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ABSTRACT

Zero-crossings of sinusoidal signals are used for compo-
nent synchronization especially in many applications in
power electronics. Predictive finite impulse response (FIR)
filters – bandpass filters with negative phase delay at a spe-
cific frequency – can be used to design a zero-crossing
detector which operates without delay. Adaptation to fre-
quency variations and computational simplicity have been
the goals for various FIR implementations developed in
recent years. An evaluative review of six such methods is
presented in this article along with simulation results of
their performance.

1. INTRODUCTION

Accurate zero-crossing detection of highly distorted sinu-
soidal signals is a requirement of several applications in
power electronics. Especially in thyristor power convert-
ers where the zero-crossings are used for switching syn-
chronization. The additional requirement of real-time fil-
tering for these detectors makes the problem a non-trivial
one.

An additional challenge is introduced by the slight vari-
ation in the nominal frequency of the line voltage signal
(50 Hz ± 2%).

Several methods for delayless zero-crossing detection
have been developed by Ovaska and Vainio [1–5]. They
all share a structure based on a predictive FIR filter and
differ from each other by the complexity of their imple-
mentation and the way of adaptation to the frequency vari-
ation.

However, the use of the predictive FIR-based filtering
algorithms is not limited to switching synchronization in
power converters. For example active power filtering is
an area where prediction of sinusoidal signals has been
applied successfully to reduce harmonics in power sys-
tems [6].

2. BASIC SCHEME

The simplest filtering method presented in [1] is formed of
a median filter, a predictive FIR filter and an interpolator
connected in cascade (Figure 1). All the other methods
can be understood as improvements of this basic scheme.

The median filter is used to remove strong impulsive
noise from the signal. For each time interval n, it selects
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Figure 1. Block diagram of a predictive FIR-based zero-
crossing detector.

the median of three successive input samples x(n).

y(x) = median{x(n − 1), x(n), x(n + 1)} (1)

As the length of commutation notches in power con-
verters is typically under 600 µs the sampling frequency
(1.67 kHz) has been selected so that all impulsive distur-
bances fit inside a single sample. Thus all one-sample
long disturbances are removed effectively. As a drawback
a median filter with a window length of three samples adds
a one-sample delay to the signal.

After the median filtering, the signal is filtered with
an FIR filter that adds a two-sample forward phase shift
to the signal. The prediction requirement for sine wave
extrapolation is defined as

x(n + p) =

N−1
∑

k=0

h(k)x(n − k) (2)

where h(k) denotes the impulse response of the filter.
This can be achieved by designing a filter with a fre-

quency response H(ejω) which has the following charac-
teristics:

|H(ejω0)| = 1 (3)

Arg
(

H(ejω0)
)

= −0.12π (4)

where ω0 denotes the nominal frequency of the input sig-
nal (50 Hz).

The first requirement (3) states that the amplitude at
the nominal frequency must not change. The second re-
quirement (4) defines the correct phase shift to cause a
two-sample advance.

An additional goal in the selection of the FIR coeffi-
cients is to minimize the noise gain defined as

N−1
∑

k=0

[h(k)]2 (5)



This optimization task can be carried out analytically
using the method of Lagrange multipliers [1].

In the final stage the signal is interpolated by a La-
grange interpolator to increase the time resolution of the
output signal to 100 µs and thus a one-sample delay is
added to the signal. As a result, the phase shift of the
whole system at the nominal frequency is zero and the
signal can be filtered with no phase shift (delay).

3. IMPROVED METHODS

All the succeeding filtering methods differ from the first
one only by the predictive FIR part. The compared meth-
ods are Table lookup, LMS, general parameters (GP), mul-
tiplicative general parameters (MGP) and a simplified mov-
ing average version of the MGP algorithm (MGP-MA).

3.1. Table lookup

In the first improved method, the suitable coefficients for
various nominal frequencies (ω0 ± 2%) are stored in a
memory array. As the frequency changes, new coefficients
can be loaded from the array [2]. This algorithm is an im-
provement to the basic scheme but requires a large mem-
ory and lacks true adaptivity.

3.2. LMS

In the LMS method the filter coefficients are adjusted by
the Widrow-Hoff LMS algorithm. The coefficients are up-
dated as

~H(n + 1) = ~H(n) + 2µe(n)~x(n − 2) (6)

where ~H(n) = [h(0), ..., h(N − 1)]T is the filter coeffi-
cient vector, ~x = [x(n−2), ..., x(n−N −1)]T is the data
vector in the filter window, e(n) is the prediction error

e(n) = x(n) − ~HT (n)~x(n − 2) (7)

and µ is a small positive constant that determines the learn-
ing rate [3]. As a drawback this algorithm has the ten-
dency to overly adapt to error signals as a consequence of
many degrees of freedom in the adaptation.

