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Abstract

In this paper, we address the lexicon design problem in
Turkish large vocabulary speech recognition. Although we focus
only on Turkish, the methods described here are general enough
that they can be considered for other agglutinative languages like
Finnish, Korean etc. In an agglutinative language, several words
can be created from a single root word using a rich collection of
morphological rules. So, a virtually infinite size lexicon is re-
quired to cover the language if words are used as the basic units.
The standard approach to this problem is to discover a number of
primitive units so that a large set of words can be created by com-
pounding those units. Two broad classes of methods are avail-
able for splitting words into their sub-units; morphology-based
and data-driven methods. Although the word splitting signifi-
cantly reduces the out of vocabulary rate, it shrinks the context
and increases acoustic confusibility. We have used two methods
to address the latter. In one method, we use word counts to avoid
splitting of high frequency lexical units, and in the other method,
we recompound splits according to a probabilistic measure. We
present experimental results that show the methods are very effec-
tive to lower the word error rate at the expense of lexicon size.

1. Introduction

Turkish is an agglutinative language. Several words can be cre-
ated from a single root word using a rich collection of morpholog-
ical rules. This is a major problem for large vocabulary continu-
ous speech recognition (LVCSR), since one needs a vocabulary of
virtually infinite size for a good coverage of the input language.
Table 1 demonstrates the severity of the problem. The results are
obtained over 792 sentences spoken by 20 speakers using the Uni-
versity of Colorado (CU) Sonic speech recognizer [1] ported to
Turkish [2] with a vocabulary size limited to 30,000 words. There
is a significant increase in the word error rate (WER) as the num-
ber of unknown words increases in the input. Substitutions for
or deletions of out-of-vocabulary (OOV) words during recogni-
tion may also cause the in-vocabulary words to be misrecognized.
To improve coverage, and hence the WER, we need to discover a
number of primitive units so that a large set of words can be cre-
ated by compounding those basic units. This can be achieved by
splitting a large collection of words (in a principled way) into their
parts and discovering a common set of primitive units that can be
used to create all of the words. The splitting can be done at several

Table 1: Impact of out-of-vocabulary (OOV) words on speech
recognition. Here, the WER is counted separately for sentences
of variable amounts of OOV words.

# OO0V words | # sentences/words | OOV% | WER
0 125/820 0.0% 34.6%

1 250/1672 15.0% | 52.9%

2 244/1802 27.0% | 65.0%

3 115/820 42.1% | 78.4%

>4 58/497 50.1% | 90.1%

levels; namely, phoneme, syllable, and morpheme levels. Only
the morpheme level word splitting is suitable for LVCSR, since it
is straightforward to determine the word boundaries. “Meaning-
ful” units may also be useful in subsequent language processing
stages for post-correction or even for better semantic parsing of
imperfectly recognized sentences. The word boundary problem is
illustrated in the following Turkish language example.

sentence:  kemanlar glclrdadl piyano Cinladl

phonemes: KEMAANNLLARHGGICIRRDAADI
PIYYAANNOCHINNLLADI

syllables: ke man lar gl cIr da dl pi ya no Cin ladl

morphemes: keman +lar glcir +da +dl piyano Cin +la +dl.

Although our previous experiments have considered
phoneme-based [2] and syllable-based [3] recognizers (the most
recent phoneme error rate is 26.0% and syllable error rate is
43.6%) we do not know how to extend those systems to LVCSR.
Therefore, in this paper, we present our work on splitting Turkish
words into “morpheme-like” units. To do so, we use a Turkish
morphological analyzer developed at the Middle East Technical
University and a data driven word splitter developed at the
Helsinki University of Technology [4].

Our Turkish morphological analyzer has been developed
on PC-Kimmo, a free morphological parser based on Kimmo
Koskenniemi’s model of two-level morphology. We have used
TurkLex, a set of PC-Kimmo rule specifications for Turkish mor-
phology developed by Oflazer [5], together with some modifica-
tions for the morphological analysis operations. The lexical form
has been used for different surface morphemes in the rule gener-
ation system. Such a morpheme usage results in ambiguities; a



Data driven splits

Words Morphological splits Datadriven splits (using counts)
abartmasindan abart +ma+sl +ndan abartma +sindan abartma +sindan
acaha acaba a+ca+ba acaba
aCabilmektedirler| | aC +abil +mek +te+dir +ler | | aCa+hilmektedir +ler aCa +hilmektedir +ler
beGendiGim beGen +diG +im beGen +diG +im beGendiGim
beGenemedinse beGenemedinse beGen +emedi +n +se beGenemedinse
gOzlememiz gOzle +tme +m +iz gOzle +me +miz gOzleme +miz

Figure 1: Examples of word splits with different methods

post-processing algorithm has been developed to convert the lex-
ical forms derived by PC-Kimmo into surface forms.

