
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and
Communications Engineering

Matti Pöllä

Modeling Anticipatory Behavior with

Self-Organizing Neural Networks

Master’s Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Technology

Espoo, 1.5.2005

Supervisor: Prof. Timo Honkela
Instructor: Prof. Timo Honkela

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Matti Pöllä

Työn nimi: Ennakoivan käytöksen mallintaminen itseorganisoivilla neuroverkoilla

English title: Modeling Anticipatory Behavior with Self-Organizing Neural Networks

Päivämäärä: 1.5.2005 Sivumäärä: 72

Osasto: Tietotekniikan osasto

Professuuri: T-61 Informaatiotekniikka

Työn valvoja: Professori Timo Honkela

Työn ohjaaja: Professori Timo Honkela

Yksi tärkeistä luonnollisten kognitiivisten järjestelmien ominaisuuksista on kyky tehdä
päätöksiä ennakoitujen tapahtumien perusteella. Ennakoinnin avulla on usein mahdol-
lista parantaa keinotekoisten kognitiivisten järjestelmien vikasietoisuutta, mutta joissain
tapauksissa ennakointi on välttämätön toiminnan apuväline.

Tämä diplomityö käsittelee itseorganisoivien neuroverkkojen hyödyntämistä dynaamisen
järjestelmän tila-avaruuden mallintamisessa ja ennakoivan järjestelmän toteuttamista
tämän tila-avaruusmallin avulla. Työ käsittelee erityisesti itseorganisoiva kartta -algoritmia
ja sen muunnelmia aikariippuvan tietoaineiston käsittelyssä. Growing neural gas -
algoritmia käsitellään vaihtoehtona itseorganisoivalle kartalle.

Esitellyt koetulokset osoittavat, että itseorganisoivaa karttaa käyttäen on mahdollista to-
teuttaa ennakointiin kykenevä järjestelmä, joka pystyy myös sopeutumaan ympäristön
muutoksiin. Growing neural gas -algoritmi osoittautuu kuitenkin hyödylliseksi tilanteissa,
joissa tietyt tila-avaruutta koskevat oletukset eivät päde.

Avainsanat: ennakoiva käytös, itseorganisoiva kartta, growing neural gas,
tila-avaruus, SOM, GNG

Hyväksytty: Kirjasto:

1

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS

Author: Matti Pöllä

Title of thesis: Modeling Anticipatory Behavior with Self-Organizing Neural Networks

Finnish title: Ennakoivan käytöksen mallintaminen itseorganisoivilla neuroverkoilla

Date: 1st May, 2005 Pages: 72

Department: Department of Computer Engineering

Chair: T-61 Computer and Information Science

Supervisor: Professor Timo Honkela

Instructor: Professor Timo Honkela

A vital mechanism of high-level natural cognitive sysems is the anticipatory capability of
making decisions based on predicted events in the future. While in some cases the perfor-
mance of computational cognitive systems can be improved with anticipatory behavior, it
has been shown that some cognitive tasks require anticipation.

In this thesis the use of self-organizing artificial neural networks in constructing a pre-
dictive state space model of a dynamic system is reviewed to implement a computational
cognitive system employing anticipatory behavior. Specifically, the biologically inspired
Self-Organizing Map (SOM) algorithm and its recurrent variants are discussed in the task
of processing time-dependent information. The topologically dynamic Growing Neural Gas
(GNG) algorithm is reviewed as an alternative to the SOM.

Simulation results show that the SOM can be used to implement an adaptive anticipatory
system that not only anticipates future events but also adapts to changes in the environ-
ment. However, the GNG algorithm is useful in situations where certain prior assumptions
on the operating environment do not apply.

Keywords: anticipatory behavior, Self-Organizing Map, Growing Neural Gas,
state space, SOM, GNG

Approved: Library code:

2

Preface

This work has been carried out in the Laboratory of Computer and Information
Science (CIS) at Helsinki University of Technology as a part of the cognitive
systems research programme.

I would like to express my gratitude to the computational cognitive systems
research group for the numerous discussions that supported the progress of this
work. The whole personnel of the CIS laboratory deserves thanks for a friendly
and an inspiring working environment.

I am also very thankful to my instructor Prof. Timo Honkela for the continuous
encouraging attitude towards my work. I would also like to thank Prof. Jaakko
Hollmén for providing valuable feedback about the manuscript and Tiina Lindh-
Knuutila for proofreading the text.

Otaniemi, 1st May 2005

Matti Pöllä

3

Contents

1 Introduction 8

1.1 Biological motivations . 8

1.2 Term definitions . 9

1.3 Anticipatory systems . 10

1.4 Reactive and anticipatory behavior 11

1.5 Recursion and incursion . 13

1.6 State anticipation . 15

1.7 Anticipatory agents . 16

1.8 Anticipatory behavior and reinforcement learning 16

2 Multivariate time series prediction 19

2.1 Introduction . 19

2.2 Detecting regularities in a time series 19

2.3 Linear models . 22

2.4 Nonlinear models . 24

2.4.1 Multilayer perceptron . 24

2.4.2 Recurrent topologies . 25

2.5 Model validation methods . 26

2.5.1 Methods for determining optimal model complexity 27

2.5.2 Numerical information criteria 28

2.5.3 Two-part information criterion 29

1

CONTENTS 2

3 Self-organizing neural networks for temporal modeling 31

3.1 Introduction . 31

3.2 The Self-Organizing Map . 31

3.2.1 Training algorithm . 32

3.2.2 Visualization methods . 33

3.2.3 Processing temporal data with the SOM 34

3.3 Variants of the SOM algorithm 36

3.3.1 External STM mechanics 37

3.3.2 Internal STM mechanics 37

3.3.3 Limitations of the SOM algorithm 41

3.4 Other types of self-organizing networks 41

3.4.1 Neural Gas . 41

3.4.2 Growing Neural Gas . 43

3.5 SOM-based methods for process control 45

3.5.1 Self-organized map of process data 45

3.5.2 Detecting error states . 45

3.5.3 Substitution of missing data 46

3.5.4 Applications . 47

4 Self-organizing neural networks for adaptive state space repre-
sentation 48

4.1 Introduction . 48

4.2 State space as a pattern sequence 48

4.3 Prototype-based state space models 50

4.4 Implicit time topology . 50

4.5 SOM-based state space representations 51

4.6 Neural Gas -based state space representations 52

4.7 Discussion . 53

CONTENTS 3

5 Simulations 54

5.1 Introduction . 54

5.2 A SOM-based adaptive anticipatory system 54

5.3 Dynamic SOM and Neural Gas -based state space models 55

6 Discussion 64

6.1 Conclusions . 64

6.2 Future work . 65

6.2.1 From reactive to anticipatory behavior 65

6.2.2 Learning and forgetting 65

6.2.3 State space estimates with explicit time representation . . 66

6.2.4 Anticipating when to act and how to act 66

List of Figures

1.1 Rosen’s and Dubois’ model of an anticipatory system. 12

1.2 Bifurcation diagram of a the logistic map. 14

1.3 A reactive agent. 17

1.4 An anticipatory agent. 17

2.1 Autocorrelations of two seemingly random signals 21

2.2 Bias-variance tradeoff . 22

2.3 Multilayer perceptron . 25

2.4 Elman and Jordan network topology 26

3.1 A rectangular and a hexagonal SOM network topology. 32

3.2 SOM neighborhood functions. 34

3.3 U-matrix visualization of a Self-Organizing Map 35

3.4 Trajectory of the BMU units for successive input vectors. 35

3.5 Sammon’s mapping of the codebook vectors of a SOM network. . 36

3.6 Schematic picture of an RSOM neuron. 39

3.7 Neural Gas approximation of a two-part distribution. 42

3.8 SOM visualization of a process state space with undesirable error
state regions. 46

4.1 Tracking the state space transitions on a network representation. 51

4.2 Vector quantization of a space without topological connections. . 51

4

LIST OF FIGURES 5

4.3 BMU trajectories of a standard SOM and a one with a restricted
BMU search algorithm. 52

5.1 Component values of the six-dimensional random process. 56

5.2 BMU trajectories of a reactive and an anticipatory system. 56

5.3 Changing representation of the state space. 57

5.4 A SOM and a GNG network approximation of a uniform rectan-
gular distribution. 59

5.5 A SOM and a GNG network approximation of a simple non-
convex distribution. 59

5.6 SOM and GNG representations of a three-part distribution. . . . 59

5.7 A GNG network adapting to a nonstationary data set. 61

5.8 SOM and GNG approximations of a simple rectangular uniform
distribution and a two-part distribution. 62

5.9 Connection length histograms for a SOM and a GNG network. . 62

5.10 Connection length histograms for a SOM and a GNG network
approximating a two-part distribution. 63

List of Tables

1.1 Behavior of the logistic map for different parameter values. 14

4.1 Comparison of different state space representation methods. . . . 53

5.1 Results of the node connection length experiment. 60

6

Symbols and abbreviations

S(t) A dynamic system at time t
M(t) Model of a dynamic system at time t
A Set of available actions
M Codebook vector set
wi(t) Weight vector of network node i at time t
x(t) Input vector at time t
y(t) Output vector at time t
θ Parameter vector
L(x|θ) Likelihood-function
l(x|θ) Log-likelihood-function
E{x} Expected value of x

AI Artificial Intelligence
AIC Akaike Information Criterion
ANN Artificial Neural Network
AR Autoregressive
ARSOM Activation-Based Recursive Self-Organizing Map
BMU Best Matching Unit
GNG Growing Neural Gas
MA Moving Average
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NG Neural Gas
NN Neural Network
PDF Probability Density Function
RL Reinforcement Learning
RSOM Recurrent Self-Organizing Map
SARDNET Sequential Activation Retention and Decay NETwork
SOM Self-Organizing Map
STM Short Term Memory
TKM Temporal Kohonen Map
VQ Vector Quantization
WSS Wide Sense Stationary

7

Chapter 1

Introduction

The principle of causality states that in an event a cause must precede an effect.
We have learned to think that what happens in the present time depends on a
complex combination of events in the past and present but not on the future.
Still, we do make decisions guided by our predictions of the future. We learn
to anticipate events beforehand and modify our behavior in a way that seems
suitable according to our anticipations.

This thesis in concerned with implementing anticipatory behavior in compu-
tational cognitive systems using similar mechanisms that operate in natural
cognitive systems such as the human brain. Specifically, the contribution of this
thesis is to introduce the use of prototype-based self-organizing neural networks
as a predictive state space model of an autonomous agent employing anticipa-
tory behavior.

1.1 Biological motivations

New developments in technology are often created to mimic certain desirable
characteristics found in biological systems. This paradigm has a solid foundation
considering the superior counterparts of technical inventions found in nature
that have been developed by a long evolutionary process.

Perhaps one of the most significant examples of a technology inspired by bio-
logical systems is the development of artificial neural networks (ANN, or simply
neural networks NN henceforth), which mimic the highly efficient and paral-
lel information processing system found in the nervous system of humans and
animals [30]. As opposed to the human-designed architecture of a modern com-
puter, artificial neural networks were developed by studying the operation of
actual biological neural networks.

Anticipatory behavior makes no exception in this regard. Traditionally the “in-
telligence” in an artificial environment has been implemented as a rule set that

8

1.2. Term definitions 9

maps certain perceptions to suitable predetermined actions. This kind of intel-
ligence constitutes a reactive system that operates according to its perceptions
about the current state of its environment.

In the context of human behavior, anticipation is a common tool of reasoning.
For example, in a situation where one sees a thunderstorm approaching, people
tend to avoid walking through open spaces in order to avoid get struck by
lightning. In another example, a car driver would reduce his speed when noticing
an icy part of the road. What is common to these examples is the act of
foreseeing an unwanted state in the future – a lightning strike or a car crash –
and changing current behavior to avoid the harmful consequences.

At the human level anticipatory behavior may seem trivial considering the previ-
ous examples. However, similar mechanism operate also in lower levels of natural
systems. For example, Rosen considers [55] negatively phototropic plants, which
move away from light, a manifestation of “wired-in” anticipatory behavior. In
this case darkness in itself does not reward the plant in any way. However,
darkness is correlated with characteristics, which reward the organism such as
moisture and nutrition and by extending towards dark soil the plant is likely to
be rewarded in the future.

1.2 Term definitions

The English language has a wide range of terms relating to anticipation1. To
clarify the meanings of the commonly referred terms, a short discussion on the
use of these terms in this thesis is presented in the following conforming to the
definitions by Mihai Nadin in [47].

The word predict is often used to refer to an act of foreseeing the future state
of some variable as in time series prediction. When we predict something the
focus is on the predicted entity itself and further interpretations about its effects
are not considered. As in time series prediction, the question of interest is to
find a good approximation for a future value of a variable. What separates
a prediction from a guess is the applicability of some perceived cause–effect
relationship. For example, using the syntax rules of a natural language we can
make reasonably good predictions for completing a sentence with one missing
word. When flipping a coin we have to settle for guessing the outcome of the
experiment.

A forecast is generally understood as a larger entity than prediction. Forecasting
– as in the context of a weather forecast – involves a combination of several
unknown factors for which some end result is predicted.

