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Abstract—We explore the framework of permutation-based
p-values for assessing the behavior of the classification error. In
this paper we study two simple permutation tests. The first test
estimates the null distribution by permuting the labels in the
data; this has been used extensively in classification problems in
computational biology. The second test produces permutations
of the features within classes, inspired by restricted random-
ization techniques traditionally used in statistics. We study the
properties of these tests and present an extensive empirical
evaluation on real and synthetic data. Our analysis shows
that studying the classification error via permutation tests is
effective; in particular, the restricted permutation test clearly
reveals whether the classifier exploits the interdependency
between the features in the data.
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stricted randomization, significance testing

I. INTRODUCTION

Building effective classification systems is a central task
for data mining and machine learning. Usually, a classifi-
cation algorithm builds a model from a given set of data
records in which the labels are known and later, the learned
model is used to assign labels to new data points. Appli-
cations of such classification setting abound in many fields,
for instance, in text categorization, fraud detection, optical
character recognition, or medical diagnosis to cite some.

For all these applications, a desired property of a good
classifier is the power of generalization to new unknown
examples. The detection and characterization of significant
predictive patterns is crucial for obtaining a good classifi-
cation accuracy that generalizes beyond the training data.
Unfortunately, it is very often the case that the number
of available data points with labels is not sufficient. Data
from medical or biological applications, for example, is
characterized by high dimensionality (thousands of features)
and small number of data points (tens of rows). A crucial
question is whether we should believe in the classification
accuracy returned by such classifiers.

The most traditional approach to this problem is to
estimate the error of the classifier by means of cross-
validation or leave-one-out cross-validation, among others.
This estimate, together with a variance-based bound, would
provide an interval for the expected error of the classifier.
However, it has been argued that evaluating the classifier
with an error measurement is ineffective for small data
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Figure 1. Examples of two 16 × 8 nominal datasets D1 and D2 each
having two classes. The last column in both datasets denotes the class labels
(+, –) of the samples in the rows.

samples [1]–[4]. Also classical generalization bounds are not
appropriate when the dimensionality of the data is too high.
Indeed, for many other general cases, it is useful to have
other statistics associated to the error in order to understand
better the behavior of the classifier. For example, even if a
classification algorithm produces a classifier with low error,
the data itself may have no structure. Thus the question is,
how can we trust that the classifier has learned a significant
predictive pattern in the data and that the chosen classifier
is appropriate for the specific classification task?

Consider the small toy example from Figure 1. There we
have two nominal data matrices D1 and D2 of sizes 16×8;
each row (data point) has two different values present, x
and o. Both datasets have a clear separation into the two
given classes, + and –. However, it seems at first sight
that the structure within the classes for dataset D1 is much
simpler than for dataset D2. If we train a 1-Nearest Neighbor
classifier on the datasets of Figure 1, we have that the classi-
fication error (leave-one-out cross-validation) is 0.00 on both
D1 and D2. However, is it true that the classifier is using a
real dependency in the data? Or are the dependencies in D1



or D2 just a random artifact of some simple structure? This
example will be analyzed with detail later on in the paper.

In the recent years, a number of papers have suggested
to use permutation-based p-values for assessing the compe-
tence of a classifier [2], [3], [5], [6]. Essentially the permu-
tation test procedure measures how likely the observed accu-
racy would be obtained by chance. A p-value represents the
fraction of random datasets under a certain null hypothesis
where the classifier behaved better than in the original data.

Traditional permutation tests study the null hypothesis that
the features and the labels are independent, that is, that there
is no difference between the classes. The null distribution
under this null hypothesis is estimated by permuting the
labels of the dataset. This corresponds also to the most
traditional statistic methods [7], where the results on a
control group are compared against the result on a treatment
group. This simple test has been proven effective already
for selecting relevant genes in small data samples [8] or for
attribute selection in decision trees [9]. However, the related
literature has not performed extensive experimental studies
for this traditional test in more general cases. Sub-sampling
methods such as bootstrapping [10] use randomizations to
study the properties of the underlying distribution instead of
testing the data against some null model.

The goal of this paper is to study permutation tests for
assessing the behavior of the error in classifiers. We first
study the permutation test that simply permutes the labels;
our experimental studies suggest that this traditional null
hypothesis leads to very low p-values, thus rendering the
classifier significant most of the time. We therefore propose a
new test and study its relation to the traditional methods. Our
test is inspired by restricted randomization techniques [7],
traditionally used in statistics. The new null distribution tests
the dependency between the features.