Our data-driven approach to the word-splitting problem is to
find the optimal segmentation of a given source text into subword
units according to a defined cost function. This cost function is
based on the minimum description length (MDL) principle and it
is the sum of coding the training text and the used codebook (vo-
cabulary), and we used an iterative search algorithm [4] to mini-
mize the cost. The cost of sub-word units is defined based on their
likelihood estimates and the cost of codewords on the number of
bits needed to code all its characters. Recently we have extended
the algorithm to take into account the counts of the units to be
split. In Figure 1, examples of some word splits using different
splitting methods are exhibited.

The advantage of the data-driven approach is its straightfor-
ward portability to other languages and significant saving of ex-
pensive expert labor needed to create a morphological analyzer
with high coverage. As illustrated in Table 2, the coverage (or
recall) of the data driven approach is very high. However, its ac-
curacy (or precision) is low. Experiments have shown that the
Turkish morphological analyzer has slightly lower coverage but
significantly better accuracy.

Table 2: Recall and precision rates. The rates are computed over a
randomly picked set of 1500 words by comparing the word splits
against linguistically correct morpheme boundaries. Recall is the
ratio of the number of split words to the number of words to be
split. Precision is the ratio of correct splits to the number of split
words.

Method Recall | Precision
Morphological | 93.8% 98.2%
Data Driven 99.4% 32.8%

It is uncommon to use n-grams beyond bigrams or trigrams
for language modeling in the state-of-the-art speech recognizers,
due to computational and memory limitations. This means that the
LM context in most practical systems covers at most two words.
Splitting divides a word into several units. Therefore, the effec-
tive context to be used in LM modeling shrinks with the num-
ber of splits. This is expected to have a negative impact on the
system’s performance. To alleviate the problem we explore data-
driven compounding after splitting. We provide experimental re-
sults that show about 5% relative improvement. We also present
experimental results to show the impact of different word split-
ting methods on language modeling and recognition of Turkish.

Language modeling problems of Turkish have also been studied
in [6-8]. However, to the best of our knowledge, there is only one
work [9] that has reported results on the WER of Turkish LVCSR.

2. Morphological word splitting

Morphological word splitting is based on the morphological anal-
ysis of Turkish. PC-Kimmo?l, a freely available morphologi-
cal analyzer based on Kimmo Koskenniemi’s model of two-level
morphology, has been used in doing the morphological analysis.
The rules and the lexicon developed by Oflazer [5] have been in-
tegrated with PC-Kimmo and the lexicon has been enlarged to
improve the coverage over the text used in the experiments.

The morphological analysis procedure follows the two-level
phonology of Turkish as an agglutinative language. Each word
in the language, namely the surface realization of the formation,
has a corresponding lexical realization representing the structure
of the word formation in terms of its morphological components,
roots/stems, suffixes or prefixes (e.g. lexical: ev+lAr — surface :
evOler — evler).

Morphological word splitting is achieved by first providing
the word lists to PC-Kimmo. Based on the defined rules and the
root and suffix/prefix lexicons, a list containing the correspond-
ing lexical forms is generated. In accordance with the process of
word formation in terms of the two-level morphology, in most of
the cases, there is no one-to-one correspondence between the lex-
ical forms and the words that appear in surface forms in the text.
However, it is essential to extract the morphemes of the words as
they exist in the text. Thus, at the second stage a post-processing
of the lexical forms has been carried out.

The post-processing algorithm also refers to the word con-
struction rules of Turkish. It has been developed as a separate
software that takes the list produced by PC-Kimmo as its input.
We follow almost a backward morphological analysis to obtain
the surface counterparts of the morphemes. The post-processing
yields the words split in their surface forms ( e.g. evler — morph-
analysis : ev+IAr — post-process : ev+ler). Post-processing algo-
rithm compiles a multitude of phonetic rules of agglutination in
Turkish to perform the inverse operation.

Currently there are approximately 35,000 roots and we still
need to expand the list for more roots and some rare morphemes
to further improve the coverage.

