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Abstract

Phone durations play a significant part in the com-

prehension of speech. The duration information is still

mostly disregarded in automatic speech recognizers due

to the use of hidden Markov models (HMMs) which are

deficient in modeling phone durations properly. Previous

results have shown that using different approaches for ex-

plicit duration modeling have improved the isolated word

recognition in English. However, a unified comparison

between the methods has not been reported.

In this paper three techniques for explicit duration

modeling are compared and evaluated in a large vocab-

ulary continuous speech recognition task. The target lan-

guage was Finnish, in which phone durations are espe-

cially important for proper understanding. The results

show that the choice of the duration modeling technique

depends on the speed requirements of the recognizer. The

best technique required a slightly longer running time

than without an explicit duration model, but achieved an

8% relative improvement to the letter error rate.

1. Introduction

The modern automatic speech recognition (ASR) sys-

tems are based on modeling the phones with hidden

Markov models (HMM), using HMM states in a left-to-

right topology for each phone. The transition probabili-

ties of the HMMs represent the statistical duration infor-

mation of the phones. It has been noted that these transi-

tion probabilities have little effect to the recognition per-

formance [1], and hence it is customary to ignore the use

of more detailed durational information and rely more on

the actual acoustic data.

The durational information is still worth of further

examination. Although phone durations do not have ac-

tual discriminative role in English, they do help in distin-

guishing several words from each other, such as sit and

seat or ship and sheep. In some other languages, for ex-

ample in Finnish, phone durations can be the only clue

in discriminating between certain words. Good duration

modeling can therefore be a major issue.

It has been reported in several papers that using ex-

plicit state duration models with hidden Markov mod-

els improve the recognition accuracy [2, 3, 4]. However,

most of the evaluations in these papers have been isolated

word recognition tests with connected word models, not

continuous speech recognition tests with phoneme based

models nowadays in use. Besides, no single method have

been found which would completely satisfy the modeling

needs, and the different approaches have varying implica-

tions, for example, to the recognition efficiency. To gain

more insight into this matter, this paper presents a com-

parison between three different extensions to integrate ex-

plicit duration models into the HMMs. The modeling

techniques are evaluated using a modern phoneme based

ASR [5] in a large vocabulary continuous speech recog-

nition (LVCSR) task.

2. HMM based duration modeling

techniques

Incorporating explicit state duration models into the

HMMs introduces problems, as it breaks up some of the

assumptions which are employed in the efficient HMM

algorithms. A direct consequence of the Markov assump-

tion is that state durations have a geometric distribution,

defined by the probability of the self-transition. When

this distribution is replaced with an explicitly defined

one, the Markov assumption no longer holds. The Baum-

Welch and Viterbi algorithms [6] used to find the opti-

mal paths through an HMM heavily depend on this as-

sumption, so they are no longer applicable in their basic

forms. Modifying them to properly deal with the loss of

this simplifying assumption seriously degrades their effi-

ciency. The solution is then to find some other restrictive

assumptions or to use sub-optimal algorithms.

Before reviewing the different duration modeling

techniques, the distributions of phone durations are first

examined.

2.1. Phone durations distribution models

For a phone model with three HMM states, the prior

distribution of a phone duration is the convolution of

three geometric distributions determined by the transition

probabilities of the HMM. The properties of this prior

distribution can be analyzed by considering the state du-

rations as independent random variables. The mean and
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Figure 1: An example of a phone duration distribution

and models with convoluted state durations.

variance of the overall distribution are therefore the sums

of the means and variances of these random variables, re-

spectively. This holds because the state durations really

are independent from each other, due to the definition of

HMMs. As a geometric distribution is defined by a single

parameter, it defines both the mean and the variance of

the distribution so that as the mean increases, so does the

variance. The mean and the variance of the overall prior

distribution are therefore closely coupled and restrict the

form of the phone duration distribution.

