
On the implementation and usage of SDPT3

– a Matlab software package for

semidefinite-quadratic-linear programming,

version 4.0

K. C. Toh ∗, R. H. Tütüncü †, and M. J. Todd ‡

Draft, 17 July 2006

Abstract

This software is designed to solve conic programming problems whose constraint
cone is a product of semidefinite cones, second-order cones, nonnegative orthants and
Euclidean spaces; and whose objective function is the sum of linear functions and
log-barrier terms associated with the constraint cones. This includes the special case
of determinant maximization problems with linear matrix inequalities. It employs
an infeasible primal-dual predictor-corrector path-following method, with either the
HKM or the NT search direction. The basic code is written in Matlab, but key
subroutines in C are incorporated via Mex files. Routines are provided to read in
problems in either SDPA or SeDuMi format. Sparsity and block diagonal structure are
exploited. We also exploit low-rank structures in the constraint matrices associated
the semidefinite blocks if such structures are explicitly given. To help the users
in using our software, we also include some examples to illustrate the coding of
problem data for our SQLP solver. Various techniques to improve the efficiency and
stability of the algorithm are incorporated. For example, step-lengths associated with
semidefinite cones are calculated via the Lanczos method. Numerical experiments
show that this general purpose code can solve more than 80% of a total of about 300
test problems to an accuracy of at least 10−6 in relative duality gap and infeasibilities.

∗Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
(mattohkc@nus.edu.sg); and Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576.
Research supported in parts by NUS Research Grant R146-000-076-112 and SMA IUP Research Grant.

†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
(reha@cmu.edu). Research supported in part by NSF through grants CCR-9875559, CCF-0430868 and
by ONR through grant N00014-05-1-0147

‡School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853,
USA (miketodd@cs.cornell.edu). Research supported in part by NSF through grant DMS-0209457 and
by ONR through grant N00014-02-1-0057.

1

1 Introduction

The current version of SDPT3, version 4.0, is designed to solve conic programming
problems whose constraint cone is a product of semidefinite cones, second-order cones,
nonnegative orthants and Euclidean spaces; and whose objective function is the sum
of linear functions and log-barrier terms associated with the constraint cones. It solves
the following standard form of such problems, henceforth called SQLP problems:

(P) min
ns∑

j=1

[〈cs
j , xs

j〉 − νs
j log det(xs

j)] +

nq∑

i=1

[〈cq
i , xq

i 〉 − νq
i log γ(xq

i)]

+ 〈cl, xl〉 −
nl∑

k=1

νl
k log xl

k + 〈cu, xu〉

s.t.
ns∑

j=1

As
j(x

s
j) +

nq∑

i=1

Aq
i x

q
i + Alxl + Auxu = b,

xs
j ∈ K

sj
s ∀j, xq

i ∈ Kqi
q ∀i, xl ∈ Knl

l , xu ∈ IRnu .

Here, cs
j , xs

j are symmetric matrices of dimension sj and K
sj
s is the cone of positive

semidefinite symmetric matrices of the same dimension. Similarly, cq
i , xq

i are vectors
in IRqi and Kqi

q is the quadratic or second-order cone defined by Kqi
q := {x = [x0; x̄] ∈

IRqi : x0 ≥
√

x̄T x̄}. Finally, cl, xl are vectors of dimension nl, Knl

l is the nonnegative
orthant IRnl

+ , and cu, xu are vectors of dimension nu. In the notation above, As
j is

the linear map from K
sj
s to IRm defined by

As
j(x

s
j) =

[
〈as

j,1, xs
j〉; . . . ; 〈as

j,m, xs
j〉

]
,

where as
j,1, . . . , a

s
j,m ∈ Ssj are constraint matrices associated with the jth semidefinite

block variable xs
j . The matrix Aq

i is an m × qi dimensional constraint matrix corre-

sponding to the ith quadratic block variable xq
i , and Al and Au are the m × nl and

m × nu dimensional constraint matrices corresponding to the linear block variable
xl and the unrestricted block variable xu. The notation 〈p, q〉 denotes the standard
inner product in the appropriate space. For a given vector u = [u0; ū] in a second

order cone, we define γ(u) :=
√

u2
0 − ūT ū. In the problem (P), νs

j , νq
i , and νl

k are
given nonnegative parameters.

In this paper, the vector 2-norm and Frobenius norm are denoted by ‖·‖ and ‖·‖F ,
respectively. We use the Matlab notation [U ;V] to denote the matrix obtained by
appending V below the last row of U . For a given matrix U , we use the notation
U(k, :) and U(:, k) to denote the kth row and column of U , respectively.

Let svec : Sn → IRn(n+1)/2 be the vectorization operator on symmetric matrices
defined by svec(X) = [X11,

√
2X12,X22, . . . ,

√
2X1n, . . . ,

√
2Xn−1,n,Xnn]T . For com-

putational purpose, it is convenient to identify As
j with the following m × s̄j matrix

(where s̄j = sj(sj + 1)/2):

As
j =

[
svec(as

j,1); . . . ; svec(as
j,m)

]
.

2

With the matrix representation of As
j, we have that As

j(x
s
j) = As

jsvec(xs
j).

The software also solves the dual problem associated with the problem above:

(D) max bT y +
ns∑

j=1

[νs
j log det(zs

j) + sjν
s
j (1 − log νs

j)]

+

nq∑

i=1

[νq
i log γ(zq

i) + νq
i (1 − log νq

i)] +
nl∑

k=1

[νl
k log zl

k + νl
k(1 − log νl

k)]

s.t. (As
j)

T y + zs
j = cs

j , zs
j ∈ K

sj
s , j = 1 . . . , ns

(Aq
i)

T y + zq
i = cq

i , zq
i ∈ Kqi

q , i = 1 . . . , nq

(Al)T y + zl = cl, zl ∈ Knl

l ,

(Au)T y = cl, y ∈ IRm.

In the notation above, (As
j)

T is the adjoint of As
j defined by (As

j)
T y =

∑m
k=1 yka

s
j,k.

For later convenience, we introduce the following notation:

xs = (xs
1; . . . ;x

s
ns

), xq = [xq
1; . . . ;x

q
nq

], Aq =
[
Aq

1, . . . , Aq
nq

]
,

where the notation (xs
1; . . . ;x

s
ns

) means that the objects xs
j are placed in a column

format. We define cs, zs, cq, and zq analogously. Let As(xs) =
∑ns

j=1 As
j(x

s
j), (As)T y =

((As
1)

T y; . . . ; (As
ns

)T y), and c = (cs; cq; cl; cu), x = (xs;xq;xl;xu), z = (zs; zq; zl; 0).
Finally, we define

A(x) = As(xs) + Aqxq + Alxl + Auxu, AT (y) =
(
(As)T y; (Aq)T y; (Al)T y; (Au)T y

)
,

K = Ks1

s × · · · × K
sns
s × Kq1

q × · · · × K
qnq
q × Knl

l × IRnu ,

K∗ = Ks1

s × · · · × K
sns
s × Kq1

q × · · · × K
qnq
q × Knl

l × {0},

so that the equality constraints of (P) and (D) can be written more compactly as
follows:

A(x) = b, x ∈ K, AT (y) + z = c, z ∈ K∗. (1)

The matrix representation of A is given by

A =
[
As

1, . . . , A
s
ns

, Aq, Al, Au
]
. (2)

The software package was originally developed to provide researchers in semidef-
inite programming with a collection of reasonably efficient and robust algorithms
that could solve general SDPs (semidefinite programming problems) with matrices
of dimensions of the order of a hundred. The current release expands the family of
problems solvable by the software in several dimensions.

1. This version is faster than the previous releases, e.g. [27], [30], especially on
large sparse problems, and consequently can solve larger problems.

3

2. The current release can also solve problems that have explicit log-barrier terms
in the objective functions. Hence determinant maximization problems can be
solved.

3. The solver is more robust in handling unrestricted variables.

4. Low-rank structures in the constraint matrices associated with the semidefi-
nite blocks can be exploited to improve computational efficiency and memory
requirement.

All the numerical experiments in this paper are performed on a Pentium IV
3.0GHz personal computer with 4GB of physical memory using Matlab version
7 on a Linux operating system.

Organization of the paper. In Section 2, we describe the representation of SQLP
data by cell arrays. The SQLP solver sqlp.m in our software is described in Section
3. In Section 4, we present a few SQLP examples to illustrate the usage of our
software. Implementation details such as the computation of search directions are
given in Section 5. Finally, the last section reports computational results obtained
by SDPT3 on about 300 SQLP problems.

Installation. The current version is written in Matlab version 6.5 and is compatible
with Matlab version 7.0. It is available from the internet sites:

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

http://www.math.cmu.edu/~reha/sdpt3.html

Our software uses a number of Mex routines generated from C programs written to
carry out certain operations that Matlab is not efficient at. In particular, operations
such as extracting selected elements of a matrix, and performing arithmetic opera-
tions on these selected elements are all done in C. As an example, the vectorization
operation svec is coded in the C program mexsvec.c. To install SDPT3 and generate
these Mex routines, the user can simply follow the steps below:

(a) unzip SDPT3-4.0.zip;

(b) run Matlab in the directory SDPT3-4.0;

(c) run the m-file Installmex.m.

After that, to see whether you have installed SDPT3 correctly, run the m-files:

>> startup

>> sqlpdemo

2 Cell array representation of problem data

Our implementation exploits the block structure of the given SQLP problem. In the
internal representation of the problem data, we classify each semidefinite block into
one of the following two types:

4

1. a dense or sparse matrix of dimension greater than or equal to 100;

2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-
mension less than 100.

The reason for using the sparse matrix representation to handle the case when we have
numerous small diagonal blocks is that it is less efficient for Matlab to work with
a large number of cell array elements compared to working with a single cell array
element consisting of a large sparse block-diagonal matrix. Technically, no problem
will arise if one chooses to store the small blocks individually instead of grouping
them together as a sparse block-diagonal matrix.

For the quadratic part, we typically group all quadratic blocks (small or large)
into a single block, though it is not mandatory to do so. If there are a large number
of small blocks, it is advisable to group them all together as a single large block
consisting of numerous small sub-blocks for the same reason we just mentioned.

Let L be the total number of blocks in the SQLP problem. If all the various types
of blocks are present in (P), then L = ns +nq +2. For each SQLP problem, the block
structure of the problem data is described by an L × 2 cell array named blk. The
content of each of the elements of the cell arrays is given as follows. If the jth block
is a semidefinite block consisting of a single block of size sj, then

blk{j,1} = ’s’, blk{j, 2} = [sj],

At{j} = [s̄j x m sparse],

C{j}, X{j}, Z{j} = [sj x sj double or sparse],

where s̄j = sj(sj + 1)/2.
If the jth block is a semidefinite block consisting of numerous small sub-blocks,

say p of them, of dimensions sj1, sj2, . . . , sjp such that
∑p

k=1 sjk = sj, then

blk{j,1} = ’s’, blk{j, 2} = [sj1, sj2, · · · , sjp],

At{j} = [s̄j x m sparse],

C{j}, X{j}, Z{j} = [sj x sj sparse],

where s̄j =
∑p

k=1 sjk(sjk + 1)/2.
Notice that we store all the constraint matrices associated with the jth semidefi-

nite block in vectorized form as a single s̄j × m matrix where the kth column of this
matrix corresponds to the kth constraint matrix. That is, At{j}(:,k) = svec(as

j,k).
The above storage scheme for the data matrix As

j associated with the semidefinite
blocks of the SQLP problem represents a departure from earlier versions (version 2.3
or earlier) of our implementation, such as the one described in [27]. Previously, the
constraint matrices were stored in an ns × m cell array AA, where AA{j,k} = as

j,k,
and it was stored as an individual matrix in either dense or sparse format. The data
format we used in earlier versions of SDPT3 was more natural, but our current data
representation was adopted for the sake of computational efficiency. The reason for
such a change is again due to the fact that it is less efficient for Matlab to work
with a single cell array with many cells.

5

But note that it is easy to use the function svec.m provided in SDPT3 to convert
AA into the new storage scheme as follows: At(j) = svec(blk(j,:),AA(j,:)).

While we now store the constraint matrix in vectorized form, the parts of the
iterates X and Z corresponding to semidefinite blocks are still stored as matrices,
since that is how the user wants to access them.

The data storage scheme corresponding to quadratic, linear, and unrestricted
blocks is rather straightforward. If the ith block is a quadratic block consisting
of numerous sub-blocks, say p of them, of dimensions qi1, qi2, . . . , qip such that∑p

k=1 qik = qi, then

blk{i,1} = ’q’, blk{i, 2} = [qi1, qi2, · · · , qip],

At{i} = [qi x m sparse],

C{i}, X{i}, Z{i} = [qi x 1 double or sparse].

If the kth block is the linear block, then

blk{k,1} = ’l’, blk{k, 2} = nl,

At{k} = [nl x m sparse],

C{k}, X{k}, Z{k} = [nl x 1 double or sparse].

Similarly, if the kth block is the unrestricted block, then

blk{k,1} = ’u’, blk{k, 2} = nu,

At{k} = [nu x m sparse],

C{k}, X{k}, Z{k} = [nu x 1 double or sparse].

(It is possible to have several linear or unrestricted blocks, but it is more efficient to re-
formulate such a problem by combining all linear blocks and similarly all unrestricted
blocks.)

2.1 Specifying the block structure of problems

Our software requires the user to specify the block structure of the SQLP problem. Al-
though no technical difficulty will arise if the user choose to lump a few blocks together
and consider it as a single large block, the computational time can be dramatically dif-
ferent. For example, the problem qpG11 in the SDPLIB library [2] actually has block
structure blk{1,1} = ’s’, blk{1,2} = 800, blk{2,1} = ’l’, blk{2,2} = 800,
but the structure specified in the library is blk{1,1} = ’s’, blk{1,2} = 1600.
That is, in the former, the linear variables are explicitly identified, rather than being
part of a large sparse semidefinite block. The difference in the running time for speci-
fying the block structure differently is dramatic: the former representation is at least
six times faster when the HKM direction is used, besides using much less memory
space.

It is thus crucial to present problems to the algorithms correctly. We could add
our own preprocessor to detect this structure, but believe users are aware of linear

6

variables present in their problems. Unfortunately the versions of qpG11 (and also
qpG51) in SDPLIB do not show this structure explicitly. In our software, we provide
an m-file, detect diag.m, to detect problems with linear variables. The user can call
this m-file after loading the problem data into Matlab as follows:

>> [blk,At,C,b] = read_sdpa(’./sdplib/qpG11.dat-s’);

>> [blk,At,C,b] = detect_diag(blk,At,C,b);

2.2 Storing constraint matrices with low-rank structures

A new feature of the current version of SDPT3 is that it can exploit low-rank struc-
tures present in the constraint matrices associated with the semidefinite blocks. To
do so, the user needs to specify the low-rank structures in the constraint matrices
explicitly when coding the problem data. The purpose here is to explain how this is
done.

Suppose the jth row of blk corresponds to a semidefinite block. To simplify
implementation, we exploit possible low-rank structures only when this semidefinite
block is a single block. That is, blk{j, 2} = [sj]. Suppose that the first p matrices,
as

j,1, . . . a
s
j,p, have no low-rank structures, and the remaining matrices as

j,p+1, . . . , a
s
j,m

have such structures with

as
j,k = VkDkV

T
k , k = p + 1, . . . ,m,

where Vk ∈ IRsj×rj,k is a low-rank matrix with rj,k � sj, and Dk ∈ IRrj,k×rj,k is a
symmetric matrix. The low-rank structures of these matrices should be recorded as
follows:

blk{j,1} = ’s’, blk{j, 2} = [sj], blk{j, 3} = [rj,p+1 , . . . , rj,m],

At{j, 1} = [s̄j x p sparse], At{j, 2} = [Vj,p+1 , . . . , Vj,m], At{j, 3} = dd,

where dd is a 4-column matrix that records the non-zero elements of Dk, k = p +
1, . . . ,m, and a row (say, ith row) of dd has the following form:

d(i, :) = [constraint number − p, row index, column index, non-zero value].

If all the matrices Dk are diagonal, then the user can simply set dd to be the following
column vector:

dd = [diag (Dp+1); . . . ; diag (Dm)].

In the subdirectory Examples, we give an m-file randlowranksdp.m to generate
random SDP problems with low-rank constraint matrices, whose calling syntax is:

[blk,At,C,b,bblk,AAt] = randlowranksdp(n,p,m2,r)

It will generate an SDP where the first p constraint matrices have no low-rank struc-
tures, and the remaining m2 matrices have low-rank structures and each matrix has
rank r. The output [blk,At,C,b] explicitly describes the low-rank structure as
above, while [bblk,AAt,C,b] encodes the same SDP, but without including the low-
rank structure information.