3. Data-driven word splitting

To automate the word splitting process and to optimize the sub-
word unit selection for the given task, we applied an entirely un-
supervised algorithm recently proposed in [4]. The algorithm op-
erates language-independently and discovers the optimal set of
subword strings based on any large text corpus or word list of the
target language. The chosen units can be stems, prefixes, or suf-
fixes, as long as they occur frequently enough in the corpus. The
text-based search algorithm does not guarantee the optimality for
speech recognition, but it is intuitively motivated for statistical
language models to pick units with many training samples and for
speech decoding to have long units to minimize confusions. The
method has also been successfully applied for language modeling
and large vocabulary speech recognition in Finnish[4,10].

We call the data-driven sub-word units morphs, because they

Lhttp://www.sil.org/computing/catal og/pc-kimmo.html



resemble morphemes, the smallest meaning-bearing units of lan-
guage. The algorithm learns the morphs from the corpus by recur-
sively splitting each word until the defined MDL cost function is
minimized [4]. The words are processed in random order and all
the possible split locations are considered. The whole corpus is
reiterated until the model converges to a minimum cost. The cost
function is defined as the sum of the cost of coding the whole cor-
pus and the cost of coding the used codebook. The cost of coding
a morph (or sub-word unit) is defined using its probability in the
corpus and the cost of a codeword by its length in characters.

The data-driven splitting has a clear advantage over the tra-
ditional morphemes, because it can easily be applied to any lan-
guage without the need of manual work and expertise involved in
construction of the morphological splitting rules. If the training
corpus used to obtain the automatic morph set is large enough,
the expected coverage on any new related test data and even on
unseen word forms is high, too. Naturally, it is not guaranteed
that the obtained morphs have one-to-one correspondence to the
true morphemes of the language, but for many speech recogni-
tion applications this is not a problem. In some experiments [4],
however, the resemblance to the true morphemes is high, and we
expect that the obtained units can also be helpful in speech under-
standing.

4. Data-driven recompounding of lexical
units

In this section we describe a data-driven method, which has been
extensively studied in [11,12], for compounding lexical units. The
word splitting methods mentioned earlier yield many short suf-
fixes. Although the splitting is necessary for a significant reduc-
tion in OOV rates, it creates two important problems:

e shorter lexical units have higher error rates ( as demon-
strated in [12])

e the span of an n-gram LM with splits is significantly
shorter (n is typically fixed to 2 or 3 regardless of the lexi-
cal units)

Due to the above problems, it is highly likely to lose a part
of the performance gained from reducing the OOV rate. We
believe that the loss can be partially recovered by compound-
ing frequently co-occuring lexical units in a principled way and
adding them to the lexicon as new lexical units. However, in
turn, the compounding process creates a larger lexicon with in-
creased acoustic confusibility that might incur some additional
performance loss.

The measure that we used for compounding two lexical units
w; and w; is the geometrical average of the direct and reverse
bigrams:

M(wj,wj) = \/Pf(wj|wi)P7'(wi|wj)
P(wi,wj) (1)
P(w;)P(w;)

The measure M is lower bounded by 0.0 and upperbounded
by 1.0. The value of 1.0 means that the pair is a perfect candidate
for compounding, since the probability of “w ; is preceded by w;”
and the probability of “w; is followed by w;” are both 1.0. Our
implementation is slightly different from [11,12]. We first train

a bigram LM for the initial lexicon. Then we compute M for
the all bigrams that appeared in the LM. We select a subset of
the bigrams for compounding by using a threshold on Az and use
that subset to create a new lexicon. Then we modify the training
text, train a new LM and choose another subset of bigrams to
compound. One can repeat the process a number of times to create
longer units.

5. Experimental Results

In this section we first present language modeling and then speech
recognition results. The text corpus we use has been collected
from Turkish newspapers. It consists of approximately 2M words.
The audio corpus was collected at METU. It was created from a
set of phonetically balanced sentences. The text for the audio cor-
pus was created as the Turkish translation of the first 2000 sen-
tences of TIMIT database. Additional sentences are recorded to
ensure that the most frequent 5000 tripones in Turkish were cov-
ered. It should be noted that the audio text is out-of-domain when
compared to the news text. For a detailed description of text and
audio corpora see [2].

