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Abstract

Speech recognizers typically use high-dimensional featac-

tors to capture the essential cues for speech recognition pu
poses. The acoustics are then commonly modeled with a Hid-
den Markov Model with Gaussian Mixture Models as obser-
vation probability density functions. Using unrestrici@dus-
sian parameters might lead to intolerable model costs both
evaluation- and storagewise, which limits their practioaé
only to some high-end systems. The classical approachketac
with these problems is to assume independent features and co
strain the covariance matrices to being diagonal. This @an b
thought as constraining the second order parameters to e i
fixed subspace consisting of rank-1 terms. In this paper & di
cuss the differences between recently proposed subspdbe me
ods for GMMs with emphasis placed on the applicability of the
models to a practical LVCSR system.

Index Terms: speech recognition, acoustic modeling, Gaussian
mixture, multivariate normal distribution, subspace roeth

1. Introduction

Acoustic modeling of an automatic speech recognizer (ASR)
is typically done via continuous-density HMMs with Gaus-
sian mixture models (GMM) as observation probability dgnsi
functions for tied HMM states. Using unrestricted covatian
matrices in this framework is possible, but for state-af-#ut
large-vocabulary continuous speech recognizer (LVCSR) wi
many GMMs, the vast amount of parameters may lead to es-
timation problems. It is also at the moment hard to achieve
real-time performance using full covariances. Insteadoacty
approach is to use diagonal covariance matrices coupldd wit
a maximum likelihood linear transform (MLLT) [5]. This is

a reasonable approximation, because the acoustic featare v
tors are typically computed in such a way that the elememts ar
only weakly correlated. This is, however, a global propeirty
typically on a state-level there may be significant corretat
between the elements. From the mathematical standpoint, us
ing diagonal covariances equals to constraining the seopnd
der parameters to lie in a fixeidimensional subspace consist-
ing of rank-1 terms, when considered as matrices. Thuse ther
might be use for more general subspace methods for the mix-
tures, that still preserve the possibility to explicitly deb cor-
relations between the feature components. Just using ahy te
nigue for dimensionality reduction isn’'t reasonable, lseghe
possible real-time requirements have to be taken into axdcou
Care should thus be taken that not only the number of param-
eters decreases, but also a decrease in the computatical co
is guaranteed, while keeping the recognition accuracyoreas
able. In recent years there has been much interest towanas mo
general and effective subspace methods for GMMs: EMLLT
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[8], MIC [14], PCGMM [3], SPAM [3], SCGMM [3]. The dif-
ferences between these models are discussed and emphasis is
placed on the applicability of the models to a practical L\RCS
system. We present the first comparison between PCGMM and
SCGMM along with a baseline diagonal model on LVCSR tasks
for Finnish and English.

1.1. Gaussiansas an exponential family

The Gaussian distribution belongs to the family of exponen-
tial distributions and the multivariate Gaussian can bdtemi
equivalently as an exponential family as:
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whereZ(0) = [.. ¢?" #(9 s the normalizer, which guarantees
that the result is a valid probability distribution funatio The
featuresf (x) and parameter8 are written as:
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where the precision matri? = X' and linear parameters

¢ = Pp are called either canonical or exponential parame-
ters of the distribution and vec-operator maps either gidar

of a symmetric matrix to a vector with the off-diagonal ele-
ments multiplied byy/2. x is the original feature vector. As
discussed in [7], this reparametrization is in many waysemor
natural than the typical presentation through the paramgte
andX. What is specifically interesting when discussing pos-
sible subspace methods for GMMs is that from this formula-
tion we can directly see which parameters appear lineatlygn
data-dependent terms. For this reason constraining the- exp
nential model parameters to a subspace leads to a decrdase no
only in the amount of parameters but also to a decrease in the
computational complexity of the model. This property makes
models that constrain exponential parameters to a subspace
pealing for speech recognition purposes.

2. Subspace methodsfor GMMs

The idea is to tie some or all of the exponential model parame-
ters to a subspace shared by all the Gaussians in the system:

D
0, => A;by,
k=1

wheref, is some part of the exponential parameter vector for
Gaussiary, D the subspace dimensionalitly, the basis di-
mensionk and)\’; the component parameter for Gaussjaand
basis dimensiot.
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The maximum likelihood training of Gaussian mixtures
is typically done by the Expectation-Maximization algbnit.
The E-step consists of collecting the sufficient statisticghe
given mixture and data; this is straightforward for any mode
In the M-step, the model parameters are set to maximize the ex
pected likelihood of the data. This has a closed form satfto
diagonal and full covariance models. For subspace constitai
models, the parameter optimization becomes harder betiaise
parameter space is in two parts and the basis components don’
necessarily correspond to positive definite precisiong dyti-
mization can be performed in a round-robin style by altengat
the optimization of the component-wise and global pararaete

Maximize@ (A|B) | Maximize@ (B|A), 4)

where( is the expected likelihood of the data given the model
from the last step. Both steps are concave fixing the parasete
that aren’t to be optimized. The concavity property of thepst
isn't quite straightforward and is discussed in [7].

