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ABSTRACT model is created. Speaker-dependent model would be updated. Las
the utterance is re-decoded with the new adapted model.
M3 The original contribution of this paper is to use a likelihood ratio

tion 'E large .vocabul?ryhcontmumll(s speﬁch re?ognmo?l. Ina mumbased distance measure to find possible speaker change boundaries
speaker environment where speakers change frequently spegker and to propose a new speaker tracking method for setting the speaker

regation is needed_ to divide the input audio stream to speaker turn bels. The speaker tracking method presented in this paper dif-
Speaker turns define the current speaker at each time and spea s from that proposed in [4] in that we take advantage of speaker-

adaptation can thus be done based on speaker trns. The noveltys ecific feature transformations and instead of decoding the input au-

j[his paper is that th.e speaker-specific transformatioqs are estimata several times we calculate the likelihoods using a state sequence
incrementally and in tandem with speaker segregation. Therefoy pothesis and features generated with speaker-independent model.

we need a transformation that can be reliably ?St'mated. based_ e transformations are estimated with constrained maximum like-
one speaker turn alone. We propose the constrained maximum I'kﬁhood linear regression (CMLLR) [5]

lihood linear regression (CMLLR) for this. In testing with Finnish
TV news audio, speaker adaptation reduced the average letter error

Speaker adaptation is commonly used to compensate speaker va

rate 25 % relative to baseline. 2. SPEAKER ADAPTATION
Index Terms— speaker recognition, speech recognition Linear transformations are a common choice for speaker adaptation,
because they need only a modest amount of adaptation data to per-
1. INTRODUCTION form well even with large model sets. A limiting factor is that most

transformation methods are model-based. In a multi-speaker envi-
Variation introduced by different speakers and changing environtonment it would be better if we did not need to create a new adapted
ments is still a challenge in large vocabulary continuous speech rénodel for each speaker.
cognition. A number of speaker adaptation techniques have been CMLLR is a model-space transformation, but it assumes the
developed to handle the consequent mismatch between training aftPdel means and the covariances are adapted with the same transfor-
testing conditions. However, in order to use speaker adaptatiofiation matrix [5]. With this assumption, adaptation can be done in
speakers must be known. We do not need to know speaker ideie feature space rather than model space. Features are tramsforme
tities, to be exact, but it is important that we know when speaker&s
change and if some have spoken several times. In an application 6(7) = Ao(7) + b = W((), @
where speakers change frequently and new speakers appdar, swhere A is the transformation matrix ankl the constant biasWw
information is not often available. Segregation of speakers is thefs the extended transformation matW = [b’ A']’ and{(r) =
needed before applying speaker adaptation to the data. [1o(7)]" is the extended observation vector at time

Speaker segregation aims at dividing the input audio to speaker The maximum likelihood solution fai-th row in W is [5]

turns. Each turn can be associated with one speaker whereas speak- ) N1
ers can have many turns. Given no prior information on speakers, wi = (api +k(9))G() ", @
the task is to find speaker change boundaries that divide the audigherep; is the extended cofactor vectpr = [0 ci1 . . . cin] (cij =
to speaker turns and then label the speaker turns correctly. Speal(ﬁj’f(Aij)) andn is the feature dimension. Factaris solved from a

segregation is also an essential part in many speech technology aguadratic equation presented in [€}(i) andk(i) are calculated as
plications. Important applications include retrieval and browsing of

large automatically transcribed audio files and the analysis of spoken d AR
dialogs and multi-party meetings. G() = ZC(T)C(T) Z PO Vi (7) @)
Speaker changes are found using a distance measure that illus- 7=t k=1

trates the dissimilarity between two speech segments. Distance mea- ) T , K 1 _
sures include divergence shape distance often used with line spectral k(@) =Y ¢(m)' Y on (D (@) (1), 4)
pair (LSP) features [1] and distance measures based on generalized =1 k=1

likelihood ratio [2, 3]. Distance measures may also be used as sinwherey (i) andoy, (4)? denote theé-th component of mean and vari-
ilarity measures in speaker clustering [1, 2]. This is one option forance of Gaussiak and~ (7) is the posterior probability of being in
finding the speaker labels. Gaussiark at timer. The beauty is thatx (i) andk(z) can be calcu-

In [4] speaker labels are found by decoding each input utteranciated incrementally as more data becomes available. With speaker-
against a speaker-independent model and speaker-depermligism specificG (i) andk(4) information extracted from a new utterance
created with speaker adaptation. Maximum likelihood model is therran be merged with information from all the previous utterances that
selected and if this is the speaker-independent model, a new adaptsithre the same speaker.



t t Note, that the distance depends on both the mean and covariance
. ‘ ‘ lal ‘ fil ‘ - ‘ ‘ ‘ ‘ ‘ ‘ o estimates. To test the similarity between the covariances only, as
suggested in [1, 2], the sample covariance mdrixy should be
replaced with N Sx + M Sy) /(N + M).
Distance is calculated at phone boundaries and a threshold is
used to detect speaker changes — or rather speaker change intervals
‘ window 1 ‘ window 2 ‘ = distance () gych interval is seen to begin when the distance surpasses thresh-
\ ‘ I ‘ | old value, and end when the distance drops down again. Speaker
features X features Y change boundaries are then placed where the distance met its maxi-
mum value within an interval. This should prevent us from detecting
multiple change boundaries where one speaker change occurs.

