
Assessing Data Mining Results on Matrices with Randomization

Markus Ojala
Helsinki Institute for Information Technology, Aalto University, FI-00076 Aalto, Finland

Abstract—Randomization is a general technique for evaluat-
ing the significance of data analysis results. In randomization-
based significance testing, a result is considered to be interesting
if it is unlikely to obtain as good result on random data
sharing some basic properties with the original data. Recently,
the randomization approach has been applied to assess data
mining results on binary matrices and limited types of real-
valued matrices. In these works, the row and column value
distributions are approximately preserved in randomization.
However, the previous approaches suffer from various technical
and practical shortcomings. In this paper, we give solutions
to these problems and introduce a new practical algorithm
for randomizing various types of matrices while preserving
the row and column value distributions more accurately. We
propose a new approach for randomizing matrices containing
features measured in different scales. Compared to previous
work, our approach can be applied to assess data mining results
on different types of real-life matrices containing dissimilar
features, nominal values, non-Gaussian value distributions,
missing values and sparse structure. We provide an easily
usable implementation that does not need problematic manual
tuning as theoretically justified parameter values are given.
We perform extensive experiments on various real-life datasets
showing that our approach produces reasonable results on
practically all types of matrices while being easy and fast to use.

I. INTRODUCTION

Large amount of data are nowadays collected from various
sources. The data are commonly stored in matrices contain-
ing multiple measurements for various items. Often, these
measurements are in different scales, making the analysis
hard. Nevertheless, the data mining community has produced
various methods for finding patterns in such data. Assessing
the quality of these patterns is an important question that
has lately obtained an increasing interest by data miners.

Traditional statistics has long been considering the issue
of significance testing. However, most of the conventional
methods are not applicable to assess data mining patterns
on matrices. In this paper, we use the randomization-based
significance testing approach, where the original structural
measure, such as the clustering error of the matrix, is
compared to the distribution of structural measures of ran-
domized matrices sharing some basic statistics with the
original matrix. If the original result clearly differs from
the results on random data, it is considered as interesting;
otherwise, it is seen as a random artefact in the data.

Recently, the randomization approach has been applied
to binary matrices [1] and real-valued matrices [2]. In these
works, the row and column value distributions are preserved

in randomization. In binary matrices this equals the number
of ones in rows and columns. Only patterns that deviate from
this background knowledge are considered to be interesting.
For example, a row having high values is not interesting,
whereas a large correlation between two observations can be.

In this paper, we generalize the approach further to
numerical matrices with dissimilar features measured in
different scales. We give solutions to the various problems
in the previous approaches and introduce an improved
algorithm. The previous real-valued randomization [2] could
be used only on datasets having features with similar and
smooth value distributions without long tails, missing values
or sparse structure. For example, data containing medical
measurements, such as height, weight and blood pressure,
from several subjects was not supported. This paper
generalizes the previous work [1], [2] to a practical method
for assessing patterns on various types of real-life matrices.

II. BACKGROUND

A. Randomization-Based Significance Testing

Let A be an n×d matrix. Assume that we have performed
some data mining task such as clustering on A. We would
like to know whether the found pattern, in this case the
clustering structure, is just a random artefact in the data or
something more interesting. To assess the pattern, we assume
that its quality can be summarized with a single number
S(A), called the structural measure of A. It can be, e.g.,
the clustering error or the number of frequent itemsets in A.
Any measure can be used as far as larger (or smaller) values
of S(A) correspond to stronger presence of the pattern.

To assess the quality of S(A), we produce a set Â of k in-
dependent and identically distributed randomized samples Â
sharing some properties with the original matrix. The same
data mining method is then applied on each sample Â ∈ Â,
giving structural measure S(Â). The significance of the orig-
inal result S(A) is summarized with an empirical p-value,

p =
|{Â ∈ Â | S(Â) ≥ S(A)}|+ 1

k + 1
. (1)

The empirical p-value is the proportion of randomized
samples Â containing a stronger pattern than the original
matrix A. Here it is assumed that large values of S(A)
correspond to strong patterns. If the empirical p-value is
less than a given threshold α, say α = 0.05, the original
result is regarded as significant and independent of the
basic properties of the data preserved in randomization.