In the context of this thesis the word anticipate is used to express the action

1The word anticipation itself is derived from the Latin word antecapere i.e. “to understand

beforehand”.

1.3. Anticipatory systems 10

of making decisions by predicting the future state of a system. An anticipatory
system is a system that employs anticipatory behavior.

1.3 Anticipatory systems

A foundation for the research on anticipatory systems was laid in “Anticipatory
Systems” by Rosen [55] including the following definition of an anticipatory
system:

A system containing a predictive model of itself and/or its environ-
ment, which allows it to change state at an instant in accord with
the model’s predictions pertaining to a latter instant.

With the above definition, anticipatory behavior can be viewed as a union of
two tasks:

• Constructing a model M which employs the same causal dependencies as
the modeled system S to future states of the system S.

• Constructing a policy for relating specific states of the system S to specific
actions according to expected reward gained from state–action pairs.

The first part of predicting the future state of the system is related to the
large field of time series prediction. By looking at the history of a system
one can build a model that can predict the future states of the system with
some accuracy. In contrast to traditional time prediction tasks, the amount
of variables to predict for anticipatory systems is typically large. Instead of
predicting the exact value of a one-dimensional scalar variable the prediction
task for an anticipatory system operating in a complex environment requires
predicting the future value of a high-dimensional vector with only little interest
on the prediction result of individual variables.

The latter component of forming a policy for selecting is related to the rein-
forcement learning problem which is discussed further in section 1.8.

Rosen’s and Dubois’ model of an anticipatory system

By Rosen’s definition, an anticipatory system S defines its successive states
as a function of the current state S(t) and the future state of the model of
itself M(t + ∆t). This kind of anticipatory system is defined by the following
equations.

1.4. Reactive and anticipatory behavior 11

∆S

∆t
=
S(t+ ∆t) − S(t)

∆t
= f (S(t),M(t+ ∆t))

∆M

∆t
=
M(t+ ∆t) −M(t)

∆t
= g (M(t))

(1.1)

This, however, leads to a contradiction. If M is the model of an anticipatory
system S, then M should recursively contain a model of itself as the model of
S. In Equation (1.1) the model M is a model of S without the predictive model
guiding it.

Dubois [19] has refined the definition of an anticipatory system by defining the
change of the model M similarly as the system S itself.

∆S

∆t
=
S(t+ ∆t) − S(t)

∆t
= f (S(t),M(t + ∆t))

∆M

∆t
=
M(t+ ∆t) −M(t)

∆t
= f (S(t),M(t+ ∆t))

(1.2)

In the special case of a complete model (M = S) Equation (1.2) could be written
as

∆S

∆t
=
S(t+ ∆t) − S(t)

∆t
= f(S(t), S(t) + ∆tf(S(t), S(t+ ∆t))) (1.3)

which is a self-referential system depending on the future state of the system
itself.

The difference between the two definitions of an anticipatory system can be
viewed by the way the model M of the system S is defined. If M is considered
to be a model of an anticipatory system S, then the model should include the
model contained by S. Further, each new level of modeling will always result in
a new recursive requirement of a model-of-a-model2 such as in Equation (1.3).

1.4 Reactive and anticipatory behavior

When an artificially intelligent system is driven solely by stimulus–response ac-
tions with no planning, the system operates reactively. While most high-level
cognitive tasks require planning to some extent, it is interesting to consider the
combination and interaction of reactive (Algorithm 1) and anticipatory (Algo-
rithm 2) behavior.

Davidsson [16] uses children playing soccer as an example of reactive behavior
in a situation where anticipatory behavior is considered preferable.

2Also known as the homunculus problem.

1.4. Reactive and anticipatory behavior 12

System

Model

System

Model

Model

Model

a) b)

Figure 1.1: Rosen’s (a) and Dubois’ (b) model of an anticipatory sys-
tem.

Small children usually play a very primitive type of soccer which can
be classified as a purely reactive behavior. If they are in control of
the ball they kick it towards the opponent’s goal, else if they see the
ball they run towards it, if they do not, they look around for it.

In this case, the lack of a good predictive model of the future actions of the
other players prevents the children from playing anticipatorily. As the players
grow more experienced the playing tactics become extensively anticipatory by
exploiting the predicted actions of other players including even “tricks” just to
confuse the opponent’s players’ anticipations.

Another example on the interaction between reactive and anticipatory behavior
is the class of adaptive mechanisms that are initially anticipatory and become
reactive over time. Butz discusses [10] the initial hard practice of playing an
instrument as requiring much planning and how it becomes more and more
automatic and is eventually guided only by a correct feeling of its functioning.

Algorithm 1 Reactive behavior

1: state = sensors.getcurrentstate()
2: action = getsuitableaction(state)
3: actuators.executeaction(action)

Algorithm 2 Anticipatory behavior

1: state = sensors.getcurrentstate()
2: futurestate = predictfuturestate(state)
3: action = getsuitableaction(futurestate)
4: actuators.executeaction(action)

1.5. Recursion and incursion 13

1.5 Recursion and incursion

The time evolution of a causal system can be formulated mathematically using
recursion – defining an entity using itself. A first order causal recurrent system
computes its states as

S(t) = f(S(t− 1), θ) (1.4)

Where S(t) is the state of the system at time t, θ is a set of domain-specific
parameters and f is a function f : R

n → R
n.

Mathematically it is also possible to reverse the temporal direction of recursion.
For deterministic functions we can also define systems that compute their cur-
rent state not only as a function of the past states but also the future states. A
first order incursive system [19] computes its states as

S(t) = f(S(t+ 1), θ) (1.5)

A strong anticipatory system [19, 18, 9] can be defined as a system that computes
its current state as a function of both past and future states.

S(t) = f(. . . , S(t− 2), S(t− 1), S(t + 1), S(t+ 2), . . . ; θ) (1.6)

However, when considering complex real world systems, explicit information
on the future state of a systems is typically uncomputable due to the massive
amount of parameters and unsufficient information on the initial state. Thus, in
practice, the information on the future will have to be replaced with information
gained from a predictive model M of the system S. Now, the future states of
the system in (1.6) can be replaced to define a weak anticipatory system [19]

S(t) = f(. . . , S(t− 2), S(t− 1),M(t + 1),M(t+ 2), . . . ; θ) (1.7)

where M(t) is the state of the predictive model M at time t and θ is a set of
domain-specific parameters.

Incursive control of a chaotic system

As an example, recursion and incursion are studied in a simple self-referential
system which is commonly used to model population dynamics (presented orig-
inally in [19]). The logistic map – an equation frequently used to model the
dynamics of a population size with a limitation posed by the sustainability of
the environment is defined by

1.5. Recursion and incursion 14

2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

x

2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

x

a) b)

Figure 1.2: Bifurcation diagram of (a) the logistic map x(t) = r(1 −
x(t − 1)) and (b) an incursive map x(t) = r(1 − x(t + 1)). The
bifurcation diagram shows the possible values of x (vertical axis) as a
function of the parameter r (horizontal axis).

r x(t)

[0, 1] x→ 0 regardless of initial value x(0)
[1, 2] x→ r−1

r
[2, 3] oscillations followed by convergence to value x→ r−1

r

[3, 1 +
√

6] oscillation between two values
[3.45, 3.54] (approx) oscillation between four values

r ≥ 4 chaotic

Table 1.1: Behavior of the logistic map for different values of the pa-
rameter r.

x(t+ 1) = rx(t)(1 − x(t)) (1.8)

for which the values limt→∞ x(t) are highly dependent on the parameter r (see
Table 1.1) and with r ≥ 4 the logistic map will become chaotic. This can be
also seen in the bifurcation diagram in Figure 1.2 where the possible values of
x are shown as a function of the parameter r.

If we replace x(t) in the saturation factor (1−x(t)) of Equation (1.8) by x(t+1)
the logistic map becomes an incursive equation

x(t+ 1) = rx(t)(1 − x(t+ 1)) (1.9)

which defines a first-order strong anticipatory system. Values x(t+ 1) can now
be computed self-referentially as

x(t+ 1) = rx(t)(1 − (rx(t)(1 − (rx(t)(1 − . . .))))) (1.10)

1.6. State anticipation 15

in which the alternate series converges as

1 − (rx(t)(1 − (rx(t)(1 − . . .))))

= 1 − rx(t) + (rx(t))2 − (rx(t))3 · · · =
1

1 + rx(t)

(1.11)

Using (1.11) we can write (1.9) as

x(t+ 1) = rx(t)(1 − x(t+ 1)) =
1

1 + rx(t)
(1.12)

which is stable for all values of r. Equation (1.12) is of the same form as
Monod’s model for population dynamics and it has been shown that bacterial
growth obeys the Monod’s model rather than the potentially chaotic logistic
map of Equation (1.8) [7].

The conclusion of this section remains that while the above example does not
prove anything about the implied anticipatory nature of natural population
dynamics, it shows that a simple anticipatory modification to a recursive system
can have a dramatic stabilizing effect.

1.6 State anticipation

When considering a dynamic system S, it is typical to view the time evolution
of the system as a sequence of discrete-time states in a continuous state space
x ∈ R

n. Each vector element xi is a realization of a monitorable variable of the
system. These states can also be divided into separate classes according to the
effect a state has to the system.

When considering an anticipatory system S and M as the model of S, and the
various ways of modifying the properties of S, Rosen suggests [55] the following
method as the simplest:

Let us imagine that the state space of S (and hence of M) to be
partitioned into regions corresponding to “desirable” and “undesir-
able” states. As long as the trajectory in M remains in a “desirable”
region, no action is taken by M through the effectors E. As soon
as the M -trajectory moves into an “undesirable” region (and hence,
by inference, we may expect the S-trajectory to move into the cor-
responding region at some later time, calculable from a knowledge
of how the M - and S-trajectories are parameterized) the effector
systems is activated to change the dynamics of S in such a way as
to keep the S-trajectory out of the “undesirable” region.

1.8. Anticipatory behavior and reinforcement learning 16

The described scheme, also known as state anticipation, forms the basis for the
study of implementing an anticipatory system in this thesis. In Chapter 4, a
neural network -based framework is presented to build an adaptive state space
representation of a dynamic system to implement anticipatory behavior.

1.7 Anticipatory agents

In the study of artificial intelligence an agent is considered an autonomous entity
capable of perceiving its environment – sometimes including itself – and per-
forming actions according to some decision making system. The agent perceives
its environment by its sensors and uses its actuators to execute actions [57].

Further, an agent is considered to be rational if it chooses an appropriate action
for each perception of the environment. A rational agent could, for example,
monitor its environment for moving objects and avoid collisions by moving when
objects approach the agent if we assume that a collision would have an unwanted
effect on the agent.

Traditionally, the decision mechanism of an autonomous rational agent has been
considered a reactive mapping from perceptions to actions. The agent might
use its own history when constructing of modifying its perception–action policy
and thus be aware of causal relations of events. However, this kind of agent is
inherently reactive in the sense that each action is solely defined by its current
state.

A reactive agent (Figure 1.3) receives information on itself and the environment
with its sensors. A lookup-table-like decision mechanism is then used to asso-
ciate each perceived state into a certain action. This policy table can be altered
such that previous experiences are taken into account. However, in this case the
causal inferences of the decision making system are mere reflections of the past
as the agent lack a model of the world to simulate future events.

An anticipatory agent (Figure 1.4), on the other hand, selects its action accord-
ing to an internal predictive model of the environment. An anticipatory agent is
thus able to reason using causal dependencies of events that have occurred in the
past. More importantly, an anticipatory agent is capable of simulating future
events that have not occurred earlier in its history and select actions according
to the simulated future state of the agent and its environment [14, 15, 21].

1.8 Anticipatory behavior and reinforcement learning

As discussed above, a subproblem in implementing anticipatory systems is the
task of mapping the perceived states si of the system S into the set of available
actions A.

1.8. Anticipatory behavior and reinforcement learning 17

If-then logic

Environment

ActuatorsSensors

Agent

Figure 1.3: A reactive agent.

Environment

ActuatorsSensors

If-then logic

Predictive model

Agent

Figure 1.4: An anticipatory agent.

1.8. Anticipatory behavior and reinforcement learning 18

π : S → A (1.13)

An autonomous agent will typically form this policy without explicit knowledge
on the effects of the actions using only the negative or positive reward provided
by the environment.

The described problem of constructing a state–action policy using only the re-
ward from the environment constitutes the reinforcement learning problem [64]
where each action ai moves the system into a new state si+1 and rewards the
agent with the associated reward r. In reinforcement learning the learning agent
seeks to maximize the overall reward

R = r0 + r1 + ...+ rn (1.14)

by selecting a policy π with a maximum action-value

π∗(s) = arg max
a∈A

Qπ∗
(s, a) (1.15)

Qπ(s, a) = Eπ{Rt|st = s, at = a} (1.16)

Based on the above, the reinforcement learning problem can be understood as a
subproblem of implementing an anticipatory system. In this thesis, however, the
focus is on building a state space representation to determine when to act instead
of focusing how to act. Further discussion on the application of reinforcement
learning for anticipatory behavior can be found in Chapter 6.

