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Abstract

Speech recognizers typically use high-dimensional feature vec-
tors to capture the essential cues for speech recognition pur-
poses. The acoustics are then commonly modeled with a Hid-
den Markov Model with Gaussian Mixture Models as obser-
vation probability density functions. Using unrestrictedGaus-
sian parameters might lead to intolerable model costs both
evaluation- and storagewise, which limits their practicaluse
only to some high-end systems. The classical approach to tackle
with these problems is to assume independent features and con-
strain the covariance matrices to being diagonal. This can be
thought as constraining the second order parameters to lie in a
fixed subspace consisting of rank-1 terms. In this paper we dis-
cuss the differences between recently proposed subspace meth-
ods for GMMs with emphasis placed on the applicability of the
models to a practical LVCSR system.
Index Terms: speech recognition, acoustic modeling, Gaussian
mixture, multivariate normal distribution, subspace method

1. Introduction
Acoustic modeling of an automatic speech recognizer (ASR)
is typically done via continuous-density HMMs with Gaus-
sian mixture models (GMM) as observation probability density
functions for tied HMM states. Using unrestricted covariance
matrices in this framework is possible, but for state-of-the-art
large-vocabulary continuous speech recognizer (LVCSR) with
many GMMs, the vast amount of parameters may lead to es-
timation problems. It is also at the moment hard to achieve
real-time performance using full covariances. Instead a typical
approach is to use diagonal covariance matrices coupled with
a maximum likelihood linear transform (MLLT) [5]. This is
a reasonable approximation, because the acoustic feature vec-
tors are typically computed in such a way that the elements are
only weakly correlated. This is, however, a global propertyand
typically on a state-level there may be significant correlations
between the elements. From the mathematical standpoint, us-
ing diagonal covariances equals to constraining the secondor-
der parameters to lie in a fixedd-dimensional subspace consist-
ing of rank-1 terms, when considered as matrices. Thus, there
might be use for more general subspace methods for the mix-
tures, that still preserve the possibility to explicitly model cor-
relations between the feature components. Just using any tech-
nique for dimensionality reduction isn’t reasonable, because the
possible real-time requirements have to be taken into account.
Care should thus be taken that not only the number of param-
eters decreases, but also a decrease in the computational cost
is guaranteed, while keeping the recognition accuracy reason-
able. In recent years there has been much interest towards more
general and effective subspace methods for GMMs: EMLLT

[8], MIC [14], PCGMM [3], SPAM [3], SCGMM [3]. The dif-
ferences between these models are discussed and emphasis is
placed on the applicability of the models to a practical LVCSR
system. We present the first comparison between PCGMM and
SCGMM along with a baseline diagonal model on LVCSR tasks
for Finnish and English.

1.1. Gaussians as an exponential family

The Gaussian distribution belongs to the family of exponen-
tial distributions and the multivariate Gaussian can be written
equivalently as an exponential family as:

N (x, θ) =
1

Z(θT )
eθT f (x), (1)

whereZ(θ) =
R

Rd eθT f (x) is the normalizer, which guarantees
that the result is a valid probability distribution function. The
featuresf (x) and parametersθ are written as:
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where the precision matrixP = Σ
−1 and linear parameters

ψ = Pµ are called either canonical or exponential parame-
ters of the distribution and vec-operator maps either triangular
of a symmetric matrix to a vector with the off-diagonal ele-
ments multiplied by

√
2. x is the original feature vector. As

discussed in [7], this reparametrization is in many ways more
natural than the typical presentation through the parametersµ
andΣ. What is specifically interesting when discussing pos-
sible subspace methods for GMMs is that from this formula-
tion we can directly see which parameters appear linearly inthe
data-dependent terms. For this reason constraining the expo-
nential model parameters to a subspace leads to a decrease not
only in the amount of parameters but also to a decrease in the
computational complexity of the model. This property makes
models that constrain exponential parameters to a subspaceap-
pealing for speech recognition purposes.

2. Subspace methods for GMMs
The idea is to tie some or all of the exponential model parame-
ters to a subspace shared by all the Gaussians in the system:

θg =
D

X

k=1

λk
gbk, (3)

whereθg is some part of the exponential parameter vector for
Gaussiang, D the subspace dimensionality,bk the basis di-
mensionk andλk

g the component parameter for Gaussiang and
basis dimensionk.