B. Relation to Previous Work
Randomization has been widely applied in significance

testing [3], [4]. The randomization of binary matrices is stud-
ied by Gionis et al. [1]. A result on a binary matrix is con-
sidered to be interesting if it is not explained by the row and
column sums. To produce random binary matrices, so called
swaps are used that change a pair of ones with a pair of zeros
preserving the constraints. The method given in this paper
reduces on binary matrices to the same method as in [1].

The binary approach is generalized to real-valued matrices
by Ojala et al. [2] by preserving the row and column
value distributions approximately in randomization. The
main restriction is that the features have to be measured
in the same scale and the value distributions should be
similar and smooth. In practice, datasets satisfying these
constraints are rare. Randomized real-valued matrices are
produced in [2] either by controlling the error in the row and
column statistics by using Metropolis-Hastings method and
local modifications, or by the SwapDiscretized method that
first discretizes the matrix and performs swaps preserving
the discretization, generalizing the idea of binary swaps.

III. METHODS

Next, we introduce a new method SwapConstrained for
solving the following tasks with different types of data.

Task 1 (Similar features). Given an n×d real-valued matrix
A where the features (columns) are of similar type, generate
a matrix Â chosen independently and uniformly from the set
of n×d real-valued matrices having approximately the same
values in each row and column as A.

Features being of similar type means that they are mea-
sured using the same scale and their value distributions are
fairly similar. This is the same task as studied in [2]. The
new method preserves the original values in the entire matrix
thus, e.g., an integer-valued matrix is integer-valued also
after randomization. The following two tasks are new.

Task 2 (Dissimilar features). Given an n × d real-valued
matrix A where the features are of dissimilar type, generate
a matrix Â chosen independently and uniformly from the
set of n× d real-valued matrices having approximately the
same values in each column and approximately the same
column-wise ranks in each row as A.

The column-wise rank of a value is its ordinal number
inside the same column. The randomization preserves the
distribution of extreme values in each row when the features
have equal importance. In this form, Task 2 assumes a
correspondence between large values in different features.

Task 3 (Nominal matrix). Given an n × d nominal matrix
A where the features are of similar type, generate a matrix
Â chosen independently and uniformly from the set of n×d
nominal matrices having exactly the same nominal values
in each row and column as A.

i j
...

...
x . . . Âxi . . . Âxj

...
y . . . Âyi . . . Âyj

...

=⇒

i j
...

...
x . . . Âyi . . . Âxi

...
y . . . Âyj . . . Âxj

...

(a) Swap rotation of four elements Âxi, Âxj , Âyi, Âyj .

i j

x R̂ix ∩ Ĉxi R̂jx ∩ Ĉxj

y R̂iy ∩ Ĉ
y
i R̂jy ∩ Ĉ

y
j

=⇒

i j

x R̂jx ∩ Ĉ
y
i R̂ix ∩ Ĉ

y
j

y R̂jy ∩ Ĉxi R̂iy ∩ Ĉxj
(b) Reordered row and column constraints before and after rotation.

Figure 1. A swap rotation with row and column constraints. The rotation
of the four elements as shown in (a) is accepted if Âxi ∈ Ĉy

j , Âyj ∈ Ĉx
i ,

Âxj ∈ R̂i
y and Âyi ∈ R̂j

x. Such modification preserves the given row and
column constraints exactly. Constraints are reordered as shown in (b).

A. Constrained Swaps

We introduce a new Markov chain Monte Carlo method
for solving Task 1. In Section III-C, we solve Task 2 and
Task 3 by using the same algorithm with different prepro-
cessing. The method is based on performing random swaps
on the original n×d matrix A while preserving precalculated
constraints for row and column value distributions. The steps
form a Markov chain [4] in the space of n×d matrices sat-
isfying the row and column constraints. A state of the chain
after a large number of steps is used as a random sample.

To approximately preserve the values in each row and
column of a matrix A ∈ Rn×d in randomization, we allow
Axi to be replaced in the row x by a value in a tolerance
range Rix and in the column i by a value in a tolerance range
Cxi . These ranges can be, e.g., Rix = [Axi−εr, Axi+εr] and
Cxi = [Axi−εc, Axi+εc] where εr and εc are parameters for
the row and column tolerances. This allows us to preserve
the row and column value distributions with different accu-
racy. Note that the original matrix satisfies Axi ∈ Rix ∩Cxi .