Chapter 2

Multivariate time series

prediction

2.1 Introduction

The task of predicting future values for a variable is one of the fundamental
problems in statistical analysis. The problem of selecting a plausible model class
and a suitable number of model parameters (model complexity) is an important
part of the modeling process. Although statistical modeling of time series is
generally focused on finding a good approximation for a single scalar variable,
the same themes of model selection and model complexity apply for the case of
modeling a multidimensional state space of a dynamic system.

This Chapter begins with an introduction of traditional linear models for time
series analysis [8, 28, 12]. Further, a class of models implemented as neural net-
works are presented to extend the analysis to a more realistic case of multivariate
predictions with nonlinear dependencies.

In the latter part of this Chapter, the selection of optimal complexity for a model
based on information theoretical criteria is presented. Finally, the presented
methods are reviewed based on their suitability to implement the predictive
model of an anticipatory system of large dimensionality and a variable prediction
interval.

2.2 Detecting regularities in a time series

One of the common problems of statistical analysis is the task of predicting
future values of a time series using the previous observations of a phenomenon.
Making reliable models for a time series is based on the assumption that the
adjacent values {x(t), x(t+1), x(t+2), ...} of a sequence x have a structure that

19

2.2. Detecting regularities in a time series 20

can be modeled.

An elementary method for finding a temporal structure in a sequence of numbers
is to compute the autocorrelation i.e. the expected value of the product of two
values of the sequence k time steps apart form each other.

rx(k) = E[x(n− k)x(n)] (2.1)

While autocorrelation indicates dependencies within a signal, cross-correlation
can be used to investigate correlations between two signals x and y.

rxy(k) = E[x(n− k)y(n)] (2.2)

Correlations are also beneficial when determining the length of the temporal
structures of a signal. Values |rx(n)| >> 0 for small values of n are a sign of
short periodic events in the time series while values |rx(n)| >> 0 for large values
n indicate long periodic structures.

In Figure 2.1 two seemingly random signals are presented together with their
autocorrelation plots r(k) for values k = 1...300. Looking at the signals in the
time domain (Figure 2.1a and Figure 2.1b) does not reveal any clear temporal
structures, but the autocorrelation plots (Figure 2.1c and Figure 2.1d) show that
the first signal has a clear structure while the second signal appears uncorrelated.

What makes prediction of time serieses difficult is the presence of noise in nearly
all observations that are used to construct the model of a time series. The fun-
damental problem is to find a model that captures the phenomenon which gen-
erates the observed data without adapting to the inherent noise in the training
data. Thus, when modeling a time series using observations y(t) the data is
considered a sum of a deterministic component–which can be modeled–and a
stochastic noise component

y(t) = x(t) + v(t) (2.3)

where x(t) is the model output and v(t) is uncorrelated white noise.

The quality of a model is thus related to the error signal e(n) = y(t) − x(t)
such that for a successful model the remaining error shows no correlations
e(t) ∼ N(0, σ). If the error signal is correlated, a deterministic part of the
phenomenon has been left out of the model.

What makes selecting the complexity of a model especially complicated is the
fact that with a limited set of observed data, one cannot specify exactly how
much the data contains noise. A model could be constructed such that y(t) = x(t)
which would describe the specific data set precisely but as a result of adapting

2.2. Detecting regularities in a time series 21

10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

a) b)

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

c) d)

Figure 2.1: Autocorrelations of two seemingly random signals. The two
signals in a) and b) seem random when viewed in the time domain. The
corresponding autocorrelation plots c) and d) show that the first signal
holds temporal structures while the second signal appears to be mere
noise.

2.3. Linear models 22

Figure 2.2: The bias-variance tradeoff can be illustrated using a simple
curve-fitting problem. An over-fitted model (left) has little system-
atic error but the representation is specific to the used training data
set. An under-fitted model (right) has little variance and thus a good
generalization but suffers from large bias.

to noise the modeling result for a new data set observed from the same phe-
nomenon would be poor (Figure 2.2).

In the following, a review of popular linear and nonlinear models for time series
analysis is presented.

2.3 Linear models

Linear autoregressive moving average (ARMA) models of time-varying processes
define adjacent values {x(1), x(2), x(3)...} of a process as a linear combination
of the previous values and the remaining error term [8, 28]. The small amount
of parameters and the rigorous mathematical background has made ARMA a
popular model class for time series prediction. Generalizations of the ARMA
model for seasonal variation and external variables also exist [12].

The general ARMA model can be decomposed into an autoregressive (AR) part
and a moving average (MA) part. A general autoregressive AR(p) model [8] of
a process x(n) can be defined as a weighted sum of the previous k values of x
together with the coefficients ai

x(n) = −
p

∑

k=1

a(k)x(n− k) + v(n) (2.4)

where v(n) is the error term.

A moving average MA(q) model [8] defines successive values of a time series as
the average of previous error terms as

x(n) =

q
∑

k=0

b(k)v(n− k) (2.5)

2.3. Linear models 23

The two equations (2.4) and (2.5) can be combined to form the the general
ARMA(p, q) model [8]

x(n) = −
p

∑

k=1

a(k)x(n− k) +

q
∑

l=0

b(l)v(n− l) (2.6)

In equations (2.4), (2.5), and (2.6) the modeled process x(t) is a one-dimensional
scalar quantity. The model can be extended to multivariate processes x(t) by re-
placing the coefficients {a1, a2, a3, ..., ap} and {b0, b1, b2, ..., bq} with their matrix
equivalents {A1,A2,A3, ...,Ap} and {B0,B1,B2, ...,Bq} to form a multivariate
version of Equation (2.6)

x(n) = −Akx(n) + Bkv(n) (2.7)

where x(n) and v(n) are R
d × 1 vectors.

Unlike in the scalar ARMA model, the estimation of the coefficients aij and
bij is a complex operation and the amount of observed data to determine the
coefficient matrices becomes much larger.

Drawbacks of the ARMA model class

The simplicity of the linear ARMA model has also its drawbacks which makes
it a feasible model for only a very limited class of problems.

A precondition for applying the ARMA model is the stationarity of the data.
A time series is stationary (wide sense stationary, WSS [29]) if the following
conditions about the expected value and the autocorrelations of the process
apply.

E{x(n)} = mx

rx(n, n− k) = rx(0,−k) ∀ n
cov(x(0), x(0)) <∞

(2.8)

This is a severe limitation considering the realistic case of making predictions
in a high-dimensional state space which is typically nonstationary.

The conventional ARMA model is typically used to predict the next value x(n+
1) of a sequence given the previous values. A one-step prediction task such as
this can be useful in situations where longer predictions are not needed. Also,
the prediction horizon of the ARMA model need not be the next value but
some other future value of the sequence. In addition, the ARMA model can be
applied recursively [67] as

2.4. Nonlinear models 24

x̂(n+ 4) = x̂(x̂(n+ 3))

= x̂(x̂(x̂(n+ 2)))

= x̂(x̂(x̂(x̂(n+ 1))))

(2.9)

to use the predictions of the ARMA model to predict further values of the se-
quence. However, the prediction accuracy decreases dramatically when applying
this to longer prediction lengths.

Another severe limitation of the linear model class is the problem of selecting the
proper length of the fixed time window defined by the coefficients p and q. This
can be seen as a manifestation of the general model complexity selection problem
which is discussed further in the end of this Chapter. Although sophisticated
tools exist for selecting a proper complexity for a linear AR model, the solution
is typically problem dependent and thus not suitable to model the dynamics of
a system in the state of continuous change.

The most fundamental limitation the linear models for modeling a dynamic
system is the fact that time dynamics typically are not linear and thus cannot
be captured by linear models. This calls for applying nonlinear models often
implemented as artificial neural networks.

2.4 Nonlinear models

In the previous section, a general linear model for modeling a random process
was presented. In this section, the modeling problem is extended by allowing
the temporal dependencies of the signal to be nonlinear. In practice, these
nonlinear models for time series are implemented as artificial neural network
structures. In the following, a group of network topologies is reviewed as model
of time-varying processes.

2.4.1 Multilayer perceptron

The multi-layer perceptron (MLP) is a general class of neural networks con-
structed of an input and an output layer of neurons and a variable number
of hidden layers between them [6] (Figure 2.3). The characteristic feature of
MLP networks is that the connections between the neurons are all in the for-
ward direction of the signal flow and no recurrent connections exist. One of
the strengths of MLP networks is that for differentiable transfer functions the
derivatives of the error function of the network can be expressed as a function
of the network weights and biases known as the error back-propagation [56, 71].

MLP networks are commonly used to learn a static mapping f : R
n → R

m and
applied in pattern recognition tasks [30, 6, 60, 66].

2.4. Nonlinear models 25

layer
Output

layer
Hidden

layer
Input

Figure 2.3: A fully connected multilayer perceptron network with two
layers of adaptive weights, four hidden units and two output units.

The MLP network processes input patterns without discriminating the order
in which the inputs are presented meaning that the MLP topology does not
natively store information about time. External memory mechanics are thus
needed to include the time dimension in the processing. For example, a delay
line of length N can be connected to the inputs of a MLP network such that
the input pattern x of the network is constructed of the current input and N
previous values as

x(n) =

x(n)
x(n− 1)
x(n− 2)

...
x(n−N)

and the network can learn a complex nonlinear mapping using the N previous
inputs.

The described delay line method does has a severe limitation considering the
general case of processing time-dependent data. Typically, there is no prior
information on the period length of the temporal pattern or at least an upper
limit for the period length cannot be defined. Also, the period length can
be varying. For an MLP network the delay line length determines a constant
window length N with the discouraging effect that patterns longer than the
time window will be ignored. On the other hand, for events with a short period
length a wide time window can disturb the learning process.

2.4.2 Recurrent topologies

The generic MLP network type can be extended with internal memory mechan-
ics by adding recurrent connections between the network nodes. The idea of
recurrent connections in neural networks is to store the activation state of the
network and use the stored activations as context information when processing
new inputs.

2.5. Model validation methods 26

layer
Input

layer
Hidden

layer
Output

units
Context

layer
Input

layer
Hidden

layer
Output

Context
units

a) b)

Figure 2.4: In the Elman topology a) the activations of the neurons in
the hidden layer have a recurrent connection through a set of context
neurons that can be used to store information on the temporal context
of activations. In the Jordan topology b) the recurrent connection is
taken from the network outputs.

The Elman topology network [22] adds a hidden layer of neurons to the feed-
forward structure of a MLP network (Figure 2.4a). These context neurons are
used to record the activation state of the hidden layer of the network with
the consequence that previous activation states in the hidden layer effects the
processing of each new input pattern.

A variation of the Elman network by Jordan [36] stores information on the
activation state of the network outputs (Figure 2.4b).

One of the beneficial properties of the recurrent connections is that the network
is able to learn sequences of variable length instead of defining a fixed time
window as in the case of a MLP network used with a delay line.

2.5 Model validation methods

As discussed in the introduction, a common problem in constructing a model
for a time series is to select a proper number of parameters [13]. A model with
too few parameters will typically result in a too rigid model whereas a model
with too many parameters is likely to be overfitted to the training data at hand.

Maximum likelihood is one of the popular methods for validating the quality
of a model [1, 58]. In the maximum likelihood method a random variable X
is assumed to distributed according to p(X, θ), where θ is a parameter vector
{θ1, θ2, ..., θk}. The idea now is to select the parameter vector θ such that the
observed realizations of X gain maximum likelihood.

In the case of discrete variables with a probability density function P (xi, θ) the

2.5. Model validation methods 27

likelihood function can be written as

L(θ) =

n∏

i=1

p(xi, θ1, ..., θk) (2.10)

For a continuous probability density function f (2.10) can be written as

L(θ) =
n∏

i=1

f(xi, θ1, ..., θk) (2.11)

Often to simplify the differentations ∂L
∂θi

Equation (2.11) is transformed into a
logarithmic version

l(θ) = logL(θ) =

n∑

i=1

log f(xi, θ1, ..., θk) (2.12)

When the model class has been selected the remaining task is to find an ap-
propriate complexity for the model after which the parameters can be selected
optimally.

2.5.1 Methods for determining optimal model complexity

When modeling an observed process y the available data is typically limited to
a set of N samples. A common measure for the modeling error is the mean
squared error

MSE =
1

N

N∑

i=1

(yi − xi)
2 (2.13)

in which y is the observed data and x is the model output. For a good model the
error (2.13) should obviously be small. Still, it should be noted that since the
observations typically contain noise and, on the other hand, the observed data
set cannot be regarded as a complete representation of the process. A model
should be able to distinguish between the noise term and the process itself so
that only the process itself is modeled.

The modeling error can now be written as a sum of the two components

E{(x− y)2} = {E{x} − y}2

︸ ︷︷ ︸

(bias)2

+E{x−E{x}}2

︸ ︷︷ ︸

variance

(2.14)

2.5. Model validation methods 28

where the first term is the systematic error of the model and the second term is
the variance [6]. An overly rigid model will result in a large bias term and little
variance. On the other hand an overfitted model will have very little bias but
high variance which can be interpreted as learning the data set instead of the
underlying phenomenon.

A common scheme for finding an appropriate complexity of a model is to first
select a region of evaluated parameter amounts and then study the quality of
the complexity level by comparing the models with some criterion. In this case
the parameters of the models are all optimal since the parameter selection is
done separately for each complexity.

