · · · a · · ·

...
...

i2 · · · a′ · · · b · · ·
...

...

Figure 4.2: An example of a swap rotation in a real-valued matrix. The four
elements shown are rotated and rest of the matrix is kept fixed. If a = a′ and
b = b′ then the row and column statistics do not change.

in the row and column statistics will be. If a = a′ and b = b′, the row and column

statistics do not change at all, corresponding to binary swaps.

In the following discussion, the data is assumed to be scaled into the unit

interval [0, 1]. The data can always be scaled linearly into [0, 1] and after ran-

domization returned into the original range of the values.

4.2.1 Discrete swaps

Our first method is a fairly crude generalization of the SwapBinary algorithm

to real valued data. First the values in the original matrix are discretized into a

predefined number of classes N . Then swaps are performed requiring that a and

a′ as well as b and b′ belong to the same class. Finally, the data is “undiscretized”

by mapping the discretized values back to the original ones. The pseudocode of

this approach is presented in Algorithm 6.

The Discretize method returns a matrix C , where the matrix values have been

replaced by their class labels. At the end of the algorithm, the Undiscretize method

replaces the class labels with real values. The Swap method implements the oper-

ation shown in Figure 4.2.

In our experiments the data matrix is discretized by dividing the range of A’s

values into N intervals of equal length. As the values are assumed to be in [0, 1],

the division intervals are [0, 1/N ], . . . , (1 − 1/N , 1]. The undiscretization may

either restore the original matrix elements in their new places, or replace them with

the average value of the elements in the corresponding class. The latter produces

matrices with a smaller error. However, the former preserves the values of the



CHAPTER 4. RANDOMIZATION METHODS 44

Algorithm 6 SwapDiscretized
Input: Matrix A, number of attempts I and classes N

1: C ← Discretize(A, N )
2: for i ← 1, I do
3: Pick i1 and j1 randomly
4: Pick i2 and j2 randomly with Ci1 j1 = Ci2 j2
5: if i1 6= i2 and j1 6= j2 and Ci1 j2 = Ci2 j1 then
6: C ← Swap(C , i1, i2, j1, j2 )
7: end if
8: end for
9: Â← Undiscretize(C)

10: return Â

original matrix, and we apply it in the experiments.

The selection procedure in line 4 can be done in constant time by keeping

track of the locations of elements of each type. Compared to the SwapBinary

method the first selection in SwapDiscretized is not restricted in anyway as there

in general can be more than two classes.

SwapDiscretized is a simple method for approximately preserving all the row

and column moments of the original data. The moments are exactly maintained

in the discretized space. However, contrary to binary case, all valid permutations

of matrix elements are not reached by this method, as shown in Subsection 4.3.1.

Choosing the value for N involves making a compromise between efficiency of

mixing, and the error induced in the row and column statistics.

4.2.2 Metropolis with swaps

Next we introduce a method based on the Metropolis algorithm introduced in

Subsection 3.3.3. It allows us to generate samples Â directly from the probability

distribution π defined in the Problem 2:

π( Â) =

c exp(−wE(A, Â)), Â ∈ S,

0, Â 6∈ S,



CHAPTER 4. RANDOMIZATION METHODS 45

Then the matrices Â for which E(A, Â) is small have a high probability of being

generated. We let S be the set of all the matrices containing the values of the

original matrix A permuted randomly. For the Metropolis algorithm we need also

a proposal distribution Q. We use the uniform distribution among all the matrices

reachable from the current matrix with one swap rotation. A direct implementa-

tion of the Metropolis approach is presented in Algorithm 7.

Algorithm 7 SwapMetropolis
Input: Matrix A, number of attempts I , error limiter w > 0

1: Â← A
2: for i ← 1, I do
3: Pick i1 6= i2 and j1 6= j2 randomly
4: A′← Swap( Â, i1, i2, j1, j2)
5: u ← Uniform(0,1)
6: if u < exp{−w(E(A, A′)− E(A, Â))} then
7: Â← A′

8: end if
9: end for

10: return Â

The difference in error induced on line 4 can be calculated in constant time,

provided we keep track of the row and column sums and square sums. This holds

because the swapped matrix A′ differs from Â only on rows i1 and i2 and on

columns j1 and j2.

The SwapMetropolis algorithm can attain all permutations of the input matrix.

The value for the constant w involves making a compromise between efficiency

of mixing and the error induced in the row and column statistics: increasing w

decreases the chances of accepting transitions that induce additional error.

4.2.3 Metropolis with masking

The Metropolis algorithm can also be applied with a different set S of allowed

matrices. We define S = [0, 1]m×n thus restricting only the range of the values to

be the same with the original matrix. The next method works also with S = Rm×n

with little modifications. We cannot use the swap rotation as the local modification

as it does not change the values. Thus we introduce a new local modification:



CHAPTER 4. RANDOMIZATION METHODS 46

j1 j2
...

...
i1 · · · +α · · · −α · · ·

...
...

i2 · · · −α · · · +α · · ·
...

...

Figure 4.3: The addition operation in MaskMetropolis. The addition mask pre-
serves the original row and column sums.

addition mask. A new matrix is created from the current one by selecting rows i1,

i2 and columns j1, j2 at random, and adding the mask presented in Figure 4.3 to

the four intersection elements. The same sampling scheme as in SwapMetropolis

is then applied. The MaskMetropolis method is given in Algorithm 8.