The idea is to provide users with practical p-values for
the analysis of the classifier. The permutation tests give us
useful statistics about the underlying reasons for the obtained
classification result. No test is better than the other, but all
provide us with information about the classifier performance.
Each p-value depends on the original data (whether it con-
tains some real structure or not) and the classifier (whether
it is able to use certain structure in the data or not).

II. BACKGROUND

Let X be an n × m data matrix. For example, in gene
expression analysis the values of the matrix X are numerical
expression measurements, each row is a tissue sample and
each column represents a gene. We denote the i-th row
vector of X by Xi and the j-th column vector of X by
Xj . Rows are also called observations or data points, while
columns are also called attributes or features. Observe that
we do not restrict the data domain of X and therefore the
scale of its attributes can be categorical or numerical.

Associated to the data points Xi we have a class label yi.
We assume a finite set of known class labels Y , so yi ∈ Y .
Let D be the set of labeled data D = {(Xi, yi)}n

i=1. For the
gene expression example above, the class labels associated
to each tissue sample could be, e.g., “sick” or “healthy”.

In a traditional classification task the aim is to predict the
label of new data points by training a classifier from D. The
function learned by the classification algorithm is denoted
by f : X → Y . A test statistic is typically computed to
evaluate the classifier performance: this can be either the
training error, cross-validation error or jackknife estimate,
among others. Here we give as an example the leave-one-
out cross-validation error,

e(f, D) =
1
n

n∑
i=1

I(fD\Di
(Xi) 6= yi) (1)

where fD\Di
is the function learned by the classification

algorithm by removing the i-th observation from the data
and I(·) is the indicator function.

Recently, a number of papers use permutation-based p-
values for assessing the competence of a classifier.

Definition 1 (Permutation-based p-value). Let D̂ = {D′
1,

. . . , D′
k} be the set of k randomized versions of the original

data D sampled from a given null distribution. The empirical
p-value for the classifier f is calculated as follows [7],

p =
|{D′ ∈ D̂ : e(f, D′) ≤ e(f,D)}| + 1

k + 1
.

Intuitively, the p-value of Definition 1 measures how
likely the observed accuracy would be obtained by chance,
only because the classifier identified in the training phase a
pattern that happened to be random. It represents the fraction
of randomized samples where the classifier behaved better
in the random data than in the original data. Therefore, if the
p-value is small enough—usually under a certain threshold,
e.g., α = 0.05—we can say that the value of the error
in the original data is indeed significantly small and in
consequence, that the classifier is significant under the given
null hypothesis, i.e., the null hypothesis is rejected.

III. PERMUTATION TESTS FOR LABELED DATA

In this section we describe in detail two very simple
permutation methods to estimate the null distribution of
the error under two different null hypotheses. Let π be a
permutation of natural numbers {1, . . . , n}: we denote with
π(y)i the i-th value of the vector label y induced by the
permutation π; for the general case of a column vector Xj ,
we use π(Xj) to represent the permutation of the vector
Xj induced by π. Finally, we denote the concatenation of
column vectors into a matrix by X = [X1, X2, . . . , Xm].

The first permutation method is the standard permutation
test used in statistics [7]. The null hypothesis assumes



that the data X and the labels y are independent, that
is, p(X, y) = p(X)p(y). The distribution under this null
hypothesis is estimated by permuting the labels in D.

Test 1 (Permute labels). Let D = {(Xi, yi)}n
i=1 be the

original dataset and let π be a permutation of natural
numbers {1, . . . , n}. One randomized version D′ of D is
obtained by applying the permutation π on the labels, D′ =
{(Xi, π(y)i)}n

i=1. Compute the p-value as in Definition 1.

A significant classifier for Test 1 rejects the null hypothe-
sis that the features and the labels are independent, i.e., that
there is no difference between the classes. If the original data
contains dependency between data points and labels, then:
(1) a significant classifier f will use such information to
achieve a good classification accuracy, resulting into a small
p-value; (2) if the classifier f is not significant with Test 1,
f was not able to use the existing dependency between data
and labels in the original data. Finally, if the original data
did not contain any real dependency between data points and
labels, then all classifiers would have a high p-value and the
null hypothesis would never be rejected.