When considering the optimal amount of parameters for a model class M the
process is as follows. First, the maximum complexity of a model is decided as
kmax. After this, the k parameters of each model Mk are selected – for example
– by maximizing the likelihood function i.e. selecting the parameters θ = θ1...θk

so that the probability of observing the observed data is at its maximum

max
θ
L(θ) = max

θ

∏

p(xi; θ) (2.15)

Usually the computation of the optimal parameters θ can be significantly sim-
plified by maximizing the logarithm of the likelihood function.

max
θ

logL(θ) = max
θ
l(θ) (2.16)

The parameters can now be selected such that

∂l(θ)

∂θ
= 0 (2.17)

After this, the suitable model M1...Mk can be selected by a score known as
information criterion [13].

2.5.2 Numerical information criteria

A popular way of balancing the bias-variance dilemma known as cross validation
divides the observed data set into separate parts using the other part to con-
struct an optimal model and the other part to validate the quality of the model.
In the beginning of the cross validation process the observed data is divided into
N subsets. For each data set the model parameters can be optimized using all
other N − 1 data sets. After this the modeling error is computed and averaged
over the N data sets. According to cross validation the model which results in
the smallest mean modeling error has the optimal complexity [13].

2.5. Model validation methods 29

Although cross validation is regarded as a data oriented method it should be
noted that the selection of the amount of data subsets has an effect on the result.
Also, when considering time dependent processes the division has to be made
such that the time dependent information is remained.

In cross validation [61] each data value xi belongs to exactly one data set.
While this guarantees the representation of the whole data set in the modeling
it restricts the amount of training data sets. Another approach to the selection
of the data subsets is to ignore the restriction of each sample xi belonging to just
one subset and allow a sample to be selected into several subsets. This method
is known as bootstrapping [20]. While bootstrapping does not even guarantee
that all data samples are used at all, it enables the use of a large amount of
training data sets and thus overcomes this restriction of cross validation. The
score itself is computed similarly to cross validation as the mean modeling error
with the smallest score indicating the best model.

2.5.3 Two-part information criterion

Akaike information criterion

A commonly used information criterion for the selection of an optimal model
complexity considers the problem in two regards. The Akaike information cri-
terion (AIC) [58] considers both the complexity of the model and the goodness
of the fit to the observed data set based on the log likelihood function which
estimates the expected log likelihood.

According to Akaike [58] the mean expected log likelihood is smaller by term
k/2 than the real model’s expected log likelihood

ln(k) = E{l′(θ̂)} = l′(θ̂′) − k

2
(2.18)

where l′(θ′) is the log likelihood of the real distribution. An optimal model is
thus a one that minimizes the AIC criterion

AIC(k) = −2l(θ̂) + 2k (2.19)

Minimum description length and normalized maximum likelihood

Another viewpoint for modeling is offered by the idea that every data set can
be coded into a string of symbols of a finite alphabet and use any regularities
inside the code to compress information. Minimum description length (MDL) by
Rissanen [51, 5] is inspired by the principle of selecting the simplest hypothesis

2.5. Model validation methods 30

of all candidates to explain a phenomenon.1

According to Rissanen, any set x of discrete data can be coded using a binary
prefix code of length L(x). A perfect binary prefix code also defines a distribu-
tion

p(x) = 2−L(x) (2.20)

For a model p(x|θ) the optimal code length is thus

L(x|θ) = − log2 p(x|θ) (2.21)

The minimum description length becomes

min
θ

{L(x|θ) + L(θ)} (2.22)

in which the first term L(x|θ) describes the length of coding the data and the
second term L(θ) the code length of the parameters. The model p(x|θ) that
has the minimum description length according to (2.22) is considered a good
generalization of the observed data.

The use of MDL still requires prior information on the parameter distribution
to compute the code length for the parameters. A strictly data driven method
called normalized maximum likelihood (NML) [62] can be derived by normaliz-
ing over the parameter space

L(θ) =
π(θ)′

∑

y π(θ)
(2.23)

which makes the NML a strictly data driven information criterion for selecting
the complexity of a model.

1Known popularly as Ockam’s razor [4], which is usually phrased “entities are not to be

multiplied beyond necessity”.

Chapter 3

Self-organizing neural networks

for temporal modeling

3.1 Introduction

The Self-Organizing Map (SOM) algorithm by Kohonen [40] can be used to
visualize, cluster and analyze large amounts of multidimensional data in an
unsupervised manner. However, in its original form the SOM algorithm lacks
the ability to represent temporal information. Several extensions have been
developed to add this functionality to the basic SOM algorithm based on delay
mechanics, recurrent connections and leaky activation potential.

In the beginning of this Chapter, the SOM algorithm is introduced in its orig-
inal form. After this, a number of temporal SOM algorithms are presented
and reviewed first in the context of classifying finite-length sequences and then
discussed in the context of a continuous learning task such as the one in the
anticipatory AI system of an autonomous agent.

As an alternative to the SOM, the class of Neural Gas algorithms by Martinetz
and Fritzke [43, 46, 25] is presented as a different approach to the task of esti-
mating the state space of a dynamic system.

3.2 The Self-Organizing Map

The Self-Organizing Map algorithm by Kohonen [40] is an neural network al-
gorithm for creating a topologically correct nonlinear projection of high dimen-
sional data into a neuron lattice of lower dimensionality. The SOM is typically
used to visualize a large multidimensional data set to discover groups of sim-
ilar patterns and thus transform a large amount of data into a simple visual
presentation.

31

3.2. The Self-Organizing Map 32

Figure 3.1: A rectangular and a hexagonal SOM network topology.

A SOM network is typically constructed as a two-dimensional rectangular grid
(Figure 3.1) of N neurons (known also as nodes, prototype vectors or codebook
vectors).

M = {m1,m2,m3, ...,mN} (3.1)

Each of the SOM nodes mi is associated with a n-dimensional weight vector wi

which defines the node as a point in the input space R
n.

wi = {wi1, wi2, wi3, ..., wnN} (3.2)

At each step of the training process, the input vectors x ∈ R
n are compared

with the SOM codebook vectors to organize the codebook vector set M such
that similar vectors (according to Euclidian distance metric) reside close to
each other on the SOM grid to form groups of similar vectors. As a result of the
training process, the input data vectors become coded in the SOM such that for
each training vector x used in the training process there exists a close equivalent
in the SOM codebook. Each training vector x can then be viewed in relation
to the rest of the training data by looking at the location of its best matching
equivalent in the codebook vector set. Detecting similarities (and dissimilarities)
between two multidimensional vectors of the training set thus reduces to looking
at the distance between the two vectors on the two dimensional SOM grid.

3.2.1 Training algorithm

The SOM combines Hebbian learning1 and competitive learning in an unsuper-
vised manner such that the organizing process advances – as the name implies –
without any guidance or feedback. The unsupervized nature of the learning pro-
cess distincts the SOM from many NN types such as the MLP which is trained
by presenting a desired output value for each input pattern.

The training algorithm involves processing each input data vector x through
the following two steps

1see Hebb’s postulate [31].

3.2. The Self-Organizing Map 33

(i) The input vector x is compared with each SOM codebook vector mi and
the closest equivalent according to the Euclidian distance between the
vectors is selected as the best matching unit mc.

||x −mc|| = min
i
{||x −mi||} (3.3)

(ii) The BMU neuron and its neighboring units are shifted towards the in-
put vector x such that the BMU neuron is changed the most and the
shift amount for the neighboring for the neighboring units is defined by
a neighborhood function, which is a monotonically decreasing function of
||ri − rc|| where ri is the two-dimensional coordinate vector indicating the
location of unit i in the SOM plane.

mi(t+ 1) = mi(t) + hci(t)[x(t) −mi(t)] (3.4)

A typical choice for a neighborhood function is a Gaussian kernel function (Fig-
ure 3.2)

hci(t) = α(t) · exp

(

−||ri − rc||2
2σ(t)2

)

(3.5)

where 0 < α(t) < 1 is a time-dependent decreasing parameter defining the
learning rate and σ(t) is a time-dependent parameter defining the decreasing
neighborhood width. For convergence it is necessary that hci(t) → 0 when
t → ∞. The Gaussian neighborhood function of Equation (3.5) suffers from
heavy computational load which can be avoided by using a computationally
lighter function such as the bubble neighborhood function (Figure 3.2)

hci(t) =

{

1, ||ri − rc|| ≤ d

0, ||ri − rc|| > d
(3.6)

where d is a parameter defining the width of the neighborhood.

3.2.2 Visualization methods

The SOM algorithm can be an extremely useful tool in visualizing large data
sets since the distance on the map lattice is a simplified measure of the similarity
of two data vectors. In addition to labeling the codebook vectors according to
their input vectors there exists other methods to depict the SOM projection.

A commonly used visualization tool for the SOM is the U-matrix [69] (Figure
3.3). In the U-matrix plot each SOM codebook vector is shown as a color shade
defined by the similarity between the neuron and its neighboring neurons. Thus,

3.2. The Self-Organizing Map 34

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: SOM neighborhood functions–a Gaussian (solid line) and
a bubble neighborhood (dashed line).

areas where similar SOM nodes form a cluster, will show as a homogenous color
area and these clusters are separated by a ridge.

When working with temporal data – which is the case in the following chapters
– the trajectory of the BMU neurons can be used to visualize temporal struc-
tures in the data set. A BMU trajectory (Figure 3.4) is constructed simply by
connecting the BMU nodes mc of adjacent input data vectors with a line. In the
case of slow transitions in the input space R

n the BMU trajectory can be used
to predict the possible future values of the pattern sequence. This property of
the SOM will be used extensively in Chapter 4.

Sammon’s mapping [59] is another method of projecting multi-dimensional in-
formation into a two dimensional representation. The mapping is based on
organizing the two-dimensional representations of the multidimensional vectors
such that an energy function is minimized. For large data sets the computation
of the Sammon’s mapping becomes very heavy and thus it typically can not
be applied to the whole data set. Instead, the SOM codebook vectors can be
analyzed using the Sammon’s mapping such as in Figure 3.5.

3.2.3 Processing temporal data with the SOM

The SOM algorithm, as presented above, processes the input vectors in a way
that is independent of the order of the data. Sequences {x(1),x(2),x(3)} and
{x(3),x(1),x(2)} will thus find their best matching units {mc1,mc2,mc3} re-
gardless of the order in which the inputs are presented.

Although the algorithm itself is unaware of the time dimension of the data, in
some situations we can use our prior knowledge about the data to gain implicit
temporal information from the SOM projection of the input data. For example,

3.2. The Self-Organizing Map 35

Figure 3.3: In the U-matrix visualization clusters of similar codebook
vectors show as dark areas. In this case, a cluster of similar nodes is
located in the middle of the lower half of the U-matrix.

Figure 3.4: Trajectory of the BMU units for successive input vectors.

3.3. Variants of the SOM algorithm 36

−4 −3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.5: Sammon’s mapping of the codebook vectors of a SOM
network.

if the differences between adjacent patterns x(t) and x(t + 1) are known to be
small, the corresponding SOM neurons mt and mt+1 of the adjacent patterns
are likely to be placed near each other in the SOM space.

Another view to the relation of the network topology and the temporal structure
of the input sequence is provided in [63], where the topology was constructed
such that only the adjacent BMU neurons of an input sequence were connected.

This time topology property of the SOM algorithm will be discussed further in
Chapter 4.

In many situations though the implicit time topology preservation of the SOM
is not a sufficient way to represent temporal information. For this reason, many
extensions to the SOM algorithm have been developed to encode the time di-
mension either with external or internal memory mechanics.

3.3 Variants of the SOM algorithm

As discussed in the previous section, the SOM algorithm does not store informa-
tion about past inputs. The ability to recognize temporal structures requires a
mechanism to store information about the adjacency of individual inputs. This
mechanism – known as the short term memory (STM) – can be implemented in
various ways ranging from a simple delay line to various schemes implementing
a leaky integrator potential of the activation of the neurons. A rough division
between the various extensions of the SOM algorithm can be made between the
placement of the STM mechanics in regard to the SOM itself [17].

External STM models implement the memory as a separate element from the
SOM. Typically this is done with an independent memory circuit connected to

3.3. Variants of the SOM algorithm 37

the input or output of the SOM as in the case of a tapped delay line. Internal
STM models implement the STM as a part of the modified SOM algorithm
using, for example, a leaky integrator potential in the inputs or the outputs of
the SOM neurons.

3.3.1 External STM mechanics

The simplest way of implementing a short-term memory follows the idea of
autoregression introduced in Chapter 2. The temporal sequence is led through
a chain of unit delays which store the previous N input values. The SOM can
now be fed with a data vector which is constructed of N adjacent input values
together with the current input.

x(n) =

x(n)
x(n− 1)
x(n− 2)

...
x(t−N)

(3.7)

Thus the tapped delay line STM effectively transforms the time dimension to
space dimensions. Kangas [38, 37] has applied such scheme for isolated phoneme
recognition and segmentation.

A serious obstacle of the delay line STM is – as in the case of an AR model –
the difficulty of defining the suitable length N for the time window. Because
the number of used delay units dictates the memory length, all information on
the process history beyond x(n−N) will be ignored.