The gamma distribution has been suggested as a good

replacement for modeling state durations [7, 4]. It is a

two-parameter distribution with an appealing shape for

modeling duration information. Using gamma distribu-

tions the overall phone duration distribution is again a

convolution of three distributions, but now with more

freedom to adjust its shape. As an example, Figure 1

shows measurements of the durations of one triphone and

two prior distributions for those durations, obtained from

training the models. The other distribution utilizes the

normal three-state HMM with geometric state durations,

while the other has gamma distributions fitted to the state

durations. Even though convoluting the three geometric

state duration distributions permits a gamma-like overall

distribution, it fits clearly worse than the convolution of

the three gamma distributions.

For phone durations to be useful as an information

source in ASR, it would be desirable that they contained

only moderate variation. Unfortunately several factors af-

fect the duration of phones, such as stress, the location of

word and syllable boundaries, the number of syllables in a

word, the phoneme context, and the overall speaking rate

[8]. In this work, only the effect of phoneme context have

been taken into account by modeling the durations of dif-

ferent triphones separately. Some examples of adapting

duration models to speaking rate can be found from [9].

2.2. Hidden semi-Markov models

If a normal HMM is extended by explicitly defining the

state duration distributions, the resulting model is called

a hidden semi-Markov model (HSMM) [4]. In such a def-

inition the self-transition probabilities are ignored and the

state occupancy is defined by a state duration distribution.

As mentioned above, this kind of definition violates the

Markov assumption, as the transition probabilities at any

time depend on the time the process has remained in the

present state. When considering, for example, the Viterbi

algorithm, this implies that it is no longer enough to store

the state probabilities for one time step, but a complete

state probability history is needed.

The easiest way to relieve the computational burden

is to define maximum state duration D. This way the

state probability history is needed only for D time steps,

and the algorithm suffers only a slow down by factor D.

However, a reasonable value for D is on the order of 25

frames [6], which already results in a serious degradation

in efficiency. Bonafonte et al. [4] presented a pruning

theorem with which the search space of the Viterbi algo-

rithm can be further limited without compromising the

optimality of the algorithm. They reported an increase

of computational effort of about 3.2 times with respect to

conventional HMM, the increase being almost indepen-

dent of the actual value of D. The only assumption their

pruning theorem requires is that the state duration distri-

butions must be log-convex, as is the case for most para-

metric distributions useful for the purpose [4]. In particu-

lar, the gamma distribution can be used if it is restricted to

have a mean greater than its standard deviation. This was

found to be fulfilled in all practical cases [4], so it should

not constrain the use of gamma distribution in duration

modeling. For the evaluation in this work, the HSMMs

were implemented in the ASR system using the above-

mentioned pruning theorem and gamma distributed state

durations.

2.3. Expanded state HMM

Markov models can be made to approximate general dis-

tribution functions. As the acoustic models already rely

on Markov models, it is possible to include more flexible

duration distributions directly to the HMM framework.

This can be achieved by expanding each HMM state to

a sub-HMM, which shares the same emission probability

density and realizes the correct state duration distribution

with its topology and transition probabilities. This kind

of model is called the expanded state HMM (ESHMM)

[3].

When constructing such a model it is important to

note that the Viterbi algorithm used in recognition does

not simulate the Markov model in a strictly mathemati-

cal way. That is, it does not sum over all the possible

paths, but finds only one path over which it computes the

probability. This restricts the usable topologies for the

sub-HMMs [3]. Figure 2 shows a topology suggested in

[10]. By introducing a self-transition to the end of the

sub-HMM, there is no need to explicitly restrict the max-



Figure 2: Sub-HMM topology. The rightmost state illus-

trates the next HMM or sub-HMM state, so that the mini-

mum duration in the sub-HMM is one.

imum duration of one normal HMM state.

Expanding each HMM state to this kind of sub-HMM

introduces a large number of free parameters to be es-

timated. It may be therefore necessary to constrain the

parameters in some way. In [10] the number of states

in sub-HMMs were determined by the number of occur-

rences in the HMM state in the training phase, and the

transition probabilities of all the sub-HMM states of all

the phone models were set to be the same. In this work,

a heuristic rule for determining the number of sub-HMM

states was used so that good fits to the measured dura-

tion distributions were achieved with low numbers of sub-

HMM states. On average, the sub-HMMs had 3.8 states.