7

3 The main function: sqlp.m

The algorithm implemented in SDPT3 is an infeasible primal-dual path-following
algorithm, described in detail in Appendix A. At each iteration, we first compute a
predictor search direction aimed at decreasing the duality gap as much as possible.
After that, the algorithm generates a Mehrotra-type corrector step [17] with the
intention of keeping the iterates close to the central path. However, we do not impose
any neighborhood restrictions on our iterates.1 Initial iterates need not be feasible —
the algorithm tries to achieve feasibility and optimality of its iterates simultaneously.
It should be noted that in our implementation, the user has the option to use a
primal-dual path-following algorithm that does not use corrector steps.

The main routine that corresponds to Algorithm IPC described in Appendix A is
sqlp.m, whose calling syntax is as follows:

[obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0).

Input arguments.

blk: a cell array describing the block structure of the SQLP problem.

At, C, b: SQLP data.

OPTIONS: a structure array of parameters (optional).

X0, y0, Z0: an initial iterate (optional).

If the input argument OPTIONS is omitted, default values specified in the function
sqlparameters.m are used. More detail on OPTIONS is given in Section 3.1.

Output arguments.

The names chosen for the output arguments explain their contents. The argument
info is a structure array containing performance information such as info.termcode,
info.obj, info.gap, info.pinfeas, info.dinfeas, info.cputimewhose mean-
ings are explained in sqlp.m. The argument runhist is a structure array which
records the history of various performance measures during the run; for example,
runhist.gap records the complementarity gap at each interior-point iteration.

Note that, while (X,y,Z) normally gives approximately optimal solutions, if
info.termcode is 1 the problem is suspected to be primal infeasible and (y,Z) is
an approximate certificate of infeasibility, with bTy = 1, Z in the appropriate cone,
and ATy + Z small, while if info.termcode is 2 the problem is suspected to be dual
infeasible and X is an approximate certificate of infeasibility, with 〈C, X〉 = −1, X in
the appropriate cone, and AX small. Note that A is defined in (2).

Caveats.

1This strategy works well on most of the problems we tested. However, it should be noted that the
occasional failure of the software on problems with poorly chosen initial iterates is likely due to the lack of
a neighborhood enforcement in the algorithm.

8

(a) The user should be aware that SQLP is more complicated than linear program-
ming. For example, it is possible that both primal and dual problems are feasible,
but their optimal values are not equal. Also, either problem may be infeasible with-
out there being a certificate of that fact (so-called weak infeasibility). In such cases,
our software package is likely to terminate after some iterations with an indication of
short step-length or lack of progress. Also, even if there is a certificate of infeasibility,
our infeasible-interior-point methods may not find it. In our very limited testing on
strongly infeasible problems, our algorithms have been quite successful in detecting
infeasibility.
(b) Since our algorithm is a primal-dual method storing the primal iterate X, it cannot
exploit common sparsity in C and the constraint matrices as well as dual methods or
nonlinear-programming based methods. Thus our software may not be able to handle
dense or sparse semidefinite blocks (with a single block) with dimension more than
2000 on an average PC available today.
(c) Our interior-point algorithms are designed based on the existence of a central path
in the interior of the primal-dual feasible region of (P) and (D). For problems where
the primal-dual feasible region is non-empty but has an empty interior, our SQLP
solver can generally still deliver a reasonably good approximate optimal solution, but
the solver tends to encounter numerical difficulties before a high accuracy solution
can be obtained.

3.1 The structure array OPTIONS for parameters

sqlp.m uses a number of parameters which are specified in a Matlab structure array
called OPTIONS in the m-file sqlparameters.m. If desired, the user can change the
values of these parameters. The meaning of the specified fields in OPTIONS are given
in the m-file itself. As an example, if the user does not wish to use corrector steps
in Algorithm IPC, then he can do so by setting OPTIONS.predcorr = 0. If the user
wants to use a fixed value, say 0.98, for the step-length parameter γ in Algorithm IPC
instead of the adaptive strategy used in the default, he can achieve that by setting
OPTIONS.gam = 0.98. Similarly, if the user wants to solve the SQLP problem to an
accuracy tolerance of 1e-4 instead of the default value of 1e-8 while using the default
values for all other parameters, he only needs to set OPTIONS.gaptol = 1e-4.

The defaults in sqlparameters.m assume that the parameters νs
j , ν

q
i , νl

k in (P) are

all 0. For an SQLP problem where some of the parameters νs
j , ν

q
i , νl

k are positive, the
user needs to specify an L × 1 cell array OPTIONS.parbarrier to store the values of
these parameters (including zeros) as follows. If the jth block is a semidefinite block
consisting of one or more sub-blocks, say p of them, of dimensions sj1, sj2, . . . , sjp,
then

OPTIONS.parbarrier{j} = [νsj1, νsj2, · · · , νsjp].

If the ith block is a quadratic block consisting of one or more sub-blocks, say p of
them, of dimensions qi1, qi2, . . . , qip, then

OPTIONS.parbarrier{i} = [ν
q
i1, ν

q
i2, · · · , ν

q
ip].

9

If the kth block is the linear block, then

OPTIONS.parbarrier{k} = [νl1 , νl2 , · · · , νlnl],

while if the kth block is the unrestricted block, then

OPTIONS.parbarrier{k} = zeros(1, nu).

The reader is referred to Section 4.2 for an example where the objective function in
(D) is given by log det(zs).

3.2 Running problems in SDPA and SeDuMi format

We provide two m-files, read sdpa.m and read sedumi.m, to respectively convert
problem data stored in SDPA [6] and SeDuMi [22] format into Matlab cell arrays
described above. The subdirectory sdplib in SDPT3 contains a few problems in
SDPA format that are extracted from the SDPLIB library [2], while the subdirectory
dimacs contains problems in SeDuMi format that are extracted from the DIMACS
library [20].

Assuming that the current directory is SDPT3-4.0, we can read in and run the
test problem mcp250-1.dat-s in the subdirectory sdplib as follows:

>> startup % set up Matlab paths

>> [blk,At,C,b] = read_sdpa(’./sdplib/mcp250-1.dat-s’);

>> [obj,X,y,Z,info] = sqlp(blk,At,C,b);

num. of constraints = 250

dim. of sdp var = 250, num. of sdp blk = 1

SDPT3: Infeasible path-following algorithms

version predcorr gam expon scale_data

HKM 1 0.000 1 0

it pstep dstep p_infeas d_infeas gap mean(obj) cputime

0 0.000 0.000 1.4e+03 9.5e+01 7.0e+05 -1.462827e+04 0:0:0 spchol 1 1

1 0.981 1.000 2.6e+01 9.8e-15 1.7e+04 -2.429708e+03 0:0:0 spchol 1 1

2 1.000 1.000 5.0e-14 0.0e+00 2.4e+03 -1.352811e+03 0:0:1 spchol 1 1

: : : : : : : : :

13 1.000 0.996 9.4e-13 5.1e-16 2.1e-05 -3.172643e+02 0:0:4 spchol 1 1

14 1.000 1.000 2.5e-12 4.3e-16 6.5e-07 -3.172643e+02 0:0:5

Stop: max(relative gap, infeasibilities) < 1.00e-08

number of iterations = 14

primal objective value = -3.17264340e+02

dual objective value = -3.17264340e+02

gap := trace(XZ) = 6.45e-07

relative gap = 1.02e-09

actual relative gap = 1.02e-09

rel. primal infeas = 2.52e-12

10

rel. dual infeas = 4.29e-16

norm(X), norm(y), norm(Z) = 1.3e+02, 2.3e+01, 1.3e+01

norm(A), norm(b), norm(C) = 1.6e+01, 1.6e+01, 1.4e+01

Total CPU time (secs) = 4.7

CPU time per iteration = 0.3

termination code = 0

DIMACS: 2.5e-12 0.0e+00 4.3e-16 0.0e+00 1.0e-09 1.0e-09

We can solve a DIMACS test problem in a similar manner.

>> OPTIONS.vers = 2; % use NT direction

>> [blk,At,C,b] = read_sedumi(’./dimacs/nb.mat’);

>> [obj,X,y,Z,info] = sqlp(blk,At,C,b,OPTIONS);

3.3 Stopping criteria

We define

n =
∑

{j:νs
j
=0}

sj +
∑

{i:νq

i
=0}

qi + |{k : νl
k = 0}| (3)

µ(x, z) =
1

n

∑

α∈{s,q,l}

nα∑

j=1

{
〈xα

j , zα
j 〉 if να

j = 0

0 otherwise.
(4)

gap = 〈x, z〉 −
∑

{j:νs
j
>0}

νs
j

(
sj + log det(xs

jz
s
j/ν

s
j)

)

−
∑

{i:νq

i
>0}

νq
i

(
1 + log(γ(xq

i)γ(zq
i)/ν

q
i)

)
−

∑

{k:νl
k
>0}

νl
k

(
1 + log(xl

kz
l
k/ν

l
k)

)
. (5)

Note that if n = 0, we define µ(x, z) = 0.
The algorithm is stopped when any of the following cases occur.

1. solutions with the desired accuracy have been obtained, i.e.,

φ := max {relgap, pinfeas, dinfeas} ≤ OPTIONS.gaptol, (6)

where

relgap =
gap

1 + |〈c, x〉| + |bT y| , pinfeas =
‖A(x) − b‖

1 + ‖b‖ , dinfeas =
‖AT (y) + z − c‖

1 + ‖c‖ .

2. primal infeasibility is suggested because

bT y/‖AT y + z‖ > 108;

3. dual infeasibility is suggested because

−cT x/‖Ax‖ > 108;

11

4. slow progress is detected, measured by a rather complicated set of tests including

relgap < max{pinfeas, dinfeas} ;

5. numerical problems are encountered, such as the iterates not being positive
definite or the Schur complement matrix not being positive definite; or

6. the step sizes fall below 10−6.

3.4 Initial iterates

Our algorithms can start with an infeasible starting point. However, the performance
of these algorithms is quite sensitive to the choice of the initial iterate. As observed
in [7], it is desirable to choose an initial iterate that at least has the same order of
magnitude as an optimal solution of the SQLP. If a feasible starting point is not
known, we recommend that the following initial iterate be used:

y0 = 0,

(xs
j)

0 = ξs
j Isj

, (zs
j)

0 = ηs
j Isj

, j = 1, . . . , ns,

(xq
i)

0 = ξq
i eq

i , (zq
i)

0 = ηq
i eq

i , i = 1, . . . , nq,

(xl)0 = ξl el, (zl)0 = ηl el, (xu)0 = 0,

where Isj
is the identity matrix of order sj, eq

i is the first qi-dimensional unit vector,
el is the vector of all ones, and

ξs
j = max

{
10,

√
sj, sj max

1≤k≤m

1 + |bk|
1 + ‖as

j,k‖F

}
,

ηs
j = max

{
10 ,

√
sj , max{‖cs

j‖F , ‖as
j,1‖F , . . . , ‖as

j,m‖F }
}
,

ξq
i = max

{
10 ,

√
qi,

√
qi max

1≤k≤m

1 + |bk|
1 + ‖Aq

i (k, :)‖

}
,

ηq
i = max {10 ,

√
qi, max{‖cq

i ‖, ‖Aq
i (1, :)‖, . . . , ‖Aq

i (m, :)‖}},

ξl = max

{
10 ,

√
nl,

√
nl max

1≤k≤m

1 + |bk|
1 + ‖Al(k, :)‖

}
,

ηl = max
{
10 ,

√
nl, max{‖cl‖, ‖Al(1, :)‖, . . . , ‖Al(m, :)‖}

}
.

By multiplying the identity matrix Isj
by the factors ξs

j and ηs
j for the semidefinite

blocks, and similarly for the quadratic and linear blocks, the initial iterate has a better
chance of having the appropriate order of magnitude.

The initial iterate above is set by calling infeaspt.m, with syntax

12

[X0,y0,Z0] = infeaspt(blk,At,C,b,options,scalefac),

where options = 1 (default) corresponds to the initial iterate just described, and
options = 2 corresponds to the choice where the blocks of X0, Z0 are scalefac times
identity matrices or unit vectors, and y0 is a zero vector.

3.5 Preprocessing

Nearly dependent constraints.

The primal-dual path-following algorithm we implemented assumes that the matrix A
in (2) has full column rank. But in our software, the presence of (nearly) dependent
constraints is detected automatically, and warning messages are displayed if such
constraints exist. When this happens, the user has the option of removing these
(nearly) dependent constraints by calling a preprocessing routine to remove them
by setting OPTIONS.rmdepconstr = 1. The routine, checkdepconstr.m, we have
coded to detect nearly dependent constraints is based on computing the sparse LDLT

factorization of AAT . Such a method is fast but is not as reliable as the method that
is based on sparse LU factorization of A.

Detecting diagonal blocks.

We provide the m-file, detect diag.m, to look for diagonal blocks in semidefinite
blocks in the data: see Subsection 2.1 for the use of this subroutine.

Detecting unrestricted blocks.

We have provided a routine, detect ublk.m, to detect unrestricted variables that
have been modeled as the difference of two nonnegative variables. The calling syntax
is:

[bblk,AAt,CC] = detect_ublk(blk,At,C);

Complex data.

In earlier versions, 2.3 or earlier, SDPT3 can directly handle complex data in SDP, i.e.,
the constraint matrices are hermitian matrices. However, as problems with complex
data rarely occur in practice, and in an effort to simplify the code, we removed this
flexibility from subsequent versions. But we intend to keep version 2.3 of the code
available for users who wish to solve SDP problem (with no quadratic blocks) with
complex data directly.

Users can also solve an SDP with complex data using SDPT3-4.0. This is done
by calling the m-file convertcmpsdp.m to convert the SDP into one with real data.
But unlike the earlier versions, here we convert the problem into one with real data
by doubling the size of the constraint matrices. Let B be an n×n hermitian matrix.
The conversion is based on the following equivalence:

B is positive semidefinite ⇔
[

BR −BI

BI BR

]
is positive semidefinite,

13

where BR and BI denote the real and imaginary parts of B, respectively. Note that
since B is hermitian, BR is symmetric and BI is skew-symmetric.

Now suppose C,A1, . . . Am are given n×n hermitian matrices. Then C−∑m
k=1 ykAk �

0 if and only
[

CR −CI

CI CR

]
−

m∑

k=1

yR
k

[
AR

k −AI
k

AI
k AR

k

]
−

m∑

k=1

yI
k

[
−AI

k −AR
k

AR
k −AI

k

]
� 0. (7)

Notice that the matrices [−AI
k,−AR

k ;AR
k ,−AI

k] are skew-symmetric. For a complex
SDP, the vector b must necessarily be real, and the linear term in the objective
function in (D) is replaced by 〈b, yR〉. Since the skew symmetric matrices in (7) do
not affect the positiveness condition and yI does not appear in the objective function
in (D), we can take yk

I = 0, k = 1, . . . ,m.
Note that the conversion of a complex SDP into a real SDP based on (7) would

double the storage and if the data is dense, the cost of each interior-point iteration
for solving the resulting real SDP is about twice as expensive as that for solving the
complex SDP directly.

Suppose AA is an 1×m cell array such that AA{k} = Ak. Then convertcmpsdp.m

has the calling syntax:

[bblk,AAt,CC,bb] = convertcmpsdp(blk,AA,C,b);

where AAt corresponds to the first m real symmetric constraint matrices in (7), CC
corresponds to the real constant matrix in (7), and bb = bR.

Rotated cones.

Let Kn
r (n ≥ 3) be the rotated cone defined by

Kn
r = {xr = [u; v;w] ∈ IRn : ‖w‖2 ≤ 2uv, u, v ≥ 0}.

Note the constant ”2” above. Define the symmetric orthogonal matrix Tn ∈ IRn×n

as follows:

Tn =




1/
√

2 1/
√

2

1/
√

2 −1/
√

2

In−2


 .

It is easy to show that xr ∈ Kn
r if and only if xq := Tnxr ∈ Kn

q , i.e., TnKn
r = Kn

q . Thus
we can always convert a rotated cone variable into one belonging to a second-order
cone.

In SDPT3-4.0, the user can code a rotated cone block consisting of several sub-
blocks, say p of them of dimension ri1,,rip, as follows:

blk{i,1} = ’r’; blk{i,2} = [ri1,,rip];

Let D be the block diagonal matrix defined by D = diag (Tri1
, ..., Trip

). Internally,
SDPT3 would convert such a rotated cone block and its associated data into a second-
order cone block as follows:

14

blk{i,1} = ’q’; blk{i,2} = [ri1, ..., rip];

At{i,1} = D*At{i,1};
C{i,1} = D*C{i,1};

4 Examples

For an user to solve his SQLP problem using SDPT3, the first task he needs to do is to
code the problem data corresponding to the standard form in (P). The simplest way
to learn how to generate the data of an SQLP problem in SDPT3 format is through
examples. The subdirectory Examples in SDPT3 contains many such example files.
Here we will just mention a few.