The task is to produce randomized matrices Â ∈ Rn×d
satisfying given row and column constraints Rix and Cxi . A
matrix Â satisfies the constraints if for each row x we can
reorder the original row constraints R1

x, . . . , R
d
x in an order

R̂1
x, . . . , R̂

d
x such that Âx1 ∈ R̂1

x, . . . , Âxd ∈ R̂dx, and simi-
larly for each column i and its constraints C1

i , . . . , C
n
i . Thus,

an acceptable randomization Â satisfies Âxi ∈ R̂ix ∩ Ĉxi for
some reordered constraints R̂ix and Ĉxi . At each step we keep
record of the ordering of row and column constraints R̂ix and
Ĉxi that the current randomized matrix Â is satisfying.

To obtain such randomizations we use swap rotation
depicted in Figure 1 that preserves the row and column
constraints while relocating four elements. First, we choose
four elements in the intersections of rows x and y and
columns i and j as shown in Figure 1a. The basic idea

Algorithm 1 SwapConstrained(D,R,C, I)
Input: Rank matrix D, constraints R and C, attempts I
Output: Randomization D̂, reordered rank constraints R̂, Ĉ

1: D̂ ← D, R̂← R, Ĉ ← C
2: for l← 1 to I do
3: Choose D̂xi randomly
4: Choose D̂yj ∈ Ĉxi randomly
5: if x 6=y∧ i 6=j ∧ D̂xi∈Ĉyj ∧ D̂xj∈R̂iy ∧ D̂yi∈R̂jx then
6: {D̂, R̂, Ĉ} ← SwapRotate(D̂, R̂, Ĉ, x, y, i, j)
7: end if
8: end for
9: return D̂, R̂, Ĉ

behind a swap rotation is that if Âxi ≈ Âyj and Âxj ≈ Âyi,
the values are approximately preserved in each row and
column after the rotation. To use this observation to preserve
the row and column constraints exactly, we accept a swap
rotation if the elements satisfy the following conditions:

Âxi, Âyj ∈ Ĉxi ∩ Ĉ
y
j and Âyi, Âxj ∈ R̂jx ∩ R̂iy.

This guarantees that also after a swap rotation the rows x and
y and the columns i and j have elements satisfying the given
row and column constraints. If the swap rotation is accepted,
the ordering of row and column constraints is updated as
shown in Figure 1b, i.e., Âxi and Âyj swap their column
constraints and Âxj and Âyi swap their row constraints. Note
that the constraints Âxi ∈ R̂ix, Âyj ∈ R̂jy , Âxj ∈ Ĉxj and
Âyi ∈ Ĉyi are satisfied both before and after swap rotation.

We can improve the performance by replacing the values
by ranks. Let D ∈ Zn×d contain the ordinal numbers, ranks,
of the values in A sorted in increasing order, i.e., Axi is
the Dxi:th smallest value in A. The constraints Rix and
Cxi are also replaced by the lower and upper bound ranks
of the values satisfying the corresponding tolerance ranges.
This allows to quickly sample a random element satisfying
a given constraint. We keep track on the locations of the
elements to be able to recover the current location (x, i) for
a given rank. The final method is given in Algorithm 1.

SwapConstrained starts from the original rank matrix D
and attempts to perform I swap rotations. The running time
is linear in the number of attempts I . Note that the element
D̂yj is chosen in constant time satisfying D̂yj ∈ Ĉxi . As
we keep track of the locations, we can first sample a rank
uniformly from Ĉxi and then recover its location (y, j).
SwapConstrained produces samples uniformly from all the
samples reachable with swap rotations. The proof is similar
as for SwapDiscretized [2] and is omitted for space.

To produce a set of randomized samples, we form the
rank constraints for the original matrix A ∈ Rn×d once
and randomize it k times with SwapConstrained . The ran-
domized samples depend on each other unless the chain
has fully converged. We use the technique by Besag and
Clifford [5] that guarantees the validity of the empirical p-

values regardless of independence. First, we run the chain
backwards I steps to produce a new starting state Â0 and
then start k independent randomizations from Â0. In our
case running the chain backwards equals running it forwards.