Five methods have been suggested that tie the exponential
model parameters to a subspace. They are in the order of grow-
ing generality:

e Extended Maximum Likelihood Linear Transform (EM-
LLT) [8]: The precision matrix is modeled as a sum of
rank-1 matrices. This is an extension of MLLT where
more directions are added in which to compute the vari-
ance.

e Mixtures of Inverse Covariances (MIC) [14]: The pre-
cision matrix is modeled as a sum of symmetric matri-
ces. The explained implementation however initializes
the basis matrices to be positive definite.

e Precision Constrained Gaussian Mixture Models
(PCGMM) [3]: The precision matrix is modeled as a
sum of symmetric matrices and the positive definiteness
is ensured through valid component parameters.

e Subspace Precision and Mean (SPAM) [3]: The preci-
sions and linear parameters are modeled in subspaces in-
dependent of each other. The term SPAM is commonly
used when referred to the PCGMM model, but for clarity
we distinct these cases here.

e Subspace Constrained Gaussian Mixture Models
(SCGMM) [3]: All exponential parameters are modeled
in the same subspace.

There are some issues to consider when selecting which
type of subspace constraint to use for modeling. As we have
to resort to an optimization algorithm in the parametemira,
it would be nice if the training could be performed in as few it
erations as possible. If the initialization is done wisalgo the
basis optimization can be left out.

EMLLT is likely not the best use of per-Gaussian param-
eters and PCGMM has been found to outperform the EMLLT
model in [4]. PCGMM seems also to be slightly better justified
than the MIC model; the positive definiteness for the preoisi
can be ensured through valid coefficients, so the basis Hoesn
need to be positive definite. It is hard to come up with a good
initialization scheme that results in positive definiteibasatri-
ces and as stated in [14], the basis has to be trained wheg usin
the suggested Kullback-Leibler -based clustering scherhe.
PCGMM model can also be initialized using PCA and this al-
lows to leave out the basis optimization [4].

Constraining also the linear parameters to a subspace of
their own (SPAM) has been shown to lead to better parame-
ter usage [3] in a restricted grammar task. Constraining the

first order parameters to a subspace of their own in a LVCSR
context might not be a good idea because the linear parasneter
aren’t very redundant and the amount of states is largeirigad
easily to decreased state discrimination. As the trainieds
also a PCGMM model for initialization, we decided to leave th
SPAM model out of our considerations.

In [3] the most general SCGMM was found to outperform
SPAM and PCGMM models but in a restricted grammar task
and the initialization was done by first training PCGMM, then
SPAM and using this as an initialization for the SCGMM model.
In [9] an easier initialization using PCA with modified noror f
the exponential parameters of a full covariance model wed.us
Results were again given on a restricted grammar task and the
models didn’t see any training data. In that setup the fulhce
ance model gave the best performance, but that is not always
the case with limited training data so it would be interegtio
know how well these results generalize to a practical LVCSR
system. SCGMM is in some way very interesting because all
the parameters are tied.

Following these deductions, the PCGMM and SCGMM
models seemed like the most interesting models to try in our
speech recognizer. In the following subsections, the nsoaie
introduced and the most valid pointers to the literatureyaren.

2.1. Precision Constrained GMM

The PCGMM model constrains the precision matrices to lie in
a shared subspace:

D
P, = ZA?Sk, (5)
k=1

where the subspace dimensionalilyis free to vary between
1 andd(d + 1)/2 and{S, } are the symmetric basis matrices.
Typically the first element is taken to be positive definitel an
the subspace to be affine, fixir)gj = 1for all g. The number
of parameters becomés x (d(d +1)/2)+ G x (D+d+1),
where the per-Gaussian cost is linear.

For the initialization, second order statistics are needat
they can be collected using any seed model. Doing a quadratic
approximation to the auxiliary functio@ one arrives at doing
Principal component analysis for the precisions under aimo
fied Frobenius’ norm. This initialization procedure is exiped
in [4] and [3] and slightly differently in [10]. Itis also pe#le
to do PCA directly on the precisions.

The parameter training has been explained in detail in [3].
An optimization library is typically needed, although inOJ1
a claimedly faster stand-alone implementation was expthin
The basis training typically doesn't have a significant &ffen
the performance, because all precisions have to stay y®siti
definite when optimizing the basis. We performed only opti-
mization of the component parameters.