Algorithm 8 MaskMetropolis
Input: Matrix A, attempts I , limiter w > 0, scale s > 0

1: Â← A
2: for i ← 1, I do
3: Pick i1 6= i2 and j1 6= j2 randomly
4: α← Uniform(−s,s)
5: A′← AddMask( Â, α, i1, i2, j1, j2)
6: if for all i, j : A′i j ∈ [0, 1] then
7: u ← Uniform(0,1)
8: if u < exp{−w(E(A, A′)− E(A, Â))} then
9: Â← A′

10: end if
11: end if
12: end for
13: return Â

The auxiliary method AddMask adds the mask presented in Figure 4.3. The

parameter transition scale s defines the range [−s, s], from which α is selected

uniformly at random. Other distributions, such as normal distribution, could also

be used for choosing α. As with SwapDiscretized, the error difference in line 8 can

be calculated in constant time. However, this algorithm never changes the row and

column sums of the matrix, so only the square sum parts of the error function need

to be considered. Thus, actually the addition mask restrict the S to contain only



CHAPTER 4. RANDOMIZATION METHODS 47

matrices having exactly the same row and column sums as the original matrix.

MaskMetropolis changes the matrix values directly, whereas SwapDiscretized

and SwapMetropolis only reorder the entries. Thus the distribution of values in the

output matrix Â may differ significantly from the original distribution. However,

MaskMetropolis preserves the row and column sums exactly, and as seen in our

experimental results, it also preserves the variances quite accurately. Choosing

the values for the parameters w and s involve a compromise between efficiency of

mixing and the error induced in the variances.

4.2.4 Other methods

In our studies we have also tested several variations of the three algorithms and a

couple of other approaches [38]. There were a few alternatives that gave intuitive

results, but were inferior to these three in theoretical or practical aspects.

A simple approach based on swap rotations is to allow a swap if (a, b) differ

from (a′, b′) by at most a small ε each. However, the error E(A, Â) keeps growing

during the randomization and the outputs are useless. One particularly promising

algorithm starts from a random matrix, selects a cell at random, and replaces its

value with a value from [0, 1] that minimizes locally the error in Equation (3.15).

The technique produces matrices with small errors, but the distribution of resulting

matrices is unknown.

Other alternatives are obtained by changing the error function E(A, Â) or the

set of allowed matrices S. The further study of these approaches is left for future

work.

4.2.5 Applying the algorithms

Our methods are instantiations of the general MCMC approach. Simply start-

ing the chain from the original data and running the chain does not guarantee the

exchangeability condition. Thus we will use the techniques introduced in Sub-

section 3.3.4. First, the chain is run backwards for I steps, resulting in a new

dataset A0. After that, the samples are created one by one, always starting from A0

and running the chain forwards for I steps. The p-value calculated by using these



CHAPTER 4. RANDOMIZATION METHODS 48

samples is then valid.

In SwapDiscretized the Markov chain is time-reversible, because the transi-

tion probabilities are uniform across the candidates. Due to the Theorem 3.3 the

Markov chains of the two Metropolis algorithms are also time-reversible. There-

fore running the backward phase can be done by running the basic algorithm with

all the three methods.

4.3 Analysis of the methods

In this section we discuss some of the key properties regarding the distribution of

matrices produced by our methods.

4.3.1 Discrete swaps

The success probability of a swap on line 6 in Algorithm 6 is discussed below. Let

nl be the number of elements with label l, thus
∑N

l=1 nl = mn. If Ai1 j2 has label l

then the probability of success of a swap is nl−1
mn−1 ≈

nl
mn , assuming the locations of

labels in matrix A are randomly distributed. Using Chebyshev’s sum inequality

or Cauchy-Schwarz inequality we obtain the following approximate lower bound

for the acceptance probability:

N∑
l=1

( nl

mn

)2
≥ N

(∑N
l=1

nl
mn

N

)2

=
1
N

. (4.1)

The algorithm is unable to reach all possible matrices with the same distri-

bution of row and column labels as in the original matrix. This may not be a

problem in practice, though it implies that more conservative significance results

are obtained. Consider the counterexample shown in Figure 4.4 with N = 3. The

matrices have the same number of entries of each type per row and column, but

neither of them contains four elements which could be swapped. Thus they cannot

be transformed to each other. The counterexample can be generalized directly to

all matrices with odd number of rows or columns.

The chain of swap operations has a uniform stationary distribution in the space



CHAPTER 4. RANDOMIZATION METHODS 49

1 2 3
2 3 1
3 1 2

6↪→
1 2 3
3 1 2
2 3 1

Figure 4.4: A counterexample of connectedness. The two matrices have the same
row and column statistics, but they cannot be transformed to each other by using
swap rotation, since there does not exist any swappable quartet.

of all reachable permutations, when the selection of candidate elements is done

as on lines 3–5. This follows from Theorem 3.2: The state space is connected as

we have restricted the space to all reachable permutations. The chain is aperiodic

since there is a positive probability of staying in the current state, and finally, the

transition probabilities are symmetric since the swap can be undone by another

swap. The theorem also guarantees the time-reversibility of the Markov chain of

SwapDiscretized as stated in Subsection 4.2.5.

SwapDiscretized does not strictly follow the definition of Problem 2 in Sub-

section 3.4.1. Since in the discretized space all the matrices Â have the same row

and column statistics, the error E(A, Â) stays constant. Only error is made in

the discretization process. If the undiscretization is done by replacing class la-

bels with the average values, the uniform stationary distribution equals the π in

Equation 3.12. However, if we replace the labels with the original values, the er-

ror E(A, Â) is not constant for each output Â and the error distribution does not

strictly follow the π in Equation 3.12.

4.3.2 Metropolis with swaps

Consider the error distribution of matrices produced by Algorithm 7. Since there

exist many more matrices with notable error than matrices with almost zero error,

the stationary distribution of the error of resulting matrices Â is concentrated far

from zero. More precisely, the distribution of the resulting error Ê = E(A, Â) is

Pr(Ê = x) ∝ exp(−wx)q(x), (4.2)

where q(x) is the distribution of error x of matrices in S, that is, matrices with

the values in A permuted randomly [24]. The distribution q(x) is a sum of hyper-



CHAPTER 4. RANDOMIZATION METHODS 50

exponential distributions that can be approximated with a Gamma distribution. It

results that Equation (4.2) can be approximated by another Gamma distribution.