B. Forming Rank Constraints for a Matrix

SwapConstrained can randomize a matrix while pre-
serving given row and column tolerance ranges. Next, we
describe approaches for defining the constraints. Good con-
straints should preserve the values in each row and column
accurately while allowing wide flexibility for the method to
work. To preserve the row and column value distributions
accurately, we study the properties of Kolmogorov-Smirnov
test [6] that is a non-parametric test for deciding if a set of
values comes from a reference distribution.

The Kolmogorov-Smirnov test verifies if the values in
the original reference column (or row) and in a randomized
column (row) are approximately the same. In our case, the
test statistic Dn is the maximum absolute difference between
two empirical cumulative distribution functions (CDF) each
consisting of n observations. The value of a CDF of n ob-
servations at point x is the fraction of the n observations that
are less than or equal to x. The value of Dn depends only the
ordering of the values, not on their scale. The null-hypothesis
of the randomized CDF being equal to the reference CDF
is rejected with significance level α if Dn > cα/

√
n,

where cα is a constant depending on α, e.g., c0.05 = 1.36,
c0.01 = 1.63, 1 = c0.27, 0.5 = c0.96 and 0.25 = c1.00.
Now a band of width cα/

√
n around the reference CDF

contains a CDF of n random samples from the reference
distribution with probability 1 − α. Thus to preserve the
value distributions accurately, the tolerance ranges should
contain approximately cα/

√
n of all the values.

Based directly on the properties of Kolmogorov-Smirnov
test, we suggest using constraints where the column and row
rank tolerance ranges of value v with global rank e in A con-
sist of fixed number of global neighboring ranks in A, i.e.,

CGNbr(e) =

[
e− sd

√
n

2
, e+

sd
√
n

2

]
,

RGNbr(e) =

[
e− sn

√
d

2
, e+

sn
√
d

2

]
, (2)

where s is a scaling constant comparable to cα. If there are
equal values, the tolerance ranges are extended to contain all
the equal values and the ranges are made equal for ranks with
equal value. In the experiments we use s = 1, guaranteeing
the randomized matrices to have the same values in each
row and column with high accuracy. These constraints also
work well in the algorithmic respect of SwapConstrained .

In the previous approach [2], the discretization where the
values are assigned to equal-width bins is studied (DEps). It
is not justified in a statistical manner for preserving the value
distributions, and it does not work if the value distributions

0 0.5 1
0

0.5

1

Global ranks in a row

(a) DEps: Shared discrete tolerance
ranges with fixed global width ε.

0 0.5 1
0

0.5

1

Global ranks in a row

(b) GNbr: Unique tol. ranges with
fixed number of global neighbors.

Figure 2. Cumulative distributions functions of original values (solid) and
their tolerance ranges (dotted). The CDFs of rows and columns after ran-
domization are guaranteed to be inside the corresponding tolerance ranges.

have long tails as then practically all values are assigned to
the same bin. In Figure 2 we give examples of the DEps and
GNbr constraining approaches. The previous approach could
support only discrete bins where the tolerance ranges are
shared. The new SwapConstrained can also handle unique
tolerance ranges for each value thus allowing smoother
bounds for the randomized CDF. The GNbr constraining
approach does not have any problems with non-smooth
distributions having narrow peaks or long tails.

C. Dissimilar Features and Nominal Values

So far, we have considered only Task 1. Solving Task 3
with nominal values and similar features is simple. We
replace elements having the same nominal values by consec-
utive ranks and define their row and column tolerance ranges
to contain all elements with the same value. After randomiz-
ing the original nominal values are returned. For this method
to work in practice, the number of different nominal values
should be fairly small—otherwise, the matrix cannot be ran-
domized sufficiently, i.e., the corresponding null-hypothesis
is too strict. If all the values are unique, only the original
matrix satisfies the row and column value distributions
exactly, and no data mining result is statistically significant.

To randomize a matrix A ∈ Rn×d with dissimilar features
(Task 2) we first transform the matrix A into a rank matrix
B ∈ Zn×d by replacing the values in each feature (column)
by their ordinal numbers inside the corresponding feature.
Next, we randomize this new matrix B by using Task 1.
That is, we first use constraining approach GNbr on B, then
call SwapConstrained , and finally, return the values to the
resulting matrix to obtain B̂ ∈ Zn×d. This randomized B̂
can contain some rank multiple times inside one column.
We replace each rank with the corresponding value inside
the feature thus some values may be repeated and some may
be left out, resembling bootstrapping.

