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ABSTRACT very attractive research direction (see [5] for a comprehensive su
vey). Bolt [3] has done the pioneer work on using eye movements

|.as an interaction modality where the user is able to select and zoom
one of several video streams simultaneously playing on a computer

reen.

Eye gaze-based interaction is typically designed to be done by

We study the feasibility of the following idea: Could a system learn
to use the user’s natural eye movements to infer relevance of rea
world objects, if the user produced a set of learning data by clicking
a“relevance” button during a learning session? If the answer is yes, S

the combination of eye tracking and machine learning would give . . . - ) .
intensively looking at visual items. A common problem is that nor-

a basis of “natural” interaction with the system by normally look- | 4 d | i X ional
ing around, which would be very useful in mobile proactive setups. ma attent_lon an natural eye movements castly cause unlnte_ntlona
clicks, which is known as th®lidas touchproblem [12]. To avoid

We measured the eye movements of the users while they were ex- hi defined ¢ b red f
ploring an artificial art gallery. They labeled the relevant paintings tM'S: @ predefined pattern of eye movements may be required for

by clicking a button while looking at them. The results show that d0ing the actual selection of the object being looked at. Examples
a Gaussian process classifier accompanied by a time series kernelt'® looking at _the item of mte_rest Ionge_r_than_ a threshold (dwell-
on the eye movements within an object predicts whether that object_tlme thresholding) [12], following a specific trajectory (eye gestur-

is relevant with better accuracy than dwell-time thresholding and "9) [35], looking at another copy of the item (antisaccades) [9] or
random guessing. at a button [33] after the item of interest. Such interfaces are desir-

able for people having hand disabilities and workers who need their
hands for other tasks, and additionally they may suit the personal

Categories and SUbJeCt Descriptors taste of some users. Some tasks such as text typing [32] can be

H.5.2 [Information Interfaces and Representatior]: User inter- performed by eye movements faster than using more traditional in-

faces—input devices and strategies put modalities. Eye movements can also be used as a side modality
to facilitate the interaction. Fast pan-zoom [28] and fast scrolling

General Terms [16_] are among the successful applications of gaze-supported inter-
action.

Algorithms, Human Factors An alternative way of designing eye gaze-based interfaces is to
build a proactive interface based oatural eye movementsBy

Keywords natural, we mean that the user does not need to use her eyes for

any artificial behaviour, such as the ones listed above, but instead
she can just look around in a natural way. pfoactive interface
[30] is a means of user interaction where the computer guesses
the needs of the user and takes helpful actions without any explicit
command. This concept has been used in the eye gaze-based user
1. INTRODUCTION interaction research in various ways. Hyrskykari et al. [10] devel-
Eye gaze is correlated with visual attention [13]. This property oped a text reader which automatically infers from the eye move-
makes eye movements a plausible modality for human-computer ments the words that the reader wants to look up from a dictionary.
interaction. The attractive prospect of hands-free control with the Hardoon et al. [7] introduced a text retrieval engine that constructs
eyes further motivates eye gaze driven computer interaction as athe queries by inferring the relevance of the words in the vocab-
ulary from the eye movements on the previously read documents.
Oyekoya et al. [20] proposed an image retrieval system working
on eye movement-based queries. Kozma et al. [15] developed an
Permission to make digital or hard copies of all or part of thiknfor eye movement-based zooming interface for image databases. Im-
personal or classroom use is granted without fee providatddbpies are age relevances were inferred from eye movements, and then the

not made or distributed for profit or commercial advantage aatidbpies . : : :
bear this notice and the full citation on the first page. Toyootherwise, to retrieved images were displayed on zoomable nested circles. By

eye tracking, information retrieval, intelligent user interfaces, Mi-
das touch, object selection, pervasive computing, ubiquitous com-
puting

republish, to post on servers or to redistribute to listguies prior specific zooming in, the user gets to see more re"?var)t imaggs. )
permission and/or a fee. In this paper, we study whether proactive interaction with real-
ICMI'12, October 22—-26, 2012, Santa Monica, California, USA. world objects via natural eye movements is possible in pervasive
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setups. We assume that the user is mobile and her eye movements Video of user's view
are tracked. There are real-world objects around, and the computer
the user wears is able to detect these objects and retrieve informa-
tion about them. In this paper we report the first results on the fea-
sibility of building a proactive interface for interacting with the ob-
jects. Various applications are possible given such a well-working

interface. One example lsfelogging[19]. A proactive interface

Relevance
Predictor

Eye Coordinates Boundaries of

objects
can automatically extract a summary of a day of the user by taking Romlect
snapshots of the important moments detected from her eye move- v
ments. Another example is a proactive information retrieval device Interaction
that infers how interesting the real-world object being looked at, e

for instance the face of a person in a conversation, is to the user,

and retrieves useful information such as the business card of thatrigure 1: A systems architecture for pervasive interaction by
person in case the object is interesting enough. By default, the re-natural eye movements.