Additional theoretical studies on the error distributions are left for further work.

We show that the state space is connected when m, n ≥ 3. To move from

state A1 to A2 we can clearly use the swap rotation to get one element at a time

in the correct place until only 3× 3 square is incorrectly placed. This is a special

case which can be shown to have solution in all cases by brute force. However,

if the error limiter w is too large, the state space can in practice be unconnected.

Nevertheless, the results will be then just more conservative as explained in Sub-

section 3.3.4. Approximately 3mn successful steps are needed at most to move

from any state to any other state.

4.3.3 Metropolis with masking

The discussion in the previous subsection of the error distribution of matrices

produced by SwapMetropolis also applies directly to the MaskMetropolis method.

The only change is in the distribution q(x) where now the set S consists of all

matrices in [0, 1]m×n having the same row and column sums as the original matrix.

The state space S can easily be seen to be connected with MaskMetropolis. To

move from state A1 to A2 we can change one element at a time to the new value by

using the addition mask. As the sums of the rows and columns are fixed also the

remaining values are guaranteed to be correct. Approximately mn/s successful

steps suffices to move from any state to any other state.

For a simplistic analysis of the practical convergence speed of MaskMetropolis

method, suppose we start running Algorithm 8 with error limiter w = 0 on an m×

n matrix, but this time accepting matrices with elements outside the unit interval.

In practice this means accepting all attempts. Any given element will be changed

on average every 2/m · 2/n = 4/(mn) attempts, each change coming from the

uniform distribution U (−s, s). Thus after I = �(mn) attempts each element’s

total change will approximately follow the normal distribution N (0, 4I s2/(3mn)),

because we have Var(U (−s, s)) = s2/3. Now if we want the changes to come

from the standard normal distribution when using, for example, s = 0.1 we get

I = 75mn, which is close to the number of attempts used in the experiments.



Chapter 5

Experiments

We performed various experiments and tests with the three methods, SwapDis-

cretized, SwapMetropolis and MaskMetropolis, on real and artificial datasets. First

we give visual examples of randomizations to justify the usefulness of the meth-

ods. After that we study empirically the convergence properties of the methods

and choose appropriate parameter values. Finally, we perform significance testing

on five different datasets of the three structural measures introduced in Section 2.2:

K-means, maximum correlation and principal components.

5.1 Examples of randomizations

In this section we give some examples of the results produced by each of the three

methods, and motivate the usefulness of preserving also row and column variances

in addition to means.

5.1.1 Randomization of topographical data

First we show results on a 100 × 100 matrix resembling a hilly surface, shown

in Figure 5.1. The results shown come from applying our algorithms with the

parameters described in Section 5.2. One randomized sample is presented for

each method.

The SwapDiscretized method tends to create rectangular shapes, which may

be seen from the image. The approximation of the error in SwapMetropolis makes

51



CHAPTER 5. EXPERIMENTS 52

 

 

Original data SwapDiscretized

SwapMetropolis MaskMetropolis
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.1: Original topographic data and results of randomization of the original
data with our three methods. The small top left artifact in the original matrix has
disappeared in the randomizations, which have produced “shadows” of the artifact
to top right and bottom left regions.

its results look a bit noisy. Finally, the existence of the small hill on top left in the

original data results in shadow shapes emerging in the top right and bottom left

regions with all methods.

In all the randomized matrices the massive bottom right hill remains, but the

smaller top left artifact disappears. MaskMetropolis even introduces a hole in the

place of the small hill. Making an analogy to real data, the bottom right patch

is something inherent to the data source, probably obvious and not very exciting,

while the top left patch could be something more delicate and interesting. This

fits with the idea that the patterns that disappear in randomization, with respect to

some structural measure, are the significant ones.



CHAPTER 5. EXPERIMENTS 53

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Topographic data randomized by preserving only row and column
sums. Most of the structure has disappeared but the bottom right corner is lighter
than rest of the matrix.

5.1.2 Importance of preserving variances

We also randomized the same topographical data by preserving only row and col-

umn sums, see Figure 5.2. It was obtained by applying MaskMetropolis with the

parameter w set to zero, effectively accepting all valid transitions.

Figure 5.2 shows the importance of maintaining variances when randomizing

real-valued data. In the figure we may still see the effect of preserving sums: the

lower right corner is lighter than the rest of the matrix. However, much less of the

original structure is maintained in the randomization process.

For example, suppose we are interested in the presence of large subrectangles

of the data with high average and small variance corresponding to “high and flat

hills”. The original data clearly has one such pattern. If we assess the significance

of this by comparing against randomizations such as in Figure 5.2, maintaining

only means, the finding seems significant. However, if we maintain also vari-

ances, Figure 5.1 indicates that the presence of such rectangles is explained by the

means and variances. Hence the discovered rectangle is not significant under that

hypothesis.

Higher moments or other characteristics could also be included in the error

function, but this would most likely imply difficulties in attaining a high enough



CHAPTER 5. EXPERIMENTS 54

acceptance rate among the attempted modifications. Fortunately, the SwapDis-

cretized method preserves also higher moments in a discretized space.

5.2 Evaluating the methods

In this section we study the convergence, performance and error rate of each of

our methods as well as the independence of randomized samples. We evaluate

the methods on GENE dataset introduced in Subsection 2.1.2, which was linearly

scaled into [0, 1].

We ran the SwapDiscretized algorithm with the class count N = 30. Swap-

Metropolis was run with the error limiter w = 10, and MaskMetropolis with

w = 1000 and the transition scale s = 0.1. The values of w were chosen based on

finding a suitable acceptance rate for which the methods converged fast enough,

and were strict enough on error. Different parameters could be used for differ-

ent datasets depending on the size and the type of the data. However, the chosen

parameter values produced good results with all datasets used. The erroneous is

discussed in detail in Subsection 5.2.2.