The transition probabilities were constrained by fitting a

gamma distribution to the measured duration distribution.

2.4. Post-processor duration model

Both HSMM and ESHMM degrade the efficiency of the

recognition, the former by altering the algorithms and

the latter by introducing additional states for the HMMs.

Juang et al. [2] proposed a duration model which avoids

this kind of loss of efficiency. Their method uses the out-

put of the Viterbi algorithm and ranks the proposed paths

using better models for the state durations. The method is

therefore called the post-processor duration model. The

augmentation of the log likelihood given by the Viterbi

algorithm can be stated as

log f̂ = log f + α

N∑

j=1

log dj(τj). (1)

f denotes the likelihood score given by the Viterbi search,

α is an empirical scaling factor, N is the number of dis-

tinct HMM states through which the best path traversed,

dj are the duration probability distribution functions of

those states, and τj are the durations spent in each state.

3. Evaluation

3.1. Setup

The utility of the duration modeling techniques was eval-

uated with speaker dependent speech recognition tests.

Finnish was used as the target language, as the proper un-

derstanding of Finnish is more dependent on the correct

durational information than, for example, with English.

The speech material was a book spoken by a professional

speaker, which was a reasonable choice for minimizing

the unwanted variation of phone durations. An extract of

12 hours was used to train the models, and independent

parts of 9 and 30 minutes were used as development and

evaluation sets, respectively. The development set was

used to optimize the empirical scaling factors for the log

likelihoods of the language model, the transition proba-

bilities, and the duration distribution probabilities.

The speech recognition system used for the evaluation

has been presented in [5]. The number of triphone mod-

els was empirically adjusted to the available data. For the

language model, a morph based trigram model was used.

All the duration distributions were modeled with gamma

distributions. As the different duration modeling tech-

niques affect both the efficiency and the accuracy of the

recognition, the recognition tests were run with different

pruning settings (affecting the optimality of the Viterbi

algorithm) to achieve different running times. The run-

ning time is indicated by a real-time factor, which should

be interpreted only as a relative value for the number of

reasons affecting the actual speed of the recognition. The

recognition accuracy was measured by a letter error rate

(LER). As compared with the word error rate (WER), it is

more suitable for a language such as Finnish where rather

long words consisting of many morphemes are common.

3.2. Results

Figure 3 shows the recognition accuracy as a function of

the real-time factor for different setups. The model la-

beled as “HMM” is the baseline result without explicit

duration modeling. The figure shows clearly that the in-

tended running speed affects the choice of the best du-

ration modeling technique. For moderate speeds (real-

time factors 10 to 30) the post-processor model functions

best. But if the pruning level of the recognition is set

to low enough, the HSMM outperforms the others. The

ESHMM does not seem to produce good results, despite

its intuitive approach.

All the models suffer from random fluctuation in the

LER measurements after they have reached their optimal

running speed. This is due to inherent noise in the mea-

surements, along with the effects resulting from the gen-

eral pruning strategy used in the Viterbi algorithm. Mea-

sured from the points of the best performance, the let-

ter error rate of the post-processor duration model was

2.73%, corresponding to the word error rate of 15.3%.

The HSMM achieved a LER of 2.63% (WER 15.2%).

Compared to the baseline result with a LER of 2.88%

(WER 16.2%), the post-processor duration model im-

proved the LER about 5%, while the HSMM achieved

about 8% relative improvement.
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Figure 3: Comparison of the performance of different duration modeling techniques.

4. Conclusions

This paper presented a comparison between three differ-

ent techniques for improving the phone duration mod-

els in an LVCSR task. Depending on the efficiency re-

quirements, either simple post-processor duration model

or a more complex hidden semi-Markov model based ap-

proach was shown to give the best results. The former

is easy to be implemented and works well with moderate

running speeds. The latter requires modifying the Viterbi

algorithm, and it slows down the recognition. However,

it achieved the best recognition accuracy with a statisti-

cal significant 8% relative improvement to the letter error

rate when compared to the normal HMM based system

without explicit duration modeling.
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