D. Sparse Matrices and Missing Values

SwapConstrained can be generalized to handle also sparse
matrices and missing values. The missing values are as-
signed with consecutive high ranks and with equal con-
straints covering all missing values. Then the number of
missing values is preserved in each row and column.

In randomizing sparse matrices, i.e., matrices where most
of the values are zeros (or missing values), we preserve the
number of zeros in each row and column exactly (sparsity)
as well as the given constraints for the nonzero elements
(value distributions). The zero and nonzero elements can still
change places with each other. We modify the Algorithm 1
to keep track only on the nonzero elements in the matrix. In
the tolerance ranges of GNbr in Equation (2)

√
n and

√
d

are replaced by square roots of average number of nonzero
elements in columns and rows, respectively. The rank matrix
D is replaced by an associative array. For speedup, we
choose first a nonzero element D̂xi. To compensate for this,
we need to do rotations also in the other direction. To support
dissimilar features, column-wise proportional ranks of the
nonzero elements should be used in the matrix B.

IV. ANALYSIS

We analyze the mixing time of SwapConstrained , i.e., the
number of attempts I needed for convergence. Due to space
limitations, we omit the details. Let the GNbr constraining
approach be used with the neighborhood size for the middle
elements being r = sn

√
d for row constraints and c = sd

√
n

for column constraints. Then the acceptance probability of
line 5 in Algorithm 1 is ρGNbr ≈ 4r/9m, where m = nd, if
the elements are in random locations. However, in the begin-
ning of randomization the acceptance rate is ρ0

GNbr ≈ r/m.
We can approximate that SwapConstrained has converged

when each element has been swapped at least once. Since
each swap rotation relocates four elements, and the accep-
tance rate of SwapConstrained with GNbr constraints varies
between 4r/9m. . . r/m, sufficient number of attempts is
approximately IGNbr ≈ m2 lnm/r. This follows from the
properties of Coupon collector’s problem. It allows a simple
optimization because IGNbr does not depend on the column
constraints. If r < c, we can apply SwapConstrained to
the transpose of the matrix, thus reducing the number of
attempts to m2 lnm/c. Therefore, the final running time is
O(min(

√
n,
√
d)nd ln(nd)) with GNbr constraints.

For sparse matrices the acceptance rate is larger as most of
the elements are zeros. Each swap is accepted approximately
with probability 2/3, giving Isparse

GNbr ≈ m lnm, where m is
now the number of nonzero elements. In practice, we use at-
tempts between Isparse

GNbr and IGNbr in proportion to the sparsity.

V. EXPERIMENTS

A. Convergence and Performance

We analyze the performance of SwapConstrained empir-
ically on various real datasets. The datasets RANDOM and
GENE were studied in the previous randomization paper [2].
RANDOM is an artificial random data, whereas GENE is a
real gene-expression data. Many commonly used datasets
are taken from UCI machine learning repository [7]. The
sparse dataset JESTER contains real-valued ratings for jokes
by various users [8]. The different sized sparse MOVIELENS

Table I
DATASETS AND STATISTICS OF RANDOMIZATION. TYPE: THE

RANDOMIZATION TASK APPLIED. ATT.: THE NUMBER OF ATTEMPTS PER
ELEMENT. SW.: ACCEPTED ATTEMPTS PER ELEMENT. TIME: RUNNING

TIME TO PRODUCE ONE RANDOMIZED SAMPLE. DIST.: DISTANCE
MEASURE [2] APPLIED TO RANK MATRICES. DIFF.: PROPORTION OF

CHANGED ELEMENTS. RE OR CE: AVERAGE L1-CDF RANK ERROR IN
ROW OR COLUMN VALUE DISTRIBUTIONS MULTIPLIED BY 1000.