3.3.2 Internal STM mechanics

Various modifications of the SOM algorithm include the STM into the SOM
algorithm itself using the biologically inspired idea of a leaky activation potential
[17, 11, 41, 35]. The idea behind the leaky activation potential is to represent
each neuron with a potential Pi decaying over time.

Pi(t) = λPi(t− 1) + Ii(t) (3.8)

where 0 < λ < 1 is a decay parameter defining the memory depth and Ii(t) is
the activity of neuron i at time t. This approach overcomes the need to define a
fixed-length time window of the delay-line by introducing a more flexible concept
of memory depth that can be adjusted with the parameter λ. Additionally, the
idea of a leaky potential is a biologically more plausible way of representing

3.3. Variants of the SOM algorithm 38

temporal information. In the following, a number of modified SOM algorithms
based on the leaky potential are presented.

Temporal Kohonen Map (TKM)

The concept of a leaky integrator potential associated to neuron activity was
introduced in the Temporal Kohonen Map algorithm (TKM) by Chappel and
Taylor [11]. The TKM extends the SOM by defining a time-varying activity
state for each neuron. When the SOM searches for a best matching unit neuron
for an input pattern, only a single prototype of the SOM is activated and for
the following input vector the BMU is searched regardless of the result of the
previous result. In the TKM, the sharp instantaneous activation of the SOM
codebook vectors is replaced with a continuous activation potential which once
activated, gradually decays and loses its potential.

In the TKM the decaying activation potential for neuron i is defined as

Vi(t) = dVi(t− 1) − 1

2
||x(t) −wi(t)||2 (3.9)

where 0 ≤ d ≤ 1 is a constant defining the memory depth, x(t) is the input
vector, and wi(t) is the weight vector of neuron i. The activity for neuron i at
time t becomes

Vi(t) = −1

2

t−1∑

k=0

dk||x(t− k) −wi(t− k)||2 + dtVi(0) (3.10)

The winning neuron c is then selected as

Vc(n) = max
i

{Vi(n)} (3.11)

The TKM can be used to classify n-length sequences by representing each known
sequence with an associated TKM reference node mi ∈ R

n defined by the last
BMU neuron of the sequence. Thus the sequences “aabcba” and “aabccb” would
be associated to separate reference nodes. Nevertheless, the resolution of the
TKM is limited to the number of the map codebook nodes. Also, as noted by
James et al. [35] the TKM suffers form loss of context as a result of the decaying
activation potential. This means that the classification of longer sequences will
rely heavily on the last values of the sequence and thus the sequences “aabcba”
and “babcba” would easily be classified as the same sequence. According to
James this property limits the use of TKM to only short sequences.

3.3. Variants of the SOM algorithm 39

w(n)

y(n)α

z−11 − α

x(n)

Figure 3.6: Schematic picture of a RSOM neuron [41].

Recurrent SOM (RSOM)

A modified version of the TKM algorithm called the recurrent SOM [41] simply
moves the leaky integrator potential from the output of the neuron into the
input. In this case the feedback quantity is a vector, which makes it possible to
capture also the direction of the error.

The input activity of an RSOM neuron i is defined recursively as

yi(t) = (1 − α)yi(t− 1) + α(x(t) −wi(t)) (3.12)

where α is the leaking coefficient analogous to the factor d in the TKM.

The best matching unit is selected such that

yc = min
i
{||yi||} (3.13)

measuring the smallest error between the current input and the sustained pre-
vious inputs of the RSOM node.

SARDNET

The SARDNET (Sequential Activation Retention and Decay NETwork) model
by James [35] uses activation retention and decay to form a very dense repre-
sentation of temporal sequences with only few training iterations.

What makes the SARDNET model very different from the previous algorithms is
that the order in which the map nodes are activated during an input sequence is
used to classify sequences. This makes the SARDNET capable of storing a large
amount of information about input sequences without the resolution limitation
of the TKM and RSOM. For example, consider the case of processing vectors
with maximum length l and each vector component having p possible values.
In this case for pn possible input vectors there needs to exist lpn map nodes to
represent them all. This is a significant improvement to methods such as the
TKM that would require pnl nodes for the same task.

The SARDNET algorithm is defined by the following steps:

1. Initialize a SOM network consisting of N codebook vectors.

3.3. Variants of the SOM algorithm 40

2. For an input pattern x determine the BMU node by the smallest Euclidean
distance.

3. Set the activation of the BMU neuron to 1.0.

4. Adjust the weights of the BMU neuron and its neighbors by the standard
SOM training rule (3.4).

5. Exclude the current BMU neuron from subsequent competition for the
current sequence.

6. Decrement the activation values for all other active nodes.

ARSOM

A variant of the SOM called Activation-based Recursive Self-Organizing map
(ARSOM) [33] extends the idea of inter-neuron recurrent connections of the
Elman [22] and Jordan [36] networks to the domain of Self-Organizing Maps.
In the ARSOM model, the activation of the whole map is taken into account
when processing successive inputs.

In an ARSOM network each neuron is associated with two weight vectors which
define the response of the neuron for each new input (known as content) and
for each activation state of the network (known as context). The content weight
vector is similar to the one of the standard SOM algorithm

wx
i = {wx

i1, w
x
i2, w

x
i3, ..., w

x
iN} (3.14)

where N is the input dimension of the map. Connections between the neurons
are defined by the context weight vector

w
y
i = {wy

i1, w
y
i2, w

y
i3, ..., w

y
iM} (3.15)

where M is the number of neurons in the network.

Using the weight vectors of (3.14) and (3.15) we can write the activation of the
ARSOM node i as

yi(t) = TF (||x(t) −wx
i ||, α) · TF (||y(t − 1) −w

y
i ||, β) (3.16)

which is a product of the content response and context response of the codebook
unit. In (3.16) TF (·) is a transfer function which maps the distances ||x(t)−wi||
to the range [0, 1]. Note that the transfer function TF (·) is the same for the
both responses so no distinction is made between the feedforward and recurrent
connections.

3.4. Other types of self-organizing networks 41

The BMU unit is then selected as

yc = max
i

{yi(t)} (3.17)

and the weights are updated according to the update rules

∆wx
i = φhci(x(t) −wx

i)

∆w
y
i = ψhci(y(t− 1) −wx

i)
(3.18)

where φ and ψ are the learning rates.

3.3.3 Limitations of the SOM algorithm

Despite the usefulness of the SOM algorithm it has some inherent limitations
when considering the task of processing temporal patterns. These limitations
include the following:

• The static topology of the SOM is a limitation when considering the res-
olution of the projected probability density estimate. One has to decide
beforehand the size of the SOM lattice and the dimensionality of the pro-
jection. This could be a serious limitation in a situation where no a priori
information is available about the underlying data distribution.

• In an online learning situation the time dependent parameters of the SOM
lead to a compromise between the plasticity of the network and the mem-
ory length for old data. This problem called catastrophic forgetting [24] is
common in neural networks with a static topology.

In the following, two neural network algorithms, namely the Neural Gas and
the Growing Neural Gas, based on unsupervised learning, are presented as an
option for using the SOM when constructing a temporal state space model.

3.4 Other types of self-organizing networks

3.4.1 Neural Gas

An alternative to the SOM approach to quantizing multidimensional datasets
offers the family of Neural Gas (NG) algorithms. Instead of reducing the dimen-
sion of the data set as in the SOM algorithm, the Neural Gas algorithm defines
a set of N nodes in the original input space R

n. Connections between the nodes

3.4. Other types of self-organizing networks 42

Figure 3.7: The Neural Gas is able to represent a probability density
function consisting of two separate regions (gray areas) due to the
dynamic topological connections.

are defined without a regular static SOM-like grid. Instead, the topology of the
network is dynamic and able to adapt to changes in the PDF generating the
input samples (Figure 3.7).

Martinetz [43, 46] justifies the use of Neural Gas networks over the SOM as
follows:

To obtain optimal results concerning the conservation of the topol-
ogy of the mapping as well as the optimal utilization of all neural
units, the topology of the employed network has to match the topol-
ogy of the manifold of the data which is represented. This requires
prior knowledge about the topological structure of the manifold,
which is not always available of might be difficult to obtain if the
topological structure of the manifold is very heterogenous, e.g. com-
posed of subsets of different effective dimensions or disjunct and
highly fractured.

For this reason, it is desirable to employ a more flexible network ca-
pable of (i) quantizing topologically heterogenously structured man-
ifolds and (ii) learning the similarity relationships among the input
signals without the necessity of prespecifying a network topology.

The Neural Gas network consists of a set of N nodes with each one associated
with a weight vector wi ∈ R

n. The network topology is defined by a connectivity
matrix C, Cij = {0, 1} where the value 1 denotes a connection between nodes
i and j. The connectivity matrix is then used to define the neighborhood of a
network node using the graph distance. Each connection Cij is also associated
with an age parameter such that old connections can be removed during the
training in favor of new connections.

The Neural Gas training algorithm is defined by the following steps:

1. Assign initial values to the weight vectors wi ∈ R
n and set all Cij to zero.

2. Select an input vector v of the input manifold M .

3. For each unit i determine the number ki of neurons j with

3.4. Other types of self-organizing networks 43

||v −wj|| < ||v −wi|| (3.19)

by, e.g., determining the sequence (i0, i1, ..., iN−1) of neurons with

||v −wi0 || < ||v −wi1 || < ... < ||v −wiN−1
|| (3.20)

4. Perform an adaptation step for the weights according to

w(t+ 1) = w(t) + ε · e−ki/λ(v −wi(t)), i = 1, ..., N. (3.21)

5. If Ci0i1 = 0, set Ci0i1 = 1 and ti0i1 = 0. If Ci0i1 = 1, set ti0i1 = 0.

6. Increase the age of all connections of i0 by setting ti0j = ti0j + 1 for all j
with Ci0j = 1.

7. Remove all connections of i0 which exceed their lifetime by setting Ci0j = 0
for all j with Ci0j = 1 and ti0j > amax. Continue with 2.

The Neural Gas algorithm has also been applied to time series prediction as in
[44] where the attractor of the Mackey-Glass time series [42] was represented
with a NG network.

Also, the recursive and recurrent modifications of the SOM have been applied to
the NG algorithm. In [70] the recursive use of the network activation is used for
the SOM and NG networks. In [65] the proposed extension to the NG algorithm
is similar to the RSOM algorithm [41].

3.4.2 Growing Neural Gas

A modification of the Neural Gas algorithm called Growing Neural Gas (GNG)
by Fritzke [25] extends the NG algorithm with a growing network size. The
capability of adding neurons while the training advances makes the GNG algo-
rithm suitable for online learning situations where the complexity of the input
data is unknown. Another virtue of the GNG algorithm compared to the SOM
is that it does not include any time-dependent parameters.

Consider a set of A neurons each associated with a weight vector wi ∈ R
n. A

set of N un-weighted edges connecting the neurons defines the topology of the
network. Each neuron i represents a point in the unknown n-dimensional input
distribution P (ξ) that the GNG algorithm is used to approximate.

The algorithm starts with only two neurons that have initially random weight
vectors. As the training advances new neurons are added to regions where the
quantization error for input signals is large.

The complete GNG algorithm is given by the following:

3.4. Other types of self-organizing networks 44

0. Create two neurons a and b with random weight vectors wa and wb in R
n.

1. Generate an input signal ξ according to P (ξ).

2. Find the nearest unit (in Euclidian metric) s1 and the second nearest unit
s2 for the input signal.

3. Increment the age of all edges connecting to s1.

4. Increment the local error counter variable of s1 with the squared quanti-
zation error.

∆(error)(s1) = ||ws1
− ξ|| (3.22)

5. Move all topological neighbors of s1 towards ξ by fractions εb and εn,
respectively, of the total distance:

∆ws1
= εb(ξ −ws1

)

∆wn = εb(ξ −wn) for all neighbors n of s1
(3.23)

6. If s1 and s2 are connected by an edge, set the age of this edge to zero. If
an edge does not exist, create it.

7. Remove edges with an age larger than amax. If this results in points having
no emanating edges, remove them as well.

8. If the number of input signals generated so far is an integer multiple of a
parameter λ, insert a new unit as follows:

– Determine the unit q with the maximum accumulated error.

– Insert a new unit r halfway between q and its neighbor f with the
largest error variable:

wr = 0.5(wq + wf) (3.24)

– Insert edges connecting the new unit r with units q and f , and remove
the original edge between q and f .

9. Decrease the error variables of q and f by multiplying them with a constant
d.

10. If a stopping criterion (e.g. net size or some performance measure) is not
yet fulfilled go to step 1.

The GNG algorithm results in a network that approximates the unknown prob-
ability density with a resolution that can be pre-defined without the need to
select the size of the network beforehand.

3.5. SOM-based methods for process control 45

3.5 SOM-based methods for process control

The Self-Organizing Map algorithm [40] has proven useful in situations where
large amounts of multidimensional data is available but dependencies between
individual variables are difficult to determine. This is a typical situation in
process monitoring where the SOM algorithm has been successfully applied as an
additional tool besides traditional statistical methods. This section introduces
the use of the SOM in process monitoring, visualization and control. In the end
of the section some real life applications are also presented.

