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Abstract

This work concerns building n-gram language models thagaite
able for large vocabulary speech recognition in deviceshhee a
restricted amount of memory and space available. Our téaget
guage is Finnish, and in order to evade the problems of tsmior-
phology, we use sub-word units, morphs, as model unitsadsté
the words. In the proposed model we apply incremental grgwin
and clustering of the morph n-gram histories. By selectigis-
tories usingmaximum a posteriori estimation, and clustering them
with information radius measure, we obtain a clusteredgvam
model. We show that for restricted model sizes this modetgiv
better cross-entropy and speech recognition results tieadn-
ventional n-gram models, and also better recognition teshan
non-clustered varigram models built with another receimttyo-
duced method.

Index Terms: language models, clustering, information radius,
speech recognition

1. Introduction

Statistical language models try to determine the protgihilis-
tribution P(S) over text stringsS, which are usually observed as
sequences of wordsy: ... w, = wt. They are a vital part of
e.g. speech recognition systems. A large number of statisti
language models have been developed and studied, but the mo
widely used models are still the n-gram models, based onghe a
sumption that the probability of a word depends only onrthel
previous words. When an n-gram model is trained, all diffiere
n-grams up to lengt are collected from the selected training
corpus, and probability for each-gram is estimated by the ra-
tio of occurrences of the-gramw;_,, ,; and its historyw ), ;.
Estimates are then smoothed, giving some probability ntass-t
seen events, which are then estimated by the distributisharter
n-grams. However, the number of different n-grams in a laaye
pus can be very high, and also the sizes of the n-gram modgels ea
ily grow impractically large. The problem is that on-lineegeh
recognition requires models that it fit well into the work nmamn
of the used device. We can well assume that the variety otdsvi
will grow to include also personal digital assistants ancbiteo
phones. Thus the resources will be limited also in the futtee
gardless of their overall growth.

Trivial ways of building smaller n-gram models are to retri
either the training data or the maximum n-gram length. Hamev
it is clear that neither of those will get us a good model. Prun
ing, i.e. removing some of the n-grams from a full n-gram nhode
is a better way of reducing the model size. One efficient prun-
ing method is entropy-based pruning [1]. There relativeaayt
resulting from removing each single n-gram from the model is
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calculated, and those n-grams that increase the entropy dea
pruned. There are also ways of getting a pruned model without
first estimating the full model. E.g. Siivola and Pellom [Bps/

a way of building the model incrementally from a unigram nlode
by adding suitable sets of n-grams at a time. The result ialbed
varigram model, where there is no preset limit for the lengths of
the n-grams included in the model. Thus the longer contexts a
used only there where they are really needed.

Another common approach to the data sparseness problem is
clustering. Traditionally, clustering has been added migram
models by the means of clustering the model units, i.e. words
The basic class-based n-gram model was presented in [8h oft
referred as IBM model. Some extensions for the model has been
reported to work significantly better, see e.g. [4]. In aidditto
the benefit of saving space and memory, one can hope that the
decrease in the number of parameters helps to avoid oveirigar

Even if pruning and clustering are in use, applying standard
gram models to languages that are highly-inflecting or camgde
ing has been very hard, as the number of different word fomas i
large corpus may be enormous. That results in such spassenes
that word-based models are inconvenient. One simple saluti
is to model smaller segments of text instead of words. A good
choice for the segments is shown to be morpheme-like segment
found statistically. E.g. for Finnish, utilization of mdrp found by
the Morfessor algorithm [5] has improved direct predictpanfor-

ance compared to words, and reduced error rates in largdvoc
ulary speech recognition compared to either words or graimaia
morphs [6]. Statistical morphs have also been tested initurk
and Estonian speech recognition with similar results [7].

For finding a desired balance between the model size and accu-
racy, we propose a method that makes use of the morph based lan
guage modeling, and combines both pruning and clusterihg. T
main issue is applying clustering to a morph-based modeletwh
we use morphs, the number of model units can be very limited.
The benefit of clustering an already small number of unitkeastt
into hard clusters, is not very promising. Instead it is mega-
sible to cluster some larger entities. A logical things testér in
n-gram models are the histories of the n-grams, i.e. thecsems
that are used predict the next model unit. For each histarg-cl
ter we can then estimate a collective prediction distrdntiThe
histories that we cluster are selected by the means of irar&h
building of the model.

1.1. Related work

Several approaches for building varigram models have bezn p
sented. We already mentioned a recent one [2]. Naturaby al
various methods for clustering the model units have beerldev
oped. Some, such as Niesler and Woodland [8], even combine



varigram models and clustering. However, there is not meeh r
search done on models where n-gram histories would be chaste
into equivalence classes in a similar manner that we willGiood-
man [9] mentions the idea in the section of his survey thateors
clustering, but solely states that there are many diffi@dués to
solve in it.