trieved information will be shown only by the user’s request, but if

the inference of interestingness can be done accurately enough, the

interface can be used even more proactively. In particular, the real- eye movements in lifelogging applications, and for building perva-
world scene can be thought of as a point-and-click interface where sjve recommender systems.

the items are real-world objects, and the “implicit” click commands

can be inferred from the eye movements. This can also be viewed

as a zero-effort solution to the Midas touch problem. 2. PROACTIVE NATURAL INTERACTION

Small-effort solutions in pervasive interfaces have been proposed BY EYES

in several studies. Park et aI.. [21] used dwell-time thresholding.  \ye will first list the components that are needed in a processing
Baldauf et al. [2] proposed blinking for longer than two seconds. patform as a background for the proposed eye movement-based in-
Lee etal. [17] introducedialf-blinking All of these methods are  teraction. Then we give the details of the machine learning setup
based on explicit commands, and hence prohibit "natural” use of {hat e introduce for proactive interaction, for predicting object
the eyes. All of these studies are prototype proposals; none of themrelevances from eye movements. Based on the results, we then

reports on analyses about the users’ task performance. In a previ-yray conclusions on the feasibility of pervasive proactive interac-
ous work that motivated this study, we observed that it is possible to tior, with natural eye movements.

infer the relevance rankings of real-world objects from eye move-

ment patterns in augmented video to a small extent using simple?2 1  The Platform Architecture
machine learning tec_hnique§ [14]' There_ we assgmed th_at the cor- The block diagram in Figure 1 shows the essential components
rect answers are availakieprioni for leaming, and in practice we of the pervasive interaction platform that we assume. The platform

ngegfdi\t/gsrqﬁgisagrgﬂz ?ﬁ:;’(r:eptttl)ogglileg?ﬁé I\'ggrgirr?p?jzz?ntgzjncludes a mobile eye tracker for (implicit) user interaction, and a
Er:fl segt]u <. enhancing the adaptation of the learner togthe ecolo forward pointing camera for detecting objects and their locations.
it operateps ’On 9 P DThere is an object recognition tool for identifying the objects, their

For the feasibility studv. we desianed an experiment where five locations and boundaries in the field of view. In this study, we
: Y Y €sig P . approximated the object boundaries by their bounding boxes for
test subjects explored an experimental art gallery, wearing a head-

mounted eye tracker. We have chosen an art gallery scenario Sim__computational simplicit_y. Whenever the user's eyes point atan ob-
ilar to [17, 21], to simulate a case where several objects with ’rich ject, therelevance predictocomputes a relevance estimate for that

visual content are being looked at. The subjects carried a button object from the eye trajectory in the object boundaries, using a ma-

) . . . : . "chine learning algorithm.
'T their hand ?”F‘ clicked it When th_ey encountered an interesting The system will learn to predict relevance off-line, and the learned
(“relevant) painting. We then investigated how well the relevance

7 . relevance predictor algorithm will then be used on-line iraato-
of the paintings can be predicted from the measured eye movement ~_". . ) .
patterns matic modeto predict relevances. In the off-line learning phase,

Two alternative setups are possible for predicting the relevance. grgo%nsde t(r:l;hhe C;ﬁ]levt?]récgavtgli:r:ijglbriolijn:vvr\:gr?;rfzeugea:aéaxve
The first, more difficult one, is to predict all the time, in practice prop g

for everv short window of time. The second. more feasible setu mark relevant objects explicitly, using any clicking method such as
. y o : ! . P dwell-time thresholding, button clicking etc. During this mode, the
is to make one prediction for each encountered object. The latter

. o ) . _system will be collecting data whose labels come from the user’s
requires a pattern recognition system to be available for detecting manual clicks. The relevance prediction algorithm can then be
the objects. We will investigate the accuracy of the predictions as .

a function of the time delay from encountering the obiect: the ac- trained on this labeled data set, after which the relevances can in
: ) . y ering ject, the automatic mode be predicted for new data, for which only eye
curacy will obviously increase as a function of the delay, as new

. . . : . movements are available. Since no explicit eye movement control
evidence accumulates. Our result is that the first setup is too diffi- P Y

) is needed in the on-line mode, the user can maximally concentrate
cult to be practical, even though the results are better than random,On the real world.

whereas in the second setup a standard Gaussian process classi- If the predictions are accurate enough, the relevance predictions

fier with a linear time warping kernel is able to predict the rele- can be used to directly trigger actions. For instance, if the object has

\éimrﬁaaﬁlsn?; V1V'7th zell]rza;:or?;ﬂl;lllevee\lleorr %Cgrlérz%ugt(shti:tt 2¥§éehigh relevance, more information about the object can be retrieved
. y from a database or the Internet, and presented in a non-intrusive

o, thie OLicome encourages inestigating the use of matura &Y. PESertation options caegmened audif] o augmented
’ 9 gating vision, presenting information visually on data goggles.