Note that the user can also store the problem data in either the SDPA or SeDuMi
format, and then use the m-files read sdpa.m or read sedumi.m to read the data
into SDPT3.

4.1 MAXCUT problem

Let Sn
+ be the space of n×n symmetric positive semidefinite matrices. Let B be the

weighted adjacency matrix of a graph. The SDP relaxation of the MAXCUT problem
associated with B has the following form:

min 〈C, X〉
s.t. diag (X) = e, X ∈ Sn

+,

where e is the vector of ones, and C = −(Diag (Be) − B)/4. It is clear that we
need the cell array, blk{1,1}=’s’, blk{1,2}=n, to record the block structure of the
problem. The constraint matrices can be constructed conveniently via an 1 × n cell
array as follows:

AA = cell(1,n);

for k=1:n; AA{k}=spconvert([k,k,1;n,n,0]); end

At = svec(blk,AA);

For more details, see the m-file maxcut.m in the subdirectory Examples. (We could
also create a version of the problem explicitly showing the low-rank structure; how-
ever, as the constraint matrices are so sparse, this would not be more efficient.)

15

4.2 D-optimal experiment design - an example with an

explicit barrier term

Given a set of points {v1, . . . , vp} in IRn with n ≤ p, the D-optimal experiment design
problem [31] needs to solve the following dual SQLP:

max log det(Z)

s.t.
∑p

k=1 yk(−vkv
T
k) + Z = 0, Z ∈ Sn

++

−y + zl = 0, zl ∈ IRp
+

eT y = 1, y ∈ IRp.

The associated problem data can be coded in SDPT3 format as follows:

b = zeros(p,1);

blk{1,1} = ’s’; blk{1,2} = n;

AA = cell(1,p); for k=1:p; AA{k} = -vk*vk’; end

At(1) = svec(blk(1,:),AA); C{1,1} = sparse(n,n);

blk{2,1} = ’l’; blk{2,2} = p;

At{2,1} = -speye(p); C{2,1} = zeros(p,1);

blk{3,1} = ’u’; blk{3,2} = 1;

At{3,1} = ones(1,p); C{3,1} = 1;

Because the problem contains an explicit log-barrier term in the objective function,
we also need to set up OPTIONS.parbarrier as follows:

OPTIONS.parbarrier{1} = 1;

OPTIONS.parbarrier{2} = zeros(1,p);

OPTIONS.parbarrier{3} = 0;

For more details, see the m-file Doptdesign.m in the subdirectory Examples.
The constraint matrices corresponding to the semidefinite block in this example

are all rank-one matrices. The user can explicitly code such structures for SDPT3 as
follows:

blk{1,1} = ’s’, blk{1,2} = n; blk{1,3} = ones(1,p);

At{1,1} = []; At{1,2} = [v1,...,vp]; At{1,3} = -ones(p,1);

4.3 An LMI example

Consider the following LMI problem [3]:

max −η

s.t. GY + Y GT � 0

−Y � −I

Y − ηI � 0

Y11 = 1, Y ∈ Sn,

(8)

16

where G ∈ IRn×n. This problem can be viewed as a dual SDP with Y identified as a
vector y in IRn(n+1)/2. In this case, we have (As

1)
T y = svec(Gsmat(y)+smat(y)GT),

where smat is the inverse of svec. The SDP data can be generated for SDPT3 as
follows:

blk{1,1} = ’s’; blk{1,2} = n; blk{2,1} = ’s’; blk{2,2} = n;

blk{3,1} = ’s’; blk{3,2} = n; blk{4,1} = ’u’; blk{4,2} = 1;

n2 = n*(n+1)/2; zz = sparse(n2,1); I = speye(n);

At{1,1} = [lmifun(G,I), zz];

At{2,1} = [-lmifun(I/2,I), zz];

At{3,1} = [lmifun(I/2,I), svec(blk(1,:),-I)];

At{4,1} = [1, zz’];

C{1,1} = sparse(n,n); C{2,1} = -I; C{3,1} = sparse(n,n); C{4,1} = 1;

b = [zz; -1];

In the above, lmifun(G,H) is a function (available in Examples) that generates the
matrix representation of the linear map y ∈ IRn(n+1)/2 7→ svec(Gsmat(y)HT +
Hsmat(y)GT).

For more details, see the m-file lmiexamp1.m in the subdirectory Examples.

4.4 Nearest correlation matrix problem

Given an n × n symmetric matrix H, the nearest correlation matrix problem is the
following [12]:

min
X

{‖H − X‖F : diag (X) = e, X ∈ Sn
+}.

The above problem can be converted to the following SQLP:

min{eT
1 y : diag (X) = e, svec(X) + [0, In2

]y = svec(H), X ∈ Sn
+, y ∈ Qn2+1},

where n2 = n(n + 1)/2, In2
denotes the identity matrix of dimension n2, and Qn2+1

denotes the second-order cone of dimension n2 + 1. The corresponding SQLP data
can be coded for SDPT3 as follows:

blk{1,1} = ’s’; blk{1,2} = n; n2 = n*(n+1)/2;

for k=1:n; AA{1,k} = spconvert([k,k,1; n,n,0]); end;

matrepdiag = svec(blk(1,:),AA);

At{1,1} = [matrepdiag{1}, speye(n2)];

blk{2,1} = ’q’; blk{2,2} = n2+1;

At{2,1} = [sparse(n,n2+1); sparse(n2,1), speye(n2)];

b = [ones(n,1); svec(blk(1,:),H)];

C{1,1} = sparse(n,n); C{2,1} = [1; zeros(n2,1)];

For more details, see the m-file corrmat.m in the subdirectory Examples.

17

4.5 An example from distance geometry

Consider a graph G = (V, E ,D) where V = {1, 2, . . . , n}, E , and D = (dij) denote the
nodes, edges, and associated weight matrix on the edges, respectively. The problem
is to find points x1, . . . , xn in IRp (for some p) such that the pairwise Euclidean
distance between xi and xj is as close as possible to dij if (i, j) ∈ E . The associated
minimization problem is the following:

min
{ ∑

(i,j)∈E

∣∣∣‖xi − xj‖2 − d2
ij

∣∣∣ : X := [x1, . . . , xn] ∈ IRp×n
}
.

By noting that ‖xi − xj‖2 = eT
ijX

T Xeij , where eij = ei − ej , the above problem can

equivalently be written as min {∑
(i,j)∈E |〈eije

T
ij , Y 〉 − d2

ij| : Y = XT X, X ∈ IRp×n}.
One of the SDP relaxations of the above problem is min {∑

(i,j)∈E |〈eije
T
ij , Y 〉 − d2

ij| :
Y ∈ Sn

+}, where the corresponding problem in standard form is given by

min
{ ∑

(i,j)∈E

α+
ij + α−

ij : 〈eije
T
ij , Y 〉 − α+

ij + α−
ij = d2

ij , α+
ij , α

−
ij ≥ 0 ∀ (i, j) ∈ E , Y ∈ Sn

+

}
.

Let m = |E|. The SQLP data can be coded as follows:

blk{1,1} = ’s’; blk{1,2} = n;

AA = cell(1,m); b = zeros(m,1); cnt = 0;

for i = 1:n-1

for j = i+1:n

if (D(i,j) ~= 0)

cnt = cnt + 1;

AA{cnt} = spconvert([i,i,1; i,j,-1; j,i,-1; j,j,1; n,n,0]);

b(cnt) = D(i,j)^2;

end

end

end

At(1) = svec(blk(1,:),AA); C{1,1} = sparse(n,n);

blk{2,1} = ’l’; blk{2,2} = 2*m;

At{2,1} = [-speye(m), speye(m)]; C{2,1} = ones(2*m,1);

4.6 Norm minimization problem with complex data

Let B0, . . . Bm be p × q matrices that are possibly complex. Consider the norm
minimization problem:

min{t : ‖
m∑

k=1

xkBk + B0‖2 ≤ t, x ∈ Cm, t ∈ IR},

where ‖ · ‖2 denotes the matrix 2-norm. The problem above can equivalently be
written as follows:

max −t

s.t.
m∑

k=1

xR
k

[
0 Bk

B∗
k 0

]
+

m∑

k=1

xI
k

[
0 iBk

(iBk)
∗ 0

]
− tI � −

[
0 B0

B∗
0 0

]
.

18

This is a complex SDP written in the format as in (D). Such a problem can be solve
by SDPT3 as follows:

blk{1,1} = ’s’; blk{1,2} = p+q;

AA = cell(1,2*m+1);

for k = 1:m; AA{1,k} = [zeros(p), Bk; B′k, zeros(q)]; end

for k = 1:m; AA{1,m+k} = [zeros(p), i*Bk; -i*B′k, zeros(q)]; end

AA{1,2*m+1} = -speye(p+q);

C{1} = -[zeros(p), B0; B′0, zeros(q)]; b = [zeros(2*m,1); -1];

[bblk,AAt,CC,bb] = convertcmpsdp(blk,AA,C,b);

[obj,X,y,Z] = sqlp(bblk,AAt,CC,bb);

x = y(1:m) + i*y(m+[1:m]); t = y(2*m+1);

For more details, see the m-file norm min.m in the subdirectory Examples.

4.7 Logarithmic Chebyshev approximation problem

This is an example that contains variables in a rotated cone. The orginal problem [16]
is given by minx∈IRm max{log(fT

i x)− log(di) : i = 1, . . . , p}, which can equivalently be
formulated as: min{s : t ≤ fT

i x/di ≤ s, i = 1, . . . , p, 1 ≤ st}. Let F = [fT
1 ; . . . ; fT

p]
and d = [d1; . . . ; dp]. The latter problem can be formulated in the following standard
dual form:

max −s

s.t.
[
− F, d, 0, 0

]
[x; s; t;u] ≥ 0

[
F, 0, −d, 0

]
[x; s; t;u] ≥ 0

[
0, I3

]
[x; s; t;u] ∈ K3

r

[
0, 0, 0, 1

]
[x; s; t;u] =

√
2.

The corresponding data for SDPT3 can be coded as follows:

blk{1,1} = ’l’; blk{1,2} = p;

blk{2,1} = ’l’; blk{2,2} = p;

blk{3,1} = ’r’; blk{3,2} = 3;

blk{4,1} = ’u’; blk{4,2} = 1;

zz = sparse(p,1);

At{1,1} = [-F, d, zz, zz]; C{1,1} = zeros(p,1);

At{2,1} = [F, zz, -d, zz]; C{2,1} = zeros(p,1);

At{3,1} = [sparse(3,m), speye(3)]; C{3,1} = zeros(3,1);

At{4,1} = [sparse(1,m+2), 1]; C{4,1} = sqrt(2);

b = [zeros(m,1); -1; 0; 0];

For more details, see the m-file logchebyRcone.m in the subdirectory Examples.

19

4.8 Maximizing the geometric mean of affine functions

Another example with rotated cone variables comes from maximizing the geometric
mean of nonnegative affine functions [16]:

maxx∈IRm Π4
i=1(a

T
i x + bi)

1/4

s.t. aT
i x + bi ≥ 0, i = 1, . . . , 4.

The above can be reformulated as the following SQLP problem with rotated cone
constraints:

max
{
t3/

√
2 :

√
2yi = aT

i x + bi, yi ≥ 0, i = 1, . . . , 4, t21 ≤ 2y1y2, t22 ≤ 2y3y4, t23 ≤ 2t1t2
}

.

The corresponding standard (dual) form is as follows:

max t3/
√

2

s.t.




aT
1 /

√
2 0 0 0

aT
2 /

√
2 0 0 0

0 1 0 0

aT
3 /

√
2 0 0 0

aT
4 /

√
2 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1







x
t1
t2
t3


 +




b1/
√

2

b2/
√

2

0

b3/
√

2

b4/
√

2

0

0

0

0




∈ K3
r × K3

r × K3
r .

4.9 Conversion of problems into the standard form

SDP problems are usually not formulated in the standard form (P) or (D). It is often
quite tedious to convert such problems into the standard form. As such, there is an
increasing demand for interfaces to automate the conversion process. Currently, one
of the few interfaces that is publicly available for SQLP solvers is YALMIP [15].

Here we shall just give an example on how an SDP with linear inequality con-
straints can be converted into the standard form given in the Introduction. Suppose
we have an SDP of the following form:

(P1) min 〈cs, xs〉

s.t. As(xs) ≤ b,

xs ∈ Kn
s .

That is, it has inequality instead of equality constraints. But by introducing a slack

20

variable xl, we can easily convert (P1) into standard form, namely,

(P ∗
1) min 〈cs, xs〉 + 〈cl, xl〉

s.t. As(xs) + Alxl = b,

xs ∈ Kn
s . xl ∈ Km

l ,

where cl = 0, and Al = Im×m. With our use of cell arrays to represent SQLP data,
it is easy to take the problem data of (P1) and use them for the standard form (P ∗

1)
as follows:

blk{1,1} = ’s’; blk{1,2} = n;

At{1} = (As)T; C{1} = cs;

blk{2,1} = ’l’; blk{2,2} = m;

At{2} = speye(m); C{2} = cl;

5 Implementation details

The main step at each iteration of our algorithms is the computation of the search
direction (∆x,∆y,∆z) from the symmetrized Newton equation with respect to some
invertible block diagonal scaling matrix that is usually chosen as a function of the
current iterate x, z.

5.1 The HKM search direction

Let

Jq
i =

[
1 0

0 −Iqi−1

]
. (9)

For the choice of the HKM scaling matrix [10, 14, 18, 28, 29], the search direction
(∆x,∆y,∆z) is obtained from the following system of equations:

As(∆xs) + Aq(∆xq) + Al∆xl+ Au∆xu = Rp := b −As(xs) − Aq(xq) − Alxl − Auxu

(As)T ∆y + ∆zs = Rs
d := cs − zs − (As)T y

(Aq)T ∆y + ∆zq = Rq
d := cq − zq − (Aq)T y

(Al)T ∆y + ∆zl = Rl
d := cl − zl − (Al)T y

(Au)T ∆y = Ru
d := cu − (Au)T y

∆xs + Hs(∆zs) = Rs
c :=

(
max{σµ(x, z), νs

j }(zs
j)

−1 − xs
j

)ns

j=1
(10)

∆xq + Hq(∆zq) = Rq
c :=

(
max{σµ(x, z), νq

i }(zq
i)

−1 − xq
i

)nq

i=1

∆xl + H l(∆zl) = Rl
c :=

(
max{σµ(x, z), νl

k}(zl
k)

−1 − xl
k

)nl

k=1
,

21

where σ ∈ (0, 1) is the centering parameter; (zs
j)

−1 and (zl
k)

−1 have the usual meaning,
and (zq

i)
−1 := Jq

i zq
i /γ(zq

i)
2. In the above,

Hs(∆zs) =
(
Hs

j (∆zs
j) := 1

2((zs
j)

−1∆zs
j xs

j + xs
j∆zs

j (z
s
j)

−1)
)ns

j=1
,

Hq(∆zq) =
(
Hq

i (∆zq
i) := −〈xq

i , zq
i 〉

γ(zq
i)

2
Jq

i ∆zq
i + xq

i ((z
q
i)

−1)T ∆zq
i + (zq

i)
−1(xq

i)
T ∆zq

i

)nq

i=1
, (11)

H l(∆zl) = Diag (xl)Diag (zl)−1∆zl.

We compute the search direction via a Schur complement equation as follows
(the reader is referred to [1] and [23] for details). First compute ∆y from the Schur
complement equation

[
M Au

(Au)T 0

]

︸ ︷︷ ︸
M

[
∆y

∆xu

]
=

[
h

Ru
d

]
(12)

where

M =
ns∑

j=1

As
jH

s
j (As

j)
T

︸ ︷︷ ︸
Ms

j

+

nq∑

i=1

Aq
i H

q
i (Aq

i)
T

︸ ︷︷ ︸
Mq

i

+ AlH l(Al)T︸ ︷︷ ︸
M l

(13)

h = Rp + As
(
Hs(Rs

d) − Rs
c

)
+ Aq

(
Hq(Rq

d) − Rq
c

)
+ Al

(
H l(Rl

d) − Rl
c

)
.

(The notation in (13) should be interpreted as follows: the kth columns of M s
j and

M q
i are As

jH
s
j (as

j,k) and Aq
i H

q
i (aq

i,k), with aq
i,k the kth column of (Aq

i,k)
T . Note that

the matrices M s
j , M q

i , M l are all symmetric positive definite.) Then compute ∆x
and ∆z from the equations

∆zs = Rs
d − (As)T ∆y, ∆zq = Rq

d − (Aq)T ∆y, ∆zl = Rl
d − (Al)T ∆y

∆xs = Rs
c − Hs(∆zs), ∆xq = Rq

c − Hq(∆zq), ∆xl = Rl
c − H l(∆zl).