2.2. Subspace Constrained GMM

In SCGMM all the exponential model parameters are con-
strained to lie in a shared subspace:

D
0, =>_ A;by,
k=1

where the subspace dimensionalilyis free to vary between
1 andd(d + 3)/2 and {b} are the basis vectors. Typically
the first element is selected so that the precision part igiy®s

(6)



definite when mapped to a matrix and the subspace to be affine,
fixing /\; = 1forall g. The number of parameters beconies
(d(d+3)/2)+ G x (D + 1) and we note that the per-Gaussian
cost is independent of the feature dimensionality becdlteea
parameters are tied.

This model can be initialized through PCGMM and SPAM
models as in [3]. The other choice is to do a similar approxi-
mation as in the case of PCGMM model. For SCGMM initial-
ization, statistics are naturally needed for both first sawbad
order terms which equals a trained full covariance modeis Th
scheme is explained in [9]. If the data is normalized to have
zero mean and unitary variance this corresponds to doing PCA
directly on the exponential model parameters.

The parameter training has been explained in detail in [3]
and is similar to the PCGMM parameter training. The basis
training shouldn’t have a significant effect on the perfonce
[9] and so we left it out.

3. Resaults
3.1. Setup

We provide results for a Finnish and an English LVCSR
task. The language-independent issues are explained here a
language-dependent issues in the corresponding subsctio
The acoustic modeling is based on context-dependent cross-
word triphones tied using a decision tree [6]. The featuresew
standard 39-dimensional MFCC with MLLT for all models. A
state-based segmentation was obtained using a previots bes
performing diagonal model. This segmentation was kept fixed
throughout the tests because it has only little effect onréhe
sults. The training for all models was done in Viterbi-style
First a diagonal model was trained until convergence. The fu
covariance model was trained by doing two more EM-iteration
using the diagonal models as a seed. The basis for the sub-
space constrained models were both initialized from thik fu
covariance model using PCA for the parameters as explained.
The initial component-wise parameters were trained alsm fr
this full covariance model. Then two more EM-iterations ever

done and the component parameters were updated correspond-

ingly. The basis was kept in its initial form. The variance
terms were floored t0.1 in each iteration and after that the
eigenvalues of the sample covariance matrices@b to avoid
singularity issues with full covariance models. The parame
optimization for subspace constrained models was dong usin
limited-memory BFGS algorithm as implemented in the freely
availableHilbert Class Library [1] -package. The latest results
with our system were reported in [11], but since then some im-
provements have been made. Cepstral mean subtraction is now
used by default and for all features. If statistical siguifice is
mentioned, it is referred to the Wilcoxon signed-rank teghw
significance leve).05.

As discussed, the motivation behind constraining the expo-
nential parameters to a subspace is that decreasing theenumb
of parameters decreases the computational cost almostheith
same ratio. The number of floating point operations per an in-
put feature for evaluating all the Gaussians is roughly evtfie
number of parameters for every considered model.

3.2. Finnish LVCSR task

The training data for the Finnish task contains both read and

to ensure at least 2000 feature vectors per state whichtiedsul

in a total of 1602 tied states. As Finnish is a highly-inflentl
language, the language modeling is based on morphs learned
unsupervisedly from the data as in [13]. The N-grams were
trained to varying lengths as in [12]. Because of this highly
inflectional nature, we prefer analyzing letter error rgteSR)
instead of word error rates (WER) and WER is given here only
as reference.

Table 1: 8 Gaussians per state in the Finnish task

Model D LER | WER | #Params

Diagonal | - 4.50 | 16.12 | 1.01 M
Full - 4.08 | 14.98 | 10.51 M
40 4.25 | 15.62 1.06 M

PCGMM | 80 4.00 | 15.11 1.60 M
120 | 3.85 | 14.69 2.14 M

40 | 5.09 | 1762 | 0.56 M

80 | 4.33 | 16.21 1.10 M

SCGMM 120 | 4.33 | 16.28 1.65 M
160 | 4.40 | 16.32 2.19M

The error rates using§ Gaussians per tied state are shown
in table 1. We note that the full covariance model gives is thi
setup a relative improvement 6f% over the diagonal model.
The error rates with6 Gaussians per tied state are shown in
table 2. Diagonal results naturally improve, but with thé fu
covariance model the training data isn’t enough anymore and
results in badly overtrained models. The subspace consttai
models on the other hand improve over the corresponding
Gaussian models so we clearly avoid the overtraining issues

An interesting comparison can be made between Diago-
nal (16G) and PCGMM 8G,D 120) where we note a
statistically significani 0% percent relative improvement with
roughly the same model cost. Both PCGM84H, D = 40) and
SCGMM (8G,D = 80) give roughly the same performance as
the diagonal model but with a halved model cost.