The maximum likelihood training of Gaussian mixtures
is typically done by the Expectation-Maximization algorithm.
The E-step consists of collecting the sufficient statisticsfor the
given mixture and data; this is straightforward for any model.
In the M-step, the model parameters are set to maximize the ex-
pected likelihood of the data. This has a closed form solution for
diagonal and full covariance models. For subspace constrained
models, the parameter optimization becomes harder becausethe
parameter space is in two parts and the basis components don’t
necessarily correspond to positive definite precisions. The opti-
mization can be performed in a round-robin style by alternating
the optimization of the component-wise and global parameters:

MaximizeQ (Λ|B) | MaximizeQ (B|Λ) , (4)

whereQ is the expected likelihood of the data given the model
from the last step. Both steps are concave fixing the parameters
that aren’t to be optimized. The concavity property of the steps
isn’t quite straightforward and is discussed in [7].

Five methods have been suggested that tie the exponential
model parameters to a subspace. They are in the order of grow-
ing generality:

• Extended Maximum Likelihood Linear Transform (EM-
LLT) [8]: The precision matrix is modeled as a sum of
rank-1 matrices. This is an extension of MLLT where
more directions are added in which to compute the vari-
ance.

• Mixtures of Inverse Covariances (MIC) [14]: The pre-
cision matrix is modeled as a sum of symmetric matri-
ces. The explained implementation however initializes
the basis matrices to be positive definite.

• Precision Constrained Gaussian Mixture Models
(PCGMM) [3]: The precision matrix is modeled as a
sum of symmetric matrices and the positive definiteness
is ensured through valid component parameters.

• Subspace Precision and Mean (SPAM) [3]: The preci-
sions and linear parameters are modeled in subspaces in-
dependent of each other. The term SPAM is commonly
used when referred to the PCGMM model, but for clarity
we distinct these cases here.

• Subspace Constrained Gaussian Mixture Models
(SCGMM) [3]: All exponential parameters are modeled
in the same subspace.

There are some issues to consider when selecting which
type of subspace constraint to use for modeling. As we have
to resort to an optimization algorithm in the parameter training,
it would be nice if the training could be performed in as few it-
erations as possible. If the initialization is done wisely,also the
basis optimization can be left out.

EMLLT is likely not the best use of per-Gaussian param-
eters and PCGMM has been found to outperform the EMLLT
model in [4]. PCGMM seems also to be slightly better justified
than the MIC model; the positive definiteness for the precisions
can be ensured through valid coefficients, so the basis doesn’t
need to be positive definite. It is hard to come up with a good
initialization scheme that results in positive definite basis matri-
ces and as stated in [14], the basis has to be trained when using
the suggested Kullback-Leibler -based clustering scheme.The
PCGMM model can also be initialized using PCA and this al-
lows to leave out the basis optimization [4].

Constraining also the linear parameters to a subspace of
their own (SPAM) has been shown to lead to better parame-
ter usage [3] in a restricted grammar task. Constraining the

first order parameters to a subspace of their own in a LVCSR
context might not be a good idea because the linear parameters
aren’t very redundant and the amount of states is large, leading
easily to decreased state discrimination. As the training needs
also a PCGMM model for initialization, we decided to leave the
SPAM model out of our considerations.

In [3] the most general SCGMM was found to outperform
SPAM and PCGMM models but in a restricted grammar task
and the initialization was done by first training PCGMM, then
SPAM and using this as an initialization for the SCGMM model.
In [9] an easier initialization using PCA with modified norm for
the exponential parameters of a full covariance model was used.
Results were again given on a restricted grammar task and the
models didn’t see any training data. In that setup the full covari-
ance model gave the best performance, but that is not always
the case with limited training data so it would be interesting to
know how well these results generalize to a practical LVCSR
system. SCGMM is in some way very interesting because all
the parameters are tied.

Following these deductions, the PCGMM and SCGMM
models seemed like the most interesting models to try in our
speech recognizer. In the following subsections, the models are
introduced and the most valid pointers to the literature aregiven.

2.1. Precision Constrained GMM

The PCGMM model constrains the precision matrices to lie in
a shared subspace:

Pg =
D

X

k=1

λk
gSk, (5)

where the subspace dimensionalityD is free to vary between
1 andd(d + 1)/2 and{Sk} are the symmetric basis matrices.
Typically the first element is taken to be positive definite and
the subspace to be affine, fixingλ1

g = 1 for all g. The number
of parameters becomesD × (d(d + 1)/2) + G× (D + d + 1),
where the per-Gaussian cost is linear.

For the initialization, second order statistics are neededand
they can be collected using any seed model. Doing a quadratic
approximation to the auxiliary functionQ one arrives at doing
Principal component analysis for the precisions under a ’modi-
fied Frobenius’ norm. This initialization procedure is explained
in [4] and [3] and slightly differently in [10]. It is also possible
to do PCA directly on the precisions.