3.5.1 Self-organized map of process data

Controlling dynamic processes typically involves a large amount of numerical
information. Usually, the process can be controlled by changing certain pro-
cess parameters in order to direct the process into a suitable state. Sensory
information of various kinds can also be used to examine the current state of a
process.

What makes the problem of process control difficult is that very often the large
amount of process data is of little use, unless we have some conception of how
changes in one variable effect some other variable. Traditional statistical meth-
ods can be used to analyze these dependencies but as the number of variables
grows, the problem becomes overwhelming with traditional methods.

The SOM algorithm can be applied in process monitoring, visualization, and
control to overcome the problem of identifying dependencies in a large amount of
multi-dimensional data [34]. In this case, the SOM is trained with the available
process data to form a vector-quantized mapping of the process state space.
After training, the current state of a process can be associated with the best
matching unit on the map to visualize the process (see Figure 3.8).

3.5.2 Detecting error states

One of the most typical tasks in process control is to avoid drifting to an error
state [2] which is indicated by some abnormal interval in a monitored process
variable. While this kind of monitoring can be done for each variable individu-
ally it is often useful to monitor the whole set of variables on the SOM plane.

Two different approaches have been presented [39] to detect abnormal (error)
states. In the first one the process state map has been trained using data which
has been collected during normal process behavior. Drifting to error states can
be detected by looking at the quantization error e(t) of the current state of the
process x(t)at each time instant t.

3.5. SOM-based methods for process control 46

Fault
Fault

Fault

BMU trajectory

Figure 3.8: SOM visualization of a process state space with undesirable
error state regions.

e(t) = ||x(t) −mc(t)|| (3.25)

When the process advances normally the quantization error remains small be-
cause the training data has been collected to give a good representation of
normal behavior. Correspondingly, abnormal states will result an increase in
the quantization error.

The second approach for detecting error states uses training data received during
process faults. In this case the error states are mapped as error regions (Figure
3.8) on the map and drifting to one of these sates can be monitored as the BMU
trajectory entering one of these regions.

3.5.3 Substitution of missing data

In some cases data may be missing from the vector describing the state of the
process [32]. This could be due to a faulty sensor or some other error in the
monitoring. A virtue of the SOM monitoring method is the redundant capability
to track the process state even though some input were missing. This can be
done by excluding the missing components of the state vector from the BMU
search routine.

The process state map can also be used to predict the missing data values. In
[26] this was done by evaluating the best matching neuron of the input vector
using the available vector components. The missing data value(s) in the input
vector could be approximated by the value found in the BMU neuron. It has
also been suggested [40] that the human brain could process missing information
in a similar manner.

3.5. SOM-based methods for process control 47

3.5.4 Applications

The method of monitoring a dynamic system using the SOM as a representation
of the system state space is a very general solution which could be applied to a
wide range of problems. However, the list of real life examples of this method
are involved with industrial processes.

In integrated circuit design the Self-Organizing Map can be used to aid the
design process [26]. In this case the map is constructed using vectors formed
of design parameters. The map can be thus used to indicate the state of the
device and give an estimate of its life time.

In [68] the SOM-based monitoring method is applied to separating three mate-
rials in a chemical distillation process. The article points that the SOM-based
control is especially useful in situations where mathematical equations give only
a simplified model or are unsatisfying for other reasons.

In [48] the SOM monitoring method has been discussed in the context of power
plants. A method for finding deviations in the process by following the BMU
trajectory of the process state on the map is presented. A discussion on finding
the cause of the deviation is also presented by comparing the weight distributions
of the best matching map unit and the process state vector. In [27] the method
is extended to build a neuro-fuzzy system with fuzzy state membership functions
corresponding to the clusters found on the SOM.

Other examples include learning coordination of a robot arm [45] [52] and pro-
cess monitoring in the manufacture of pharmaceutical products [50].

Chapter 4

Self-organizing neural networks

for adaptive state space

representation

4.1 Introduction

As discussed in Chapter 1 the operation of an anticipatory system can be decom-
posed into two separate tasks: constructing a meaningful internal model of the
dynamic state space of the agent and its environment and, secondly, determin-
ing a policy for selecting appropriate actions for each perceived and predicted
state of the environment in the present time and future.

This Chapter introduces a prototype-based neural network framework for model-
ing the state space of a dynamic system. Topological connections of the networks
are used as an implicit representation of the time dependent state transitions
which can be used to anticipate future states of the system.

Models based on the Self-Organizing Map are compared with Neural Gas algo-
rithms to illustrate the different virtues of these two algorithm families.

4.2 State space as a pattern sequence

As discussed in Chapter 1 an agent is considered an entity which perceives
its environment with sensors and performs actions with its actuators. The
perceived information about the environment can be understood as a time-
dependent signal which can be received from various sensors including

• visual perceptions

48

4.2. State space as a pattern sequence 49

• auditory signals sensed as air pressure variations

• tactile signals received from haptic sensors

• temperature sensors

• kinesthetic senses

Each of these signals can be expressed as a discrete-time process x(n). For
example, in a system with visual, auditory, and tactile sensors the sensed state
could constitute of three signals xv(n), xa(n), and xt(n). These individual
sensory signals can be combined into a single time-varying vector quantity x(n)
summarizing the sensed state of the system.

x(n) =

xv(n)
xa(n)
xt(n)

T

(4.1)

Though often instead of using the raw sensory signals, preprocessing tools can
be applied to extract features and reduce the possibly large amount of sensory
input variables.

The perceived state of the agent can thus be described as a point in the state
space R

d were d is the sum of the dimensions of the individual inputs. The
pattern sequence of successive perceived states can be written as

x(0)
x(1)
x(2)

...
x(n)

...

=

x1(0) x2(0) x3(0) ... xn(0)
x1(1) x2(1) x3(1) ... xn(1)
x1(2) x2(2) x3(2) ... xn(2)

...
...

...
. . .

...
x1(n) x2(n) x3(n) ... xn(n)

...
...

... ...
...

(4.2)

which can be viewed as a trajectory of the system’s state in the state space.

Based on the feedback that the agent receives the state space can be partitioned
into regions of similar states. A rational agent focuses its actions to preserve
itself in a region of states where the feedback is positive. Also, a rational agent
will avoid state space regions where negative reward is to be expected.

Using the above state space notation we can implement an anticipatory system
by selecting appropriate actions in the present time to gain reward in the future
by predicting the future state of the system based on an internal representation
of the dynamics of the state space.

4.4. Implicit time topology 50

4.3 Prototype-based state space models

Constructing a model of a multi dimensional state space of an anticipatory
agent aims to build an internal representation of the agent’s environment. The
problem is essentially a probability density estimation task, for which many
approaches exist [6].

When creating a domain-specific AI system for a particular task, the available
prior information about the data could be used to select a specific model class
known to suit the phenomenon and use parametric methods to estimate the
perceived state space distribution. However, this kind of estimate would only
suit the specific problem. The general case of a multi dimensional state space
with no prior information about the distribution encourages the use of non-
parametric methods which make no assumptions on the data.

In the following sections, the problem of modeling a state space PDF is ap-
proached using prototype-based neural networks which can be seen as a multi-
dimensional vector quantization of the space with added connections between
the prototype nodes. Time is represented implicitly by the connections of the
networks such that states occurring adjacently in time are assumed to reside
close to each other in the network topology. This assumption of “slow state
transformations” is – although a strong one – the only assumption that is made
about the state space. This can be achieved by selecting a high frequency for
the sampling of the continuous sensory input signals and a reasonably large
network size such that the transition from state x(n) to state x(n+ 1) will be
represented as a transition between two network nodes that reside close to each
other in the network topology.

4.4 Implicit time topology

In the presented method of modeling the state space using a prototype-based
neural network, the time dimension has only an implicit representation coded
by the network connections.

Consider a sequence of vectors x(n) consisting of discretized values of continuous
signals sampled such that the length of the difference vector ||x(n) − x(n+ 1)||
has an upper limit. If a vector quantization network such as a SOM of NG is
trained using this data set, the prototypes organize such that the continuous
transitions of the system in the input space can be tracked by the BMU neurons
in the network as in Figure 4.1. The connections of the network thus imply the
temporal order in which the patterns are perceived.

Alternatively, the state space estimation task could be done using a topology-
free vector quantization method as in Figure 4.2 where the neighborhood of the
nodes is defined only in the input space. This, however, could lead to problems
when estimating a non-convex distribution where a topology-free estimate would

4.5. SOM-based state space representations 51

Figure 4.1: Continuous transitions in the high dimensional state space
(left) can be tracked on the quantized prototype-based network (right).

Figure 4.2: A topology-free vector quantization of a state space (left)
implies a connection between two closest nodes. A Neural Gas -type
network (right) avoids this as the distance between the nodes is com-
puted as the number of connections between the nodes.

suggest a connection between two nodes that do not occur close to each other
in time. A Neural Gas -type network is able to avoid such misinterpretations
as the distance between two nodes is defined using the amount of connections
between the nodes.

4.5 SOM-based state space representations

As discussed in Chapter 3, several methods for analyzing time dependent infor-
mation using the SOM have been developed based on external delay mechanics
and leaky integrator potentials. Although modified SOM algorithms are typi-
cally proposed for processing finite-length one-dimensional sequences, the prin-
ciple of recurrent connections can also be applied when using the SOM as state
space estimate.

The discussion on using the topological connections of the SOM network to
represent time implicitly relies on assumption that two states occurring close
to each other in time will be mapped close to each other on the SOM grid.
While this assumption applies in the case of slow transformations in a convex
data set, in a more general case the BMU trajectory on the SOM plane can be
unpredictable.

4.6. Neural Gas -based state space representations 52

a) b)

Figure 4.3: BMU trajectories of a standard SOM (a) and a one with
contextual restriction in the BMU search algorithm (b).

Using recurrent connections in the inputs of the SOM nodes, similar to RSOM,
the BMU search of the SOM can be altered such that the previous input patterns
are considered when selecting the BMU node for a new input vector. In Figure
4.3 the trajectory for a standard SOM and a one with a neighborhood-guided
BMU search is presented. As seen in the figure, the modified BMU search results
in a more predictable trajectory.

4.6 Neural Gas -based state space representations

Modeling a state space using Neural Gas -type networks is much similar to the
case of a SOM network. The crucial difference between the two network types is
the way the distance between two nodes in the network is defined. The SOM has
the advantage of a simple and constant grid topology, where the computation of
the distance reduces to computing the Euclidian distance of two neurons. In the
case of a rectangular SOM network the distance can alternatively be measured
in Manhattan distance.

In NG networks, however, the only metric to define distances between two nodes
is the amount of connections between the nodes. While the NG topology is a
more flexible one, it requires more computation as the connections change over
time.

The performance of the two types of networks estimating state spaces of different
forms is tested in Chapter 5 including non-convex and disjoint distributions.

4.7. Discussion 53

Algorithm Dimensionality
reduction

Dynamic
topology

Dynamic
size

Time-dependent
parameters

SOM yes no no yes (α and σ)

NG no yes no none

GNG no yes yes none

Table 4.1: Comparison of different state space representation methods.

4.7 Discussion

In this Chapter, the idea of representing the state space of a dynamic sys-
tem using a prototype-based neural network was introduced. The topological
connections of the network was then used as an implicit representation of the
temporal dynamics of the state space. This way, state anticipation (as described
in Chapter 1) could be implemented by examining the network neighborhood
of node representing the current state of the system and executing appropriate
control actions to avoid unwanted states.

The most significant property of the proposed method is the capability to extend
the topology-preserving nature of the SOM projection to the time dimension in
the case of continuous-valued variables.

One significant advantage of the presented framework is its robustness against
missing data. In a situation where the state space is of high dimensionality the
effect of an individual data values decreases and the remaining dimensions (for
which data exists) can be used to compute the BMU unit.

Chapter 5

Simulations

5.1 Introduction

In Chapters 3 and 4 a framework for implementing an anticipatory model of a
dynamic system based on self-organizing neural networks was presented. In this
Chapter, the SOM-based state space model is simulated and compared with the
Neural Gas -based implementation.

In the first simulation the previously introduced scheme of monitoring the state
of a process using a SOM projection of the process states is used to anticipate
error states. The latter part of the simulations demonstrate the operation of
the SOM and GNG networks for different kinds of distributions. The case of
a single convex data set is extended to a case of nonstationary and nonconvex
state space.

5.2 A SOM-based adaptive anticipatory system

In Chapter 3 the implicit time-representation of the SOM projection was used in
visualizing the progress of an industrial process (see [2, 26, 34, 39]) by examining
the trajectory of the BMU node corresponding to the current process state.
In the simulations the same method is extended to apply anticipatory control
operations to avoid error states.

In this simulation a dynamic system is described by six-dimensional vector x ∈
R

6 which represents the sensory inputs used to monitor the state of the system
(Figure 5.1). A SOM projection R

6 → R
2 was created to visualize the process

on a two-dimensional surface. The process state variables were bounded to the
interval [−1, 1] to avoid re-normalizing the SOM. The normal behavior of the
process was defined such that each of the process state variables xi were required
to remain in the interval [−0.8, 0.8] and values [−1, −0.8] or [0.8, 1] in any of

54

5.3. Dynamic SOM and Neural Gas -based state space models 55

the components were interpreted as undesired states.