The closest related method that we are aware of is presented

by Siu and Ostendorf [10]. They used clustering of n-granohis
ries in order to handle conversational speech charadtsristich
as filler words and repetitions. The search algorithm coegpar
each history only to ones that are a small variation of itsexmn
which is more limited than our approach. They reported they t
could use a considerable smaller models in order to get tine sa
perplexity and speech recognition results as for standaychm
models. However, most of the benefit was due to using a vanigra
model instead of a full n-gram model.

Another exception is the work by Xu and Jelinek [11], where
randomly grown Decision Trees were used to cluster worahist
ries. Their language model outperformed traditional mygnaodel
in both perplexity evaluation and speech recognition.

2. An n-gram model of clustered histories

Let us denote the units of the model@asand each included his-
tory ash;, 5 € {1,...,N}. We try to find a set of clusters of
historiescy, k € {1,...,C?}, so that each history belongs to one
cluster. In addition, we assume that the next unit depenlysaon
the cluster of the history, not on the history itself. Wheedicting
the next unitw for the known historyh, we get
P(w|h) = P(w|c(h)), @
wherec(h) denotes the cluster of the histaky
For this kind of model to work in practice, those historieatth
belong to the same cluster should have as similar predidigiri-
butions as possible. There are several possible measucesito
pare the similarity of the distributions. We usformation radius,
which is a bounded metric, and reported to work well on auto-
induction of semantic classes [12]. Information radiusmesn
distributionsp andgq is
+ +
Rad(p|lq) = Do | 554 + DI B0, (@)
whereD(z || y) is the Kullback-Leibler divergence of the distribu-
tions.

2.1. MAP estimation of the model

In a general level, conventional n-gram models are basedaom m
mum likelihood (ML) estimates. l.e., they try to find a modah.
that maximizes the likelihood of the observed d@ta
GwL = argmax P(O| Q) 3)
el
The P(O | G) is just the likelihood of the training data according
to the model:

P(O|G) = HP(wi | hi, G), 4)

where (w;, h;) are then-grams inO. When we maximize the
likelihood P(O | G) we minimize the coding length of the data
given the model, as known from the information theory. Big th

should not be what we really want: If the model is flexible egigu

it will overlearn the training data, and not generalize beyd.
Instead of P(O | G), we should be more interested in finding

the modelGmap that is the most probable when we know the data.

Applying Bayes’ theorem, we get

Gwvapr

argmax P(G|O)
e

arg max 7P(G)P(O | G)
e P(O)

This estimate is callednaximum a posteriori (MAP) estimate.
Note that the probability of the dafa(O) is not affected by=.

With a suitable prior probability?(G), MAP estimation has
a direct connection to the Minimum Description Length (MDL)
principle, which is used e.g. in [2] to decide which n-grams a
added to the language model. An introduction to the conoecti
between Bayesian and MDL frameworks is found e.g. in [13].

Q)

2.2. Search algorithm

The components of our model were thegram histories, and’
clusterscy, together with emission distribution3(w; | ¢ ). Each
history has a link to the cluster to which it belongs. The basi
algorithm for constructing the modél is the following:

1. Setn =1

2. For each-gram historyw:
1) in the training dataD:

-1
—n—+1

(or empty history ifn =
a. If n > 2 and neither of thgn—1)-gram histories
w;_} ,, orw!_2 . areinthe model, skip the history.

b. Select the clustee, in the model that minimizes
the information radius between ML estimates of
P(w; | cx) and P(w; |wi—, 1)

c. Calculate Alog P(G|O) Alog P(G) +
Alog P(O|G) for the cases where (1);”),, is
added to the model into the clusigy, and (2) a new

cluster containingv;~ . , ; is added to the model.

d. Do (1) or (2) depending on which increases the poste-
rior probability P(G | O) more. If neither does, skip
the history.

3. If new histories were added into the model, increassy
one and go to 2. Otherwise stop.

We use information radius to select the best matching aluste
instead of calculating the change in posterior probabititystly
because it is computationally more efficient. The searchbzan
optimized more by first testing that the most probable uritg t
follow the cluster and the new history are similar.

The idea behind the step 2a. is to speed up the training even
more. Calculating prediction distributions and searctiorghear-
est clusters cannot be done to evergram of the training data, at
least if we want to be large. Instead we grow those n-grams that
are already accepted in the model. Thus we assume that if some
history was considered useful in predictions, longer histothat
include it may also be useful.