5.2 The NT search direction

The user also has the choice of using the NT direction [21, 28, 29]. Let ws
j be the

unique positive definite matrix such that ws
jz

s
jw

s
j = xs

j. Let

ωq
i =

√
γ(zq

i)

γ(xq
i)

, ξq
i =

1

ωq
i

zq
i + ωq

i J
q
i xq

i , tqi =

√
2

ωq
i γ(ξq

i)
Jq

i ξq
i . (14)

In this case, the search direction (∆x,∆y,∆z) satisfies the same system as in (10)
except that Hs and Hq are replaced by

Hs(∆zs) =
(
Hs

j (∆zs
j) := ws

j∆zs
j ws

j

)ns

j=1
,

Hq(∆zq) =
(
Hq

i (∆zq
i) := − 1

(ωq
i)

2
Jq

i ∆zq
i + tqi (t

q
i)

T ∆zq
i

)nq

i=1
. (15)

22

5.3 Choice of search direction

The current version of the code allows only two search directions, HKM and NT.
In older versions, version 2.3 or earlier, also allowed the AHO direction of Alizadeh,
Haeberly, and Overton [1] and the GT direction [25], but these are uncompetitive
when the problems are of large scale. We intend to keep version 2.3 of the code
available for those who wish to experiment with these other search directions, which
tend to give more accurate results on smaller problems.

For the HKM and NT search directions, our computational experience on prob-
lems tested in Section 7 is that the HKM direction is almost universally faster than
NT on problems with semidefinite blocks, especially for sparse problems with large
semidefinite blocks. The reason that the latter is slower is because computing the
NT scaling matrix ws

j requires a full eigenvalue decomposition. This computation can
dominate the work at each interior-point iteration when the problem is sparse.

The NT direction, however, was faster on sparse SOCP problems. The reason
for this behavior is not hard to understand. By comparing the formulae for Hq

i for
the HKM and NT directions in (11) and (15), it is clear that more computation is
required to assemble the Schur complement matrix and more low-rank updating is
necessary for the former direction.

5.4 Computation of the Schur complement matrix

Generally, the most expensive part in each iteration of Algorithm IPC lies in the
computation and factorization of the Schur complement matrix M defined in (12).
And this depends critically on the size and density of M . Note that the density of
this matrix depends on two factors: (i) The density of As, Aq, and Al, and (ii) any
additional fill-in introduced because of the terms Hs, Hq, and H l in (13).

5.4.1 Semidefinite blocks

For problems with semidefinite blocks, the contribution by the jth semidefinite block
to M is given by M s

j := As
jH

s
j (As

j)
T . The matrix M s

j is generally dense even if As
j

is sparse. The computation of each entry of M s
j involves matrix products, which has

the form

(M s
j)αβ =

{ 〈as
j,α, xs

j as
j,β (zs

j)
−1〉 for the HKM direction.

〈as
j,α, ws

j as
j,β ws

j〉 for the NT direction.

This computation can be very expensive if it is done naively without properly ex-
ploiting the sparsity that is generally present in the constraint matrices in As

j . In
our earlier papers [23, 27], we discussed briefly how sparsity of As

j is exploited in our
implementation by following the ideas presented by Fujisawa, Kojima, and Nakata in
[7]. Further details on the efficient implementation of these ideas are given in [30].

When the constraint matrices have low-rank structures as described in Section
2.2, we can also compute the element (M s

j)α,β as follows:

(M s
j)αβ = Tr(Ṽ T

β VαDαV T
α V̂βDβ),

23

where Ṽβ = xs
jVβ, and V̂β = (zs

j)
−1Vβ if the HKM direction is used; and Ṽβ =

V̂β = ws
jVβ if the NT direction is used. Assume for simplicity that all the constraint

matrices associated with the jth semidefinite block are dense and low-rank, i.e., p = 0
in Section 2.2. Suppose that the matrices Ṽk, V̂k, k = 1, . . . ,m, are pre-computed (at
the cost of Θ(s2

j

∑m
k=1 rj,k) flops). Then it would take an additional Θ(sj(

∑m
k=1 rj,k)

2)
flops to compute M s

j since each element (M s
j)αβ can be computed at Θ(sjrj,αrj,β)

flops. In contrast, without exploiting the low-rank structures, it would take Θ(s3
jm)+

Θ(s2
jm

2) flops to compute M s
j . If the average rank of the constraint matrices is r,

then the latter complexity is Θ(sj/r
2) times larger than the former of Θ(s2

jmr) +
Θ(sjm

2r2). Thus it is definitely advantageous to exploit low-rank structures.
As example, we generated a random SDP with low rank structure using the m-file

randlowranksdp.m described in Section 2.2 with n = 200 and m = 1000, the solver
sqlp.m runs about 6 times faster when the low-rank structure is exploited.

5.4.2 Quadratic and linear blocks

For the linear block, H l is a diagonal matrix and it does not introduce any additional
fill-in. This matrix does, however, affect the conditioning of the Schur complement
matrix.

From equation (13), it is easily shown that the contribution of the quadratic blocks
to the matrix M is given by

M q
i =






− 〈xq

i
, zq

i
〉

γ2(zq

i
)
Aq

i J
q
i (Aq

i)
T + uq

i (v
q
i)

T + vq
i (u

q
i)

T , for HKM direction

− 1
(ωq

i
)2

Aq
i J

q
i (Aq

i)
T + wq

i (w
q
i)

T for NT direction
(16)

where uq
i = Aq

i x
q
i , vq

i = Aq
i (z

q
i)

−1, wq
i = Aq

i t
q
i .

In the rest of this subsection, we focus our discussion on the HKM direction, but
the same holds true for the NT direction.

The appearance of the outer-product terms in the equation above is potentially
alarming. If the vectors uq

i , vq
i are dense, then even if Aq

i is sparse, the corresponding
matrix M q

i , and hence the Schur complement matrix M , will be dense. A direct
factorization of the resulting dense matrix will be very expensive for even moderately
large m.

The density of the matrix M q
i depends largely on the particular problem struc-

ture. When the problem has many small quadratic blocks, it is often the case that
each block appears in only a small fraction of the constraints. In this case, all Aq

i

matrices are sparse and the vectors uq
i and vq

i turn out to be sparse vectors for each
i. Consequently, the matrices M q

i remain relatively sparse for these problems. As a
result, M is also sparse and it can be factorized directly with reasonable cost. This
behavior is typical for all nql and qssp problems from the DIMACS library.

The situation is drastically different for problems where one of the quadratic
blocks, say the ith block, is large. For such problems the vectors uq

i , vq
i are typically

dense, and therefore, M q
i is likely be a dense matrix even if the data Aq

i is sparse. How-
ever, observe that M q

i is a rank-two perturbation of a sparse matrix when Aq
i (A

q
i)

T

is sparse. In such a situation, it is advantageous to use the dense-column handling

24

technique described in Section 5.7 to reduce the computational cost in solving (12).
This approach helps tremendously on the scheduling problems from the DIMACS
library.

To apply the dense-column handling technique, we need to modify the sparse
portion of the matrix M q

i slightly. Since the diagonal matrix −Ji has a negative
component, the matrix −Aq

i J
q
i (Aq

i)
T need not be a positive definite matrix, and

therefore the Cholesky factorization of the sparse portion of M q
i need not exist. To

overcome this difficulty, we use the following identity:

M q
i =

〈xq
i , zq

i 〉
γ2(zq

i)
Aq

i (A
q
i)

T + uq
i (v

q
i)

T + vq
i (u

q
i)

T − kik
T
i , (17)

where ki =
√

2〈xq
i , zq

i 〉/γ2(zq
i)Aq

i (:, 1). Note that if Aq
i is a large sparse matrix with

a few dense columns, we can also explicitly separate the outer-product terms con-
tributed by these dense columns from the sparse part of Aq

i (A
q
i)

T in (17).

5.5 Solving the Schur complement equation

The linear system (12) typically becomes more and more ill-conditioned as µ de-
creases to 0. Thus iterative refinement is generally recommended to improve the
accuracy of the computed solution. An even better approach to solve (12) is via
a preconditioned symmetric quasi-minimal residual method (PSQMR) [5] with the
preconditioner computed based on the following analytical expression of M−1:

M−1 =




M−1 − M−1AuS−1(Au)T M−1 M−1AuS−1

S−1(Au)T M−1 −S−1



 , (18)

where S = (Au)T M−1Au. Note that for a given vector [u; v], M−1[u; v] can be
evaluated efficiently as follows:

û = M−1u

t = S−1
(
(Au)T û − v

)

M−1[u; v] = [û − M−1Au t; t].

Thus if the Cholesky factorization of M and that of S are computed, then each
evaluation involves solving four triangular linear systems for M and two triangular
linear systems for S.

We should mention that the state-of-the-art Cholesky factorization softwares are
highly developed and optimized. Thus our preference is to solve a linear system via
Cholesky factorizations whenever possible. For most SDP problems, the matrix M
is typically dense even when the constraint matrices are sparse. In this case, we use
the routine chol (based on the LAPACK routine dpotrf) in Matlab to compute
the Cholesky factorization of a dense matrix.

For most sparse SOCP problems, the matrix M is usually sparse after dense-
column handling. Let Msp be the sparse part of M after dense-column handling.

25

In this case, the Cholesky factorization routine chol for a dense matrix is not effi-
cient enough since it does not exploit sparsity. To factorize the sparse matrix Msp

more efficiently, we imported (with slight modifications) the sparse Cholesky solver
in SeDuMi [22], which is a C translation of the Fortran programs developed by Es-
mond Ng, Barry Peyton, and Joseph Liu for sparse Cholesky factorization [19]. When
SDPT3 uses the sparse Cholesky solver, it first performs a symmetric re-ordering on
Msp and generates a symbolic factorization of the re-ordered Msp to determine the
pivot order by examining the sparsity structure of this matrix carefully. Then, this
pivot order is re-used in later iterations to compute the Cholesky factors. Contrary
to the case of linear programming, however, the sparsity structure of Msp can change
during the course of interior-point iterations for SOCP problems. If this happens,
the symbolic factorization has to be recomputed. We detect changes in the sparsity
structure of Msp by monitoring the nonzero elements of Msp. Since the default initial
iterates we use for an SOCP problem are unit vectors but subsequent iterates are not,
there is always a change in the sparsity pattern of Msp after the first iteration. After
the second iteration, the sparsity pattern remains unchanged for most problems, and
only one more change occurs in a small fraction of the test problems in the DIMACS
library.

The effect of using a sparse Cholesky solver for sparse SOCP problems was dra-
matic. We observed speed-ups of up to two orders of magnitude. In our implementa-
tion, SDPT3 automatically makes a choice between Matlab’s built-in chol routine
and the sparse Cholesky solver based on the density of M . The cutoff density is
specified in the parameter OPTIONS.spdensity.

The approach of solving (12) by the SQMR method with preconditioner (18) works
reasonably well if the following conditions are satisfied: (i) the number of columns
of Au is small and Au is well-conditioned; (ii) the matrix M is not extremely ill-
conditioned. (iii) the matrix S is not extremely ill-conditioned. However, when these
conditions are not satisfied, preconditioning (12) based on (18) may not be advis-
able because either (a) computing S becomes very expensive due to large number
of columns in Au, or (b) the computed preconditioner based on (18) is no longer an
accurate approximation of M−1. Note that S is typically much more ill-conditioned
than Au, especially when Au is ill-conditioned. When conditions (i)–(iii) are not
satisfied, it is advisable to use an LDLT factorization of the symmetric indefinite ma-
trix M to compute an approximation of M−1. But unfortunately the state-of-the-art
LDLT factorization software available in the public domain is not as highly developed
as its counterpart for Cholesky factorization, especially for sparse matrices. When
the use of LDLT factorization of M is unavoidable, we use the publicly available
Fortran subroutine MA47 from the Harwell Subroutine Library [9] to compute such a
factorization if M is sparse. When M is dense, the implementation we have at the
moment is a little bit complicated. By rights, we should use the LDLT factorization
routine dsysvx in LAPACK to compute the required factorization for M, but we
have yet to modify and incorporate that routine into SDPT3. At the moment, we
simply use the Matlab routine lu to compute an LU factorization of M, and use the
computed LU factors to precondition the BiCGSTAB iterative method used to solve
(12). Note that because the preconditioner in the latter case is no longer symmetric,

26

we have to replace the SQMR method by a nonsymmetric iterative method such as
the BiGSTAB method.

5.6 Internal handling of unrestricted blocks

As mentioned in the last sub-section, solving the symmetric indefinite system (12)
can potentially be very expensive when Au is ill-conditioned or has a large number of
columns because computing an LDLT factorization of a sparse matrix can be much
more costly than that for a symmetric positive definite matrix of the same dimension.
It is possible to avoid the need to solve a symmetric indefinite system if we reformulate
the equality constraint in (D) as

(Au)T y + zu
+ = cu, zu

+ ≥ 0

−(Au)T y + zu
− = −cu, zu

− ≥ 0,

with the corresponding primal variable xu expressed as

xu = xu
+ − xu

−, xu
+, xu

− ≥ 0.

In this case, the system (12) is replaced by
(
M + AuDiag (xu

+)Diag (zu
+)−1(Au)T + AuDiag (xu

−)Diag (zu
−)−1(Au)T

)
∆y = rhs

where rhs denotes the right-hand-side vector. Notice that in contrast to (12), the
coefficient matrix is now symmetric positive definite.

But such a reformulation is not without difficulties. In fact, the variables xu
+, xu

−

tend to become very large and zu
+, zu

− tend to become extremely small as the interior-
point iteration progresses, and this generally makes the component matrices,
AuDiag (xu

+)Diag (zu
+)−1(Au)T and AuDiag (xu

−)Diag (zu
−)−1(Au)T , extremely ill-conditioned.

Fortunately, the following heuristic to modify the vectors xu
+, xu

− can typically ame-
liorate such an ill-conditioning problem:

xu
+ := xu

+ − 0.8min(xu
+, xu

−), xu
− := xu

− − 0.8min(xu
+, xu

−).

This modification does not change the original variable xu but does slow down the
growth of xu

+, xu
−. After these modified vectors have been obtained, we also add

positive perturbations the vectors zu
+, zu

−. Such a modification in zu
+, zu

− ensures that
they approach 0 at the same rate as µ, and thus prevents the dual problem (D) from
approaching the equality constraint too closely prematurely.

In the current implementation of SDPT3, we always reformulate an unrestricted
vector by the difference of 2 non-negative vectors.

5.7 Dense-column handling

Here we describe our technique to handle dense columns when M is a low-rank per-
turbation of a sparse matrix. In such a case, the Schur complement matrix M can
be written in the form

M = Msp + UDUT (19)

27

where Msp is a sparse symmetric positive semidefinite matrix, U has only few columns,
and D is a non-singular matrix. If Msp is positive definite, then we can solve (12) by
solving a slightly larger but sparse linear system as follows. Let λ = DUT ∆y. It is
easy to show that (12) is equivalent to the following linear system:




Msp Au U

(Au)T 0 0

UT 0 −D−1







∆y

∆xu

λ


 =




h

Ru
d

0


 . (20)

We can use the same method described in Section 5.5 to solve (20).

5.8 User supplied routine to compute Schur complement

matrix

The current version of SDPT3 allows the user to supply specialized routines to com-
pute the Schur complement matrices M s

j corresponding to the semidefinite blocks.
The specialized routine to compute M s

j should have first line that look like:

function schurmat = schurfun_jth(U,V,schurfun_jth_par);

where the input arguments U and V should correspond to xs
j and (zs

j)
−1 if the HKM

direction is used; and they should correspond to the NT scaling matrix ws
j if the NT

direction is used. The third optional argument schurfun jth par can be a structure
array that stores the parameters needed inside the function schurfun jth.m.

The user can tell SDPT3 to use the specialized routine by setting the L×1 cell ar-
ray OPTIONS.schurfun as follows: set OPTIONS.schurfun{j} = schurfun jth if M s

j

is to be computed by the specialized routine coded in the function schurfun jth.m;
otherwise set OPTIONS.schurfun{j} = []. If the function schurfun jth.m requires
some parameters, then the L × 1 cell array OPTIONS.schurfun par must also be
set correspondingly as follows: set OPTIONS.schurfun par{j} = schurfun jth par;
otherwise set OPTIONS.schurfun par{j} = [].

Below is an example on we how use the specialized routine mcpschur.m in the
subdirectory Examples to compute the Schur complement matrix when solving the
SDP problem mcp250-1.dat-s.

>> [blk,At,C,b] = read_sdpa(’./sdplib/mcp250-1.dat-s’);

>> OPTIONS.schurfun{1} = ’mcpschur’;

>> [obj,X,y,Z]=sqlp(blk,At,C,b,OPTIONS);

In the above example, there is no need to set the cell array OPTIONS.schurfun par

since the function mcpschur.m does not need any additional parameters.