At each time instance a random shift was added to the system’s state such that
successive states were computed as

x(t) = x(t− 1) + v(t) (5.1)

where v(t) ∼ N 6(0, 0.1) is Gaussian noise. For each state of the system the
BMU node mc was selected to classify the state one of the three categories

1. Normal operation, where each state variable of the BMU node mc satisfy
−0.8 ≤ mi ≤ 0.8.

2. Undesired error states where |mi| > 0.8.

3. States in the near vicinity of error states for which ||ri − re|| < b, where b
is a parameter defining the width of the buffer region.

For the first class of states no actions were taken. If the current state was found
represented as an error state the process was initialized to its original state. This
rule is equivalent to the reactive paradigm where only the current state of the
process is evaluated. However, if the current state was found to belong into the
third category, the process was also initialized in anticipation of an undesired
state in the near future.

In Figure 5.2 the BMU trajectories of a state of a reactive and an anticipatory
system are shown. The reactive system goes through several faults (shown as
SOM cells with a large black dot) while the anticipatory system avoids them by
anticipating nearby errors and initializing its state to the allowed interval.

Adapting to changes in the environment can be taken into account by updating
the SOM during the process (Figure 5.3). For example, the system might end
up in a state which has no good representation on the SOM projection. This
can be detected as increase in the quantization error between the system state
and the corresponding best matching unit.

5.3 Dynamic SOM and Neural Gas -based state space

models

In the following examples the SOM-based modeling of the state space of a
dynamic system is compared to the topologically dynamic Growing Neural Gas
algorithm.

5.3. Dynamic SOM and Neural Gas -based state space models 56

0 50 100 150 200

−1

−0.5

0

0.5

1

0 50 100 150 200

−1

−0.5

0

0.5

1

0 50 100 150 200

−1

−0.5

0

0.5

1

0 50 100 150 200

−1

−0.5

0

0.5

1

0 50 100 150 200

−1

−0.5

0

0.5

1

0 50 100 150 200

−1

−0.5

0

0.5

1

Figure 5.1: Component values of the six-dimensional random process.

a) b)

Figure 5.2: SOM trajectories of a a) reactive and an b) anticipatory
system. Error states are marked with large black dots and the buffer
region around the error states are marked with small dots.

5.3. Dynamic SOM and Neural Gas -based state space models 57

Figure 5.3: The SOM mapping of the state space is able to learn new
undesired regions during the simulation. The buffer region around the
error states marked as gray and the error states using black dots.

5.3. Dynamic SOM and Neural Gas -based state space models 58

Modeling a non-convex distribution

One of the virtues of the SOM is the ability to describe a multidimensional
dataset with a simple static network topology which is typically two-dimensional
hexagonal or rectangular grid. For a simple convex data set1 the topology of the
SOM network can be used to approximate the mutual distances of the nodes
in the input space. However, if the input data distribution consists of two or
more separate regions or if the region is not convex the SOM topology does not
describe well the input data distribution.

In this simulation, three data distributions were selected to compare the perfor-
mance of the SOM and GNG in approximating the distribution and especially
how the connections between the nodes describe the structure of the underlying
PDF.

In Figure 5.4 a SOM and a GNG network are trained with a data set that
favors the static topology of the SOM. Both of the networks learn an evidently
good representation of the data set and the connections between the nodes
have a strong connection to the distance between the nodes in the input space
such that only nodes that reside close to each other in the input space have a
connection in the network. A significant difference in the two vector quantized
representations is how the outer boundary regions are represented. As seen in
Figure 5.4a the SOM representation does not extend to the outer limits the
network of Figure 5.4 is distributed evenly across the whole data set.

As a comparison to the SOM-friendly setting of the previous experiment, a
non-convex dataset was modeled with the two VQ algorithms. In Figure 5.5
the result for a SOM (a) and a GNG (b) representation of a “U-shaped” data
distribution is presented. As seen in Figure 5.5a the SOM representation of the
data does not capture the shape of the distribution and many of the nodes fall
in an area where no input exist. Also, the topological connections between the
nodes in the extreme ends of the data distribution has the consequence that
the connections can not be used to gain reliable information about the distance
between individual nodes. In Figure 5.5b the corresponding result for the GNG
algorithm is presented. This result shows how the GNG is able to capture the
shape of the distribution such that the distance between two neurons measured
as the network distance correlates strongly with the Euclidian distance between
the nodes in the input space.

Another example of the two algorithms in the approximation task of a non-
convex distribution is shown in Figure 5.6. As in the previous experiment the
GNG is able to recognize the separate components of the PDF of the input data
while the SOM stretches between the three parts. This result shown in Figure
5.6a is an extreme example of the possible hazards of relating the distance of
two nodes in the SOM space to the corresponding distance in the input space.

1Here the term convex data set is used to describe a data set which has been generated
from a convex probability distribution.

5.3. Dynamic SOM and Neural Gas -based state space models 59

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

a) b)

Figure 5.4: A SOM (a) and a GNG (b) approximation of a uniformly
distributed rectangular two-dimensional data set.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

a) b)

Figure 5.5: A SOM (a) and a GNG (b) network approximation of a
non-convex two-dimensional data set.

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

a) b)

Figure 5.6: SOM (a) and GNG (b) approximations of a PDF with
separate regions.

5.3. Dynamic SOM and Neural Gas -based state space models 60

connection length mean connection length variance

SOM (data set #1) 0.0787 0.0023
GNG (data set #1) 0.0973 0.0035
SOM (data set #2) 0.5801 0.0063
GNG (data set #2) 0.1244 0.4065

Table 5.1: Results of the node connection length experiment.

Adaptation to a nonstationary environment

A severe restriction of many classical statistical analysis tools, such as the
ARMA model, is the requirement for the stationarity of the data (see Equa-
tion 2.8). When considering an autonomous agent with several sensory inputs
operating in a complex environment the perceived data is know to be highly
nonstationary since the environment itself changes over time.

In this experiment the adaptation to a changing state space distribution is tested
for a GNG network.

In Figure 5.7 the initial state of the GNG representation of a data set generated
from a uniformly [−0.5, 0.5] distributed two-dimensional PDF is depicted to-
gether with the data points. After this, new inputs are fed to the network from
a two-dimensional normal distribution N 2(1, 1). The network adaptation to the
new distribution is shown in Figure 5.7. The significance of this experiment is
in the fact that the adaptation process is totally independent of time. This is
a notable advantage of the GNG network type considering the situation of a
continuous learning in a nonstationary environment.

Topological connection lengths

When using a prototype-based network as a model of the state space distribution
as described in Chapter 4 the topological connections of the network can be
related to time. If the precondition of slow transitions in the state space holds,
the transitions in the BMU trajectory of the NN model will also occur between
nodes that reside close to each other in the network.

As the anticipation on future states is done using the metrics of the NN model
instead of the input space, it is important to consider how the connection lengths
of the NN nodes relate to the corresponding distance in the input space.

In Figures 5.8, 5.9 and 5.10 the SOM and GNG quantizations of a data set is
shown with the histogram of the connection length distribution for both net-
works. The important result of this experiment is that as a result of the dynamic
topology of the GNG network, the variance of the connection lengths in the in-
put space is small compared to the connection lengths of the SOM.

Looking at the connection length statistics of Table 5.1 it is apparent how the
variance of the connection lengths is very large (0.4065) for the two-part PDF
by comparison to the other variances. In the easy case of the single rectangular

5.3. Dynamic SOM and Neural Gas -based state space models 61

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
30

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
90

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
180

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
300

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
1350

Figure 5.7: A GNG network adapting to a nonstationary data set.

5.3. Dynamic SOM and Neural Gas -based state space models 62

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 5.8: SOM (left) and GNG (right) approximations of a simple
rectangular uniform distribution (upper) and a two-part distribution
(lower).

0 0.1 0.2 0.3
0

5

10

15

20

25

30

0 0.1 0.2 0.3
0

5

10

15

20

25

30

Figure 5.9: Connection length histograms for a SOM (left) and a GNG
(right) network.

5.3. Dynamic SOM and Neural Gas -based state space models 63

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

Figure 5.10: Connection length histograms for a SOM (left) and a GNG
(right) network approximating a two-part distribution.

distribution the difference between the SOM are GNG are very small.

The conclusion of this experiment remains that the topological connections of
the SOM network should not be directly associated to the corresponding dis-
tances in the input space. Specifically, when using the network topology as
an implicit representation of time (as in the previous chapter), the shape of
the state space distribution has a crucial influence to the applicability of this
scheme.

Chapter 6

Discussion

6.1 Conclusions

In this thesis, the use of self-organizing neural networks was presented as a
means for implementing a predictive model of an anticipatory system. This
approach has a solid foundation considering the mechanics of natural cognitive
systems employing anticipatory behavior. In many current implementations
of anticipatory systems the design process follows the top-down paradigm of
selecting and developing a model using the prior knowledge about the problem.
In this regard the scientific contribution of this work is the alternative approach
of implementing anticipation as an emergent feature of a dynamic state space
model.

Two classes of neural network algorithms based on unsupervised learning were
reviewed by their applicability to quantize the state space of a dynamic system.
The SOM has been previously used to monitor the state of an industrial process
and the idea of anticipating unwanted states using the topology of the SOM
network was derived from the previous work by Tryba et al. [68].

The described scheme was used to implement a simple anticipatory system using
the SOM topology as an implicit representation of the time dimension. How-
ever, for more complex state space distributions the SOM was found to have
undesirable characteristics caused by the static rectangular topology.

The GNG algorithm was found preferable to the SOM when modeling a more
complex state space. In the case of a non-convex state space the GNG was able
to form a topology in which the implicit representation of time was plausible.

64

6.2. Future work 65

6.2 Future work

6.2.1 From reactive to anticipatory behavior

As discussed in the previous chapters anticipatory behavior is a vital component
of a biologically plausible AI system. The experiments in Chapter 5 show how
self-organizing neural networks can be used to implement a preventive state
anticipatory system.

In the experiments performed in Chapter 5 the AI system made decisions com-
bining reactive and anticipatory. However, the decision making system was
simplified to a binary “OR” operation.

In reality, the balancing between reactive and anticipatory behavior is often
much more complex including dependencies on the context. In an unpredictable
environment where reliable predictions about the future are not available it
would be suitable to “turn off” anticipatory mechanisms. On the other hand
in a situation where predictions are very accurate the anticipatory component
could be used with good results.

6.2.2 Learning and forgetting

Although neural networks are capable of learning large amounts of data, they
usually suffer from forgetting old information. Especially in networks that have a
static topology – such as the SOM – suffer from new data overwriting previously
learned information also known as catastrophic forgetting [3, 53, 54, 23, 24].

If an anticipatory system employs a SOM model, there is an inevitable tradeoff
between the plasticity of the learning and the capability of recall previously
learned information. Specifically the two parameters α and σ play a crucial role
in finding a balance between a system with large plasticity and a system with
good capability to store previous information.

Contrary to the standard SOM algorithm where the two parameters decay over
time, in a continuous learning the parameters have to be either selected as
constants or alternatively address the problem with some other mechanism.

In feed-forward type networks catastrophic forgetting has been addressed by
generating artificial input data which is then fed to the network together with
new inputs. This method known as pseudorehearsal successfully retains a good
representation of previous inputs in the network without the need for a infinite-
length short term memory.

For unsupervised networks such as the SOM the idea of internally generated
pseudodata is not applicable because it would severely disrupt the training al-
gorithm itself. In [49] a scheme based on using the codebook vectors of the
SOM as reminders of previous data was introduced to alleviate catastrophic

6.2. Future work 66

forgetting in a SOM network in a continuous learning task. Using this method
the forgetting can be converted from catastrophic to gradual which is the case
in biological networks.

The GNG algorithm, however, has only constant parameters and is thus more
suitable in an online learning system.

6.2.3 State space estimates with explicit time representation

The discussed state space estimates represent time implicitly as a result of the
gradual changes in the state of the system. While this approach is applicable for
continuous state space transitions, the state space estimate could be constructed
such that information on the temporal order of the inputs would affect the result.

Recurrent extensions to the SOM and NG type networks could be applied to
overcome the precondition of slow transition in the state space as in [41] and [65].
Explicit information about the order of the inputs could extend the presented
framework to support discontinuous transitions making the model significantly
more plausible to real-world applications.

6.2.4 Anticipating when to act and how to act

As discussed in Chapter 1 the research on anticipatory behavior is strongly
related to the reinforcement learning [64] paradigm – the problem of learning a
policy of how to act in each situation to gain the highest possible overall reward
without any explicit training information.

In this thesis, the subject of anticipatory behavior was approached more from the
viewpoint of constructing an internal predictive model to predict when actions
should be taken. Naturally, a sophisticated anticipatory agent would benefit
from the combination of these two – anticipating when and how to act instead
of selecting a generic action to resume the system to a normal state.

Bibliography

[1] Hirotugu Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, AC-19(6):716–723, 1974.

[2] Jarmo T. Alander, Matti Frisk, Lasse Holmström, Ari Hämäläinen, and
Juha Tuominen. Process error detection using self-organizing feature maps.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial
Neural Networks, volume II, pages 1229–1232, Amsterdam, Netherlands,
1991. North-Holland.