Several pervasive interaction platforms have been introduced pre-



viously. The Touring Machine [6] is one of the pioneer studies
on augmenting outdoor objects with virtual tags. The objects are
clicked either by positioning them at the center of the field of view
for longer than a specific time threshold, or alternatively by point-
ing and clicking a cursor on a trackpad that the user holds in her
hand. In [27], usability of goggles for pervasive augmented real-
ity is investigated at a conceptual level. The objects are clicked by
pointing with a finger. Neither of these studies used eye movements
for interacton. ] e T
Eye movements have started to be used in pervasive interaction
more recently. Nilsson et al. [18] took the user commands via | I
virtual buttons shown on the field of view. Ishiguro et al. [11] in-
troduced a so-calletife event extractiorsystem that detects new Timeline
objects and recognizes previously seen objects in natural scenes,
and displays augmented textual information about the recognized
objects. Eye movements are used for narrowing the search spacdrigure 2: The concept ofdwell session is illustrated in spa-
to the surroundings of the point of attention. The act of looking tial (top figure) and time (bottom figure) domains. The green
at an object is consideredsmart leng25], and the object is aug-  area represents the boundaries of an object in the visual scene.
mented. In [1], a hardwired estimator of object relevance fgaze The dotted rectangle is the bounding box of the object, which
intensity(the proportion of the time an object is looked at within a represents its approximate boundaries detected by the system.
fixed-length time window [22]) was used as a contextual cue for Yellow circles are fixations numbered by their occurence order.
information filtering in a wearable pervasive information access The solid line below is the timeline going from left to right. Yel-
system. In this paper, we complement these studies by including low rectangles are fixations. Fixations from 2 to 5 form a dwell
a new component, an adaptive relevance estimator based on fullysession.
naturaleye movements, and carry out a quantitative analysis on the
prediction performance.

Bounding Box

®

Dwell Session

sessions, each being a labeled multivariate time series of eye-movemen
- : features. The time series is formed by dividing the timeline into
2.2 Prediction of ObJeCt Relevance short intervals of uniform length and ):epreser?ting each interval

The key question we investigate in this paper is how feasible is with a data vector. We preferred one second as the interval length
natural eye movement-based proactive interaction in wearable per-for simplicity in calculations. A data vector is composed of the
vasive setups. To this end, we carry out a feasibility study with a following six features:
probabilistic model that predicts real-world object relevances from
natural eye movement patterns. We take the prediction perfor- e mean and standard deviation of saccade length in the previ-
mance of this model as a benchmark to measure the feasibility of ous three intervals,
the proactive eye movement-based interaction idea.

Regarding when to make the predictions we propose two options.
The first, which is both difficult and computationally demanding
(as will be detailed in Section 4), is to make predictions at every
time instant. The second option is to predict the relevance of each
objectthe user looks at. For this, we introduce the conceplvel|
sessionto be the time interval that the user’s visual attention is The context depth was set to three seconds; the results for 2, 2.5,
continuously inside a particular object. Figure 2 illustrates the con- 3.5, and 4 seconds were similar (not shown).
cept. A less time-accurate version of this concept, nametbatels The raw eye trajectory is segmented into saccades and fixations
of interest has been introduced earlier as a method for partitioning by grouping each consecutive set of targets within a radius of 25
the timeline by the objects being looked at [29]. It was used for fast pixels into one fixation and the jumps between fixations as sac-
browsing of previously recorded eye movements. cades. In order to exploit the known correlation between fixation

A minor technical detail is that the dwell session concept implic- duration, pupil size, and mental activity [8], we include the mean
ity assumes that the user does not click more than once within a and standard deviation of these measures into our feature set.
dwell session. In our experiments, we observed multiple clicking  The object relevance can be predicted using any classifier that is
within a dwell session only once in 23 clicks, which we consider as able to operate on a data set each data point of which is a time series
a noise in the modeling. A dwell session is labeled positively if it with an attached binary label. The kernelizeable classifiers, such
includes any click. Hence, the extra click did not affect the label.  as the support vector machine (SVM) [31] or the standard binary