Dataset Rows Cols Elms Type Att. Sw. Time Dist. Diff. RE CE

RANDOM 100 100 Full Sim. 94 4.2 0.1s 1.40 1.00 11.7 11.8
GENE 1.4k 60 Full Sim. 93 6.1 1.8s 1.18 1.00 15.8 1.8
IRIS 150 4 Full Diss. 14 2.4 0.0s 1.08 1.00 90.1 13.2
WINE 178 13 Full Diss. 30 3.4 0.0s 1.30 1.00 46.9 8.0
WATER 527 38 Full Diss. 66 4.5 0.2s 1.29 1.00 20.6 5.7
BREAST 699 9 Full Nom. 34 9.8 0.0s 0.67 0.99 0.0 0.0
WDBC 569 30 Full Diss. 56 5.1 0.1s 1.10 1.00 26.5 2.8
WINEQL 6.5k 11 Full Diss. 40 4.3 0.7s 1.34 1.00 47.5 2.3
LETTER 20k 16 Full Nom. 130 12.8 28s 0.97 1.00 0.0 0.0
JESTER 64k 150 1.8M Sim. 21 1.3 43s 1.14 0.98 23.9 0.3
MVLNSS 943 1.6k 100k Nom. 13 6.4 1.3s 1.33 1.00 0.0 0.0
MVLNSM 6.0k 3.7k 1M Nom. 15 8.0 25s 1.34 1.00 0.0 0.0
MVLNSL 72k 11k 10M Nom. 17 8.9 6m1s 1.35 1.00 0.0 0.0

datasets contain 1–5 ratings for movies by users (available
at http://www.grouplens.org/node/73).

In Table I, the basic characteristics of the datasets
are given with some performance measures of SwapCon-
strained . The datasets GENE (2.0%), WATER (3.0%) and
BREAST (0.3%) contain missing values. If the dataset con-
tains only few different values, Task 3 is applied. If the fea-
tures are dissimilar or the column value distributions differ
substantially, Task 2 is applied. The number of attempts I as
analyzed in Section IV is used. Producing one randomized
sample with SwapConstrained is fast even on large matrices;
Java implementation on 2.83GHz machine was used.

To analyze the randomness of the samples, we use two
measures: rank distance and difference between the original
and randomized matrix. The rank distance is the normalized
root mean square distance used in [2] applied to the rank
matrices (≈

√
2 for full permutation). Difference is the

proportion of elements that has been relocated. The L1-
CDF error for rank matrices is a generalization of the error
measure used in [2] to rank matrices. For example, the row
error of 0.0158 with GENE dataset means that in average the
ranks in a row of randomized matrix have changed 1.58%
from the original row rank distribution. We can conclude that
SwapConstrained produces well-randomized matrices while
preserving row and column value distributions accurately.

In Figure 3, convergence of the rank distance and differ-
ence randomness measures are shown on datasets GENE and
MVLNSL. We note that SwapConstrained converges well on
the number of attempts analyzed in Section IV. Note that
convergence on sparse matrices needs notably less attempts.

Next, we apply different approaches on dataset GENE
to compare their performance. The running time on the
original dataset is 1.8 seconds. When the implementation for
sparse matrices is applied, the running time is 3.9 seconds.
The original rank distance is 1.18 and the row and column

10−2 10−1 100 101 102 1030

0.5

1

D
is

ta
nc

e
/ D

iff
er

en
ce

Attempts per element

Distance
Difference

(a) GENE

10−2 10−1 100 101 1020

0.5

1

D
is

ta
nc

e
/ D

iff
er

en
ce

Attempts per element

Distance
Difference

(b) MVLNSL

Figure 3. Convergence of two randomness measures with SwapCon-
strained . Dashed line corresponds to the default number of attempts.

errors are 0.0158 and 0.0018. When the approach for
dissimilar features is applied, the corresponding values are
1.20, 0.0280, 0.0014, i.e., very close to the original results.

We conclude with short comparison to the results in [2].
The new SwapConstrained is faster than the previous meth-
ods and preserves the row and column distributions more
accurately. Furthermore, no manual tuning of parameters is
needed as the new method contains theoretically justified
default values for the tolerance ranges and the number of
attempts. On all the datasets studied in [2], the new method
produced similar significance testing results. Note that the
previous methods are not intended to be used on practically
any of the datasets studied in this paper as they contain
either dissimilar features, too different value distributions
for features, non-smooth value distributions, missing values
or sparse structure. In practice, very few real-life datasets
satisfy the requirements; in [2] mainly artificial datasets are
studied to show the usefulness of the concept.