Applying randomizations on the original data is therefore
a powerful way to understand how the different classifiers
use the structure implicit in the data, if such structure
exists. However, notice that a classifier might be using some
additional dependency structure in the data, for example
the dependency between features, which is not checked
by Test 1. Indeed, it is very often the case that the p-
values obtained from Test 1 are very small, making the test
practically worthless for real data. Therefore, we will study
also the dependency between the features within the same
class. The second null hypothesis assumes that the columns
in X are mutually independent inside the same class, thus
p(X(c)) = p(X(c)1) · · · p(X(c)m), where X(c) represents
the submatrix of X in class label c ∈ Y . Test 2 is inspired
by the restricted randomizations from statistics (see e.g. [7]).

Test 2 (Permute data columns per class). Let D =
{(Xi, yi)}n

i=1 be the data. A randomized version D′ of D
is obtained by applying independent permutations to the
columns of X within each class. That is:

For each class label c ∈ Y do,
• Let X(c) be the submatrix from X in class label c, that

is: X(c) = {Xi|yi = c} of size lc × m.
• Let π1, . . . , πm be m independent permutations from

numbers {1, . . . , lc}.
• Let X(c)′ be a randomized version of X(c) where each

πj is applied independently to the column X(c)j . That
is X(c)′ = [π1(X(c)1), . . . , πm(X(c)m)].

Finally, let X ′ = {X(c)′|c ∈ Y } and obtain one
randomized version D′ = {(X ′

i, yi)}n
i=1. Next, compute the

p-value as in Definition 1.

Thus, a classification result can be regarded as nonsignif-
icant with Test 2, if either the features are independent
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Figure 2. Scatter plots of original Iris dataset and randomized versions for
full permutation of the data and for Tests 1 and 2. The data points belong
to three different classes denoted by different markers.

Table I
AVERAGE ERROR AND p-VALUE FOR TEST 1 AND TEST 2 WHEN USING

THE 1-NEAREST NEIGHBOR CLASSIFIER TO DATASETS OF FIGURE 1.

1-Nearest Neighbor
Orig. Test 1 Test 2

Dataset Err. Err. (Std) p-val. Err. (Std) p-val.

D1 0.00 0.52 (0.14) 0.001 0.06 (0.06) 0.358
D2 0.00 0.53 (0.14) 0.001 0.62 (0.14) 0.001

of each other inside the classes or if the classifier does
not exploit the interdependency between the features. If the
dependency is not used, simpler methods could suffice.

In Figure 2, we give as example one randomization for
each test on the well-known Iris dataset. For comparison,
we include a test corresponding to full permutation of the
data. Note how well Test 2 has preserved the class structure
compared to other tests. We will discuss the Iris data more
in the experiments.

A. Example

We illustrate the concept of the tests by studying the small
artificial example presented in the introduction in Figure 1.
Both datasets D1 and D2 have a clear separation into the
two given classes, + and –. However, the structure inside
the dataset D1 is much simpler than in the dataset D2. We
analyze this with the 1-Nearest Neighbor classifier using the
leave-one-out cross-validation given in Equation (1). The
classification error obtained in the original data is 0.00 for
both D1 and D2, which is expected since the datasets were
generated to contain clear class structure.

We apply Test 1 and Test 2 to study the performance of 1-
Nearest Neighbor classifier on the datasets D1 and D2. We



produce 1000 random samples for both the datasets with
Tests 1 and 2, and perform the same leave-one-out cross-
validation procedure to obtain a classification error for each
randomized dataset. The results are summarized in Table I.

We can say that the classifiers are significant under the
null hypothesis that data and labels are independent (Test 1);
However, it is easy to argue that the results of Test 1 do not
provide much information about the classifier performance.
Actually the main problem of Test 1 is that p-values tend to
be always very low as the null hypothesis is typically easy to
reject. On the other hand, for Test 2, the 1-Nearest Neighbor
classifier is significant for dataset D2 but not for dataset D1.
Indeed, the dataset D1 was generated so that the features
are independent inside the classes, and hence, the good
classification accuracy of the algorithm on D1 is simply due
to different value distributions across the classes. For dataset
D2 we have that the dependence between the columns inside
the classes is essential for the good classification result, and
the classifier has been able to exploit that information.