The parameter training has been explained in detail in [3].
An optimization library is typically needed, although in [10]
a claimedly faster stand-alone implementation was explained.
The basis training typically doesn’t have a significant effect on
the performance, because all precisions have to stay positive
definite when optimizing the basis. We performed only opti-
mization of the component parameters.

2.2. Subspace Constrained GMM

In SCGMM all the exponential model parameters are con-
strained to lie in a shared subspace:

θg =

D
X

k=1

λk
gbk, (6)

where the subspace dimensionalityD is free to vary between
1 andd(d + 3)/2 and{bk} are the basis vectors. Typically
the first element is selected so that the precision part is positive



definite when mapped to a matrix and the subspace to be affine,
fixing λ1

g = 1 for all g. The number of parameters becomesD×
(d(d+3)/2)+G× (D +1) and we note that the per-Gaussian
cost is independent of the feature dimensionality because all the
parameters are tied.

This model can be initialized through PCGMM and SPAM
models as in [3]. The other choice is to do a similar approxi-
mation as in the case of PCGMM model. For SCGMM initial-
ization, statistics are naturally needed for both first and second
order terms which equals a trained full covariance model. This
scheme is explained in [9]. If the data is normalized to have
zero mean and unitary variance this corresponds to doing PCA
directly on the exponential model parameters.

The parameter training has been explained in detail in [3]
and is similar to the PCGMM parameter training. The basis
training shouldn’t have a significant effect on the performance
[9] and so we left it out.

3. Results
3.1. Setup

We provide results for a Finnish and an English LVCSR
task. The language-independent issues are explained here and
language-dependent issues in the corresponding subsections.
The acoustic modeling is based on context-dependent cross-
word triphones tied using a decision tree [6]. The features were
standard 39-dimensional MFCC with MLLT for all models. A
state-based segmentation was obtained using a previous best-
performing diagonal model. This segmentation was kept fixed
throughout the tests because it has only little effect on there-
sults. The training for all models was done in Viterbi-style.
First a diagonal model was trained until convergence. The full
covariance model was trained by doing two more EM-iterations
using the diagonal models as a seed. The basis for the sub-
space constrained models were both initialized from this full
covariance model using PCA for the parameters as explained.
The initial component-wise parameters were trained also from
this full covariance model. Then two more EM-iterations were
done and the component parameters were updated correspond-
ingly. The basis was kept in its initial form. The variance
terms were floored to0.1 in each iteration and after that the
eigenvalues of the sample covariance matrices to0.05 to avoid
singularity issues with full covariance models. The parameter
optimization for subspace constrained models was done using
limited-memory BFGS algorithm as implemented in the freely
availableHilbert Class Library [1] -package. The latest results
with our system were reported in [11], but since then some im-
provements have been made. Cepstral mean subtraction is now
used by default and for all features. If statistical significance is
mentioned, it is referred to the Wilcoxon signed-rank test with
significance level0.05.

As discussed, the motivation behind constraining the expo-
nential parameters to a subspace is that decreasing the number
of parameters decreases the computational cost almost withthe
same ratio. The number of floating point operations per an in-
put feature for evaluating all the Gaussians is roughly twice the
number of parameters for every considered model.

3.2. Finnish LVCSR task

The training data for the Finnish task contains both read and
spontaneous sentences and word sequences from 207 speakers,
with total of 21 hours of speech. The training set is quite small
and might be prone to overfitting so the state tying was tightened

to ensure at least 2000 feature vectors per state which resulted
in a total of 1602 tied states. As Finnish is a highly-inflectional
language, the language modeling is based on morphs learned
unsupervisedly from the data as in [13]. The N-grams were
trained to varying lengths as in [12]. Because of this highly-
inflectional nature, we prefer analyzing letter error rates(LER)
instead of word error rates (WER) and WER is given here only
as reference.

Table 1: 8 Gaussians per state in the Finnish task

Model D LER WER #Params
Diagonal - 4.50 16.12 1.01 M

Full - 4.08 14.98 10.51 M

PCGMM
40 4.25 15.62 1.06 M
80 4.00 15.11 1.60 M
120 3.85 14.69 2.14 M

SCGMM

40 5.09 17.62 0.56 M
80 4.33 16.21 1.10 M
120 4.33 16.28 1.65 M
160 4.40 16.32 2.19 M

The error rates using8 Gaussians per tied state are shown
in table 1. We note that the full covariance model gives in this
setup a relative improvement of9% over the diagonal model.
The error rates with16 Gaussians per tied state are shown in
table 2. Diagonal results naturally improve, but with the full
covariance model the training data isn’t enough anymore and
results in badly overtrained models. The subspace constrained
models on the other hand improve over the corresponding8
Gaussian models so we clearly avoid the overtraining issues.