5.2.1 Convergence and performance

We performed various experiments to measure the convergence and performance

of the methods. Finding the mixing times of Markov chains such as the ones we

use is a theoretically hard issue; here we concentrate on some simple diagnostics

for detecting convergence. Note that randomization-based tests can also be used

even if it is not certain that the chain is able to cover all of the state space, the

result will just be a more conservative test as explained in Subsection 3.3.4. We

will apply the algorithms as explained in Subsection 4.2.5.

To assess the convergence of the methods, we monitor the Frobenius distance

between the original matrix A and the randomized matrix Â. The Frobenius dis-

tance ‖A − Â‖F is defined as

‖A − Â‖2F =
m∑

i=1

n∑
j=1

(Ai j − Âi j )
2. (5.1)



CHAPTER 5. EXPERIMENTS 55

Method Acceptance rate Time (s)
SwapDiscretized 0.111 5.87
SwapMetropolis 0.149 5.03
MaskMetropolis 0.270 9.01

Table 5.1: Performance of the methods with GENE dataset. Acceptance rate is the
number accepted swaps or additions divided by the number of attempts. Random-
ization was done with 100mn attempts for SwapMetropolis and SwapDiscretized,
and with 200mn attempts for MaskMetropolis, where mn = 82500 in the GENE

data matrix. Time is the time needed to produce one sample matrix, that is, the
time needed in a forward phase.

Notice that it does not measure the error in the row and column statistics, but the

dissimilarity between the two matrices.

Figure 5.3 shows the Frobenius distance as a function of attempts when ran-

domizing the GENE data matrix. Other datasets and the structural measure func-

tions discussed in the next section gave similar convergence results, although the

methods converged faster with artificial data. Each data point represented in the

figure is a result from an independent single randomization started from the orig-

inal matrix first by running I steps back and then I steps forward, where I is the

number of attempts presented in the x-axis. From the figure we observe that all

methods converged to approximately the same Frobenius distance. MaskMetropo-

lis converged the slowest as a high error limiter w was used for it. Based on

these convergence tests, we used in the following experiments 100mn attempts for

SwapDiscretized and SwapMetropolis, and 200mn attempts for MaskMetropolis.

We found that usually around 2–3 times Nmn, where N is the number of discrete

classes, was an appropriate number of attempts for SwapDiscretized.

In Table 5.1 we present the acceptance rate of attempts and the running times

in the forward phase for each method on GENE dataset. We used C++ implemen-

tations integrated with MATLAB on a 2.2GHz Opteron with 4GB of memory. We

noticed that the methods performed fast enough for all practical use with each at-

tempt taking constant time, and the space requirement being a few times the size

of the matrix. In practice our methods are efficient and scale very well to large

matrices.



CHAPTER 5. EXPERIMENTS 56

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

Attempts per elements

Fr
ob

en
iu

s 
di

st
an

ce

 

 

SwapDiscretized
SwapMetropolis
MaskMetropolis

Figure 5.3: The Frobenius distance between the original and randomized matrix
as a function of iterations used for backward and forward run with GENE dataset.
The number of attempts needed for the convergence of Frobenius distance can be
used as an approximation of the mixing times of the methods.

5.2.2 Error rate

Figure 5.4 shows the error as defined in (3.15) as a function of attempted modifi-

cations per element, I/(mn). We notice that the error of SwapDiscretized grows

as it is calculated according to the original values of the matrix, and is therefore

not truly discretized. MaskMetropolis produces the most accurate matrices.

Table 5.2 summarizes the average values of the error in row and column means

and standard deviations for each method. MaskMetropolis produces clearly the

smallest errors. We notice that errors are minimal per element. The differences in

means and in standard deviations of rows and columns are around 0.001 with all

methods.

With all methods the parameters affect directly to the error rate. By increas-

ing the number N of classes with SwapDiscretized or increasing the error scaling



CHAPTER 5. EXPERIMENTS 57

0 20 40 60 80 100 120 140 160 180 200
10

−1

10
0

10
1

10
2

10
3

Attempts per elements

T
ot

al
 e

rr
or

 

 

SwapDiscretized
SwapMetropolis
MaskMetropolis

Figure 5.4: The error defined in Equation (3.15) as a function of attempts used for
randomizing GENE data.

Mean Std
Method Rows Cols Rows Cols
SwapDiscretized 1.45 0.31 1.46 0.33
SwapMetropolis 0.92 0.35 9.96 3.14
MaskMetropolis 0.00 0.00 0.49 0.11

Table 5.2: Average values of absolute errors in row and column means and stan-
dard deviations in randomized matrices with GENE dataset. Values are multiplied
by 1000.



CHAPTER 5. EXPERIMENTS 58

Method From original Pairwise
SwapDiscretized 34.03 (0.08) 33.91 (0.09)
SwapMetropolis 34.55 (0.08) 34.71 (0.08)
MaskMetropolis 33.95 (0.08) 33.76 (0.08)

Table 5.3: Frobenius distances of the randomized matrices from the original data
matrix and from each other with GENE dataset. The values in parentheses are the
standard deviations.

constant w with SwapMetropolis and MaskMetropolis, the amount of error de-

creases. However, at the same time the mixing becomes harder. Thus we cannot

use arbitrarily large parameter values for N and w. The values for the parameters

were chosen such that the Frobenius distance converged in reasonable time while

giving as small error rate as possible.

5.2.3 Independence

To confirm that the methods actually produce different random matrices, we cal-

culated the pairwise Frobenius distances between 1000 randomized samples for

each method. The results are shown in Table 5.3. The pairwise Frobenius dis-

tances almost equal the Frobenius distances from the original data, thus we may

conclude that the methods indeed produce different randomizations.

To confirm that the randomized matrices differ sufficiently from the original

matrix, we studied how the ranks of the values in the original matrix differ from

the ranks of the values in the randomized matrix in the corresponding locations.