IV. BEHAVIOR OF THE TESTS

To understand better the behavior of the tests, consider
next the following simulated data, inspired by the data used
by Golland et al. in [2]: 100 data points are generated from
two-dimensional normal distribution with mean vector (1,0),
unit variance and covariance ρ ∈ [−1, 1]. Another 100 data
points are generated from similar normal distribution with
mean (−1, 0), unit variance and same covariance ρ. The
first 100 samples are assigned with class label y = +1
and the other 100 samples with class label y = −1. Note
that the correlation between the features improves the class
separation: if the correlation ρ = 1, we have that the class
y = x1 − x2 where x1, x2 are the values of the first and
second features, respectively.

For these datasets (with varying correlation) we use the
stratified 10-fold cross-validation error. We study the behav-
ior of four classifiers: 1-Nearest Neighbor, Decision Tree,
Naive Bayes and Support Vector Machine. We use Weka
3.6 data mining software [11] with the default parameters of
those classification algorithms. The Decision Tree classifier
is similar to C4.5 algorithm, and the default kernel used with
Support Vector Machine is linear.

Figure 3 shows the behavior of the classifiers on datasets
with the correlation ρ between features inside classes varying
from −1 to 1. The Decision Tree, 1-Nearest Neighbor and
Support Vector Machine classifiers have been able to exploit
the dependency between the features, i.e., the classification
error goes to zero when there is either a high positive or
negative correlation between the features. However, with
Naive Bayes classifier the classification error seems to be
independent of the correlation between the features.

For all classifiers we observe that the null hypothesis
associated to Test 1 (i.e. labels and data are independent) is
always rejected. Thus the data contains a clear class structure

— e(f,D) × Test 1 • Test 2
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Figure 3. Average values of stratified 10-fold cross-validation error (y-axis)
for varying values of correlation between the features per class (x-axis). The
continuous line shows the error on the original data, and symbols × and
• represent the average of the error on 1000 randomized samples obtained
from Test 1 and from Test 2, respectively. Each average of the error on
the randomized samples × and • is depicted together with the [1%, 99%]-
deviation bar inside which the associated null hypothesis cannot be rejected
with significance level α = 0.01. That is, if the continuous line falls outside
the bars the null hypothesis associated to the test is rejected; if the contin-
uous line crosses inside the bars the null hypothesis cannot be rejected.

as expected since there exists no class noise in the data. All
classifiers are therefore significant under Test 1.

Another expected observation is that the null hypothesis
for Test 2 (i.e. features are independent within class) tends
to be rejected as the correlation between features increases.
That is, the correlation is useful in classifying the data. When
the magnitude of the correlation is larger than approximately
0.4, the Decision Tree, Nearest Neighbor and Support Vector



Table II
CLASSIFICATION ERRORS AND EMPIRICAL p-VALUES OBTAINED WITH
DECISION TREE FOR TEST 1 AND TEST 2. THE EMPIRICAL p-VALUES

ARE CALCULATED OVER 1000 RANDOMIZED SAMPLES. BOLD
p-VALUES CORRESPOND TO NONSIGNIFICANT RESULTS.

Decision Tree
Orig. Test 1 Test 2

Dataset Err. Err. (Std) p-val. Err. (Std) p-val.

Anneal 0.07 0.24 (0.00) 0.001 0.13 (0.01) 0.001
Audiology 0.22 0.82 (0.03) 0.001 0.23 (0.02) 0.482
Autos 0.19 0.76 (0.04) 0.001 0.38 (0.04) 0.001
Balance 0.22 0.55 (0.02) 0.001 0.29 (0.02) 0.001
Breast 0.26 0.30 (0.00) 0.001 0.29 (0.02) 0.116
German 0.29 0.31 (0.01) 0.005 0.28 (0.01) 0.666
Glass 0.33 0.72 (0.03) 0.001 0.34 (0.03) 0.457
Hepatitis 0.22 0.23 (0.02) 0.319 0.15 (0.03) 0.955
Ionosphere 0.10 0.38 (0.02) 0.001 0.07 (0.01) 0.964
Iris 0.05 0.67 (0.03) 0.001 0.05 (0.01) 0.765
Lymph 0.22 0.51 (0.05) 0.001 0.23 (0.04) 0.437
Mushroom 0.00 0.50 (0.01) 0.001 0.01 (0.00) 0.001
Pima 0.25 0.35 (0.01) 0.001 0.24 (0.02) 0.642
Promoters 0.21 0.50 (0.06) 0.002 0.22 (0.05) 0.377
Segment 0.13 0.86 (0.03) 0.001 0.17 (0.02) 0.132
Sonar 0.27 0.49 (0.03) 0.001 0.27 (0.03) 0.507
Spect 0.19 0.22 (0.01) 0.004 0.15 (0.02) 0.966
Splice 0.06 0.60 (0.01) 0.001 0.07 (0.01) 0.002
Tic-tac-toe 0.15 0.35 (0.01) 0.001 0.30 (0.01) 0.001
Tumor 0.58 0.82 (0.02) 0.001 0.60 (0.02) 0.138
Votes 0.03 0.42 (0.02) 0.001 0.03 (0.01) 0.791
Zoo 0.07 0.64 (0.03) 0.001 0.07 (0.01) 0.593

