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Abstract

Phone durations play a significant part in the com-
prehension of speech. The duration information is still
mostly disregarded in automatic speech recognizers due
to the use of hidden Markov models (HMMSs) which are
deficient in modeling phone durations properly. Previous
results have shown that using different approaches for ex-
plicit duration modeling have improved the isolated word
recognition in English. However, a unified comparison
between the methods has not been reported.

In this paper three techniques for explicit duration
modeling are compared and evaluated in a large vocab-
ulary continuous speech recognition task. The target lan-
guage was Finnish, in which phone durations are espe-
cially important for proper understanding. The results
show that the choice of the duration modeling technique
depends on the speed requirements of the recognizer. The
best technique required a slightly longer running time
than without an explicit duration model, but achieved an
8% relative improvement to the letter error rate.

1. Introduction

The modern automatic speech recognition (ASR) sys-
tems are based on modeling the phones with hidden
Markov models (HMM), using HMM states in a left-to-
right topology for each phone. The transition probabili-
ties of the HMMs represent the statistical duration infor-
mation of the phones. It has been noted that these transi-
tion probabilities have little effect to the recognition per-
formance [1], and hence it is customary to ignore the use
of more detailed durational information and rely more on
the actual acoustic data.

The durational information is still worth of further
examination. Although phone durations do not have ac-
tual discriminative role in English, they do help in distin-
guishing several words from each other, such as sit and
seat or ship and sheep. In some other languages, for ex-
ample in Finnish, phone durations can be the only clue
in discriminating between certain words. Good duration
modeling can therefore be a major issue.

It has been reported in several papers that using ex-
plicit state duration models with hidden Markov mod-
els improve the recognition accuracy [2, 3, 4]. However,
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most of the evaluations in these papers have been isolated
word recognition tests with connected word models, not
continuous speech recognition tests with phoneme based
models nowadays in use. Besides, no single method have
been found which would completely satisfy the modeling
needs, and the different approaches have varying implica-
tions, for example, to the recognition efficiency. To gain
more insight into this matter, this paper presents a com-
parison between three different extensions to integrate ex-
plicit duration models into the HMMs. The modeling
techniques are evaluated using a modern phoneme based
ASR [5] in a large vocabulary continuous speech recog-
nition (LVCSR) task.

2. HMM based duration modeling
techniques

Incorporating explicit state duration models into the
HMMs introduces problems, as it breaks up some of the
assumptions which are employed in the efficient HMM
algorithms. A direct consequence of the Markov assump-
tion is that state durations have a geometric distribution,
defined by the probability of the self-transition. When
this distribution is replaced with an explicitly defined
one, the Markov assumption no longer holds. The Baum-
Welch and Viterbi algorithms [6] used to find the opti-
mal paths through an HMM heavily depend on this as-
sumption, so they are no longer applicable in their basic
forms. Modifying them to properly deal with the loss of
this simplifying assumption seriously degrades their effi-
ciency. The solution is then to find some other restrictive
assumptions or to use sub-optimal algorithms.

Before reviewing the different duration modeling
techniques, the distributions of phone durations are first
examined.

2.1. Phone durations distribution models

For a phone model with three HMM states, the prior
distribution of a phone duration is the convolution of
three geometric distributions determined by the transition
probabilities of the HMM. The properties of this prior
distribution can be analyzed by considering the state du-
rations as independent random variables. The mean and
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Figure 1: An example of a phone duration distribution
and models with convoluted state durations.

variance of the overall distribution are therefore the sums
of the means and variances of these random variables, re-
spectively. This holds because the state durations really
are independent from each other, due to the definition of
HMMs. As a geometric distribution is defined by a single
parameter, it defines both the mean and the variance of
the distribution so that as the mean increases, so does the
variance. The mean and the variance of the overall prior
distribution are therefore closely coupled and restrict the
form of the phone duration distribution.