The results are presented in Figure 5.5. The rank of an element in a matrix is the

index of the corresponding element in the list of the matrix values sorted in in-

creasing order (not to be confused with the rank of a matrix). If the randomization

method did not randomize the matrix at all, the difference in ranks would be zero

in all locations. On the other hand, if the method had produced a totally random

permutation of the original values, the expected number of elements having a rank

difference d is 2(1− d
mn ) for d > 0 and 1 for d = 0.

As we see from the Figure 5.5, the methods have produced randomization

where the distribution of rank difference is close to the distribution of rank dif-

ference of a random permutation. However, as we are preserving the first and



CHAPTER 5. EXPERIMENTS 59

0 1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Absolute difference in ranks of values

N
um

be
r 

of
 e

le
m

en
ts

 in
 a

 b
in

 

 
SwapDiscretized
SwapMetropolis
MaskMetropolis
Random permutation

Figure 5.5: Histograms of the absolute differences in the ranks of the values in the
original matrix and randomized matrix between the elements in the same location
with each method. The histograms contain ten bins and for clarity they are plotted
as curves. The original data is GENE data matrix with 82500 elements. For com-
parison the histogram is plotted also for a matrix containing a random permutation
of the original values.

second order statistics of rows and columns, the randomized matrices contain

more structure than a random permutation. Nevertheless, we can conclude that

the randomizations really differ from the original matrix.

5.3 Significance testing of structural measures

In this section we used the three methods for assessing the significance of struc-

tural measures on generated datasets and on a real gene expression dataset GENE.

We used three different structural measures: clustering error, maximum correla-

tion between matrix rows, and variance explained by the main principal compo-



CHAPTER 5. EXPERIMENTS 60

Dataset Rows Columns Mean Std
RANDOM 100 100 0.473 0.132
CLUSTER 1117 100 0.509 0.081
GAUSSIAN 1000 10 0.529 0.142
COMPONENT 1000 50 0.278 0.116
GENE 1375 60 0.578 0.110

Table 5.4: The number of rows and columns as well as the average values and
standard deviations occurring in the five datasets.

nents.

We used four types of artificial data in our experiments. To assess that the

methods produce reasonable significance levels on pure random data, we gener-

ated dataset RANDOM containing 100 rows and 100 columns, with each entry

independently generated from the normal distribution with zero mean and unit

variance. The three other artificial datasets CLUSTER, GAUSSIAN and COMPO-

NENT are each generated for one of the structural measures and are thus explained

in the corresponding subsections. Table 5.4 shows some properties of the datasets.

The values were linearly scaled into [0, 1]. In the following, rows denote data

points and columns dimensions.

We used the same parameters for the methods for all datasets as in Section 5.2.

We generated 1000 randomized samples with each method for all datasets us-

ing the Besag approach introduced in Subsection 4.2.5. From these samples the

structural measures were calculated. Next, we give results for each of the three

structural measures.

5.3.1 Clustering error

For clustering purpose, we generated a dataset CLUSTER which has a clear Gaus-

sian cluster structure with 10 clusters, each with 10–200 points. Cluster centers

were drawn from N100(0, 1) and cluster points were produced by adding random

values from N100(0, 1) to the cluster center. The clustering structure in CLUSTER

should be significant given the row and column means and variances.

We calculated the K-means clustering error defined in Equation (2.1) with 10

clusters for each sample produced by the three methods. Finally, the p-values



CHAPTER 5. EXPERIMENTS 61

Dataset Method Measure p-value

RANDOM

Original data 147.02
SwapDiscretized 146.74 (0.52) 0.702
SwapMetropolis 146.71 (0.55) 0.713
MaskMetropolis 147.35 (0.54) 0.261

CLUSTER

Original data 457.33
SwapDiscretized 659.47 (0.77) 0.001
SwapMetropolis 661.95 (0.63) 0.001
MaskMetropolis 656.31 (0.93) 0.001

GENE

Original data 525.53
SwapDiscretized 592.38 (1.24) 0.001
SwapMetropolis 610.70 (0.99) 0.001
MaskMetropolis 592.29 (1.24) 0.001

Table 5.5: K-means clustering errors with 10 clusters calculated for each original
dataset and randomizations with each method. The average clustering error in
1000 randomizations is given. The values in parentheses are the standard devia-
tions. The p-values are calculated for the original data matrices with the hypoth-
esis that the original data contain cluster structure.

were calculated for the original data with the hypothesis that the original data

have smaller clustering error than the randomized matrices. The results for the

K-means clustering are shown in Table 5.5.

For the actual calculation of K-means clustering, we used a C++ implemen-

tation of the K-means++ algorithm [3] described in Subsection 2.2.1 integrated

with MATLAB. To make the results more stable, we repeated the calculation ten

times for each sample and used the minimum value for the clustering error.

We notice that randomizations of dataset RANDOM contain around the same

amount of clustering structure as the original data. Thus, the p-values are around

0.5 and we can conclude that the clustering structure in RANDOM dataset depends

purely on the row and columns sums and variances.

However, with CLUSTER dataset we see that the clustering structure has dis-

appeared totally. All of the randomizations had larger clustering error than the

original data. Thus the dataset CLUSTER contains significant clustering structure

which cannot be explained only by the row and column statistics. We got similar

results for the GENE dataset.



CHAPTER 5. EXPERIMENTS 62

Dataset Method Measure p-value

RANDOM

Original data 0.363
SwapDiscretized 0.361 (0.028) 0.430
SwapMetropolis 0.361 (0.029) 0.407
MaskMetropolis 0.360 (0.029) 0.406

GAUSSIAN

Original data 0.993
SwapDiscretized 0.992 (0.002) 0.398
SwapMetropolis 0.992 (0.002) 0.395
MaskMetropolis 0.992 (0.002) 0.373

GENE

Original data 0.995
SwapDiscretized 0.737 (0.046) 0.001
SwapMetropolis 0.644 (0.026) 0.001
MaskMetropolis 0.657 (0.024) 0.001

Table 5.6: Maximum correlation values between the rows calculated for each orig-
inal dataset and randomizations with each method. The average of maximum
correlation in 1000 randomizations is given. The values in parentheses are the
standard deviations. The p-values are calculated for the original data matrices
with the hypothesis that the original data contains a high correlation.