Machine classifiers reject the null hypothesis. Thus these
classifiers produce significant results under Test 2 when the
features are highly correlated.

Finally, observe the behavior of Naive Bayes classifier
for Test 2: the null hypothesis can never be rejected. This is
because Naive Bayes classifier explicitly assumes by default
that the features are independent, thus it always performs
similarly on the original data and the randomized datasets,
which results into a very high p-value.

V. EMPIRICAL RESULTS

In this section we give empirical results on 22 various
real datasets from UCI machine learning repository [12].
The datasets contain nominal or/and numeric features as
well as missing values. In most datasets the features are
measured in different scales, thus it is only reasonable to
consider column-wise permutations, leaving out of consider-
ation some recent data mining randomization methods [13],
[14]. We use stratified 10-fold cross-validation error as the
statistic. In all cases, we calculate the empirical p-values
over 1000 randomized samples and use the threshold of
α = 0.01 to determine the significance of the classification
result. Since the original classification error is not a stable
result due to the randomness in forming the folds and
training the classifier, we perform the cross-validation ten

Table III
CLASSIFICATION ERRORS AND EMPIRICAL p-VALUES FOR 1-NEAREST

NEIGHBOR UNDER TEST 1 AND TEST 2. THE EMPIRICAL p-VALUES ARE
CALCULATED OVER 1000 RANDOMIZED SAMPLES. BOLD p-VALUES

CORRESPOND TO NONSIGNIFICANT RESULTS.

1-Nearest Neighbor
Orig. Test 1 Test 2

Dataset Err. Err. (Std) p-val. Err. (Std) p-val.

Anneal 0.05 0.40 (0.02) 0.001 0.08 (0.01) 0.001
Audiology 0.26 0.86 (0.03) 0.001 0.32 (0.03) 0.030
Autos 0.26 0.77 (0.03) 0.001 0.45 (0.03) 0.001
Balance 0.20 0.56 (0.02) 0.001 0.35 (0.02) 0.001
Breast 0.31 0.41 (0.03) 0.007 0.32 (0.03) 0.324
German 0.28 0.42 (0.02) 0.001 0.33 (0.02) 0.002
Glass 0.30 0.74 (0.04) 0.001 0.42 (0.03) 0.001
Hepatitis 0.19 0.33 (0.04) 0.002 0.14 (0.03) 0.970
Ionosphere 0.13 0.46 (0.03) 0.001 0.26 (0.01) 0.001
Iris 0.05 0.66 (0.05) 0.001 0.02 (0.01) 0.962
Lymph 0.18 0.53 (0.04) 0.001 0.20 (0.03) 0.307
Mushroom 0.00 0.50 (0.01) 0.001 0.01 (0.00) 0.001
Pima 0.29 0.46 (0.02) 0.001 0.27 (0.02) 0.866
Promoters 0.19 0.50 (0.06) 0.001 0.26 (0.04) 0.083
Segment 0.14 0.86 (0.03) 0.001 0.15 (0.02) 0.266
Sonar 0.13 0.50 (0.04) 0.001 0.27 (0.03) 0.001
Spect 0.24 0.32 (0.04) 0.011 0.18 (0.02) 0.970
Splice 0.24 0.61 (0.01) 0.001 0.30 (0.01) 0.001
Tic-tac-toe 0.21 0.44 (0.07) 0.001 0.38 (0.02) 0.001
Tumor 0.66 0.88 (0.02) 0.001 0.62 (0.02) 0.860
Votes 0.08 0.47 (0.03) 0.001 0.01 (0.00) 1.000
Zoo 0.03 0.75 (0.05) 0.001 0.04 (0.02) 0.333

times for the original datasets and calculate an empirical p-
value for each of the ten results. In all the tables, we give
the average value of these empirical p-values as well as the
average value of the original classification error.