5.9 Step-length computation

Once a direction ∆x is computed, a full step will not be allowed if x + ∆x violates
the conic constraints. Thus, the next iterate must take the form x + α∆x for an

28

appropriate choice of the step-length α. In this subsection, we discuss an efficient
strategy to compute the step-length α.

For semidefinite blocks, it is straightforward to verify that, for the jth block,
the maximum allowed step-length that can be taken without violating the positive
semidefiniteness of the matrix xs

j + αs
j∆xs

j is given as follows:

αs
j =





−1

λmin((x
s
j)

−1∆xs
j)

, if the minimum eigenvalue λmin is negative

∞ otherwise.
(21)

If the computation of eigenvalues necessary in αs
j above becomes expensive, then we

resort to finding an approximation of αs
j by estimating extreme eigenvalues using

Lanczos iterations [24]. This approach is quite accurate in general and represents
a good trade-off between the computational effort versus quality of the resulting
stepsizes.

For quadratic blocks, the largest step-length αq
i that keeps the next iterate feasible

with respect to the ith quadratic cone can be computed as follows. Let

ai = γ(∆xq
i)

2, bi = 〈∆xq
i , Jq

i xq
i 〉, ci = γ(xq

i)
2, di = b2

i − aici,

where Jq
i is the matrix defined in (9). We want the largest positive ᾱ for which

aiα
2 + 2biα + ci > 0 for all smaller positive α’s, which is given by

αq
i =






−bi −
√

di

ai
if ai < 0 or bi < 0, ai ≤ b2

i /ci

−ci

2bi
if ai = 0, bi < 0

∞ otherwise.

For the linear block, the maximum allowed step-length αl
k for the kth component

is given by

αl
k =





−xl
k

∆xl
k

, if ∆xl
k < 0

∞ otherwise.

Finally, an appropriate step-length α that can be taken in order for x+α∆x to satisfy
all the conic constraints takes the form

α = min

(
1, γ min

1≤j≤ns

αs
j , γ min

1≤i≤nq

αq
i , γ min

1≤k≤nl

αl
k

)
, (22)

where γ (known as the step-length parameter) is typically chosen to be a number
slightly less than 1, say 0.98, to ensure that the next iterate x + α∆x stays strictly
in the interior of all the cones.

For the dual direction ∆z, we let the analog of αs
j , αq

i and αl
k be βs

j , βq
i and βl

k,
respectively. Similar to the primal direction, the step-length that can be taken by
the dual direction ∆z is given by

β = min

(
1, γ min

1≤j≤ns

βs
j , γ min

1≤i≤nq

βq
i , γ min

1≤k≤nl

βl
k

)
. (23)

29

6 Distances to infeasibilities

Let d = (A, c, b) be the SQLP data assocated with (P) and (D). Let FP (d) and FD(d)
be the feasible regions of (P) and (D) respectively. It is often of interest to know
whether the interiors, F ◦

P (d) and F ◦
D(d), are empty, and how “thick” these regions

are. A natural quantitative measure of “thickness” of FP (d) and FD(d) is the concept
of primal distance to infeasibility defined by Renegar [?]:

ρP (d) = inf{‖∆d‖ : FP (d + ∆d) = ∅}, ρD(d) = inf{‖∆d‖ : FD(d + ∆d) = ∅}.

With appropriately chosen norm in the above definitions, the computation of ρD(d)
amounts to solving an SQLP problem with roughly the same dimension and struc-
ture as the original primal instance. Unfortunately, the computation of ρP (d) is
extremely costly, which requires solving 2m SQLP problems each with roughly the
same dimension and structure as the original dual instance; see [4].

However, one is typically interested in the magnitudes of ρP (d) and ρD(d) rather
than the exact values. It turns out that the following cheaper upper estimates pro-
posed by Freund [?] usually give enough information about the size of FP (d) and
FD(d):

gP (d) = inf

{
max{‖x‖, ‖x‖

dist(x, ∂K)
,

1

dist(x, ∂K)
} : A(x) = b, x ∈ K

}

gD(d) = inf

{
max{‖z‖, ‖z‖

dist(x, ∂K)
,

1

dist(x, ∂K)
} : AT (y) + z = c, z ∈ K∗

}
.

It is readily shown that 1/gP (d) ≥ ρP (d) and 1/gD(d) ≥ ρD(d), and gP (d) = ∞ ⇔
ρP (d) = 0, gD(d) = ∞ ⇔ ρD(d) = 0.

Freund showed that gP (d) (gD(d)) can be computed at the cost of solving an
SQLP problem with roughly the same dimension and and structure as the original
primal (dual) instance.

In the current release of SDPT3, we include the following m-files to compute gP (d)
and gD(d):

function gp = gpcomp(blk,At,C,b);

function gd = gdcomp(blk,At,C,b);

7 Computational results

Here we describe the results of our computational testing of SDPT3-4.0 using the
default parameters, on problems from the following sources:

1. SDPLIB collection of Borchers, available at
http://www.nmt.edu/∼borchers/sdplib.html

2. DIMACS Challenge test problems, available at
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

30

3. Sparse SDPs from structural optimization, available at
http://www2.am.uni-erlangen.de/∼kocvara/pennon/problems.html

4. Sparse SDP collection of Hans Mittelmann, available at
ftp://plato.asu.edu/pub/sdp/

5. SDPs from electronic structure calculations, available at
http://www.cims.nyu.edu/∼mituhiro/software.html

6. SDPs from polynomial optimizations [11].

7. SOCP problems generated by the Matlab FIR filter toolbox, available at
http://www.csee.umbc.edu/∼dschol2/opt.html

Our results were obtained on a Pentium IV PC (3.0GHz) with 4G of memory running
Linux, using Matlab 7.0. Figure 1 shows the performance of SDPT3-4.0 on a total
of about 300 SQLP problems. It shows that SDPT3 was able to solve 80% of the
problems to an accuracy of at least 10−6 in the measure φ defined in (6).

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

Percentage of problems solved

ac
cu

ra
cy

 e
xp

on
en

t a
tta

in
ed

Performance of SDPT3 on 306 SQLP problems (HKM direction)

Figure 1: The accuracy exponent is defined to be log10(φ), where φ is defined as
in (6).

DIMACS error measures

Appendix: A primal-dual infeasible-interior-point

algorithm

Here we give a pseudo-code for the algorithm we implemented. Note that this
description makes references to earlier sections where details related to the algorithm
are explained.

31

Algorithm IPC. Suppose we are given an initial iterate (x0, y0, z0) with x0, z0

strictly satisfying all the conic constraints. Decide on the type of search direction to
use. Set γ0 = 0.9.
For k = 0, 1, . . .

(Let the current and the next iterate be (x, y, z) and (x+, y+, z+) respectively. Also,
let the current and the next step-length parameter be denoted by γ and γ+ respec-
tively.)

• Compute µ(x, z) defined in (5), and the accuracy measure φ defined in (6). Stop
the iteration if φ is sufficiently small.

• (Predictor step) Solve the linear system (12) with σ = 0 in the right-side vector
(14). Denote the solution of (10) by (δx, δy, δz). Let αp and βp be the step-
lengths defined as in (22) and (23) with ∆x,∆z replaced by δx, δz, respectively.

• Take σ to be

σ = min

(
1,

[
µ(x + αp δx, z + βp δz)

µ(x, z)

]e)
,

where the exponent e is chosen as follows:

e =

{
max[1, 3min(αp, βp)

2] if µ(x, z) > 10−6,

1 if µ(x, z) ≤ 10−6.

• (Corrector step) Solve the linear system (12) with Rc in the the right-hand side
vector (14) replaced by

R̂τ
c = Rτ

c − Mehrotra-corrector term generated from δxτ and δzτ , τ ∈ {s, q, l}.

Denote the solution of (10) by (∆x,∆y,∆z).

• Update (x, y, z) to (x+, y+, z+) by

x+ = x + α∆x, y+ = y + β ∆y, z+ = z + β ∆z,

where α and β are computed as in (22) and (23) with γ chosen to be γ =
0.9 + 0.09min(αp, βp).

• Update the step-length parameter by γ+ = 0.9 + 0.09min(α, β).

References

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point
methods for semidefinite programming: convergence results, stability and numer-
ical results, SIAM J. Optimization, 8 (1998), pp. 746–768.

[2] B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems,
Optimization Methods and Software, 11 & 12 (1999), pp. 683–690. Available at
http://www.nmt.edu/~borchers/sdplib.html.

32

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory. SIAM Studies in Applied Mathematics. SIAM,
Philadelphia, USA, 1994

[4] R.M. Freund, F. Ordóñez, and K.-C. Toh, Behavioral Measures and their Cor-
relation with IPM Iteration Counts on Semi-Definite Programming Problems,
preprint, 2005.

[5] R. W. Freund and N. M. Nachtigal, A new Krylov-subspace method for symmetric
indefinite linear systems, Proceedings of the 14th IMACS World Congress on
Computational and Applied Mathematics, Atlanta, USA, W.F. Ames ed., July
1994, pp. 1253–1256.

[6] K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita, SDPA (SemiDefinite
Programming Algorithm) User’s manual — version 6.2.0, Research Report B-
308, Department Mathematical and Computing Sciences, Tokyo Institute of
Technology, December 1995, revised September 2004.

[7] K. Fujisawa, M. Kojima, and K. Nakata, Exploiting sparsity in primal-dual
interior-point method for semidefinite programming, Mathematical Program-
ming, 79 (1997), pp. 235–253.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins
University Press, Baltimore, MD, 1989.

[9] Harwell Subroutine Library: http://www.cse.clrc.ac.uk/Activity/HSL

[10] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, An interior-point
method for semidefinite programming, SIAM Journal on Optimization, 6 (1996),
pp. 342–361.

[11] D. Henrion, private communication.

[12] N. J. Higham, Computing the nearest correlation matrix — a problem from fi-
nance, IMA J. Numerical Analysis, 22 (2002), pp. 329–343.

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, 1996.

[14] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone
linear complementarity problem in symmetric matrices, SIAM J. Optimization,
7 (1997), pp. 86–125.

[15] J. Löfberg, A Toolbox for Modeling and Optimization in MATLAB, Proceedings
of the CACSD Conference, 2004, Taipei, Taiwan.
Available at http://control.ee.ethz.ch/~joloef/yalmip.php

[16] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of Second-
order Cone Programming, Linear Algebra Appl., 284 (1998), pp.193–228.

[17] S. Mehrotra, On the implementation of a primal-dual interior point method,
SIAM J. Optimization, 2 (1992), pp. 575–601.

[18] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite pro-
gramming, SIAM J. Optimization, 7 (1997), pp. 663–678.

33

[19] J.W. Liu, E.G. Ng, and B.W. Peyton, On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl., 1 (1993), pp. 242–252.

[20] G. Pataki and S. Schmieta, The DIMACS library of mixed semidefinite-quadratic-
linear programs.
Available at http://dimacs.rutgers.edu/Challenges/Seventh/Instances

[21] Yu. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods
in convex programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[22] J. F. Sturm, Using SeDuMi 1.02, a Matlab toolbox for optimization over sym-
metric cones, Optimization Methods and Software, 11 & 12 (1999), pp. 625–653.

[23] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov-Todd direction in
semidefinite programming, SIAM J. Optimization, 8 (1998), pp. 769–796.

[24] K. C. Toh, A note on the calculation of step-lengths in interior-point methods
for semidefinite programming, Computational Optimization and Applications,
21 (2002), pp. 301–310.

[25] K. C. Toh, Some new search directions for primal-dual interior point methods in
semidefinite programming, SIAM J. Optimization, 11 (2000), pp. 223–242.

[26] K. C. Toh, Primal-dual path-following algorithms for determinant maximization
problems with linear matrix inequalities, Computational Optimization and Ap-
plications, 14 (1999), pp. 309–330.

[27] K. C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3 — a Matlab software pack-
age for semidefinite programming, Optimization Methods and Software, 11/12
(1999), pp. 545-581.

[28] T. Tsuchiya, A polynomial primal-dual path-following algorithm for second-order
cone programming, Technical Report, The Institute of Statistical Mathematics,
Minato-Ku, Tokyo, October 1997.

[29] T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-
following algorithms for second-order cone programming, Optimization Methods
and Software, 11/12 (1999), pp. 141–182.

[30] R. H. Tütüncü, K. C. Toh, and M. J. Todd, Solving semidefinite-quadratic-linear
programs using SDPT3, Mathematical Programming Ser. B, 95 (2003), pp. 189–
217.

[31] L. Vandenberghe, S. Boyd, and S.-P. Wu, Determinant maximization with linear
matrix inequalities, SIAM J. Matrix Analysis and Applications, 19 (1998), pp.
499–533.

34

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

arch0 174 | 161; ; 174; 26 -5.66517269-1 -5.66517274-1 5.5-8 3.9-14 2.2-9 2.3-9 05

arch2 174 | 161; ; 174; 24 -6.71515401-1 -6.71515409-1 2.8-9 3.7-14 3.5-9 3.5-9 05

arch4 174 | 161; ; 174; 22 -9.72627407-1 -9.72627420-1 5.4-9 5.0-14 4.4-9 4.4-9 05

arch8 174 | 161; ; 174; 24 -7.05697992 0 -7.05698005 0 1.4-7 4.7-13 8.9-9 6.0-9 05

control1 21 | 15; ; ; 17 -1.77846269 1 -1.77846267 1 5.9-9 7.4-11 -4.0-9 2.0-10 00

control2 66 | 30; ; ; 21 -8.30000364 0 -8.29999999 0 2.0-7 4.1-11 -2.1-7 3.4-10 01

control3 136 | 45; ; ; 21 -1.36332672 1 -1.36332665 1 4.7-7 1.8-10 -2.2-8 1.8-8 03

control4 231 | 60; ; ; 21 -1.97942358 1 -1.97942305 1 3.1-7 4.5-10 -1.3-7 2.2-9 06

control5 351 | 75; ; ; 23 -1.68836048 1 -1.68836008 1 4.3-7 6.1-10 -1.2-7 1.4-7 16

control6 496 | 90; ; ; 22 -3.73043552 1 -3.73044256 1 1.1-6 1.5-9 9.3-7 4.9-7 31

control7 666 | 105; ; ; 24 -2.06250645 1 -2.06250748 1 6.6-7 1.7-9 2.4-7 1.6-7 1:05

control8 861 | 120; ; ; 21 -2.02863293 1 -2.02863711 1 7.7-8 1.9-9 1.0-6 1.0-6 1:39

control9 1081 | 135; ; ; 21 -1.46754201 1 -1.46754272 1 2.9-7 2.0-9 2.3-7 3.6-7 2:48

control10 1326 | 150; ; ; 25 -3.85329154 1 -3.85330586 1 7.4-7 5.1-9 1.8-6 1.9-6 1:41

control11 1596 | 165; ; ; 26 -3.19586089 1 -3.19586886 1 6.4-7 5.0-9 1.2-6 1.2-6 2:45

gpp100 101 | 100; ; ; 15 4.49435469 1 4.49435488 1 2.9-8 1.7-13 -2.2-8 3.7-10 01

gpp124-1 125 | 124; ; ; 17 7.34307507 0 7.34307566 0 6.2-9 4.6-13 -3.8-8 6.7-10 01

gpp124-2 125 | 124; ; ; 15 4.68622922 1 4.68622934 1 3.3-8 2.3-13 -1.3-8 4.1-9 01

gpp124-3 125 | 124; ; ; 14 1.53014124 2 1.53014125 2 3.8-8 1.3-13 -3.5-9 3.8-9 01

gpp124-4 125 | 124; ; ; 17 4.18987602 2 4.18987613 2 4.1-8 3.1-13 -1.2-8 3.5-9 01

gpp250-1 251 | 250; ; ; 17 1.54449168 1 1.54449168 1 1.0-9 2.7-12 -1.4-9 1.5-9 04

gpp250-2 251 | 250; ; ; 16 8.18689572 1 8.18689580 1 2.2-8 4.7-13 -4.8-9 3.3-10 04

gpp250-3 251 | 250; ; ; 15 3.03539317 2 3.03539321 2 8.2-8 4.7-12 -5.2-9 7.0-10 04

gpp250-4 251 | 250; ; ; 14 7.47328311 2 7.47328304 2 8.2-8 2.1-13 4.4-9 8.5-9 04

gpp500-1 501 | 500; ; ; 21 2.53205446 1 2.53205438 1 9.0-11 2.8-10 1.5-8 1.6-8 29