5.3.2 Maximum correlation

The second structural measure we studied was the maximum correlation between

rows. We generated dataset GAUSSIAN containing 1000 points taken from 10-

dimensional normal distribution with unit variance and with center drawn from

N10(0, 1). The data has high correlation between the rows, but, however, it should

be totally explained by row and column statistics.

We calculated the correlation between each two rows as defined in Equa-

tion (2.7) for each sample and used the maximum of them as a structural measure

for the corresponding sample. Finally, p-value was calculated for the original data

with the hypothesis that the original data has a higher maximum correlation than

the randomizations. Results are presented in Table 5.6.

Notice that assessing the significance of the maximum correlation between

rows is an instance of the multiple-test problem discussed in Subsection 3.1.4.

However, as we are performing the same data mining task also to the randomized

matrices, we get valid p-values. Thus we are not fixing the pair of rows whose

correlation we are studying. Instead we are calculating correlations between all



CHAPTER 5. EXPERIMENTS 63

pairs of rows in randomized matrices as well.

We notice that the results with RANDOM dataset are as expected. However,

this time there is not almost any fluctuation in the results between the three meth-

ods. With GAUSSIAN dataset we notice that although there is a high maximum

correlation value in the original data, it remains also in the randomized matrices.

Thus our methods have been able to classify the notable structure in the origi-

nal data to depend only on the row and column statistics. With GENE dataset

we again assess that its high original maximum correlation value between rows is

really significant.

5.3.3 Principal components

As the last structural measure we used the fraction of variance explained by the

five main principal components as explained in Subsection 2.2.3. We generated

dataset COMPONENT containing 1000 random points with 5 intrinsic dimensions.

The points were linearly transformed into a 50-dimensional space and Gaussian

noise was added to the points. The COMPONENT dataset contains a clear intrinsic

dimension which should not be explained by the row and column statistics.

We calculated the fraction of variance explained by the first five principal com-

ponents for the original datasets and randomized samples. The p-value was cal-

culated with the hypothesis that the original data has higher fraction of variance

explained. The results are presented in Table 5.7.

For RANDOM dataset we observe that the randomized matrices have very sim-

ilar structural measures as the original matrix. For COMPONENT dataset we see

that the randomizations do not contain as small intrinsic dimension as the origi-

nal data although large amount of variance is explained by the main five principal

components. As with the other two structural measures, the structure in dataset

GENE is independent from the row and column statistics, and therefore interest-

ing.



CHAPTER 5. EXPERIMENTS 64

Dataset Method Measure p-value

RANDOM

Original data 0.173
SwapDiscretized 0.174 (0.003) 0.625
SwapMetropolis 0.173 (0.003) 0.486
MaskMetropolis 0.174 (0.003) 0.607

COMPONENT

Original data 0.941
SwapDiscretized 0.765 (0.001) 0.001
SwapMetropolis 0.736 (0.001) 0.001
MaskMetropolis 0.769 (0.000) 0.001

GENE

Original data 0.605
SwapDiscretized 0.454 (0.001) 0.001
SwapMetropolis 0.433 (0.001) 0.001
MaskMetropolis 0.456 (0.001) 0.001

Table 5.7: The fraction of variance explained by the first five principal compo-
nents calculated for each original dataset and randomizations with each method.
The average of fraction of variance in 1000 randomizations is given. The values
in parentheses are the standard deviations. The p-values are calculated for the
original data matrices with the hypothesis that the original data contains a high
fraction of variance explained.



Chapter 6

Conclusions and discussion

In this thesis, we have studied the problem of significance testing of data mining

results. We restricted our consideration to real-valued matrices and viewed the

data mining results as interesting if it is unlikely to obtain as good results on

randomized matrices having the same row and column means and variances as

the original matrix. This randomization approach can be used to give empirical

p-values to data mining results on real-valued matrices and therefore to assess the

significance of the results.

We gave three iterative methods, SwapDiscretized, SwapMetropolis and Mask-

Metropolis, for randomizing real-valued matrices while preserving the row and

column means and variances. The methods were analyzed both theoretically and

empirically. Visual examples of randomizations were given for each method. Fi-

nally, the methods were used for significance testing of three different data mining

methods on four artificial datasets and on one real dataset. Our empirical tests

imply that the obtained p-values clearly show whether the data mining result is

significant or not.

The methods were fast in practice, and around 100mn attempted local modi-

fications were needed with each method to produce a randomization of an m × n

matrix. Thus the convergence properties of the methods were similar. How-

ever, they had differences in preserving the row and column sums and variances.

MaskMetropolis produced the most accurate matrices and it also preserved the

means exactly. The two other methods, SwapDiscretized and SwapMetropolis,

65



CHAPTER 6. CONCLUSIONS AND DISCUSSION 66

produced matrices with similar error. However, in discretized space the method

SwapDiscretized preserved the row and column statistics exactly. The selection of

parameters for the methods affected the error rates but with reasonable parameters

MaskMetropolis produced the least error.

The most important difference between the methods was the distribution of

the values of randomized matrices. MaskMetropolis changed the values directly

whereas SwapDiscretized and SwapMetropolis only rearranged the values. The

resulting distribution of the values with MaskMetropolis was Gaussian regardless

of the original distribution. However, the results obtained in significance testing

were similar with each method. Thus the differences in the methods did not affect

the results.