When making predictions during the dwell session, a trade-off Gaussian process (GP) classifier [24], accompanied by a time series
needs to be made. On the one hand, the more quickly the modelkernel are among suitable choices. We preferred the GP classifier
predicts the relevance and the system takes an appropriate actionpver SVM in order to get probabilistic predictions. The results for
the more the user experience potentially improves. On the otherthe SVM were very similar.
hand, a quicker prediction would necessarily be less accurate, since LetX = [z1,x2, - ,xn] be a set ofV dwell sessions, and
it will be made based on more limited observations of the eye move- y = [y1,y2, -+ ,yn] be the binary vector of their ground-truth
ment pattern. In this study, we aim at quantifying this trade-off by relevances. The GP classifier assumes a latent funétierR be-
studying performance as a function of the prediction delay from the tween the input pattern and the output label which is governed by
beginning of the dwell session. For dwell sessions that last shortera Gaussian process. The sign and the magnitude of this function
than the delay period, we take the entire time series. indicates the predicted class and the prediction confidence respec-

The data set for learning the predictor is constructed of the dwell tively, for binary labels{—1,+1}. The predictive distribution of

e mean and standard deviation of fixation duration in the pre-
vious three intervals, and

e mean and standard deviation of pupil area in the previous
three intervals.
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and the vectof = [f1, f2,- -, fn] contains the values of the la-
tent function for the training data points. The predictive distribution
of the latent functiop(f*|X, ", f) is the same as the predictive
distribution of GP regression. By the Bayes’ theorem, the posterior
of the latent function can be expressed as:

_ pylfp(f1X)
p(FIX,y) = WX

Here, f|X ~ GP(0,K) is the standard Gaussian process prior
on the training data, whe¥ is the covariance matrix with entries
calculated by the kernét(x, z’) for each pair of training sam-
ples. The likelihood functiop(y|f) = o(f) is a sigmoid function
that converts latent function values into posterior class probabili-
ties. We used the probit functioh(z) = [*_ N(7]0,1)dr as

the likelihood function. The denominatp(y|X) is the marginal
likelihood, which typically appears as a constant in the inference
stage, since it is not a function ¢gf. The integral in Equation 1 is
intractable due to the nonlinearity of the likelihood function. We
adopted the standard Laplace method [34] to solve this integral,
which approximateg(f|X, y) by a Normal distribution. We treat
p(y = +1]x) as an estimate for the relevance of the object be-

3.1 Procedure and Design

The art gallery was composed of 14 colored paintings printed out
on A4-sized papers and attached to the walls of a room in groups
of three, five, and six paintings as shown in Figure 3. We drew
lines on the floor at a distance of one meter from the paintings, and
instructed the subjects not to cross them. The motivation of this
setup was to get several objects into the view at the same time, so
that the user would continuously be in the process of considering
not only whether to click on the painting she was looking, but also
whether to switch to another object in the view. There were on
average 2.33 paintings simultaneously in the view, with standard
deviation of 0.90. Augmented reality markers were attached to the
paintings in order to identify the objects and automatically detect
their boundaries from the video data. We used the software plat-
form introduced in [1] for this task. The subjects were equipped
with a mobile eye tracker, a forward-pointing camera, and a small
laptop to be held in their hands. They were asked to keep their
finger on the space button of the laptop throughout the experiment
and click it when they were interested in a painting that they were
looking at.

In order to keep the test subjects concentrated on the paintings
during the experiment, we assigned them a task appropriate for vis-
iting an art gallery. They were told that they would report in the end
a list of the four best paintings. Four was chosen as a reasonable
length that is large enough to demand considerable mental effort
for comparing paintings and small enough to keep the entire list
in mind. They started with an empty list in mind, and pushed a
painting into the list by a click. If the list was already full, when
clicking they replaced a chosen painting already in the list with the

ing looked at an instant. We avoided formulating the problem as new one. This way, they had to keep in mind an unordered list of
a regression problem since it would be tedious, if not impossible, the best four paintings from the beginning to the end of the exper-
to gather ground truth data for intermediate relevance levels. We iment. All subjects accomplished this memory task without any
made our analysis using the GPML implementation [23] of binary reported difficulty. The subjects were allowed to visit the paint-
GP classification. ing groups multiple times. The experiment of one subject lasted

In our setting, we require a kernel that measures the similarity 229 seconds on average with 59 seconds of standard deviation, and
between two multivariate time series of possibly different lengths. each subject clicked 6 to 13 times. The subjects performed 8.40
One standard way of making two time series of different lengths clicks on average with standard deviation of 3.44.
comparable is talign them. An alignment can be viewed as an Five naive male undergraduate and postgraduate university stu-
element-wise matching between data points of two time series. In dents aging from 23 to 27, with mean 24.80 and standard deviation
this work, we adopt the standard linear static time-warping as the of 1.48 participated in the experiments. The test subjects volun-
alignment method to keep the model as simple and computation-teered and did not get paid.
ally efficient as possible. More formally, the kernel function is as
follows [26]: 3.2 Apparatus