gpp500-2 501 | 500; ; ; 16 1.56060388 2 1.56060387 2 4.4-9 8.4-13 2.1-9 3.2-9 23

gpp500-3 501 | 500; ; ; 15 5.13017612 2 5.13017602 2 2.8-9 9.9-13 9.4-9 9.6-9 22

gpp500-4 501 | 500; ; ; 17 1.56701880 3 1.56701879 3 1.7-8 3.0-13 1.6-9 1.8-9 24

hinf1 13 | 14; ; ; 21 -2.03282194 0 -2.03271083 0 5.8-8 1.8-13 -2.2-5 1.0-8 00

hinf2 13 | 16; ; ; 21 -1.09676614 1 -1.09673573 1 6.2-7 4.4-14 -1.3-5 7.1-9 00

35

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

hinf3 13 | 16; ; ; 21 -5.69615098 1 -5.69511425 1 8.8-6 1.1-13 -9.0-5 5.8-9 00

hinf4 13 | 16; ; ; 21 -2.74766003 2 -2.74764932 2 1.1-7 8.5-13 -1.9-6 1.8-10 00

hinf5 13 | 16; ; ; 21 -3.62704607 2 -3.62458662 2 2.9-4 7.1-13 -3.4-4 4.1-8 00

hinf6 13 | 16; ; ; 21 -4.49067325 2 -4.48998222 2 1.2-5 2.9-13 -7.7-5 1.4-6 00

hinf7 13 | 16; ; ; 19 -3.90831441 2 -3.90821867 2 5.0-5 1.4-13 -1.2-5 4.2-8 00

hinf8 13 | 16; ; ; 21 -1.16170056 2 -1.16157996 2 4.5-5 1.7-13 -5.2-5 3.2-7 00

hinf9 13 | 16; ; ; 21 -2.36249283 2 -2.36249258 2 5.9-6 2.4-14 -5.2-8 3.7-10 00

hinf10 21 | 18; ; ; 32 -1.08872461 2 -1.08792100 2 1.1-6 3.5-11 -3.7-4 1.4-7 01

hinf11 31 | 22; ; ; 34 -6.59694072 1 -6.59157089 1 5.0-7 2.7-11 -4.0-4 5.5-8 01

hinf12 43 | 24; ; ; 46 -1.47406847-1 -7.37049304-2 3.5-10 2.7-9 -6.0-2 2.0-9 01

hinf13 57 | 30; ; ; 34 -4.45474269 1 -4.44451072 1 7.9-5 1.2-11 -1.1-3 4.5-6 01

hinf14 73 | 34; ; ; 26 -1.29918409 1 -1.29908452 1 5.2-7 7.2-12 -3.7-5 6.1-8 01

hinf15 91 | 37; ; ; 29 -2.43319484 1 -2.41545357 1 3.5-5 1.9-11 -3.6-3 5.1-4 02

infd1 10 | 30; ; ; 5 -5.13280346 0 1.5952217617 primal infeasible 00

infd2 10 | 30; ; ; 5 5.35505784 0 5.2954130616 primal infeasible 00

infp1 10 | 30; ; ; 7 -5.64104972 9 -7.62162314 0 dual infeasible 00

infp2 10 | 30; ; ; 7 -3.85845797 9 -6.90007199 0 dual infeasible 00

mcp100 100 | 100; ; ; 12 -2.26157350 2 -2.26157352 2 2.3-10 3.0-16 4.3-9 4.3-9 01

mcp124-1 124 | 124; ; ; 13 -1.41990477 2 -1.41990477 2 2.7-11 2.7-16 4.4-10 4.5-10 01

mcp124-2 124 | 124; ; ; 13 -2.69880170 2 -2.69880171 2 5.5-12 4.0-16 5.4-10 5.4-10 01

mcp124-3 124 | 124; ; ; 12 -4.67750108 2 -4.67750115 2 3.7-13 4.6-16 6.7-9 6.7-9 01

mcp124-4 124 | 124; ; ; 13 -8.64411863 2 -8.64411864 2 2.5-11 4.8-16 6.1-10 6.2-10 01

mcp250-1 250 | 250; ; ; 14 -3.17264340 2 -3.17264340 2 5.4-12 4.7-16 1.1-9 1.1-9 02

mcp250-2 250 | 250; ; ; 13 -5.31930080 2 -5.31930084 2 6.3-11 5.1-16 3.4-9 3.4-9 02

mcp250-3 250 | 250; ; ; 13 -9.81172565 2 -9.81172572 2 5.9-11 6.0-16 3.6-9 3.6-9 02

mcp250-4 250 | 250; ; ; 14 -1.68196009 3 -1.68196011 3 6.3-12 0.8-15 6.2-9 6.2-9 03

mcp500-1 500 | 500; ; ; 15 -5.98148516 2 -5.98148517 2 4.5-12 5.2-16 5.9-10 5.9-10 07

mcp500-2 500 | 500; ; ; 16 -1.07005676 3 -1.07005677 3 9.0-12 6.7-16 1.3-9 1.3-9 11

mcp500-3 500 | 500; ; ; 15 -1.84797002 3 -1.84797002 3 7.4-12 0.9-15 2.5-10 2.5-10 12

mcp500-4 500 | 500; ; ; 13 -3.56673799 3 -3.56673805 3 1.9-11 1.0-15 8.5-9 8.5-9 11

qap5 136 | 26; ; ; 10 4.36000000 2 4.36000000 2 1.2-10 7.3-14 4.6-10 6.1-10 00

36

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

qap6 229 | 37; ; ; 19 3.81432573 2 3.81435498 2 3.3-8 9.6-13 -3.8-6 2.3-9 01

qap7 358 | 50; ; ; 13 4.24830442 2 4.24810252 2 1.8-8 5.3-13 2.4-5 3.3-5 01

qap8 529 | 65; ; ; 20 7.56939331 2 7.56947355 2 2.0-7 3.1-12 -5.3-6 7.4-9 05

qap9 748 | 82; ; ; 20 1.40993093 3 1.40993599 3 3.8-8 1.3-12 -1.8-6 4.4-9 09

qap10 1021 | 101; ; ; 21 1.09258508 3 1.09259635 3 1.0-7 1.1-12 -5.2-6 2.3-9 17

ss30 132 | 294; ; 132; 21 -2.02395100 1 -2.02395106 1 4.2-7 2.3-13 1.4-8 1.0-8 22

theta1 104 | 50; ; ; 11 -2.29999996 1 -2.30000001 1 9.9-12 5.6-15 9.5-9 9.5-9 00

theta2 498 | 100; ; ; 14 -3.28791689 1 -3.28791690 1 6.2-13 1.2-14 1.4-9 1.4-9 01

theta3 1106 | 150; ; ; 14 -4.21669813 1 -4.21669815 1 2.6-12 1.4-14 2.1-9 2.1-9 05

theta4 1949 | 200; ; ; 14 -5.03212213 1 -5.03212220 1 3.4-14 2.1-14 7.8-9 7.8-9 16

theta5 3028 | 250; ; ; 14 -5.72323069 1 -5.72323073 1 1.9-13 2.9-14 3.9-9 3.9-9 49

theta6 4375 | 300; ; ; 14 -6.34770870 1 -6.34770872 1 1.7-12 3.2-14 1.9-9 1.9-9 2:10

truss1 6 | 12; ; 1; 11 8.99999632 0 8.99999631 0 5.8-12 1.0-15 2.7-10 2.7-10 00

truss2 58 | 132; ; 1; 17 1.23380356 2 1.23380356 2 3.8-10 7.2-15 3.8-10 3.8-10 01

truss3 27 | 30; ; 1; 12 9.10999622 0 9.10999619 0 9.0-12 5.7-16 1.6-9 1.6-9 00

truss4 12 | 18; ; 1; 10 9.00999632 0 9.00999626 0 6.0-12 1.2-15 3.1-9 3.1-9 00

truss5 208 | 330; ; 1; 17 1.32635678 2 1.32635678 2 9.1-11 1.0-14 9.3-10 8.9-10 02

truss6 172 | 450; ; 1; 28 9.01001420 2 9.01001363 2 5.0-8 2.3-13 3.1-8 4.4-8 02

truss7 86 | 300; ; 1; 27 9.00001403 2 9.00001391 2 5.3-8 2.4-13 6.9-9 2.2-8 02

truss8 496 | 627; ; 1; 16 1.33114589 2 1.33114588 2 1.4-10 9.3-15 3.5-9 3.5-9 04

maxG11 800 | 800; ; ; 15 -6.29164777 2 -6.29164783 2 2.8-11 7.4-16 5.2-9 5.2-9 26

maxG32 2000 | 2000; ; ; 15 -1.56763962 3 -1.56763964 3 1.3-10 1.1-15 9.1-9 9.1-9 4:21

maxG51 1000 | 1000; ; ; 17 -4.00625552 3 -4.00625552 3 2.6-12 3.6-16 2.8-10 2.8-10 1:06

qpG11 800 | 1600; ; ; 15 -2.44865909 3 -2.44865913 3 3.3-11 0.0-16 8.6-9 8.6-9 26

qpG51 1000 | 2000; ; ; 17 -1.18179999 4 -1.18180000 4 2.3-10 0.0-16 2.2-9 2.2-9 1:03

thetaG11 2401 | 801; ; ; 19 -3.99999995 2 -4.00000000 2 5.0-9 1.7-13 6.8-9 6.8-9 1:33

thetaG51 6910 | 1001; ; ; 34 -3.48999315 2 -3.49000166 2 1.4-10 6.8-13 1.2-6 1.2-6 37:14

equalG11 801 | 801; ; ; 16 -6.29155280 2 -6.29155293 2 8.7-10 1.0-15 9.9-9 9.9-9 1:17

equalG51 1001 | 1001; ; ; 18 -4.00560126 3 -4.00560132 3 6.5-8 1.3-15 7.4-9 7.5-9 2:38

bm1 883 | 882; ; ; 20 2.34398777 1 2.34398186 1 2.2-6 1.8-11 1.2-6 1.2-6 2:04

copo14 1275 | 196; ; 364; 17 2.62856497-10 -6.99780924-10 2.5-11 6.2-15 9.6-10 9.6-10 08

37

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

copo23 5820 | 529; ; 1771; 21 2.56114272-9 -6.38325819-9 2.2-12 8.1-15 8.9-9 8.9-9 18:20

hamming-7- 1793 | 128; ; ; 9 -4.26666666 1 -4.26666667 1 6.8-11 0.0-16 2.7-10 2.0-10 10

hamming-9- 2305 | 512; ; ; 9 -2.23999997 2 -2.24000001 2 3.4-13 8.4-14 8.3-9 8.3-9 24

minphase 48 | 48; ; ; 29 5.97872628 0 5.98119359 0 1.3-8 5.7-13 -1.9-4 4.8-7 01

torusg3-8 512 | 512; ; ; 15 -4.83409459 7 -4.83409459 7 3.4-12 7.8-16 9.5-10 9.5-10 11

toruspm3-8 512 | 512; ; ; 14 -5.27808660 2 -5.27808663 2 6.9-11 6.0-16 2.8-9 2.8-9 10

torusg3-15 3375 | 3375; ; ; 16 -6.37621845 3 -6.37621855 3 1.2-9 1.5-15 7.6-9 7.6-9 23:41

toruspm3-1 3375 | 3375; ; ; 16 -3.47513185 3 -3.47513186 3 2.1-11 1.5-15 2.0-9 2.0-9 23:46

filter48 969 | 48; 49; 931; 43 1.41612972 0 1.41612914 0 2.9-7 8.9-14 1.5-7 1.2-8 1:01

filtinf1 983 | 49; 49; 945; 33 0.00000000-16 2.98905416 1 primal infeasible 48

nb 123 | ; 2379; 4; 22 -5.07030865-2 -5.07030948-2 3.1-13 6.1-16 7.5-9 7.5-9 07

nb-L1 915 | ; 2379; 797; 23 -1.30122706 1 -1.30122709 1 1.6-10 9.7-14 9.0-9 9.0-9 13

nb-L2 123 | ; 4191; 4; 17 -1.62897195 0 -1.62897198 0 1.7-10 1.9-15 7.2-9 7.2-9 10

nb-L2-bess 123 | ; 2637; 4; 19 -1.02569502-1 -1.02569511-1 1.0-13 1.1-15 7.4-9 7.4-9 07

nql30 3680 | ; 2700; 3602; 35 -9.46028502-1 -9.46028517-1 5.2-11 2.6-10 4.9-9 5.7-9 04

nql60 14560 | ; 10800; 14402; 33 -9.35052951-1 -9.35052975-1 5.0-11 7.4-11 8.2-9 9.4-9 17

nql180 130080 | ; 97200; 129602; 39 -9.27728621-1 -9.27728643-1 7.8-10 2.0-11 7.8-9 8.8-9 4:38

qssp30 3691 | ; 7564; 2; 17 -6.49667573 0 -6.49667575 0 1.9-10 1.1-13 1.5-9 1.5-9 03

qssp60 14581 | ; 29524; 2; 23 -6.56270608 0 -6.56270649 0 2.9-8 4.0-15 2.8-8 3.4-9 17

qssp180 130141 | ; 261364; 2; 28 -6.63960843 0 -6.63961086 0 3.1-7 1.0-14 1.7-7 4.2-9 6:31

sched-50-5 2527 | ; 2477; 2502; 31 2.66753929 4 2.66728864 4 1.5-5 1.5-7 4.7-5 4.7-5 03

sched-100- 4844 | ; 4744; 5002; 34 1.81900808 5 1.81887534 5 3.4-4 1.1-9 3.6-5 3.6-5 07

sched-100- 8338 | ; 8238; 10002; 29 7.17597254 5 7.17350508 5 1.4-2 1.0-10 1.7-4 1.7-4 13

sched-200- 18087 | ; 17887; 20002; 35 1.41946190 5 1.41176207 5 1.3-4 5.6-7 2.7-3 2.7-3 46

sched-50-5 2526 | ; 2475; 2502; 27 7.85203874 0 7.85203843 0 2.3-7 4.3-15 1.9-8 1.9-8 03

sched-100- 4843 | ; 4742; 5002; 29 6.71650648 1 6.71650261 1 1.3-7 8.6-14 2.9-7 2.9-7 06

sched-100- 8337 | ; 8236; 10002; 29 2.73307879 1 2.73307855 1 1.1-7 2.8-14 4.3-8 4.3-8 12

sched-200- 18086 | ; 17885; 20002; 37 5.18119615 1 5.18119610 1 1.0-7 1.2-13 4.5-9 4.5-9 44

biggs 1819 | 702; ; ; 53 -1.41425775 3 -1.41425841 3 3.4-9 1.9-11 2.3-7 4.7-9 1:30

buck1 36 | 49; ; 36; 17 -1.46419152 2 -1.46419152 2 8.2-10 3.2-14 7.7-10 8.1-10 01

buck2 144 | 193; ; 144; 21 -2.92368313 2 -2.92368295 2 8.3-7 7.0-14 -3.1-8 2.0-8 04

38

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

buck3 544 | 641; ; 544; 28 -6.07589498 2 -6.07608699 2 1.2-4 2.1-13 1.6-5 1.7-5 20

buck4 1200 | 1345; ; 1200; 33 -4.86141048 2 -4.86143830 2 9.9-6 4.0-13 2.9-6 2.8-6 2:12

buck5 3280 | 3521; ; 3280; 37 -4.36170859 2 -4.36283022 2 2.2-5 6.5-13 1.3-4 1.3-4 25:33

cnhil10 5005 | 220; ; ; 27 0.00000000-16 -1.65482516-4 6.4-8 3.2-12 1.7-4 2.9-7 55

cnhil8 1716 | 120; ; ; 25 0.00000000-16 -1.78946733-5 1.8-8 1.1-12 1.8-5 5.0-8 07

cphil10 5005 | 220; ; ; 9 0.00000000-16 -8.11544501-9 1.1-14 0.0-16 8.1-9 8.1-9 31

cphil12 12376 | 364; ; ; 10 0.00000000-16 -2.93810832-10 1.5-14 0.0-16 2.9-10 2.9-10 4:01

G40-mb 2001 | 2000; ; ; 22 -2.86432310 3 -2.86432323 3 9.1-10 2.1-11 2.1-8 2.1-8 21:04

G40mc 2000 | 2000; ; ; 18 -5.72957909 3 -5.72957911 3 1.1-10 5.8-16 1.1-9 1.1-9 7:07

G48mc 3000 | 3000; ; ; 12 -1.20000000 4 -1.20000000 4 5.6-12 5.7-15 4.2-10 4.2-10 10:06

G55mc 5000 | 5000; ; ; 16 -2.20789206 4 -2.20789208 4 9.6-10 2.2-15 4.7-9 4.7-9 1:14:47