The three methods presented are obviously not the only choices to solve the

defined problem. We shortly presented also a couple of other approaches we have

tested. However, they were not good in practice nor in theory. Nevertheless,

the Metropolis-Hastings approach can be used with virtually any local modifica-

tion. Our methods used two different modification templates: swap rotations and

addition masks. Both of them affects four elements in the matrix concurrently.

However, the local modification could be more drastic or conservative or even

global.

Proving theoretical properties of the convergence of the methods is hard. As

theoretical results of convergence of even the 0–1 case of our problem do not exist,

it seems quite hard to obtain methods for randomization of real-valued matrices

which would have provable convergence times. However, it would be interesting

to know the properties of the space of the matrices having the same row and col-

umn sums and variances in more detail. If we could understand the shape of that

space better, we might be able to produce more efficient methods for sampling

from it.

To overcome the problem of dependency between the randomized samples

in significance testing, we applied the approach suggested by Besag et al. [6–8].

We used the parallel version of the approach where a new starting state was first

produced by running the chain backwards and after that each randomized sample

was independently produced by starting a new chain from that initial state and

running it forwards. Applying the more efficient serial version of this test could



CHAPTER 6. CONCLUSIONS AND DISCUSSION 67

produce notable speedup in convergence.

However, we can produce independent samples also by starting the chain each

time from a new random matrix. For example with SwapMetropolis the starting

state could be a random permutation of the values. The problem with this ap-

proach is that we cannot guarantee the exchangeability condition with the original

matrix. Nevertheless, this approach has some good properties and studying it the-

oretically could be beneficial. With this approach the methods would converge

faster and the randomized matrices could have less error in row and column sums

and variances as the independence is guaranteed.

The final important open issue is the choice of statistics that are preserved in

randomization-based significance testing. Our approach of preserving the row and

column means and variances is quite natural as they describe the central features

of the underlying phenomenon. On the other hand, in some applications we could

need other weaker or stronger statistics. One should notice, that the statistics

that are preserved in randomization are the properties that are considered to be

uninteresting — everything else is then interesting and thus significant.

For example, we could try to preserve the whole distribution of the values

in rows and columns instead of only means and variances. If the distribution of

the underlying phenomenon is not a normal distribution, this approach could pro-

duce more reliable results than our approach, which tends to normalize everything.

However, the study of other approaches is left for future work.

In summary, we have introduced the problem of randomizing real-valued ma-

trices for assessing the significance of data mining results. We gave three methods

to solve the problem. The experimental results were promising, but more study is

needed before the approach can be recommended to practioners.



Bibliography

[1] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jor-
dan. An Introduction to MCMC for Machine Learning. Machine Learning,
50(1):5–43, 2003.

[2] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In
SCG ’06: Proceedings of the twenty-second annual symposium on Compu-
tational geometry, pages 144–153, New York, NY, USA, 2006. ACM.

[3] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of care-
ful seeding. In SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1027–1035, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied Mathematics.

[4] Pierre Baldi and G. Wesley Hatfield. DNA Microarrays and Gene Expres-
sion: From Experiments to Data Analysis and Modeling. Cambridge Uni-
versity Press, 2002.

[5] Pavel Berkhin. Survey of Clustering Data Mining Techniques. Technical
report, Accrue Software, San Jose, CA, 2002.

[6] Julian Besag. Markov chain Monte Carlo methods for statistical inference.
http://www.ims.nus.edu.sg/ Programs/mcmc/files/besag tl.pdf, 2004.

[7] Julian Besag and Peter Clifford. Generalized Monte Carlo significance tests.
Biometrika, 76(4):633–642, 1989.

[8] Julian Besag and Peter Clifford. Sequential Monte Carlo p-values.
Biometrika, 78(2):301–304, 1991.

68



BIBLIOGRAPHY 69

[9] Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda. Sampling binary
contingency tables with a greedy start. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 414–
423. SIAM, 2006.

[10] Ivona Bezáková, Alistair Sinclair, Daniel Stefankovic, and Eric Vigoda.
Negative examples for sequential importance sampling of binary contin-
gency tables. http://arxiv.org/abs/math.ST/0606650, 2006.

[11] Alvis Brazma and Jaak Vilo. Gene expression data analysis. Microbes Infect,
3:823–829, Aug 2001.

[12] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market bas-
kets: Generalizing association rules to correlations. In SIGMOD 1997, Pro-
ceedings ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, pages 265–276. ACM, 1997.

[13] Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu. Sequential
Monte Carlo methods for statistical analysis of tables. Journal of the Amer-
ican Statistical Association, 100(469):109–120, 2005.

[14] George W. Cobb and Yung-Pin Chen. An application of Markov chain
Monte Carlo to community ecology. The American Mathematical Monthly,
110:265–288, Apr 2003.

[15] Persi Diaconis and Anil Gangolli. Rectangular arrays with fixed margins. In
Discrete Probability and Algorithms, pages 15–41, 1995.

[16] William DuMouchel and Daryl Pregibon. Empirical Bayes screening for
multi-item associations. In Knowledge Discovery and Data Mining, pages
67–76, 2001.

[17] Martin Dyer. Approximate counting by dynamic programming. In Proceed-
ings of the 35th Annual ACM Symposium on Theory of Computing, June
9–11, 2003, San Diego, CA, USA, pages 693–699. ACM, 2003.

[18] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Anal-
ysis. Chapman & Hall, New York, 2nd edition, 2003.



BIBLIOGRAPHY 70

[19] Aristides Gionis, Heikki Mannila, Taneli Mielikäinen, and Panayiotis
Tsaparas. Assessing data mining results via swap randomization. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 167–176, New York, NY,
USA, 2006. ACM Press.

[20] Phillip Good. Permutation Tests: A Practical Guide to Resampling Methods
for Testing Hypotheses. Springer, 2nd edition, 2000.

[21] Øyvind Hammer and David A. T. Harper. Paleontological Data Analysis.
Wiley-Blackwell, 2005.