We used an SMI iView X HED model mobile eye tracker for
recording the eye movements. The sampling rate of the eye tracker
was 50 Hz. To ensure the stability of the recordings against head
movements, the tracker was attached to a bicycle helmet. The de-
vice included a web camera with a resolutionré x 480 pixels
that was placed in front of the helmet for recording the view of the
user. We identified the markers and their locations by postprocess-
ing the recorded field of view video of each test subject, using the
AR software of [1].

1 L
MXW:ZEM%wwmd- @
Here, they(t) = [(|X|/L)t] and6(t) = [(|V]|/L)t] are the
linear time-warping functiond, is an arbitrary integer, and
d(xi, x5, 0) = exp(—||z; — x;]|?/o?) is the radial basis function
with length scales. We choosel. = max(|X|,|V]) x 2. We
chooseo as the square-root of the feature vector dimensionality,
adopting the customary heuristic [4] coming from the fact that the
total variance of a-score normalized data set equals the feature
vector dimensionality. 4. RESULTS

As discussed in Section 2.2, there are two alternative setups for
predicting the object relevance. We started with the first and more
difficult one, of making predictions at every fixed-length short time
window. When the one-second time slots within the dwell sessions
bt all subjects are treated as individual data points, we obtain a data
set of 687 samples, only 23 of which are positively labeled (con-

3. EXPERIMENTS

To test predictability of object relevance from natural eye move-
ments, we designh an experiment where the subject encounters man
real-world objects within a short time interval, to ensure collecting
enough data for testing. An “art gallery”, where the subject ex-

plores the paintings and marks a subset of the paintings as relevanthtp://www.smivision.com/en/gaze-and-eye-tracking-
is a suitable scenario for this goal. systems/products/iview-x-hed.html




Figure 3: The experimental art gallery that consisted of three graips of paintings. In total 14 paintings from four painters were
displayed.
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taining clicks). We used randomly chosen 75 per cent of the data

for training, and the rest for testing. We repeated this procedure for .

50 splits and reported the average of these replications. 08¢ 7
As shown in the Receiver Operating Characteristic (ROC) and .71

the precision-recall curves in Figure 4, this learning setup deliv-
ers only a marginal improvement over uniform random guessing,
which does not look promising for practical usage. One main rea-
son behind this poor performance is likely to be that in this setup
we attempt to predict the precise timing of the click (the time in-
terval for which the relevance is known to be maximal) within the
dwell session, although the change in the user’s eye movement pat-
terns based on her interest does not necessarily take place right at
the click time. This difference might get detectable only when the
entire dwell sessions are compared, instead of short time windows.
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(a) ROC Curve

Furthermore, the severe class imbalance makes the machine learn-
ing task difficult.

In the alternative prediction setup discussed in Section 2.2, of
predicting relevance for each dwell session, the data for each pre-
diction is a time series of short time windows during the dwell ses-
sion. We again studied multi-user prediction, by pooling together
the data collected from all users, as in the previous setup. This way,
we have more learning data than for individual users. Our data set
consists of 63 dwell sessions, 23 of which are labeled positively.
The duration of the dwell sessions varied from 3 to 34 seconds. We
used a randomly select@d per cent of the data set for training and % 02 02 05 03 1
the rest for testing. We repeated the entire analysis for 50 splits to Recall
training and test sets. All the results given in the figures below are (b) Precision-recall curve
averages over the 50 replications.

We compared our eye movement-based relevance predictor toFigure 4: Predicting relevance for each short time instance is
three baselines. The first measures how long the user looks at arpetter than but close to random guessing. The ROC (a) and
object (the dwell time), and predicts a click when the dwell time precision-recall curves (b) of this setup are given in solid red,
exceeds a threshold (which was optimized on training data using and uniform random guessing with the dashed black line.
line search). This corresponds to an adaptive version of the clicking
method used in [21]. This is the only existing eye movement-based
relevance prediction method for pervasive scenes. The second ispredicts zero relevance. We interpret the clear improvement of our
the standard baseline of predicting the largest class, which is notmodel over random guessing and majority voting as a strong evi-
useful in practice as it would never predict non-zero relevance. The dence to the discriminative effect of user’s interest on eye move-
third is random guessing according to the prior probabilities of the ments. On the other hand, outperforming dwell-time thresholding
classes (class ratio in the training data). indicates that this discriminative effect is primarily observable on