G59mc 5000 | 5000; ; ; 19 -1.46246530 4 -1.46246531 4 6.6-10 1.0-15 4.7-9 4.7-9 1:36:36

mater-1 103 | 220; ; 2; 21 1.43465439 2 1.43465438 2 1.4-10 1.6-14 3.5-9 3.5-9 01

mater-2 423 | 1012; ; 2; 20 1.41591867 2 1.41591866 2 6.3-12 7.2-14 1.1-9 1.1-9 04

mater-3 1439 | 3586; ; 2; 24 1.33916258 2 1.33916256 2 7.3-11 2.5-13 9.6-9 9.7-9 16

mater-4 4807 | 12496; ; 2; 29 1.34262716 2 1.34262716 2 1.6-9 8.8-13 2.6-9 3.8-9 1:11

mater-5 10143 | 26818; ; 2; 30 1.33801638 2 1.33801640 2 9.9-9 1.8-12 -6.4-9 4.4-9 3:03

mater-6 20463 | 54626; ; 2; 32 1.33538673 2 1.33538714 2 6.2-8 3.1-12 -1.5-7 8.0-9 8:21

neosfbr12 1441 | 122; ; ; 17 5.29319164 2 5.29319158 2 3.5-11 0.8-15 5.7-9 5.7-9 18

neosfbr20

neosfbr21

neosfbr22

neosfbr24

neosfbr25

neosfbr30e

neu1 3003 | 252; ; 2; 31 4.36376962-7 -1.34195143-5 7.3-10 2.3-11 1.4-5 3.6-5 8:21

neu2 3003 | 252; ; 2; 40 -1.61121339-4 -2.36860767-4 1.6-8 6.8-11 7.6-5 6.5-4 10:21

neu2c 3002 | 1253; ; 2; 59 3.41771574 4 3.40921240 4 3.8-3 2.5-11 1.2-3 2.0-4 32:28

neu2g 3002 | 252; ; ; 38 3.40999994 4 3.40999997 4 3.0-9 1.1-10 -5.3-9 1.4-8 9:12

neu3 7364 | 418; ; 2; 46 1.33597463-7 -1.96267080-4 2.4-9 8.7-10 2.0-4 2.7-6 8:01

neu3g 8007 | 462; ; ; 47 9.25315729-9 -1.56570129-4 1.6-9 7.7-10 1.6-4 2.0-7 11:02

39

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

r1-6-0 601 | 600; ; ; 21 -5.57968708 4 -5.57968706 4 6.5-7 5.9-11 -1.6-9 1.3-10 41

r1-6-1 601 | 600; ; ; 14 -5.58043922 4 -5.58043924 4 2.8-10 2.1-14 2.2-9 2.2-9 29

r1-6-1e-6 601 | 600; ; ; 14 -5.57968722 4 -5.57968731 4 1.1-7 6.7-12 8.3-9 7.9-9 29

rose13 2379 | 105; ; ; 31 1.20000012 1 1.19999998 1 8.4-9 5.9-16 5.6-8 7.4-9 1:08

rose15 3860 | 135; ; 2; 38 1.82090663-5 -1.26745042-5 7.3-8 1.7-13 3.1-5 5.7-8 5:44

sdmint3 5255 | 379; 5255; ; 29 -4.78135763 3 -4.78131886 3 2.5-4 9.4-14 -4.1-6 9.3-6 47:47

shmup1 16 | 81; ; 32; 17 -1.88414831 2 -1.88414832 2 1.1-9 3.0-15 2.8-9 2.8-9 01

shmup2 200 | 881; ; 400; 39 -3.46242668 3 -3.46242684 3 1.0-6 7.3-15 2.3-8 2.6-8 57

shmup3 420 | 1801; ; 840; 31 -2.09883698 3 -2.09883796 3 2.3-6 6.5-15 2.3-7 2.2-7 4:06

shmup4 800 | 3361; ; 1600; 38 -7.99254514 3 -7.99255230 3 7.8-6 7.4-15 4.5-7 4.5-7 20:54

shmup5 1800 | 7441; ; 3600; 36 -2.38576762 4 -2.38591658 4 6.5-6 3.1-14 3.1-5 3.1-5 2:36:00

taha1a 3002 | 1680; ; ; 27 -9.31533327-1 -1.25589295 0 9.2-2 4.7-12 1.0-1 9.0-2 15:27

taha1b 8007 | 1606; ; 3; 37 -7.73313007-1 -7.73313020-1 2.5-11 3.2-15 4.9-9 5.9-9 47:32

trto1 36 | 25; ; 36; 21 -1.10450000 3 -1.10450000 3 4.4-8 4.5-14 6.4-10 3.5-10 01

trto2 144 | 97; ; 144; 21 -1.27999978 4 -1.28000007 4 3.7-7 1.2-12 1.1-7 1.1-7 01

trto3 544 | 321; ; 544; 24 -1.27999344 4 -1.28000857 4 3.7-4 3.1-12 5.9-6 5.9-6 09

trto4 1200 | 673; ; 1200; 27 -1.27606346 4 -1.27701954 4 1.4-3 7.4-12 3.7-4 3.7-4 52

trto5 3280 | 1761; ; 3280; 29 -1.27928272 4 -1.28021188 4 5.7-4 1.7-11 3.6-4 3.6-4 10:43

vibra1 36 | 49; ; 36; 13 -4.08190124 1 -4.08190124 1 3.3-10 3.2-15 4.7-10 4.8-10 01

vibra2 144 | 193; ; 144; 23 -1.66015338 2 -1.66015364 2 1.2-5 2.0-14 8.0-8 8.8-8 05

vibra3 544 | 641; ; 544; 29 -1.72605378 2 -1.72614934 2 1.1-4 8.0-14 2.8-5 2.8-5 20

vibra4 1200 | 1345; ; 1200; 29 -1.27636319 4 -1.27676506 4 1.5-3 9.4-12 1.6-4 1.6-4 1:50

vibra5 3280 | 3521; ; 3280; 57 -1.65803004 2 -1.65935491 2 7.2-5 2.6-13 4.0-4 4.0-4 39:13

yalsdp 5051 | 300; ; ; 13 -1.79212601 0 -1.79212676 0 1.5-11 1.6-13 1.6-7 1.6-7 10:33

cancer-100 10469 | 569; ; ; 14 -2.76091613 4 -2.76233961 4 6.0-6 9.8-12 2.6-4 3.0-4 26:16

checker-1. 3970 | 3970; ; ; 24 3.30388458 3 3.30388454 3 3.6-10 0.1-16 6.4-9 6.4-9 45:04

foot 2209 | 2208; ; ; 20 -5.85252481 5 -5.85298195 5 5.8-5 2.0-8 3.9-5 3.9-5 24:57

hand 1297 | 1296; ; ; 21 -2.47477792 4 -2.47477791 4 6.0-7 2.4-10 -1.4-9 1.1-10 5:31

inc-600 2515 | 600; ; 2514; 25 -6.60104091-1 -6.68915553-1 2.1-5 1.5-9 3.8-3 4.1-3 2:07

inc-1200 5175 | 1200; ; 5174; 15 2.12231915 1 -1.41967770 0 2.0-5 1.1-9 9.6-1 9.6-1 7:16

swissroll 3380 | 800; ; ; 31 -5.48284431 5 -5.59816094 5 2.7-3 6.4-9 1.0-2 1.1-1 5:30

40

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

tiger-text 1802 | 1801; ; ; 25 3.48084179 2 3.44294211 2 2.1-5 1.7-8 5.5-3 1.5-2 6:22

diamond-pa 5478 | 5477; ; ; 31 3.22638853 1 1.56694179 1 1.6-5 1.6-7 3.4-1 1.2 0 2:45:18

ice-2.0 8113 | 8113; ; ; 28 6.80838634 3 6.80838622 3 1.1-10 0.0-16 9.1-9 9.1-9 7:13:27

p-auss2-3.

butcher 6434 | 330; ; 22512; 43 -1.41958589 1 -1.40018649 1 3.7-2 1.1-6 -6.6-3 1.7-3 45:05

rabmo 5004 | 220; ; 6606; 47 -3.72725362 0 -3.72725497 0 6.2-6 5.1-8 1.6-7 1.7-5 15:53

reimer5 6187 | 462; ; 102144; 24 -1.51824956 1 -1.51835452 1 1.0-3 1.0-9 3.3-5 1.6-4 59:43

chs-500 9974 | 4980; ; ; 23 9.32785242-10 -8.36219073-9 8.2-14 0.0-16 9.3-9 9.3-9 30

nonc-500 4990 | 2998; ; ; 22 6.25761159-2 6.25597999-2 1.3-8 2.2-15 1.5-5 1.4-5 10

ros-500 4988 | 2992; ; ; 17 2.49499943 0 2.49499945 0 1.2-8 1.8-15 -3.5-9 3.1-9 08

fp210 1000 | 176; ; ; 66 25 3.74999982-1 3.74999999-1 1.3-7 3.9-10 -10.0-9 4.4-9 09

fp22 14 | 15; ; ; 12 -7.99999999 0 -8.00000007 0 4.2-10 1.4-15 4.7-9 6.9-9 00

fp23 209 | 119; ; ; 29 2.13000000 2 2.12999999 2 2.0-11 1.2-13 1.3-9 2.0-9 02

fp24 2379 | 595; ; ; 22 1.95000000 2 1.95000000 2 1.0-11 3.5-13 1.1-9 1.4-9 56

fp25 209 | 133; ; ; 18 1.10000000 1 1.10000000 1 1.2-12 1.2-14 8.7-10 1.1-9 01

fp26 1000 | 407; ; ; 22 2.68014631 2 2.68014631 2 9.5-10 3.0-15 4.5-10 7.7-10 10

fp27 1000 | 341; ; ; 21 3.90000000 1 3.89999997 1 4.2-10 4.7-13 4.5-9 6.4-9 09

fp32 3002 | 1155; ; ; 44 -7.04227560 0 -7.05278292 0 4.4-3 9.7-12 7.0-4 2.9-4 7:05

fp33 125 | 117; ; ; 39 -1.01265940 4 -1.01266024 4 2.6-10 4.3-11 4.1-7 2.5-9 02

fp34 209 | 140; ; ; 22 1.72000000 2 1.72000000 2 1.2-12 1.0-13 -2.9-10 6.2-10 01

fp35 164 | 195; ; ; 18 3.99999993 0 3.99999965 0 4.2-9 1.1-13 3.0-8 5.3-8 03

fp410 14 | 18; ; ; 1 16 1.67388932 1 1.67388931 1 1.6-11 4.7-16 3.3-9 3.6-9 00

fp42 6 | 10; ; ; 10 7.58731237 0 7.58731235 0 6.5-12 6.4-16 1.1-9 1.1-9 00

fp43 50 | 76; ; ; 16 6.54776263 2 6.63152380 2 2.5-4 2.1-10 -6.4-3 1.7-6 01

fp44 6 | 10; ; ; 22 4.43671691 2 4.43671704 2 2.7-8 4.5-14 -1.5-8 1.9-9 00

fp45 4 | 7; ; ; 13 1.24858128-9 -5.52323520-10 1.1-9 5.0-16 1.8-9 2.4-9 00

fp46 27 | 22; ; ; 21 9.94242098-10 -4.64240829-9 1.3-10 2.1-16 5.6-9 7.3-9 00

fp47 6 | 10; ; ; 16 2.43000000 2 2.43000000 2 5.3-11 1.9-14 2.1-10 1.6-10 00

fp48 4 | 7; ; ; 9 7.50000000 0 7.50000000 0 2.1-11 1.5-16 3.1-10 3.0-10 00

fp49 14 | 18; ; ; 1 16 1.67388932 1 1.67388931 1 1.6-11 4.7-16 3.3-9 3.6-9 00

l1 14 | 6; ; ; 8 4.92634657-1 4.92634644-1 4.3-12 0.2-16 6.5-9 6.5-9 00

41

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

l2 14 | 6; ; ; 9 1.14580631 1 1.14580630 1 5.1-11 2.2-16 1.5-9 1.5-9 00

l4 152 | 45; ; ; 19 3.70370379-2 3.70371914-2 4.0-10 1.4-14 -1.4-7 8.6-9 01

l5 14 | 15; ; ; 12 -7.99999999 0 -8.00000007 0 4.2-10 1.4-15 4.7-9 6.9-9 00

5n 31 | 26; ; ; 9 2.24000000 0 2.23999999 0 6.8-12 2.6-16 2.8-9 2.8-9 00

a12 793 | 79; ; ; 12 2.10000000 1 2.10000000 1 3.8-11 1.6-15 9.3-10 9.3-10 03

aw29 465 | 130; ; ; 11 3.00000000 0 3.00000000 0 6.8-11 4.9-16 1.1-9 1.2-9 06

c5 31 | 26; ; ; 8 1.50000001 0 1.49999999 0 1.1-11 1.1-16 3.9-9 4.0-9 00

fp1131 847 | 176; ; ; 11 4.50000001 0 4.49999996 0 1.4-12 1.6-15 4.9-9 4.9-9 22

fp1132 847 | 176; ; ; 12 1.55000000 1 1.54999999 1 5.9-14 5.2-15 3.8-9 3.8-9 24

fp1133 847 | 176; ; ; 12 1.75000000 1 1.75000000 1 5.4-14 5.4-15 1.7-9 1.7-9 24

fp1134 847 | 176; ; ; 12 1.95000000 1 1.94999999 1 4.8-14 5.1-15 3.0-9 3.0-9 24

fp1135 847 | 176; ; ; 12 2.20000000 1 2.20000000 1 1.5-11 1.7-15 8.8-10 8.8-10 24

fp1136 847 | 176; ; ; 12 1.45000000 1 1.44999999 1 5.9-14 5.1-15 4.8-9 4.8-9 24

fp1137 847 | 176; ; ; 12 1.65000000 1 1.64999999 1 8.3-14 4.1-15 2.5-9 2.5-9 24

fp1138 847 | 176; ; ; 13 1.75000000 1 1.75000000 1 5.9-14 5.1-15 6.8-10 6.8-10 26

fp1139 847 | 176; ; ; 12 2.30000000 1 2.29999999 1 2.4-12 2.6-15 3.1-9 3.1-9 24

k5 31 | 31; ; ; 8 1.00000001 0 9.99999995-1 3.7-11 2.1-16 4.5-9 4.5-9 00

p10 847 | 176; ; ; 11 4.50000001 0 4.49999996 0 2.9-12 1.3-15 4.9-9 4.9-9 22

bifur 454 | 84; ; ; 1661 21 -3.37301697-1 -3.37301697-1 2.1-9 2.1-10 -3.4-11 1.7-9 04

boom 3002 | 210; ; ; 8764 29 -3.23707245 2 -3.23707248 2 1.1-8 1.2-6 4.6-9 8.5-7 4:00

brown 461 | 56; ; ; 925 34 3.04680725-11 0.00000000-16 1.7-11 3.0-11 3.0-11 3.8-9 04

butcher 6434 | 330; ; ; 11256 48 -1.39810186 1 -1.39324497 1 4.4-6 6.1-4 -1.7-3 2.2-2 47:32

camera1s 209 | 28; ; ; 168 57 -1.78688795 4 -1.78686202 4 2.0-4 6.0-8 -7.3-6 8.3-6 02

caprasse 209 | 35; ; ; 60 17 -2.36780178-1 -2.36780183-1 9.3-11 2.1-9 3.8-9 6.8-9 01

cassou 4844 | 495; ; ; 35126 27 -3.8317999911 -6.15988262 6 dual infeasible 1:17:04

cdpm5 125 | 21; ; ; 5 11 4.81891306-10 -7.57760884-9 5.4-15 0.0-16 8.1-9 8.1-9 00

chemequ 461 | 56; ; ; 525 75 -7.55021050 8 -4.87753741 7 dual infeasible 07

chemequs 125 | 21; ; ; 45 15 -1.46594733 7 -1.25336541 5 dual infeasible 00

cohn2 209 | 35; ; ; 4 41 2.44989647-10 -1.17751717-8 2.7-7 1.1-8 1.2-8 1.2-8 01

cohn3 209 | 35; ; ; 4 15 1.34558839-11 -4.75678015-10 2.9-13 4.1-15 4.9-10 4.9-10 01

comb3000 1000 | 66; ; ; 595 19 -4.74520651-10 -6.87418379-10 1.6-11 4.4-10 2.1-10 2.2-9 05

