Assessing Data Mining Results on Matrices with Randomization

Markus Ojala

Department of Information and Computer Science

Introduction

Setting

- Numerical $n \times d$ matrix D
- Data mining algorithm $\mathcal{S}(D)$
- E.g., PCA, k-means clustering, or maximum correlation

Prices	(€/	kg)

	Milk	Bread	
Store 1	0.69	2.49	
Store 2	0.79	2.79	
Store 3	0.79	2.49	
Store 4	0.89	2.89	
:	:	:	٠.

Problem

- Is the result significant or just a random effect in the data?
- Is the result explained by some basic properties of the data?

Example

Prices (€/ kg)

	Milk	Bread	Banana	Cheese	Ham	Salmon
Store 1	0.69	2.49	0.99	5.49	6.49	5.99
Store 2	0.79	2.79	1.19	6.69	7.13	6.99
Store 3	0.79	2.49	1.29	6.39	7.59	6.49
Store 4	0.89	2.89	0.99	6.59	6.99	7.49
Store 5	0.89	3.19	1.49	7.09	7.39	11.69
Store 6	0.99	3.59	1.79	8.09	8.69	9.59
Store 7	0.99	3.29	1.69	6.89	9.19	12.99
Store 8	1.19	4.59	1.99	8.49	8.59	16.99
Store 9	1.19	4.29	2.49	8.99	9.39	18.99
Store 10	1.29	3.99	2.19	7.79	9.99	14.49

High correlation: 0.9323 — is this interesting?

Example

Prices (€/ kg)

	Milk	Bread	Banana	Cheese	Ham	Salmon	
Store 1	0.69	2.49	0.99	5.49	6.49	5.99	Cheap
Store 2	0.79	2.79	1.19	6.69	7.13	6.99	Спеар
Store 3	0.79	2.49	1.29	6.39	7.59	6.49	:
Store 4	0.89	2.89	0.99	6.59	6.99	7.49	:
Store 5	0.89	3.19	1.49	7.09	7.39	11.69	Avaraga
Store 6	0.99	3.59	1.79	8.09	8.69	9.59	Average
Store 7	0.99	3.29	1.69	6.89	9.19	12.99	:
Store 8	1.19	4.59	1.99	8.49	8.59	16.99	:
Store 9	1.19	4.29	2.49	8.99	9.39	18.99	Expensive
Store 10	1.29	3.99	2.19	7.79	9.99	14.49	Lxpensive

High correlation: 0.9323 — is this interesting?

NOT! — general price levels in stores explain the correlation

Previous Approaches

Randomization of binary matrices (Gionis et al., 2007)

Randomization of real-valued matrices (Ojala et al., 2009)

- Is the result explained by row and column value distributions?
- Preserve row and column value distributions in randomization
- Is the original result better than results on randomized data?
- Randomization methods: GeneralMetropolis, SwapDiscretized

New Improved Approach (1/2)

Contributions

- 1. A new method generalizing SwapDiscretized
 - Preserves the row and column distributions more accurately
- 2. Support for features measured in different scales
 - Preserve feature-wise rank distributions of observations

Origina	l matrix		Fe	atuı	re-w	ise	ran	ks
0.69 2.49 0.99	5.49 6.49	5.99	1	1	1	1	1	1
0.79 2.79 1.19	6.69 7.13	6.99	2	3	4	3	4	3
0.79 2.49 1.29	6.39 7.59	6.49	3	2	2	4	2	2
0.89 2.89 0.99	6.59 6.99	7.49	4	4	3	2	5	4
0.89 3.19 1.49	7.09 7.39	11.69	5	5	5	7	3	6
						_		

5

New Improved Approach (2/2)

Contributions

- 3. Support for non-Gaussian value distributions
 - · Scale does not matter, only the ordering
- 4. Support for missing values and sparse structure
 - · Sparsity and missing values of rows and columns are preserved
- 5. No need for manual tuning: theoretically justified parameters
 - Kolmogorov-Smirnov test
 - Approximation of mixing time

Experiments (1/2)

Datasets

- Various real-life datasets
- Sparse structure, missing values, dissimilar features etc.

Artificial: Random

UCI: Iris, Wine, Water, Breast, Wdbc, WineQuality, Letter

Others: Gene, Jester, MovieLens

Assessing data mining results

- K-means clustering
- Principal component analysis
- Correlations between features

Experiments (2/2)

K-means and PCA

- RANDOM: results are nonsignificant
- Real-life datasets: all results are significant

Correlations between features

• Benjamini-Hochberg for multiple correction

	# Significant / # Pairs	Threshold
RANDOM	0 / 4950	_
Breast	1 / 36	\ge 0.91
Letter	17 / 120	≥0.49
GENE	428 / 1770	≥0.42

Conclusions

- Interesting result on a matrix?
 not explained by row and column value distributions
- Introduced a new practical randomization method
- Supports various real-life matrices
- Implementation freely available: http://www.cis.hut.fi/mrojala/randomization/