B. Clustering and Principal Component Analysis

Next, we apply some basic data mining methods to the
non-sparse datasets and assess the results using SwapCon-
strained . In Table II we give the significance testing results
for simple k-means clustering, for k-means clustering on
whitened data and for principal component analysis (PCA).
The missing values are replaced by column medians after
randomization. In whitening, each column is normalized to
zero mean and unit variance. As the structural measure we
use the L2 clustering error with k clusters and the fraction
of variance explained by the first d̂ principal components.

All the clustering and PCA results are insignificant with
the artificial RANDOM dataset. Most of the results on
the real datasets are regarded as significant. However, the
plain k-means results on BREAST, WINE and WATER are
insignificant, i.e., they are explained by the row and col-
umn distributions. These datasets have dissimilar features;
there is just some feature with large values that describes
the obtained clustering on its own. After whitening the
clustering structures are clearly significant, i.e., there exists
some dependency between the features that disappears in
randomization but is important for the clustering structure.
This demonstrates well how SwapConstrained helps us to
remove unreasonable patterns from consideration.

Table II
SIGNIFICANCE TESTING RESULTS FOR k-MEANS AND PCA. THE

ORIGINAL STRUCTURAL MEASURES AND THE AVERAGE MEASURES OF
999 RANDOMIZED SAMPLES ARE GIVEN WITH THE p-VALUES.

k-means Whit. + k-means PCA

Dataset k Orig. Rnd. p-val. Orig. Rnd. p-val. d̂ Orig. Rnd. p-val.

RANDOM 10 148 147 0.923 8.46k 8.48k 0.252 5 0.17 0.17 0.381
GENE 10 96.7k 115k 0.001 46.7k 55.5k 0.001 5 0.58 0.39 0.001
IRIS 3 78.9 213 0.001 140 338 0.001 2 0.96 0.64 0.001
WINE 3 2.37M 2.36M 0.523 1.27k 1.91k 0.001 5 0.80 0.53 0.001
WATER 10 867M 821M 0.943 11.4k 15.7k 0.001 5 0.61 0.26 0.001
BREAST 2 19.7k 19.7k 0.422 2.80k 2.81k 0.001 4 0.85 0.83 0.001
WDBC 2 77.9M 119M 0.001 11.6k 12.6k 0.001 5 0.85 0.49 0.001
WINEQL 7 1.80M 2.72M 0.001 34k 52k 0.001 5 0.80 0.48 0.001
LETTER 26 616k 1.03M 0.001 122k 205k 0.001 5 0.69 0.43 0.001

0 0.5 1
0

0.1

0.2

0.3

0.4

Correlation

Orig.
Swap.
Perm.

(a) GENE

0 0.5 1
0

0.1

0.2

0.3

0.4

Correlation

Orig.
Swap.
Perm.

(b) BREAST

Figure 4. Distributions of pairwise correlations between the columns in the
original and randomized data with SwapConstrained and PermuteColumns .

C. Pairwise Correlations
Lastly, we study the number of significant correlations

between the features. On sparse datasets, we calculate the
pairwise correlations between the 100 columns having the
highest number of elements. For each original correlation,
we calculate an empirical p-value by comparing it to the null
distribution of correlations on 99 randomized datasets with
SwapConstrained . For comparison, we also use the permu-
tation of columns, PermuteColumns , that does not preserve
the row distributions but preserves the column value dis-
tributions exactly. In Figure 4, the distributions of pairwise
correlations on original data and randomized data are given.
SwapConstrained explains most of the pairwise correlations.

In Table III, we give the number of significant pairwise
correlations. To correct for multiple hypotheses, we use
the approach by Benjamini-Hochberg [9]. It controls the
false discovery rate (FDR), i.e., the expected proportion of
results incorrectly regarded as significant. We restrict the
FDR to 0.05. PermuteColumns regards much more pairwise
correlations as significant than SwapConstrained .