3.3. GP

The general parameters method [4,7] divides the filter co-
efficients to a fixed and an adjustable part. This way the
adaptation of the filter can be limited to avoid adapting to
error signals.

The output of the GP filter is defined as

y(n) =

N−1
∑

k=0

[g(n) + h(k)]x(n − k) (8)

where the general parameter is updated as

g(n + 1) = g(n) + γ[r(n) − y(n)]

N−1
∑

k=0

x(n − k) (9)

where r(n) is the reference input and γ is a gain factor.
With only two degrees of freedom in the adaptation

the GP method is highly redundant against adaptation to
error signals [4].

3.4. MGP

The MGP method is a computationally lighter version of
the GP method. In the case of two general parameters the
output is computed as

y(n) =g1(n)

N1
∑

k=0

h(k)x(n − k)

+g2(n)

N−1
∑

k=N1+1

h(k)x(n − k)

(10)

where the general parameters are updated as

g1(n + 1) = g1(n) + γe(n)

N1
∑

k=0

h(k)x(n − k) (11)

g2(n + 1) = g2(n) + γe(n)
N−1
∑

k=N1+1

h(k)x(n − k) (12)

where e(n) is the prediction error and γ is a gain factor.
N1 is an integer in the interval 0 ≤ N1 ≤ N − 1 that
divides the filter in two blocks [5].

3.5. MGP-MA

With lower filter lengths, the general parameters alone can
give good results. This allows an extremely simple im-
plementation of an averaging filter (moving average) by
setting the fixed filter coefficients to unity [5].

4. SIMULATIONS

The performance of the filtering algorithms was examined
with extensive simulations. A highly distorted sinusoid
(Figure 2) seen in a thyristor converter was modelled by
adding impulsive disturbances, harmonic components and
random noise to the pure sinusoid. Slight variation in the
nominal frequency was taken into account by using three
different test signals with nominal frequencies of 49, 50
and 51 Hz. All simulations were run on a 12 second long
sample.
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Figure 2. The test signal – a distorted 50 Hz sinusoid.

The zero-crossings defined by

x(n)x(n + 1) ≤ 0 (13)

were recorded for a distorted signal and a pure sinusoid.
The zero-crossing detection error can then be analyzed by



looking at the absolute mean error and the standard de-
viation of the error. As a result we have a Gaussian-like
distribution of the error (Figure 3). A good detection al-
gorithm produces a narrow symmetric zero-centered dis-
tribution.

−10 −5 0 5 10
0

50

100

Zero−crossing error (100 µs)

%

Mean 0.11909

Std. dev 1.6215

Figure 3. Zero-crossing error histogram.

The detection algorithms were implemented as describ-
ed in the referred papers [1–5]. Filter length N = 11 was
used for all methods except the Table lookup method with
a filter lenght N = 21. Two general parameters were used
in the GP-based algorithms.

The initial convergence of the LMS- and GP-based
methods was taken into account by discarding the results
produced before the adaptive parameters have converged.

5. RESULTS

The performance of the different zero-crossing methods
can be compared by the absolute mean error (Figure 5)
and the standard deviation of the error (Figure 6) at dif-
ferent frequencies. A small value is desirable for both the
absolute mean error and the standard deviation of the er-
ror.

Simulations show that the basic scheme with a fixed
coefficient set works very well for the nominal frequency
of 50 Hz but fails at other frequencies because of the lack
of frequency adaptation. For a 49 Hz signal the result-
ing histogram (Figure 4) is almost symmetric but centered
slightly left of zero resulting a large value for the absolute
mean error.

The exceptionally good result of the Table lookup met-
hod is caused by the longer filter length (N=21) and thus
cannot be compared with the other methods directly. Al-
though the simulation results are in favor of a long filter
the length has disadvantages also. The prediction band is
wider for short filters and the accuracy of the fixed coef-
ficients in the general parameter-based algorithms is less
critical for shorter filters [5].

The LMS and the GP methods both adapt to the fre-
quency variation but introduce a slightly greater standard
deviation in the zero-crossing error. This can be seen as a
wide error histogram centered near zero.

The MGP method shows good performance in both
comparisons at all frequencies and thus it can be ranked
as the best zero-crossing detection method in these simu-
lations. Even the simplified moving average version of the

MGP algorithm shows a good result although its imple-
mentation is much less complex compared to the others.
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Figure 4. Zero-crossing error distributions for a 49 Hz test
signal.
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Figure 5. Comparison of the absolute value of the mean
error.
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Figure 6. Comparison of zero-crossing error standard de-
viation.