Table 2: 16 Gaussians per state in the Finnish task

Model D LER | WER | #Params

Diagonal | - 4.26 | 15.66 | 2.03M
Full - 4.96 | 16.58 | 21.02 M
40 4.06 | 15.21 2.08 M

PCGMM | 80 | 3.77 | 1456 | 3.14 M
120 | 3.83 | 14.62 4.20M

40 4.48 | 16.39 1.08 M

SCGMM 80 | 4.10 | 15.33 2.14 M

The PCGMM results typically improve when the basis di-
mensionality grows. For the SCGMM we get slightly weird
behavior which can be seen from the table 1, where at some
point the performance starts to degrade. It is hard to say any
thing certain about this, but the coupling of the first ancbselc
order terms to the same space might give for some Gaussians
more possibilities for overtraining than it helps in the rathayg,

spontaneous sentences and word sequences from 207 speakersbecause the subspace is shared by all the Gaussians. It was en

with total of 21 hours of speech. The training set is quitelsma
and might be prone to overfitting so the state tying was tiggade

sured that the likelihoods grow as they should when incnegsi
the basis dimensionality.



Outside the tables, the Diagona&2(F) model results in
LER 3.89 with the model cost oft.05M. Again PCGMM
(8G, D = 120) gives roughly the same result with a halved
model cost.

3.3. English LVCSR task

For training the acoustic models for English we used thedfish
corpus. A180 hour subset of the corpus was selected with good
coverage of different dialects and genders. The state tyamy
done to ensure at lea#d00 feature vectors per tied state which
resulted in a total 06435 tied states. Language modeling was
based on words and the N-grams were trained to varying lsngth
asin [12]. Evaluation is performed with TDT4: Voice of Amer-
ica broadcast news task [2]. Analysis is based on WER.

The results for this task are shown in table 3. We note again
that diagonal models improve when increasing the number of
Gaussians. Our full covariance evaluations haven't be¢in op
mized and were getting too heavy so we don't provide them
here. It was decided to fix the subspace dimensionality and
try two different number of Gaussians for both PCGMM and
SCGMM.

Here the diagonal models and SCGMM models with the
same number of Gaussians have comparable complexity. With
16 Gaussians we record a relative improvemerit%f The dif-
ferences between diagonal and SCGMM models aren’t however
statistically significant.

PCGMM performs slightly better and with the same num-
ber of Gaussians we note statistically significant improsets
over the diagonal models, although with a bigger model cost.
Perhaps the most interesting comparisons can be made with
the diagonal models that have twice the number of Gaussians
than with the PCGMM models. Comparing the PCGMM £
8,D = 80) and Diagonal 16G) there is a23% decrease in
the model complexity and correspondingly for PCGMM™ &

16,D = 80) and Diagonal §2G) there is &4% decrease. The
differences between these pairs aren't statisticallyifggmt
and so we conclude that this decrease comes *for free’.

Table 3: Results for the English TDT4:VOA task

Model G | LER | WER | #Params

8 18.75 | 33.82 3.44 M

Diagonal 16 | 17.80 | 32.53 | 6.88 M
32| 17.02 | 31.31 13.74 M

8 18.37 | 33.90 3.59 M

SCGMMD=80| 16 | 17.34 | 31.90 | 7.11 M
8 17.55 | 32.43 5.28 M

PCGMM D=80 16 | 16.74 | 30.99 | 10.50 M

4. Conclusions

Subspace constrained Gaussian mixture models have been in[13]

the recent years used successfully in different speeclynico
ers. PCGMM has been shown to give a good compression for
full covariance models [4] and on the other hand to exhibitso
kind of 'smoothing behavior’ [10]. The more general SCGMM
is also interesting and has been shown to surpass PCGMM in
some restricted grammar tasks [3].

The previous tests have been performed in relatively high-
quality setups with hundreds of hours of training data. Such

databases aren’t, however, available for all smaller lagga
or special tasks. In this paper the models were tried in a more
modest system, which puts the robustness of the models to a
strict test. It is hard to achieve reasonable full covaraper-
formance in our Finnish task without extensive tweaking.
PCGMM was found to work very well and the results seem
to confirm the findings of [10]. To our knowledge the first re-
sults applying SCGMM to a LVCSR task were presented here.
The results improve in some cases over our baseline diago-
nal GMM, but perform still typically worse than the PCGMM
model. Itwasn't also quite as robust as PCGMM in the low-data
situation.
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