VI. CONCLUSIONS

We have considered the problem of assessing data mining
results on various type of matrices by using randomization-
based significance testing. A pattern is regarded as inter-
esting if it is not explained by the row and column value
distributions. The main contribution of this paper is the gen-
eralization of the previous approaches [1], [2] to a practical
tool for studying real-life matrices. We proposed a new null-
model for matrices containing features measured in different

Table III
THE NUMBER OF SIGNIFICANT PAIRWISE CORRELATIONS BETWEEN THE

FEATURES. MEDIUM CORRELATION IN THE ORIGINAL AND
RANDOMIZED DATA ARE GIVEN. THE B-H THRESHOLD IS THE

SMALLEST SIGNIFICANT / THE LARGEST INSIGNIFICANT CORRELATION.

Orig. SwapConstrained PermuteColumns

Dataset Med. Med. B-H thresh. #Sign. Med. B-H thresh. #Sign.

RANDOM 0.00 0.00 — / 0.32 0 0.00 — / 0.32 0
GENE 0.35 0.30 0.42 / 0.42 428 0.00 0.05 / 0.04 1735
IRIS 0.35 0.22 0.82 / -0.11 3 0.00 0.82 / -0.11 3
WINE 0.13 0.09 0.24 / 0.22 30 0.00 0.16 / 0.14 37
WATER 0.07 0.09 0.21 / 0.21 156 0.00 0.09 / 0.09 320
BREAST 0.62 0.63 0.91 / 0.76 1 0.00 0.34 / — 36
WDBC 0.35 0.33 0.43 / 0.42 176 0.00 0.07 / 0.07 368
WINEQL 0.01 0.02 0.06 / 0.04 23 0.00 0.03 / 0.01 27
LETTER 0.03 0.06 0.49 / 0.30 17 0.00 0.01 / 0.01 64
JESTER 0.38 0.33 0.36 / 0.36 3030 0.00 0.04 / 0.03 4944
MVLNSS 0.15 0.14 0.45 / 0.44 53 0.00 0.28 / 0.27 800
MVLNSM 0.14 0.12 0.22 / 0.22 796 0.00 0.08 / 0.08 3812
MVLNSL 0.18 0.14 0.17 / 0.17 2612 0.00 0.03 / 0.02 4718

scales; in such matrices, the value distributions of features
and the feature-wise rank distributions of observations are
preserved. We introduced a new algorithm SwapConstrained
for randomizing various types of matrices while preserving
the constraints more accurately. Compared to the previous
approaches, the new method can be used to assess patterns
on matrices containing dissimilar features, nominal values,
non-smooth value distributions, missing values and sparse
structure, thus making it practical for many types of matri-
ces. In addition, the SwapConstrained method does not need
any manual tuning as theoretically justified parameter values
are given. The experiments showed that the method produces
reasonable results on real datasets. SwapConstrained is a
practical and easily usable tool for assessing data mining
results on various types of real-life data. The implementation
is available at http://www.cis.hut.fi/mrojala/randomization/.

REFERENCES

[1] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas,
“Assessing data mining results via swap randomization,” ACM
Trans. Knowl. Discov. Data, vol. 1, no. 3, p. 14, 2007.

[2] M. Ojala, N. Vuokko, A. Kallio, N. Haiminen, and H. Mannila,
“Randomization methods for assessing data analysis results on
real-valued matrices,” Statistical Analysis and Data Mining,
vol. 2, no. 4, pp. 209–230, 2009.

[3] P. Good, Permutation tests: A Practical Guide to Resampling
Methods for Testing Hypotheses. Springer, 2000.

[4] J. Besag, “MCMC methods for statistical inference,” 2004,
http://www.ims.nus.edu.sg/Programs/mcmc/files/besag_tl.pdf.

[5] J. Besag and P. Clifford, “Generalized Monte Carlo signifi-
cance tests,” Biometrika, vol. 76, no. 4, pp. 633–642, 1989.

[6] F. Massey, “The Kolmogorov-Smirnov test for goodness of fit,”
J. Amer. Statistical Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[7] A. Asuncion and D. J. Newman, “UCI machine learning repos-
itory,” http://www.ics.uci.edu/~mlearn/MLRepository.html.

[8] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste:
A constant time collaborative filtering algorithm,” Inf. Retr.,
vol. 4, no. 2, pp. 133–151, 2001.

[9] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: A practical and powerful approach to multiple testing,” J.
Roy. Statistical Society, vol. 57, no. 1, pp. 289–300, 1995.