The gamma distribution has been suggested as a good
replacement for modeling state durations [7, 4]. It is a
two-parameter distribution with an appealing shape for
modeling duration information. Using gamma distribu-
tions the overall phone duration distribution is again a
convolution of three distributions, but now with more
freedom to adjust its shape. As an example, Figure 1
shows measurements of the durations of one triphone and
two prior distributions for those durations, obtained from
training the models. The other distribution utilizes the
normal three-state HMM with geometric state durations,
while the other has gamma distributions fitted to the state
durations. Even though convoluting the three geometric
state duration distributions permits a gamma-like overall
distribution, it fits clearly worse than the convolution of
the three gamma distributions.

For phone durations to be useful as an information
source in ASR, it would be desirable that they contained
only moderate variation. Unfortunately several factors af-
fect the duration of phones, such as stress, the location of
word and syllable boundaries, the number of syllables in a
word, the phoneme context, and the overall speaking rate
[8]. In this work, only the effect of phoneme context have
been taken into account by modeling the durations of dif-
ferent triphones separately. Some examples of adapting
duration models to speaking rate can be found from [9].

2.2. Hidden semi-Markov models

If a normal HMM is extended by explicitly defining the
state duration distributions, the resulting model is called

a hidden semi-Markov model (HSMM) [4]. In such a def-
inition the self-transition probabilities are ignored and the
state occupancy is defined by a state duration distribution.
As mentioned above, this kind of definition violates the
Markov assumption, as the transition probabilities at any
time depend on the time the process has remained in the
present state. When considering, for example, the Viterbi
algorithm, this implies that it is no longer enough to store
the state probabilities for one time step, but a complete
state probability history is needed.

The easiest way to relieve the computational burden
is to define maximum state duration D. This way the
state probability history is needed only for D time steps,
and the algorithm suffers only a slow down by factor D.
However, a reasonable value for D is on the order of 25
frames [6], which already results in a serious degradation
in efficiency. Bonafonte er al. [4] presented a pruning
theorem with which the search space of the Viterbi algo-
rithm can be further limited without compromising the
optimality of the algorithm. They reported an increase
of computational effort of about 3.2 times with respect to
conventional HMM, the increase being almost indepen-
dent of the actual value of D. The only assumption their
pruning theorem requires is that the state duration distri-
butions must be log-convex, as is the case for most para-
metric distributions useful for the purpose [4]. In particu-
lar, the gamma distribution can be used if it is restricted to
have a mean greater than its standard deviation. This was
found to be fulfilled in all practical cases [4], so it should
not constrain the use of gamma distribution in duration
modeling. For the evaluation in this work, the HSMMs
were implemented in the ASR system using the above-
mentioned pruning theorem and gamma distributed state
durations.

2.3. Expanded state HMM

Markov models can be made to approximate general dis-
tribution functions. As the acoustic models already rely
on Markov models, it is possible to include more flexible
duration distributions directly to the HMM framework.
This can be achieved by expanding each HMM state to
a sub-HMM, which shares the same emission probability
density and realizes the correct state duration distribution
with its topology and transition probabilities. This kind
of model is called the expanded state HMM (ESHMM)
[3].

When constructing such a model it is important to
note that the Viterbi algorithm used in recognition does
not simulate the Markov model in a strictly mathemati-
cal way. That is, it does not sum over all the possible
paths, but finds only one path over which it computes the
probability. This restricts the usable topologies for the
sub-HMMs [3]. Figure 2 shows a topology suggested in
[10]. By introducing a self-transition to the end of the
sub-HMM, there is no need to explicitly restrict the max-
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Figure 2: Sub-HMM topology. The rightmost state illus-
trates the next HMM or sub-HMM state, so that the mini-
mum duration in the sub-HMM is one.

imum duration of one normal HMM state.

Expanding each HMM state to this kind of sub-HMM
introduces a large number of free parameters to be es-
timated. It may be therefore necessary to constrain the
parameters in some way. In [10] the number of states
in sub-HMMs were determined by the number of occur-
rences in the HMM state in the training phase, and the
transition probabilities of all the sub-HMM states of all
the phone models were set to be the same. In this work,
a heuristic rule for determining the number of sub-HMM
states was used so that good fits to the measured dura-
tion distributions were achieved with low numbers of sub-
HMM states. On average, the sub-HMMs had 3.8 states.
The transition probabilities were constrained by fitting a
gamma distribution to the measured duration distribution.