[3] Bernard Ans, Stéphane Rousset, Robert M. French, and Serban Musca.
Self-refreshing memory in artificial neural networks: learning temporal se-
quences without catastrophic forgetting. Connection Science, 16(2):71–99,
June 2004.

[4] Robert Ariew. Ockham’s Razor: A Historical and Philosophical Analy-
sis of Ockham’s Principle of Parsimony. PhD thesis, Champaign-Urbana,
University of Illinois, 1976.

[5] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description
length principle in coding and modeling. IEEE Trans. Information Theory,
44(6):2743–2760, 1998.

[6] Cristopher Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versiy Press, 1995.

[7] Antonio Bonomi and A. G. Fredrickson. Protozoan feeding and bacterial
wall growth. Biotechnology and Bioengineering, 18(2):239–252, 1976.

[8] George Box, Gwilym Jenkins, and Gregory Reinsel. Time Series Analysis:
Forecasting and Control. Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[9] Mark E. Burke. Further properties of derived scalar strong anticipatory sys-
tems. In CASYS’03, 6th International Conference on Computing Anticipa-
tory Systems, AIP Conference Proceedings 718, pages 219–227. American
Institute of Physics, 2003.

[10] Martin V. Butz, Olivier Sigaud, and Pierre Gérard. Anticipatory Behavior
in Adaptive Learning Systems, chapter Internal Models of Anticipations

67

BIBLIOGRAPHY 68

in Adaptive Learning Systems. Lecture Notes in Artificial Intelligence.
Springer, 2003.

[11] Geoffery J. Chappel and John G. Taylor. The temporal kohonen map.
Neural Networks, 6:441–445, 1993.

[12] Chris Chatfield. Time-Series Forecasting. Chapman & Hall/CRC, 2001.

[13] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley, 1991.

[14] Paul Davidsson. A linearly quasi-anticipatory autonomous agent architec-
ture: Some preliminary experiments. In C. Zhang and D. Lukose, editors,
Distributed Artificial Intelligence Architecture and Modelling (Lecture Notes
in Artificial Intelligence 1087), pages 189–203. Springer-Verlag: Heidelberg,
Germany, 1996.

[15] Paul Davidsson. Linearly anticipatory autonomous agents. In W. Lewis
Johnson and Barbara Hayes-Roth, editors, Proceedings of the First Inter-
national Conference on Autonomous Agents (Agents’97), pages 490–491,
New York, 5–8, 1997. ACM Press.

[16] Paul Davidsson. Anticipatory Behavior in Adaptive Learning Systems,
chapter A Framework for Preventive State Anticipation. Lecture Notes
in Artificial Intelligence. Springer, 2003.

[17] Guilherme de A. Barreto and Aluizio F. R. Araújo. Time in self-organizing
maps: An overview of models. International Journal of Computer Research,
10(2):139–179, 2001.

[18] Daniel M. Dubois. Computing anticipatory systems with incursion and hy-
perincursion. In Computing Anticipatory Systems: CASYS - First Interna-
tional Conference, AIP Conference Proceedings 437, pages 3–29. American
Institute of Physics, 1998.

[19] Daniel M. Dubois. Anticipatory Behavior in Adaptive Learning Systems,
chapter Mathematical Foundations of Discrete and Functional Systems
with Strong and Weak Anticipations. Number 2684 in Lecture Notes in
Artificial Intelligence. Springer, 2003.

[20] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall/CRC, 1993.

[21] Bertil Ekdahl, Eric Astor, and Paul Davidsson. Toward anticipatory agents.
In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents - Theories,
Architectures, and Languages, Lecture Notes in Artificial Intelligence 890,
pages 191–202. Springer-Verlag: Heidelberg, Germany, 1995.

[22] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990.

BIBLIOGRAPHY 69

[23] Robert M. French. Catastrophic interference in connectionist networks:
Can it be predicted, can it be prevented? In Jack D. Cowan, Gerald
Tesauro, and Joshua Alspector, editors, Advances in Neural Information
Processing Systems, volume 6, pages 1176–1177. Morgan Kaufmann Pub-
lishers, Inc., 1994.

[24] Robert M. French. Catastrophic forgetting in connectionist networks.
Trends in Cognitive Science, 3(4):128–135, 1999.

[25] Bernd Fritzke. A growing neural gas network learns topologies. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural
Information Processing Systems 7, pages 625–632. MIT Press, Cambridge
MA, 1995.

[26] Karl Goser. Self-organizing map for intelligent process control. In Pro-
ceedings of WSOM’97, Workshop on Self-Organizing Maps, Espoo, Finland,
June 4–6, pages 75–79. Helsinki University of Technology, Neural Networks
Research Centre, Espoo, Finland, 1997.

[27] Karl Goser, K. Schuhmacher, M. Hartung, K. Heesche, B. Hesse, and
A. Kanstein. Neuro-fuzzy systems for engineering applications. In R. V.
Mayorga, editor, AFRICON ’96. Incorporating AP-MTT-96 and COMSIG-
96. 1996 IEEE AFRICON. 4th AFRICON Conference in Africa. Electrical
Energy Technology, Communication Systems, Human Resources, volume 2,
pages 759–64. IASTED-Acta Press, Anaheim, CA, USA, 1996.

[28] James D. Hamilton. Time Series Analysis. Princeton University Press,
1994.

[29] Monson H. Hayes. Statistical Digital Signal Processing and Modeling. John
Wiley & Sons, New York, NY, 1996.

[30] Simon Haykin. Neural Networks. Prentice Hall, 2nd edition, 1999.

[31] Donald O. Hebb. The Organization of Behaviour. John Wiley and Sons,
1949.

[32] Jaakko Hollmén. Process modeling using the self-organizing map. Master’s
thesis, Helsinki University of Technology, 1996.

[33] Kevin Hynnä and Mauri Kaipainen. Activation-based recursive self-
organizing maps: A general formulation and empirical results. Neural Pro-
cessing Letters, 2004. accepted for publication.

[34] Heikki Hyötyniemi. Optimal control of dynamic systems using self-
organizing maps. In Stan Gielen and Bert Kappen, editors, Proc.
ICANN’93, International Conference on Artificial Neural Networks, pages
850–853, London, UK, 1993. Springer.

[35] Daniel L. James and Risto Miikkulainen. SARDNET: a self-organizing
feature map for sequences. In G. Tesauro, D. Touretzky, and T. Leen,

BIBLIOGRAPHY 70

editors, Advances in Neural Information Processing Systems 7, pages 577–
84, Cambridge, MA, USA, 1995. MIT Press.

[36] Michael I. Jordan. Attractor dynamics and parallelism in a connection-
ist sequential machine. In Proceedings of the 8th annual Conference on
Cognitive Science Society, pages 531–546, 1986.

[37] Jari Kangas. Time-delayed self-organizing maps. In Proc. IJCNN-90, In-
ternational Joint Conference on Neural Networks, San Diego, volume II,
pages 331–336, Los Alamitos, CA, 1990. IEEE Computer Society Press.

[38] Jari Kangas. On the Analysis of Pattern Sequences by Self-Organizing
Maps. PhD thesis, Helsinki University of Technology, 1994.

[39] Mika Kasslin, Jari Kangas, and Olli Simula. Process state monitoring using
self-organizing maps. In I. Aleksander and J. Taylor, editors, Artificial
Neural Networks, 2, volume II, pages 1531–1534, Amsterdam, Netherlands,
1992. North-Holland.

[40] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in In-
formation Sciences. Springer, Berlin, Heidelberg, 1995. (Second Extended
Edition 1997).

[41] Timo Koskela, Markus Varsta, Jukka Heikkonen, and Kimmo Kaski. Tem-
poral sequence processing using recurrent SOM. In 2nd International Con-
ference on Knowledge-Based Intelligent Engineering Systems, volume 1,
pages 290–297, Adelaide, Australia, April 1998.

[42] Michael C. Mackey and Leon Glass. Oscillations and chaos in physiological
control systems. Science, (197):287–289, 1977.

[43] Thomas. M. Martinetz. Competetive hebbian learning rule forms perfectly
topology preserving maps. In ICANN’93: International Conference on
Artificial Neural Networks, pages 427–434, Amsterdam. Springer.

[44] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten.
”neural-gas” network for vector quantization and its application to time-
series prediction. IEEE Transactions on Neural Networks, 4(4):558–569,
July 1993.

[45] Thomas M. Martinetz, Helge J. Ritter, and Klaus J. Schulten. Three-
dimensional neural net for learning visuomotor coordination of a robot
arm. IEEE Trans. on Neural Networks, 1(1):131–136, March 1990.

[46] Thomas M. Martinetz and Klaus J. Schulten. A "neural-gas" network learns
topologies. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors,
Artificial Neural Networks, pages 397–402, Amsterdam, Netherlands, 1991.
North-Holland.

[47] Mihai Nadin. Anticipatory Behavior in Adaptive Learning Systems, chapter
Not Everything We Know We Learned. Number 2684 in Lecture Notes in
Artificial Intelligence. Springer, 2003.

BIBLIOGRAPHY 71

[48] Ralf Otte and Karl Goser. New approaches of process visualization and
analysis in power plants. In Proceedings of WSOM’97, Workshop on Self-
Organizing Maps, Espoo, Finland, June 4–6, pages 44–50. Helsinki Uni-
versity of Technology, Neural Networks Research Centre, Espoo, Finland,
1997.

[49] Matti Pöllä, Tiina Lindh-Knuutila, and Timo Honkela. Self-refreshing SOM
as a semantic memory model. In Proceedings of International and Interdis-
ciplinary Conference on Adaptive Knowledge Representation and Reasoning
(AKRR’05), Espoo, Finland, June 2005. In press.

[50] Jukka T. Rantanen, Sampsa J. Laine, Osmo K. Antikainen, Jukka-Pekka
Mannermaa, Olli E. Simula, and Jouko K. Yliruusi. Visualization of fluid-
bed granulation with self-organizing maps. Journal of Pharmaceutical and
Biomedical Analysis, 24(3):343–352, Jan 2001.

[51] Jorma Rissanen. Modeling by shortest data description. Automatica,
14:465–471, 1978.

[52] Helge J. Ritter, Thomas M. Martinetz, and Klaus J. Schulten. Topology-
conserving maps for learning visuo-motor-coordination. Neural Networks,
2(3):159–168, 1989.

[53] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science, 7(2):123–147, 1995.

[54] Anthony Robins. Consolidation in neural networks and in the sleeping
brain. Connection Science, 8(2):259–275, 1996.

[55] Robert Rosen. Anticipatory Systems. Pergamon Press, 1985.

[56] David E. Rumelhart, Richard Durbin, and R. J. Williams. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, chap-
ter Learning internal representations by error propagation, Volume 1: Foun-
dations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[57] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2002.

[58] Yoshiyuki Sakamoto, M. Ishiguro, and G. Kitagawa. Akaike Information
Criterion Statistics. Reidel Publishing Company, 1986.

[59] John W. Sammon. A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18(5):401–409, May 1969.

[60] Robert Schalkoff. Pattern Recognition: Statistical, Structural and Neural
Approaches. J. Wiley & Sons, 1992.

[61] J. Shao. Linear model selection by cross-validation. Journal of the Ameri-
can Statistical Association, (88):486–494, 1993.

BIBLIOGRAPHY 72

[62] Yuri M. Shtarkov. Universal sequential coding of single messages. Problems
of Information Transmission, (23):3–17, 1987.

[63] Panu Somervuo. Time topology for the self-organizing map. In Proceed-
ings of the International Joint Conference on Neural Networks (IJCNN’99),
volume 3, pages 1900–1905, Washington DC, USA, July 1999.

[64] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[65] M. A. Teixeira, G. Zaverucha, V. N. A. L. da Silva, and G. F. Ribeiro.
Recurrent neural gas in electric load forecasting. In IJCNN’99 International
Joint Conference on Neural Networks, volume 5, pages 3468–3473, July
1999.

[66] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition.
Academic press, 1999.

[67] Jarkko Tikka, Jaakko Hollmén, and Amaury Lendasse. Input selection for
long-term prediction of time series. In Proceedings of the 8th International
Work Conference of Artificial Neural Networks (IWANN’2005), Barcelona,
Spain, June 2005.

[68] Viktor Tryba and Karl Goser. Self-Organizing Feature Maps for pro-
cess control in chemistry. In T. Kohonen, K. Mäkisara, O. Simula, and
J. Kangas, editors, Artificial Neural Networks, pages 847–852, Amsterdam,
Netherlands, 1991. North-Holland.

[69] A. Ultsch and H. P. Siemon. Kohonen’s self organizing feature maps for
exploratory data analysis. In Proceedings of the International Neural Net-
work Conference (INNC’90), pages 305–308, Dordrecht, Netherlands, 1990.
Kluwer.

[70] Thomas Voegtlin. Recursive self-organizing maps. Neural Networks,
(15):979–991, 2002.

[71] Paul J. Werbos. Beyond regression: new tools for prediction and analysis
in the behavioural sciences. PhD thesis, Harvard University, Boston, MA,
1974.