Fig. 1. Moving windows positioned to test for speaker change at
hypothesized phone boundaries at times t and t”.

‘ window 1 ‘ window 2 ‘ ——— distance (t)

3.2. Speaker tracking

The speaker tracking method presented here is based on the assump-
3. SPEAKER SEGREGATION tion that each speaker has an optimal adaptive transformation that is
) ) . not optimal for any other speaker. Thus, provided that we can get es

Speaker segregation as described here assumes we have no priotjgiates close to the optimal transformations, different speakers can
formation on speaker turns. Speaker change detection (SCD) is usgd recognized. Transformations may have to be estimated from rel-
to find the speaker change boundaries and speaker tracking to labgely small amounts of data, for the average length of speaker turn
the speaker segmented audio. In our approach, also the transfQq,r Tv news data is around 30 seconds. Linear transformations do
mation matrices for speaker adaptation are estimated during speakgs; generally need a lot of data, so we should do fine with CMLLR.

tracking. The method presented in [4] has the same basis, but the speaker
. adaptation methods used are all model-based and the input audio
3.1. Speaker change detection is either decoded against all models that are being considered or a

Features extracted from speech signal characterize both the speeséjrggéehmael?é?g;%eeilézgg%ii!S\/vﬁ't?qe?hfé);meoskﬂrii'gg“g:a::ﬂ?ﬁ:g&
and the speaker. However, features collected from more than a felfl ’ P P

seconds of speech are expected to fill the feature space in a way td tget a state sequence hypothesis, W.hiCh I then used to evaluate all
depends primarily on the speaker [6]. Speaker changes are thus ature transformations. Transformation matrices do not need a lot

tected using a pair of moving windows both which hold a short se99 memory space [7] so we can keep a good many of them available

ment of speech (Figure 1). Distance between the speech segmeﬁlfg'gg sp:(eaker trlicklng. ied h - >
is calculated to determine whether there exists a speaker change in peaker tracking is carried out as shown in Figure 2. Features

between the windows. Minimum window size is set to 5.6 SeCondsextracted from audio signal are adapted with the transformations es-

Window sizes are not constant, for windows move according to hypmated for preyious speak‘ers., if such exist. State information is read
pothesized phone boundaries. The phone level time resolution wd™M hypothesis and log-likelihoods are calculated for the features
proposed in [3]. as [5]

Assuming we have two speech segments with the set of features

X = {xx} andY = {yn} and we need to know if they were L(o(T)|, 2, A,b) =InN(6(7)|p, X) + %ln A%, (8)
uttered by the same speaker, we wish to test the hypothesis:
Hy: X andY are generated by the same speaker whereé(7) are the transformed features aAd b are the transfor-

mation matrix and constant bias. Addition of the tdmA |? is due
to effects of adaptation.

Taking X andY as coming from independent Gaussian pro- | og-likelihoods are summed over time and thus they become
cesses, we may test our hypothesis using the generalized likelihogidelihood values for the different transformations. At speaker ceang
ratio test [2] boundary we then find the highest log-likelihood value. Should this

S belong to the speaker-independent model represented by unadapted
= ﬁ({(z Y|jp3X) _ 7 (5) features, a new speaker label is created and the feature information
L(X [ fx,Xx) LY | fry,By) collected from the speaker turn is used to estimate CMLLR transfor-

N o . - . mation for the new speaker. If instead the maximum likelihood fea-
wherefr andX® are the maximum likelihood estimates calcula_ted foriures were produced with a speaker-dependent transformation, the
mean and covariance from featuresinandY. The generalized featyre information is merged with previously collected information
likelihood ratio is always greater than zero and less than unity, so thgee Section 2) and new transformation is estimated for this speaker.

H,: X andY are generated by different speakers

distance between speech segments is then defined as Speaker turns are also labeled accordingly.
d = —log \. (6) Sometimes a transformation estimated for one speaker can also
help another. This would result to both speakers being labeled the
The distance is calculated as [2] same. To handle this problem we added a threshold to accepting the

1 decision made in comparing the likelihoods: if the ratio between the
d==[Nlog|Sx|+Mlog |Sy|—(N+M)log|Sx,v|], (7) likelihood value calculated for unadapted features and the highest
2 speaker adapted likelihood value does not surpass a given threshold,
whereS are the sample covariance matrices calculated from featurage take it that the selected transformation would not significantly
and N, M are the number of features i andY’, respectively.  benefit our current speaker and we decide we have a new speaker.