2.3. Moddl priors

Next we need the prior probabilities of the modBi(G). We as-
sume a predefined lexicon of model units. In the model we 8&ave
histories from the training data and the units of which theysist



of. Then we have” clusters, and save the cluster of each history.
Moreover, each cluster has a prediction distribution foumber
of units. Each saved parameter has a prior distribution ¢oding
scheme, if we use the MDL framework). Prior probability o th
model is the product of all priors of the parameters.

Our goals in the selection of the priors were very simplest-ir
give smaller probabilities to models that have larger nunabhis-
tories. Second, give smaller probabilities for clusteregehdistri-

butions contain a wide range of morphs (and thus consume much

memory). Otherwise, give equal probabilities to all posisids.

Thus the more histories and clusters there will be in the ipode
the smallerP(G) will be. On the other handP(O | G) will be
larger, so a compromise between the size and the accurabg of t
model is made. Since we are not actually interested in finthiag
optimal coding for the training data, we can also weight the t
parts by selecting some constantnd settingP (G | O) propor-
tional to P(G)“P(O | G). This serves as a practical way to get
larger or smaller models without redesigning the prior.

3. Experiments

In our experiments we compared three kind of language models
Baseline n-gram models built with the SRI toolkit [14], \gram
models built with the growing algorithm [2], and the propdse
clustered varigram models. First we calculated crossspwtfor
held-out data sets, and then used the models in a speecinrecog
tion system.

Our main Finnish text corpora are from the language bank of
Finnish IT center for science (CSCJor the training material we
selected several books and magazines, total 8 600 000 wérds.
morph lexicon of 2 113 units was estimated from it using the-Mo
fessor software [5]. We also trained some growing varigrama-m
els with the full 150 million word data for comparison, stiing
the same set of morphs.

Cross-entropy calculates the average number of bits néeded
encode one data unit (morph) using the model, and is logarith
of the more commonly used measure, perpléxitowever, de-
crease in cross-entropy may generally reflect more acdyitdie
potential decrease in error rate in speech recognitiorH®] cross-
entropy test we had two separate corpora: First consistedtiof
cles of one year of the tabloid magazine lltalehti (100 00@dshn
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Figure 1: Cross-entropies of the different models on the tabloid
data. Measurement points of the growing and clustered varigram
model correspond to different parameter values. For the baseline
n-gramthey are 1-, 2-, and 3-gram models. Cross-entropy of 4 bits
corresponds to normalized perplexity of about 14 000, and 5 bits
to 156 000.
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Figure 2:Cross-entropies of the different models on the book data.

Second was a book (50000 words) that was used also in speechthe weight parameter, whereas size of the baseline modeld co

recognition tests.

For speech recognition experiments we used the speechrecog

nition system of the Adaptive Informatics Research Ce®ttRC)

not be adjusted more than by selecting the n-gram length.
The cross-entropy results for the two tasks are plottedgn Fi
ures 1 and 2. Both varigram model types clearly win the equal

[7]. The book in audio form contained 13h of speech read by one sized baseline models. We also see that the clustered nedel i

female speaker [6]. Acoustic models were trained for thalspe
using the first 11 hours. Speech recognition results wersuoned
by word error rate, i.e. the precentage of words not receghiz
properly from the test set.

3.1. Cross-entropy results

For cross-entropy evaluation we built up baseline 1-graigrain
and 3-gram models, and several growing varigram and ckcter
varigram models of different sizes. Our area of intereshelan-

guage model sizes was from 200 000 to one million parameters.

For the both varigram types, the size could be varied by &dms

Ihttp://ww. csc. fi/kielipankki/

2The reported values can be (approximately) converted talvased
perplexities with the formul&3-45H  where H is the morph-based en-
tropy. The coefficienB.45 is the average number of morphs per word.

somewhat better than the non-clustered varigram modelarier
models and in the harder task (tabloid magazine). In additis-
ing the full 150 million word training data did not help witeds
than million parameter models. If also the model size wasadtl
to grow almost 20 times larger, we reached cross-entrogy 815
the tabloid data and 3.81 for the book data.

3.2. Speech recognition results

For speech recognition tests we selected baseline 2-grdn3-an
gram models, and three models for each varigram model types.
The smallest varigram models had about 250 000 parametits, m
dle sized models had about 500000 parameters and the largest
models had about one million parameters.

For each individual model, recognition parameters wer¢ firs
optimized using the development set. For the test set wedari
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Figure 3:The best obtained word error rates of the speech recog-
nition experiments for models of different type and size.

beam pruning settings and allowed real-time factors up tor8 f

obtaining the best recognition results. However, factonslier
than two were enough for almost as good rates.

ful methods already exist, e.g. in the field of blind sourgease-

tion.

How to apply the methods so that they cope with the high

dimensionality of the language data is the main issue inwuré
research.
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