An interesting comparison can be made between Diago-
nal (16G) and PCGMM (8G,D = 120) where we note a
statistically significant10% percent relative improvement with
roughly the same model cost. Both PCGMM (8G, D = 40) and
SCGMM (8G,D = 80) give roughly the same performance as
the diagonal model but with a halved model cost.

Table 2: 16 Gaussians per state in the Finnish task

Model D LER WER #Params
Diagonal - 4.26 15.66 2.03 M

Full - 4.96 16.58 21.02 M

PCGMM
40 4.06 15.21 2.08 M
80 3.77 14.56 3.14 M
120 3.83 14.62 4.20 M

SCGMM
40 4.48 16.39 1.08 M
80 4.10 15.33 2.14 M

The PCGMM results typically improve when the basis di-
mensionality grows. For the SCGMM we get slightly weird
behavior which can be seen from the table 1, where at some
point the performance starts to degrade. It is hard to say any-
thing certain about this, but the coupling of the first and second
order terms to the same space might give for some Gaussians
more possibilities for overtraining than it helps in the modeling,
because the subspace is shared by all the Gaussians. It was en-
sured that the likelihoods grow as they should when increasing
the basis dimensionality.



Outside the tables, the Diagonal (32G) model results in
LER 3.89 with the model cost of4.05M . Again PCGMM
(8G, D = 120) gives roughly the same result with a halved
model cost.

3.3. English LVCSR task

For training the acoustic models for English we used the Fisher
corpus. A180 hour subset of the corpus was selected with good
coverage of different dialects and genders. The state tyingwas
done to ensure at least4000 feature vectors per tied state which
resulted in a total of5435 tied states. Language modeling was
based on words and the N-grams were trained to varying lengths
as in [12]. Evaluation is performed with TDT4: Voice of Amer-
ica broadcast news task [2]. Analysis is based on WER.

The results for this task are shown in table 3. We note again
that diagonal models improve when increasing the number of
Gaussians. Our full covariance evaluations haven’t been opti-
mized and were getting too heavy so we don’t provide them
here. It was decided to fix the subspace dimensionality and
try two different number of Gaussians for both PCGMM and
SCGMM.

Here the diagonal models and SCGMM models with the
same number of Gaussians have comparable complexity. With
16 Gaussians we record a relative improvement of2%. The dif-
ferences between diagonal and SCGMM models aren’t however
statistically significant.

PCGMM performs slightly better and with the same num-
ber of Gaussians we note statistically significant improvements
over the diagonal models, although with a bigger model cost.
Perhaps the most interesting comparisons can be made with
the diagonal models that have twice the number of Gaussians
than with the PCGMM models. Comparing the PCGMM (G =
8,D = 80) and Diagonal (16G) there is a23% decrease in
the model complexity and correspondingly for PCGMM (G =
16,D = 80) and Diagonal (32G) there is a24% decrease. The
differences between these pairs aren’t statistically significant
and so we conclude that this decrease comes ’for free’.

Table 3: Results for the English TDT4:VOA task

Model G LER WER #Params

Diagonal
8 18.75 33.82 3.44 M
16 17.80 32.53 6.88 M
32 17.02 31.31 13.74 M

SCGMM D=80
8 18.37 33.90 3.59 M
16 17.34 31.90 7.11 M

PCGMM D=80
8 17.55 32.43 5.28 M
16 16.74 30.99 10.50 M

4. Conclusions
Subspace constrained Gaussian mixture models have been in
the recent years used successfully in different speech recogniz-
ers. PCGMM has been shown to give a good compression for
full covariance models [4] and on the other hand to exhibit some
kind of ’smoothing behavior’ [10]. The more general SCGMM
is also interesting and has been shown to surpass PCGMM in
some restricted grammar tasks [3].

The previous tests have been performed in relatively high-
quality setups with hundreds of hours of training data. Such

databases aren’t, however, available for all smaller languages
or special tasks. In this paper the models were tried in a more
modest system, which puts the robustness of the models to a
strict test. It is hard to achieve reasonable full covariance per-
formance in our Finnish task without extensive tweaking.

PCGMM was found to work very well and the results seem
to confirm the findings of [10]. To our knowledge the first re-
sults applying SCGMM to a LVCSR task were presented here.
The results improve in some cases over our baseline diago-
nal GMM, but perform still typically worse than the PCGMM
model. It wasn’t also quite as robust as PCGMM in the low-data
situation.
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