The significance testing results for the Decision Tree
classifier are given in Table II and for 1-Nearest Neighbor
classifier in Table III. The original cross-validation error is
given as well as the mean and standard deviation of the
errors on the 1000 randomized samples with Test 1 and
Test 2. With Naive Bayes classifier the classification results
were regarded on all datasets as significant with Test 1 and
as nonsignificant with Test 2, as expected by the analysis in
Section IV. The results with Support Vector Machine were
similar to results with Decision Tree classifier.

The results for Test 1 show that the classification errors
with most datasets are regarded as significant with threshold
α = 0.01. These results show that the datasets contain clear
class structure; however, they do not give any additional
insight for understanding the class structure in the datasets.

Next, we consider the results for permuting the features
inside each class (Test 2). There are actually now more
nonsignificant results than significant ones. Thus, in most
datasets the original structure inside the classes is pretty
simple, or it is not used by the classification algorithm. That
is, the classes differ from each other mainly due to their



different value distributions and not due to some dependence
between the features. Thus, in most of the datasets the class
structure is explained by considering features independently
of each other. The 1-Nearest Neighbor classifier has been
able to use the dependency of features the most, i.e., con-
taining the most of small, significant p-values with Test 2.

Let us now study the results with Test 2 in more detail.
Consider the well-known Iris dataset that contains measure-
ments of three different species of iris flowers from four
features: the length and the width of sepal and petal. It turns
out that the classes are almost linearly separable given the
length of petal or given the width of petal. Although there
is a high positive linear correlation between the length and
width of petal, it is not important for the classification result
as both features can explain the classes by themselves.

Actually, observe that for the Iris dataset with Test 2,
the classification error on the randomized samples is even
smaller than in the original dataset. This phenomenon is
explained by the positive linear correlation between the
length and the width of petal, which disappears after the
randomizations, as seen in Figure 2 in Section III. Ran-
domizations eliminate most of the rows containing extreme
values for both of the features inside the classes. Thus the
classifiers do not use the dependency between these two
features, as their correlation does not help in classifying the
Iris data. When this positive correlation is eliminated per
classes, the separation between the classes increases, and
therefore, the classification accuracy is improved.

Finally, we study the dataset Balance, which is considered
significant under the null hypothesis of Test 2. This data
contains four features of a balance scale: left-weight, left-
distance, right-weight and right-distance. The scale is in
balance if left-weight times left-distance equals right-weight
times right-distance. There are three classes: the scale tips to
the left, to the right, or is balanced. It is clear that the depen-
dence of the features is important to the classification result.

Understanding the structure inside the datasets where the
classification result is regarded as significant under Test 2
requires more study, i.e., we just know that the features do
not explain the class structure independently. Analyzing the
dependence structure of the features is then a further task.
But as seen, the null hypothesis of Test 2 explains most of
the good classification results in the 22 datasets.

VI. CONCLUSIONS

We have considered the problem of assessing the classifier
performance with permutation tests. We have described two
different null hypotheses and shown how samples can be
produced from the corresponding null models by simple per-
mutation methods. Each test provides an empirical p-value
for the classifier performance; each p-value depends on the
original data (whether it contains the type of structure tested)
and the classifier (whether it is able to use the structure). The
null hypotheses can be summarized as follows: (1) the data

and the class labels are independent; and (2) the features are
mutually independent inside a class.

Experiments showed that the traditional permutation test
produces a small p-value even if there is only a weak class
structure present. Compared to this, the new test proposed
was able to evaluate the underlying reasons for the classifier
performance on the real datasets. Surprisingly, however, in
most of the studied real datasets the class structure looks
fairly simple; the dependency between the features is not
used in classifying the data with the four tested classifiers.
In such cases, there might be no reason to use complicated
classifiers, as simpler methods would suffice.

Future work should explore the use of our tests for
selecting the best discriminant features for classifiers, as
it has been used for decision trees and other biological
applications [8], [9]. Also, it would be useful to extend the
setting to unsupervised learning, such as clustering.
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