Figure 5 shows the prediction accuracy, area under ROC curve patternsof eye movements, rather than dwell duration. It is also
(AUC), and F1 score (the harmonic mean of precision and recall) worthwhile to note that our model follows a rather steadily increas-
of our model and the baselines as a function of prediction delay ing trend proportional to delay in all performance metrics, which
(the prediction time relative to the start of the dwell session). Our jmplies that prediction delay can be thought of as a user-tunable
model is better than the alternatives on a grand majority of delays, configuration parameter.
and the differences are significant at each delay for one or more of = Since it is more user-friendly to make the prediction as early
the three metrics when the delay is larger than 3 seconds. Noticeas possible, we take a closer look at the performance at short de-
that F1 score is undefined for dwell-time thresholding for delays lays. Precision-recall curves of our model and random guessing
shorter than the learned threshold (12 seconds) since it constantlyare shown in Figure 6 for four to seven seconds of delay. Dwell-

——Our model
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Figure 5: Our model predicts the relevant paintings with better acairacy than the baselines. The prediction accuracy (a), area unde
ROC curve (b), and F1 score (c) are plotted as a function of the gdiction delay from the beginning of the dwell session, for our model
(in blue circles), dwell-time thresholding (green triangles), majorityvoting (horizontal dashed pink line), and random guessing by
class ratio (horizontal solid red line). The F1 scores of majority vaing and dwell-time thresholding for delays less than the learned
threshold (12 seconds) are skipped since F1 score is undefined #predictor that constantly gives negative output. The vertica

dashed black line shows the average dwell session duration. Our meks improvement over all baselines is statistically significant in
at least one metric for delays larger than three seconds (Wilcoxorigned-rank test over the scores for 50 splitsp < 0.05).

time thresholding is not shown in the figure since it always predicts out for finding out whether the relevance prediction performance
zero relevance for delays shorter than 12 seconds. The curve of ouis sufficient for smooth user experience in tasks such as automatic
model is always above random guessing, although the improve- moment highlighting, information filtering (retrieving information
ment is marginal for very short delays. Note that the user’s interest only for a relevant subset of objects), and natural eye movement-
affects her eye movement patterns even at very early stages of thébased clicking. Finally, in this study, the inferences were based on
dwell session. This outcome encourages further research on usingpartly heuristically chosen features computed from the eye move-
natural eye movement patterns for proactive interaction in future ments. A psychophysics experiment to optimize the feature set
systems, as an alternative to giving explicit commands by eyes.  could be valuable.

We present the precision-recall curves for long delays in Figure 7 We believe that the big promise in using specific eyeglasses for
for completeness. Our model outperforms both dwell-time thresh- information access comes from the prospect of being able to use
olding and random guessing more clearly as the delay gets larger. fully natural and hence convenient eye movements. If the user

Computational efficiency of our model is adequate for online will need to give the commands explicitly, carrying a smart phone
use. Off-line training of the classifier on 47 dwell sessions (corre- and using its see-through camera for information access is a strong
sponding to 7 minutes of eye movement data) takes approximately competitor (see Layarand Wikitude® as widely known examples
16 seconds, and prediction of the click for one dwell session takes of pervasive augmented reality information access applications).
0.25 seconds on a computer witle#6 GHz processor and 4 GB  The results in this paper are promising but more work is needed;
of main memory. at the current state, we would not recommend automatic “clicking”

to be inferred from natural eye movements, but eye movements do
already give a fair amount of relevance feedback which can be used

5. DISCUSSION implicitly in proactive interfaces.
We made a feasibility study on building proactive user inter-
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jects painting . . 9 Lotta Hirvenkari for their help in conducting the experiments, and
paintings that they find interesting. Using the collected data, we - . . .
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built a machine learning model that predicted clicks on test data
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thresholding. The learned predictor can then be used in an online/. REFERENCES

or automatic mode, without the button clicks. [1] A. Ajanki, M. Billinghurst, H. Gamper, T. Jarvenpaa,
Eye movement patterns depend heavily on the user task [36]. M. Kandemir, S. Kaski, M. Koskela, M. Kurimo,
Hence, generalization of our early findings to other use cases and J. Laaksonen, K. Puolaméki, T. Ruokolainen, and
other types of real-world objects needs to be studied later. One T Tossavainen. An augmented reality interface to contextual
interesting use case would be a meeting where the real-world ob- information.Virtual Reality, 15(2):1-13, 2010.