Input speech and state sequence hypothesis System is tested with a set of speech clips taken from the Finnish

Broadcasting Company (YLE) evening news. We chose 48 speech
—{ Read next phone clips from 7 TV news broadcasts to the test set. The complete test set
had around one hour of speech data from 49 speakers. This test set
could be divided to 153 speaker turns. For parameter optimization
we had a small set of speech clips taken from a separate TV news
broadcast. This set had 10 minutes of speech data from 9 speakers
one of which is also present in the test set. All speech clips were
selected to contain only planned speech from newscasters and re-
porters. Background music and other noise is present in some parts.
In Finnish, speech recognition performance is best measured
with letter error rate (LER). Word error rate (WER) is more common
in speech recognition measurements, but it is not well applicable for
Finnish where words tend to be rather long. Finnish words often
correspond to more than one English words and constitute of several
concatenated morphemes like “kahvin+juoja-+lle+kin” which means
“also for a coffee drinker”.

Feature extraction

Adapt features with all
known transformations

and calculate log-likelihoods|

Speaker change ?

Select
maximum likelihood
transformation

Sl-model

5. RESULTS

Speaker adaptation is tested under three different conditions. First,
the speaker-specific CMLLR transformations are estimated based on
true speaker turns (a). Then, in order to test speaker tracking alone,
system is given the true speaker change boundaries but no informa-
tion about the speakers (b). In speaker tracking, the given turns are
labeled and speaker-specific transformations are estimated based on
this labeling. Last, system is not given any information on speaker
Create a new turns (c), but speaker change boundaries are searched withespeak
speaker label change detection. This divides the audio to supposed speaker turns
| that are then labeled and used in estimating the speaker-specific trans-
formations. In all three cases, audio is re-decoded after we have the

Update CMLLR Estimate CMLLR transformations. Results are presented in Table 1.
transformation transformation

transformation

Signifcant
likelihood difference ?

Table 1. Speech recognition performance.
| | WER | LER |

Fig. 2. Speaker tracking labels the given speaker turns and incre-
mentally estimates CMLLR transformations for speaker adaptation.

Baseline | 230 | 7.9 |

Speaker adaptation

(a) true speakerturns 19.8 | 6.0
(b) speakertracking| 19.5 | 5.9
(c) SCD + tracking | 19.4 | 5.9

4. SYSTEM AND DATA

Our large vocabulary continuous speech recognition system uses a
morph-based growing n-gram language model [8, 9] trained on book
and newspaper data. Text data contains 145 million words. Since all
words and word forms can be represented with morphs, we have an
unlimited decoding vocabulary. Our decoder is an efficient time-  Speaker adaptation significantly improves the recognition re-
synchronous beam-pruned Viterbi token-pass system [10]. sults. With true speaker turns (a) the relative error reduction is 24 %.
For acoustic modeling we have state-clustered hidden MarkoResults from speaker segregation and adaptation experiments are
triphone models constructed with a decision-tree method [11]. Eackven better. Compared to baseline, the relative error reduction is
state is modeled with 8 Gaussians and states are also associai% in experiments (b) and (c).
with gamma probability functions to model the state durations [12]. It is evident from the results in Table 1 that our speaker segre-
Speech signal is represented with 12 MFCC and the log-energy alongation method can provide a good basis for speaker adaptation. The
with their first and second differentials. Features are treated witkmall difference in results (b) and (c) compared to (a) indicates that
cepstral mean subtraction and maximum likelihood linear transforthe automatic methods lead to at least as low error rate as the manu-
mation that is estimated in training. ally marked speaker turns. They do make some mistakes in speaker
Models were trained with data taken from the Finnish SPEECONegregation, but from speaker adaptation point of view these are, at
database [13]. The selected training data set had 26 hours of cled@ast on average, better decisions. A similar difference was marked
speech data recorded with close-talk microphone from 208 speakeirs [4] where speaker tracking was tested with data manually seg-
both male and female. Among utterances were words, sentences amgnted to sentences. Note here, that the results in Table 1 indicate
free speech. our speaker tracking method works fine with both true and detected




speaker change boundaries, even if speaker change detectitascredask. The proposed speaker segregation method is most worthwhile
quite a many false boundaries that make the detected speaker tumuben followed by speaker adaptation because it directly provides
shorter than they really are, leaving less data for speaker tracking. the speaker-specific transformations. Speech recognition results also
The results from speaker segregation were also compared to tiseiggest that speaker adaptation may actually benefit from automatic
true speaker turns, so that the results could be evaluated in isolatisegregation. However, our speaker segregation method suits also
from speaker adaptation. Speaker change detection performanceoiher purposes, for it did well in correctly partitioning and labeling
evaluated on the SCD evaluation metrics suggested in [3]. With 0.5the speech data.
tolerance factor the results are good. False acceptance is 51 % and
false rejection is 16 %. Thus, there are many false speaker change 7. ACKNOWLEDGMENTS
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