Table 3 and Table 4 summarize in-domain and out-of-domain
(OOD) LM results. In-domain test set is created by picking ran-
domly 20% percent of the news text. The OOD test set is the
text of audio data with which we carried out speech recognition
experiments. It consists of 792 sentences. For in-domain LM ex-
periments the LM is trained over the remaining 80% news text.
For OOD experiments the whole news text is used to train the lan-
guage models. All LMs are trigram LMs, and they are smoothed
using the Witten-Bell method with no cut-offs.

Table 3: In-domain language model (LM) results. The LM quality
is defined as the percent of test corpus trigrams that are present in
LMs. The numbers in parentheses show the number of suffixes in
the lexicon.

Method Lexicon ooV | pP* LM
size rate quality
No split 60,000 9.6% | 380 33.1%

Morphological 44,526 (386) | 2.4% | 1,110 | 72.21%

Data Driven(DD) | 15,722(4,147) | 2.8% | 890 | 57.4%

DD w/counts

48,828 (6,594) | 3.9% | 630 37.6%

Table 4: Out-of-domain language model (LM) results. The LM
quality is defined as the percent of test corpus trigrams that are
present in LMs. The numbers in parentheses show the number of
suffixes in the lexicon.

Method Lexicon ooV | PP* LM
size rate quality
No split 60,000 15.2% | 682 | 18.5%

Morphological 49,342 (389) 4.8% | 1,927 | 58.3%

Data Driven(DD) | 15,932 (4,288) | 5.4% | 2,012 | 42.0%

DD w/counts 49,429 (7,008) | 7.3% | 1,991 | 20.6%




Table 5: Recognition Results

Method WER | WER*

No split, 30,000 61.1% | 59.4%
No split, 60,000 56.3% | 54.3%
Morphological 57.2% | 55.4%
Data Driven 54.8% | 52.2%

Data Driven, compound, itr=1 | 52.5% | 50.0%
Data Driven, compound, itr=2 | 52.0% | 49.6%
Data Driven, w/counts 46.6% | 43.0%

* with unsupervised speaker adaptation

Although the word splitting significantly reduces the OOV
rate, which is a major reason for high recognition error rates,
the OOV rates are still “surprisingly” high (particularly for OOD
text). In fact, this is due to the relatively small size of the available
news text from which the splits were derived. In the meantime, we
observe significant increases in the normalized perplexities. The
perplexities are presented in their normalized forms since test cor-
pus and vocabulary size can change among different approaches.
We also excluded OOV words in the test sets from perplexity com-
putations, as different models have different OOV rates. The nor-
malized perplexity for each model is computed using

N
ppP* =(PP)Np )

where PP* is the normalized perplexity, N is the number of
tokens used to calculate the standard perplexity PP (recall that
OOV tokens are excluded from computations), and N, is the num-
ber of words in the original text.

It is widely accepted that an increase in perplexity indicates
an increase in the difficulty of speech recognition. However, its
impact on the recognition error rate is difficult to predict. It is in-
teresting to note that the splitting methods have comparable nor-
malized perplexities. The data driven approach without counts
has the smallest lexicon. This is due to the fact that the data driven
approach does not have the notion of stem and suffix, and can dis-
cover and exploit patterns across stems. This is not an advantage
if one intends to use the approach as a basis for morphological
analysis (recall its lower precision indicated in Table 2). How-
ever, it is an advantage for speech recognition since it speeds up
the decoding, thanks to the small size of the lexicon. The other
disadvantage is the shrinkage of LM span which has probably re-
sulted in an increase in the normalized perplexity.

The word error rates (with/without adaptation) presented in
Table 5 clearly indicate the improvement with word splitting. The
best results are obtained using the data driven word splitting us-
ing counts. Despite its higher perplexity, lower LM quality, and
higher OOV rate as compared to the morphological word split-
ting, its performance is significantly better. We think the win
is due to its relatively longer lexical units. It should be noted
that the compounding after splitting provides some further gain.
We applied compounding only to the data driven splitting without
counts, since it had the largest room for the lexicon growth. We
iterated compounding two times. The threshold is set such that
the lexicon size has grown approximately by 10,000 lexical units
at each iteration.

6. Discussion

We have explored several methods of creating a lexicon for the
Turkish LVCSR which are also applicable to other agglutinative
languages. We have presented promising and encouraging results
for the data driven approaches. The data-driven splitting and re-
compounding promises a very useful procedure for lexicon de-
sign. We are still far from a performance that is necessary for
open domain practical applications. This is partly due to the rel-
atively small text and audio corpora that we currently have for
Turkish and partly due to the challenges in language and acoustic
modeling of agglutinative languages.
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