J:ects are human faces and the ta;k of the system is to bookmark the [2] M. Baldauf, P. Frohlich, and S. Hutter. Kibitzer: a wearable
important moments of the meeting. We expect that our outcome system for eye-gaze-based mobile urban exploration. In
will generalize to other domains to a large extent, since our fea-
tures are not tailored to the current domain. As another direction 2http://www.layar.com
of future research, a comprehensive user study could be carriedhttp://www.wikitude.org




0.8

0.6

Precision

0.4

0.2 | —@— Our Model (D=4)

—&— Random

0.6 0.8 1
Recall

0 0.2 0.4

0.8

0.6

Precision

0.4

0.21| —@=— Our Model (D=6)

—f&— Random

0.6 0.8 1
Recall

0 0.2 0.4

0.8

0.6

Precision

0.4

0.2

0.8

0.6

Precision

0.4

0.2

=—©— Our Model (D=5)
—&— Random

0.6 0.8 1
Recall

0.2 0.4

=—6— Our Model (D=7)
—&— Random

0.6 0.8 1
Recall

0.2 0.4

Figure 6: Retrieval performance of our model is better than random guessing for short delays. Precision-recall curves of our motle
(in blue circles), and random guessing by class ratio (in red squaresye given for four to seven seconds of delay (D).

(3]
(4]

Proceedings of the Augmented Human International
Conference (AH)pages 9:1-9:5, New York, NY, USA, 2010.
ACM.

R. A. Bolt. Gaze-orchestrated dynamic windows.
SIGGRAPH Computer Graphic$5(3):109-119, 1981.

C.-C. Chang and C.-J. Li.IBSVM: a library for support
vector maching2001. Software available at

http://ww. csie.ntu.edu.tw ~cjlin/libsvm

[5] A. T. Duchowski.Eye Tracking Methodology: Theory and

(6]

(7]

(8]

Practice Springer-Verlag Inc., New York, NY, USA, 2007.
S. Feiner, B. Maclintyre, T. Hollerer, and A. Webster. A
touring machine: Prototyping 3D mobile augmented reality
systems for exploring the urban environme®grsonal and
Ubiquitous Computingl(4):208-217, 1997.

D. Hardoon, J. Shawe-Taylor, A. Ajanki, K. Puolamaki, and
S. Kaski. Information retrieval by inferring implicit queries
from eye movements. IRroceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS
'07), 2007.

E. H. Hess and J. M. Polt. Pupil size in relation to mental
activity during simple problem-solvingcience
143(3611):1190-1192, 1964.

[9] A. Huckauf and M. H. Urbina. Object selection in gaze

[10]

(11]

controlled systems: What you don’t look at is what you get.
ACM Transactions on Applied Perceptid@{(13):1-14, 2011.
A. Hyrskykari, P. Majaranta, and K.-J. Raiha. Proactive
response to eye movements Aroceedings of INTERACT -
IFIP Conference on Human-Computer Interactipages
129-136. I0S Press, 2003.

Y. Ishiguro, A. Mujibiya, T. Miyaki, and J. Rekimoto. Aided
eyes: eye activity sensing for daily life. Rroceedings of the
Augmented Human International Conference (At8ges
1-7, New York, NY, USA, 2010. ACM.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

R. J. K. Jacob. The use of eye movements in
human-computer interaction techniques: what you look at is
what you getACM Transactions on Information Systems
9(2):152-169, 1991.

M. A. Just and P. A. Carpenter. Eye fixations and cognitive
processe<Cognitive Psychology8:441-480, 1976.

M. Kandemir, V.-M. Saarinen, and S. Kaski. Inferring object
relevance from gaze in dynamic scenesPfoceedings of
ACM Symposium on Eye Tracking Research & Applications
(ETRA), Austin, TX, USAages 105-108, New York, NY,
2010. ACM.

L. Kozma, A. Klami, and S. Kaski. GaZIR: Gaze-based
zooming interface for image retrieval. Rroceedings of the
International Conference on Multimodal Interfaces (ICMI)
pages 305-312, New York, NY, USA, 2009. ACM.

M. Kumar and T. Winograd. Gaze-enhanced scrolling
techniques. IfProceedings of the Symposium on User
Interface Software and Technology (UISpages 213-216,
New York, NY, USA, 2007. ACM.

J.-Y. Lee, H.-M. Park, S.-H. Lee, T.-E. Kim, and J.-S. Cho
Design and implementation of an augmented reality system
using gaze interaction. IRroceedings of the International
Conference on Information Science and Applications
(ICISA), pages 1 -8. IEEE, 2011.

S. Nilsson, T. Gustafsson, and P. Carleberg. Hands free
interaction with virtual information in a real environment. In
Proceedings of The Conference on Communications by Gaze
Interaction (COGAIN)pages 53-57, 2007.

K. O’Hara, M. Tuffield, and N. Shadbolt. Lifelogging:
Privacy and empowerment with memories for lifdentity in
the Information Sociefyl:155-172, 2008.