[22] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of data
mining. MIT Press, Cambridge, MA, USA, 2001.

[23] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied
Statistics, 28(1):100–108, 1979.

[24] W. Keith Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109, 1970.

[25] Harold Hotelling. Analysis of a complex of statistical variables into princi-
pal components. Journal of Educational Psychology, 24:417–441,498–520,
1933.

[26] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

[27] Szymon Jaroszewicz and Dan A. Simovici. A general measure of rule inter-
estingness. In 5th European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2001), pages 253–265, 2001.

[28] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sam-
pling algorithm for estimating subgraph concentrations and detecting net-
work motifs. Bioinformatics, 20(11):1746–1758, 2004.

[29] John A. Lee and Michel Verleysen. Nonlinear Dimensionality Reduction.
Information Science and Statistics. Springer, 1st edition, October 2007.



BIBLIOGRAPHY 71

[30] Bing Liu, Wynne Hsu, and Yiming Ma. Pruning and summarizing the dis-
covered associations. In Proceedings of the Fifth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, August 15-18,
1999, San Diego, CA, USA, pages 125–134. ACM, 1999.

[31] Bing Liu, Wynne Hsu, and Yiming Ma. Identifying non-actionable asso-
ciation rules. In Knowledge Discovery and Data Mining, pages 329–334,
2001.

[32] S. Lloyd. Least Squares Quantization in PCM. Technical report, Bell Labo-
ratories, 1957.

[33] J. B. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of 5-th Berkeley Symposium on Math-
ematical Statistics and Probability, Berkeley, pages 281–297. University of
California Press, 1967.

[34] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological
data analysis: A survey. IEEE Transactions on Computational Biology and
Bioinformatics, 1(1):24–45, 2004.

[35] Nimrod Megiddo and Ramakrishnan Srikant. Discovering predictive as-
sociation rules. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (KDD-98), August 27-31, 1998,
New York City, New York, USA, pages 274–278. AAAI Press, 1998.

[36] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Mici
Teller, and Edward Teller. Equations of state calculations by fast computing
machines. Journal of Chemical Physics, 21:1087–1092, 1953.

[37] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: Simple building blocks of com-
plex networks. Science, 298:824–827, 2002.

[38] Markus Ojala. Sampling Real Matrices with Given Margins, 2007. Spe-
cial assignment, Laboratory of Computer and Information Science, Helsinki
University of Technology.



BIBLIOGRAPHY 72

[39] K Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 1901.

[40] Herbert J. Ryser. Combinatorial properties of matrices of zeros and ones.
Canadian J. Math, 9:371–377, 1957.

[41] James G. Sanderson. Testing ecological patterns. American Scientist,
88:332–339, 2000.

[42] Uwe Scherf et al. A gene expression database for the molecular pharmacol-
ogy of cancer. Nature Genetics, 24:236–244, 2000.

[43] J. Schuchhardt, D. Beule, A. Malik, E. Wolski, H. Eickhoff, H. Lehrach, and
H. Herzel. Normalization strategies for cDNA microarrays. Nucleic Acids
Research, 28(10):e47, 2000.

[44] Tom A.B. Snijders. Enumeration and simulation methods for 0–1 matrices
with given marginals. Psychometrika, 56:397–417, Sep 1991.

[45] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM:
Society for Industrial and Applied Mathematics, June 1997.

[46] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor
Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. Missing
value estimation methods for DNA microarrays. Bioinformatics, 17(6):520–
525, 2001.

[47] Antti Ukkonen and Heikki Mannila. Finding outlying items in sets of partial
rankings. In PKDD, pages 265–276, 2007.

[48] Bo-Ying Wang and Fuzhen Zhang. Precise number of (0, 1)-matrices in
U (R, S). Discrete Mathematics, 187:211–220, 1998.

[49] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar. Exploiting a
support-based upper bound of Pearson’s correlation coefficient for efficiently
identifying strongly correlated pairs. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Seattle, Washington, USA, August 22-25, 2004, pages 334–343. ACM,
2004.


	1 Introduction
	2 Data mining of real-valued matrices
	2.1 Fields of applications
	2.1.1 Gene expression
	2.1.2 Gene expression dataset Gene
	2.1.3 Other applications

	2.2 Data mining methods
	2.2.1 Clustering
	2.2.2 Correlation
	2.2.3 Principal component analysis


	3 Significance testing
	3.1 Traditional statistical tests
	3.1.1 Overview
	3.1.2 Example
	3.1.3 Statistical error
	3.1.4 Multiple testing

	3.2 Applying randomization in significance testing
	3.2.1 Empirical p-values
	3.2.2 Sequential tests

	3.3 Sampling from probability distributions
	3.3.1 Markov chains
	3.3.2 Markov chain Monte Carlo
	3.3.3 Metropolis-Hastings
	3.3.4 MCMC p-values

	3.4 Significance testing on real-valued matrices
	3.4.1 Problem definition
	3.4.2 Measuring the error of a randomized matrix
	3.4.3 Example


	4 Randomization methods
	4.1 Methods for 0--1 matrices
	4.2 Methods for real-valued matrices
	4.2.1 Discrete swaps
	4.2.2 Metropolis with swaps
	4.2.3 Metropolis with masking
	4.2.4 Other methods
	4.2.5 Applying the algorithms

	4.3 Analysis of the methods
	4.3.1 Discrete swaps
	4.3.2 Metropolis with swaps
	4.3.3 Metropolis with masking


	5 Experiments
	5.1 Examples of randomizations
	5.1.1 Randomization of topographical data
	5.1.2 Importance of preserving variances

	5.2 Evaluating the methods
	5.2.1 Convergence and performance
	5.2.2 Error rate
	5.2.3 Independence

	5.3 Significance testing of structural measures
	5.3.1 Clustering error
	5.3.2 Maximum correlation
	5.3.3 Principal components


	6 Conclusions and discussion
	Bibliography