2.4. Post-processor duration model

Both HSMM and ESHMM degrade the efficiency of the
recognition, the former by altering the algorithms and
the latter by introducing additional states for the HMMs.
Juang et al. [2] proposed a duration model which avoids
this kind of loss of efficiency. Their method uses the out-
put of the Viterbi algorithm and ranks the proposed paths
using better models for the state durations. The method is
therefore called the post-processor duration model. The
augmentation of the log likelihood given by the Viterbi
algorithm can be stated as

N

log f =log f + aZlogdj(Tj). (1)
j=1

f denotes the likelihood score given by the Viterbi search,
« is an empirical scaling factor, IV is the number of dis-
tinct HMM states through which the best path traversed,
d; are the duration probability distribution functions of
those states, and 7; are the durations spent in each state.

3. Evaluation
3.1. Setup

The utility of the duration modeling techniques was eval-
uated with speaker dependent speech recognition tests.
Finnish was used as the target language, as the proper un-
derstanding of Finnish is more dependent on the correct

durational information than, for example, with English.
The speech material was a book spoken by a professional
speaker, which was a reasonable choice for minimizing
the unwanted variation of phone durations. An extract of
12 hours was used to train the models, and independent
parts of 9 and 30 minutes were used as development and
evaluation sets, respectively. The development set was
used to optimize the empirical scaling factors for the log
likelihoods of the language model, the transition proba-
bilities, and the duration distribution probabilities.

The speech recognition system used for the evaluation
has been presented in [5]. The number of triphone mod-
els was empirically adjusted to the available data. For the
language model, a morph based trigram model was used.
All the duration distributions were modeled with gamma
distributions. As the different duration modeling tech-
niques affect both the efficiency and the accuracy of the
recognition, the recognition tests were run with different
pruning settings (affecting the optimality of the Viterbi
algorithm) to achieve different running times. The run-
ning time is indicated by a real-time factor, which should
be interpreted only as a relative value for the number of
reasons affecting the actual speed of the recognition. The
recognition accuracy was measured by a letter error rate
(LER). As compared with the word error rate (WER), it is
more suitable for a language such as Finnish where rather
long words consisting of many morphemes are common.

3.2. Results

Figure 3 shows the recognition accuracy as a function of
the real-time factor for different setups. The model la-
beled as “HMM” is the baseline result without explicit
duration modeling. The figure shows clearly that the in-
tended running speed affects the choice of the best du-
ration modeling technique. For moderate speeds (real-
time factors 10 to 30) the post-processor model functions
best. But if the pruning level of the recognition is set
to low enough, the HSMM outperforms the others. The
ESHMM does not seem to produce good results, despite
its intuitive approach.

All the models suffer from random fluctuation in the
LER measurements after they have reached their optimal
running speed. This is due to inherent noise in the mea-
surements, along with the effects resulting from the gen-
eral pruning strategy used in the Viterbi algorithm. Mea-
sured from the points of the best performance, the let-
ter error rate of the post-processor duration model was
2.73%, corresponding to the word error rate of 15.3%.
The HSMM achieved a LER of 2.63% (WER 15.2%).
Compared to the baseline result with a LER of 2.88%
(WER 16.2%), the post-processor duration model im-
proved the LER about 5%, while the HSMM achieved
about 8% relative improvement.
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Figure 3: Comparison of the performance of different duration modeling techniques.

4. Conclusions

This paper presented a comparison between three differ-
ent techniques for improving the phone duration mod-
els in an LVCSR task. Depending on the efficiency re-
quirements, either simple post-processor duration model
or a more complex hidden semi-Markov model based ap-
proach was shown to give the best results. The former
is easy to be implemented and works well with moderate
running speeds. The latter requires modifying the Viterbi
algorithm, and it slows down the recognition. However,
it achieved the best recognition accuracy with a statisti-
cal significant 8% relative improvement to the letter error
rate when compared to the normal HMM based system
without explicit duration modeling.
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