0. Oyekoya and F. Stentiford. Perceptual image retrieval



0.8

0.6

Precision

0.4

—&— Random
Dwell-Time
—©— Our Model (D=12)

0.2

0.6 0.8 1
Recall

0 0.2 0.4

0.8

0.6

Precision

0.4

=—&— Random
Dwell-Time
—©— Our Model (D=20)

0.2

0.6 0.8 1
Recall

0 0.2 0.4

0.8

0.6

Precision

0.4

—&— Random
Dwell-Time
—©— Our Model (D=15)

0.2

0.6 0.8 1
Recall

0 " "
0 0.2 0.4

0.8

0.6

Precision

0.4

=—&— Random
Dwell-Time
—©— Our Model (D=34)

0.2

0.6 0.8 1
Recall

0 "
0 0.2 0.4

Figure 7: Retrieval performance of our model is better than the kaselines for medium and longer delays (D=12,15,20,34). Precision-
recall curves of our model (in blue circles), dwell-time thresholding ih green triangles), and random guessing by class ratio (in red

squares) are given for 12, 15, 20, and 34 seconds of delay (D).

using eye movementmternational Journal of Computer
Mathematics84(9):1379-1391, sep 2007.

H. M. Park, S. H. Lee, and J. S. Choi. Wearable augmented
reality system using gaze interaction.Rroceedings of the
International Symposium on Mixed and Augmented Reality
(ISMAR) pages 175-176, Washington, DC, USA, 2008.
IEEE.

P. Qvarfordt and S. Zhai. Conversing with the user based on
eye-gaze patterns. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Cldgges
221-230, New York, NY, USA, 2005. ACM.

C. E. Rasmussen and H. Nickisch. GPML: Gaussian
processes for machine learning toolbox, 2010.
http://mMoss. org/ software/view 263/ .

[24] C. E. Rasmussen and C. K. I. WillianSaussian Processes
for Machine Learning (Adaptive Computation and Machine
Learning) MIT Press, 2005.

D. Schmalstieg and G. Reitmayr. The world as a user
interface: Augmented reality for ubiquitous computing. In
Location Based Services and TeleCartogradtecture

Notes in Geoinformation and Cartography, pages 369-391.
Springer Berlin Heidelberg, 2007.

H. Shimodaira, K. Noma, M. Nakai, and S. Sagayama.
Dynamic time-alignment kernel in support vector machine.
In Proceedings of the Advances in Neural Information
Processing Systems 14 (NIPBages 921-928, Cambridge,
MA, USA, 2001. MIT Press.

T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey,

D. Kirsch, R. W. Picard, and A. Pentland. Augmented reality
through wearable computinBresence: Teleoperators and
Virtual Environments6(4):452-460, 1997.

[28] S. Stellmach and R. Dachselt. Investigating gaze-supported

[21]

(22]

(23]

(25]

[26]

[27]

multimodal pan and zoom. IRroceedings of the Symposium
on Eye Tracking Research and Applications (ETRapes
357-360, New York, NY, USA, 2012. ACM.
S. Stellmach, L. Nacke, and R. Dachselt. Advanced gaze
visualizations for three-dimensional virtual environments. In
Proceedings of the Symposium on Eye-Tracking Research &
Applications (ETRA)pages 109-112, New York, NY, USA,
2010. ACM.
[30] D. Tennenhouse. Proactive computi@@mmunications of
ACM, 43(5):43-50, 2000.
[31] V. N. Vapnik. The nature of statistical learning theary
Springer-Verlag New York, Inc., New York, NY, USA, 1995.
[32] D.J. Ward and D. J. C. Mackay. Fast Hands-free writing by
Gaze DirectionNature 418(6900), 2002.
[33] C. Ware and H. H. Mikaelian. An evaluation of an eye
tracker as a device for computer input.Rroceedings of the
SIGCHI/GI Conference on Human Factors in Computing
Systems and Graphics Interface (CHipges 183—-188, New
York, NY, USA, 1987. ACM.
C. K. I. Williams and D. Barber. Bayesian classification with
Gaussian processdEEE Transactions on Pattern Analysis
and Machine Intelligence20:1342-1351, 1998.
J. Wobbrock, J. Rubinstein, M. Sawyer, and A. Duchowski.
Not typing but writing: Eye-based text entry using letter-like
gestures. IfProceedings of The Conference on
Communications by Gaze Interaction (COGAIpgges
61-64, 2007.
A. L. Yarbus. Eye Movements and Visiovfision Science:
Photons to PhenomenolagyQ67.

[29]

[34]

[35]

[36]