42

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

conform1 83 | 20; ; ; 30 13 -6.04355528 8 -6.64897488 3 dual infeasible 00

conform3 285 | 56; ; ; 630 22 -9.45599155-12 0.00000000-16 1.8-9 5.0-11 -9.5-12 6.7-10 01

conform4 454 | 84; ; ; 1890 21 3.66213726-11 0.00000000-16 2.6-9 2.0-11 3.7-11 3.0-9 04

des18-3 12869 | 495; ; ; 58920 82 -3.23787125 6 -2.76403795 6 dual infeasible 8:58:52

des22-24 1000 | 66; ; ; 660 23 -6.74166365 3 -6.74166365 3 1.6-10 6.9-9 4.5-11 1.0-9 06

discret3 44 | 9; ; ; 8 11 -3.70033135 1 -3.70033140 1 3.2-11 3.4-15 6.7-9 6.7-9 00

eco5 461 | 56; ; ; 525 19 -1.20463311 3 -1.20463311 3 2.5-9 2.6-9 -2.2-12 8.1-10 02

eco6 923 | 84; ; ; 924 26 -1.00281559 4 -1.00281559 4 4.7-11 3.1-9 5.8-11 3.7-10 09

eco7 1715 | 120; ; ; 1512 24 -3.91531048 3 -3.91531047 3 7.3-9 2.0-9 -4.0-10 4.8-10 32

eco8 3002 | 165; ; ; 2340 26 -5.82038418 3 -5.82038418 3 2.7-10 8.1-9 -4.2-12 1.5-10 2:15

fourbar 69 | 15; ; ; 4 11 1.16235821-10 -4.24153800-9 4.7-12 1.8-12 4.4-9 4.5-9 00

geneig 923 | 84; ; ; 546 16 -2.52663014 0 -2.52663014 0 5.6-12 1.5-9 9.6-11 7.9-9 05

heart 3002 | 165; ; ; 4320 17 -8.70927422 1 -8.70927422 1 2.5-11 8.1-9 2.2-11 4.6-9 1:29

i1 1000 | 66; ; ; 10 12 -1.66775273 0 -1.66775273 0 2.3-13 0.9-16 8.6-10 8.6-10 04

ipp 494 | 45; ; ; 360 30 -1.31158853 1 -1.31158853 1 9.9-10 1.5-9 -6.0-11 2.1-9 02

katsura5 209 | 28; ; ; 168 22 -8.16044579-2 -8.16044579-2 3.3-9 1.3-10 3.6-11 2.0-9 01

kinema 714 | 55; ; ; 495 28 -4.19683963 4 -4.19683963 4 2.8-8 4.6-9 -1.0-10 1.2-9 04

ku10 1000 | 66; ; ; 660 24 -7.13900000 3 -7.13900000 3 2.0-10 2.9-9 9.0-11 2.0-9 07

lorentz 69 | 15; ; ; 60 16 -5.00000000 0 -5.00000000 0 5.9-12 2.7-9 6.1-11 2.0-9 00

manocha 90 | 28; ; ; 42 27 -2.45943538-1 -2.45956385-1 4.0-8 1.6-5 8.6-6 8.9-4 01

noon3 83 | 20; ; ; 30 11 -2.08695033 1 -2.08695034 1 3.6-13 1.6-9 1.2-9 2.6-9 00

noon4 209 | 35; ; ; 60 15 -1.71283759 1 -1.71283761 1 1.9-11 1.8-9 5.7-9 8.1-9 01

noon5 461 | 56; ; ; 105 17 -1.58524243 1 -1.58524243 1 1.7-12 4.9-9 3.3-10 2.1-9 02

proddeco 69 | 15; ; ; 4 11 1.84597568-11 -3.37004061-10 4.3-14 0.0-16 3.6-10 3.6-10 00

puma 3002 | 165; ; ; 8280 37 -3.05299490 1 -3.05299490 1 2.4-8 2.4-9 -7.9-10 1.7-9 3:16

quadfor2 209 | 35; ; ; 270 19 -6.18518518 0 -6.18518519 0 2.8-12 4.3-9 6.7-10 4.5-9 01

quadgrid 461 | 56; ; ; 505 82 -2.96150529 7 -2.95257544 7 dual infeasible 11

rabmo 5004 | 220; ; ; 3303 59 -3.72725312 0 -3.72725312 0 8.6-8 3.9-10 -3.9-10 2.3-9 19:16

rbpl 923 | 84; ; ; 546 18 -7.94063377 0 -7.94063378 0 5.1-10 9.8-10 5.2-10 9.8-9 06

redeco5 20 | 6; ; ; 5 8 -2.53906250-1 -2.53906251-1 1.6-15 0.4-16 1.2-9 1.2-9 00

redeco6 27 | 7; ; ; 6 8 -2.01600000-1 -2.01600002-1 3.4-14 1.1-16 1.6-9 1.6-9 00

43

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

redeco7 35 | 8; ; ; 7 8 -1.67438271-1 -1.67438274-1 1.5-14 0.5-16 2.0-9 2.0-9 00

redeco8 44 | 9; ; ; 8 8 -1.43273636-1 -1.43273639-1 9.2-15 0.7-16 2.4-9 2.4-9 00

rediff3 9 | 4; ; ; 3 9 4.04469621-10 -1.21340922-9 1.0-15 0.0-16 1.6-9 1.6-9 00

rose 679 | 120; ; ; 2281 31 -1.72122696 0 -1.70726881 0 1.0-6 3.4-4 -3.2-3 3.7-2 18

s9-1 494 | 45; ; ; 360 21 -4.27369565 0 -4.27369565 0 5.3-11 5.8-10 2.0-10 5.8-9 02

sendra 65 | 21; ; ; 12 11 -2.37687542 1 -2.37687543 1 2.4-10 3.4-12 2.5-9 2.8-9 00

solotarev 69 | 15; ; ; 32 14 -5.88961333 0 -5.88961337 0 2.3-12 1.3-9 2.6-9 6.6-9 00

stewart1 714 | 55; ; ; 495 35 -8.76585278 0 -8.76585278 0 1.3-10 3.4-9 -9.1-11 6.7-9 05

stewart2 1819 | 91; ; ; 910 32 -1.27531388 1 -1.27531386 1 1.0-7 8.1-10 -1.0-8 1.0-9 39

trinks 209 | 28; ; ; 141 31 -2.43523491-1 -2.43523492-1 3.3-9 1.3-11 9.4-11 9.1-10 01

visasoro 44 | 9; ; ; 8 11 6.97297058-10 -4.26654223-9 1.9-15 0.0-16 5.0-9 5.0-9 00

wood 69 | 15; ; ; 32 20 -6.64233343-2 -6.64233383-2 1.0-9 3.3-10 3.5-9 8.4-9 00

wright 20 | 6; ; ; 5 9 -2.00000000 1 -2.00000002 1 5.9-13 2.1-16 6.5-9 6.5-9 00

nql30o 3680 | ; 2700; 3602; 35 -9.46028502-1 -9.46028517-1 7.0-12 2.6-10 4.9-9 5.7-9 04

nql60o 14560 | ; 10800; 14402; 33 -9.35052951-1 -9.35052975-1 3.9-10 7.4-11 8.1-9 9.4-9 15

nql90o 32640 | ; 24300; 32402; 36 -9.31383164-1 -9.31383188-1 7.0-11 4.2-11 8.1-9 9.2-9 43

nql120o 57920 | ; 43200; 57602; 36 -9.29550235-1 -9.29550250-1 7.1-10 2.0-11 5.1-9 5.9-9 1:29

nql180o 130080 | ; 97200; 129602; 39 -9.27728621-1 -9.27728643-1 4.4-10 2.0-11 7.8-9 8.8-9 4:31

qs30o 1861 | ; 3844; 2; 15 -6.29531550 0 -6.29531557 0 1.0-9 2.4-15 5.0-9 4.3-9 01

qs60o 7321 | ; 14884; 2; 17 -6.38210348 0 -6.38210354 0 1.8-9 6.2-14 4.5-9 5.0-9 05

qs90o 16381 | ; 33124; 2; 20 -6.42377345 0 -6.42377320 0 1.2-8 6.7-15 -1.8-8 1.3-9 16

qs120o 29041 | ; 58564; 2; 21 -6.45014299 0 -6.45014275 0 9.4-9 8.9-15 -1.7-8 1.9-10 38

qs180o 65161 | ; 131044; 2; 22 -6.48350884 0 -6.48350889 0 9.3-10 1.3-14 3.5-9 6.2-9 2:04

qt30o 3924 | ; 2883; 3846; 43 -3.43399895-1 -3.43399908-1 2.2-11 9.0-11 7.8-9 8.1-9 17

qt60o 15044 | ; 11163; 14886; 52 -3.90343193-1 -3.90343204-1 4.4-11 3.8-11 6.4-9 6.1-9 2:43

qt90o 33364 | ; 24843; 33126; 54 -4.05801683-1 -4.05801698-1 9.8-11 3.1-11 8.0-9 7.6-9 10:18

qt120o 58884 | ; 43923; 58566; 53 -4.12995497-1 -4.12995510-1 1.5-10 2.0-11 7.3-9 7.1-9 27:55

qt180o 131524 | ; 98283; ; 65523 38 -4.19731365-1 -4.19960022-1 8.3-10 3.5-6 1.2-4 1.1-3 1:13:29

q30o 7482 | ; 11163; 2; 32 -9.36405103-1 -9.36405121-1 2.8-10 2.2-15 6.4-9 6.6-9 40

q60o 29362 | ; 43923; 2; 23 -8.73587717-7 -1.74652326-3 6.7-6 8.5-11 1.7-3 4.2-4 30:17

dsNRL 406 | ; 15897; ; 36 -5.57436155-5 -5.57492818-5 4.4-12 3.6-14 5.7-9 5.7-9 11:02

44

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

firL1Linfa 3074 | ; 17532; ; 26 -3.06731077-3 -3.06731718-3 3.7-11 2.5-14 6.4-9 6.4-9 2:26

firL1Linfe 7088 | ; 13932; 1; 30 -2.71128527-3 -2.71129475-3 8.2-9 1.4-14 9.4-9 9.4-9 2:05

firL1 6223 | ; 17766; ; 22 -2.92573392-4 -2.92582151-4 1.5-11 3.1-14 8.8-9 8.8-9 7:47

firL2a 1002 | ; 1003; ; 7 -7.14574800-4 -7.14579339-4 0.8-15 0.8-16 4.5-9 4.5-9 22

firL2L1alp 5868 | ; 9611; 1; 18 -5.76340548-5 -5.76372249-5 1.6-12 1.3-14 3.2-9 3.2-9 1:09

firL2L1eps 4124 | ; 11969; ; 18 -8.44806167-4 -8.44815323-4 9.5-12 2.2-14 9.1-9 9.1-9 2:13

firL2Linfa 203 | ; 9029; ; 28 -7.05910969-3 -7.05911673-3 1.1-11 1.6-14 6.9-9 6.9-9 1:21

firL2Linfe 6086 | ; 14711; ; 16 -1.48919889-3 -1.48920536-3 1.2-10 1.6-14 6.5-9 6.5-9 3:51

firL2 102 | ; 103; ; 7 -3.11866437-3 -3.11866484-3 7.5-16 1.1-16 4.7-10 4.7-10 00

firLinf 402 | ; 11886; ; 24 -1.00681685-2 -1.00681770-2 1.4-9 2.5-14 8.3-9 8.2-9 5:23

BeH-2Sigma 948 | 1406; ; ; 31 1.66935641 1 1.66935639 1 3.7-12 5.9-16 7.0-9 7.0-9 2:11

BH-1Sigma+ 948 | 1406; ; ; 30 2.72063377 1 2.72063375 1 2.3-11 2.4-16 3.9-9 3.9-9 5:53

BH2-2A1-ST 1743 | 2166; ; ; 30 3.04301171 1 3.04301166 1 3.0-9 3.8-16 7.5-9 7.5-9 24:18

BH+-2Sigma 948 | 1406; ; ; 30 2.69796662 1 2.69796657 1 3.9-12 2.8-16 9.6-9 9.6-9 2:09

CH+-1Sigma 948 | 1406; ; ; 29 4.06927879 1 4.06927873 1 3.6-11 6.9-16 7.4-9 7.4-9 2:06

CH2-1A1-ST 1743 | 2166; ; ; 29 4.48537628 1 4.48537626 1 1.1-9 2.6-16 2.7-9 2.8-9 23:36

CH2-3B1-ST 1743 | 2166; ; ; 30 4.50291330 1 4.50291327 1 1.1-9 1.0-15 2.8-9 2.8-9 24:15

CH-2Pi-STO 948 | 1406; ; ; 29 4.10222179 1 4.10222176 1 6.5-11 4.7-16 3.7-9 3.7-9 5:39

CH–3Sigma 948 | 1406; ; ; 30 4.09070914 1 4.09070909 1 1.9-11 4.9-16 6.5-9 6.5-9 5:52

H2O-1A1-ST 1743 | 2166; ; ; 28 8.49236908 1 8.49236900 1 9.9-12 2.9-16 4.7-9 4.7-9 22:41

H2O+-2B1-S 1743 | 2166; ; ; 30 8.42163768 1 8.42163759 1 9.9-11 6.7-16 5.5-9 5.5-9 24:16

HF-1Sigma+ 948 | 1406; ; ; 27 1.04720454 2 1.04720452 2 4.2-12 4.9-16 7.6-9 7.6-9 5:15

HF+-2Pi-ST 948 | 1406; ; ; 27 1.03885668 2 1.03885666 2 2.6-11 5.2-16 8.5-9 8.5-9 5:17

LiH-1Sigma 948 | 1406; ; ; 31 8.96721196 0 8.96721180 0 3.0-11 7.5-16 8.4-9 8.4-9 2:10

NH2-2B1-ST 1743 | 2166; ; ; 30 6.29798021 1 6.29798015 1 1.5-10 0.9-15 4.6-9 4.6-9 24:17

NH+-2Pi-ST 948 | 1406; ; ; 29 5.78593622 1 5.78593619 1 3.1-11 7.3-16 3.0-9 3.0-9 5:41

NH–2Pi-ST 948 | 1406; ; ; 29 5.80546397 1 5.80546388 1 9.1-12 2.3-16 7.4-9 7.4-9 2:09

NH-3Sigma- 948 | 1406; ; ; 29 5.83910025 1 5.83910016 1 4.4-11 3.6-16 8.2-9 8.2-9 2:08

OH–1Sigma 948 | 1406; ; ; 28 7.91680600 1 7.91680587 1 2.2-12 4.3-16 8.0-9 8.0-9 5:32

OH-2Pi-STO 948 | 1406; ; ; 28 7.94670773 1 7.94670763 1 3.2-11 4.1-16 6.5-9 6.5-9 5:28

OH+-3Sigma 948 | 1406; ; ; 29 7.88863800 1 7.88863788 1 1.5-11 0.8-15 7.4-9 7.4-9 2:04

45

problem m | ns; nq; nl; nu it. primal obj dual obj err1 err3 err5 err6 time

H3O+-1-A1- 2964 | 3008; ; 154; 30 9.01065676 1 9.01065664 1 2.2-11 1.0-15 6.9-9 6.9-9 1:36:21

NH3-1-A1-S 2964 | 3008; ; 154; 30 6.79248736 1 6.79248731 1 2.9-11 7.5-16 3.4-9 3.4-9 1:36:10

Li.2S.STO6 465 | 780; ; ; 35 36 7.40023835 0 7.40023833 0 1.2-8 2.3-10 1.4-9 5.3-9 1:08

Be.1S.STO6 465 | 780; ; ; 35 34 1.45560894 1 1.45560861 1 7.8-8 1.4-9 1.1-7 1.3-7 1:04

BeH+.1Sigm 948 | 1312; ; ; 47 45 1.64575093 1 1.64575041 1 1.4-7 1.4-9 1.5-7 1.7-7 7:44

H3.2A1.DZ. 948 | 1312; ; ; 47 40 3.36464947 0 3.36464790 0 2.6-7 1.1-9 2.0-7 2.5-7 6:53

FH2+.1A1.S 1743 | 2044; ; ; 61 42 1.09990444 2 1.09990363 2 2.1-7 2.1-9 3.6-7 5.4-7 34:00

NH2-.1A1.S 1743 | 2044; ; ; 61 46 6.27062185 1 6.27062092 1 1.5-7 9.0-10 7.3-8 9.2-8 37:18

CH3+.1E.ST 2964 | 3008; ; ; 77 40 4.87507287 1 4.87505865 1 8.0-7 6.6-9 1.4-6 2.3-6 2:08:23

NH3+.2A2.S 2964 | 3008; ; ; 77 41 6.75058463 1 6.75055336 1 3.7-7 1.1-8 2.3-6 3.2-6 2:11:36

CH3.2A2.ST 2964 | 3008; ; ; 77 40 4.92214627 1 4.92211215 1 2.4-7 1.9-8 3.4-6 4.9-6 2:08:28

CH4.1A1.ST 4743 | 4236; ; ; 95 37 5.36627612 1 5.36621129 1 1.4-6 1.8-8 6.0-6 7.6-6 6:47:01

Na.2S.STO6 4743 | 4236; ; ; 95 43 1.61077125 2 1.61076921 2 3.9-7 6.4-9 6.3-7 7.8-7 7:52:40

NH4+.1A1.S 4743 | 4236; ; ; 95 38 7.27767126 1 7.27761528 1 1.6-6 1.4-8 3.8-6 4.8-6 6:58:57

46

