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Abstract

In this work, we describe the first public version of the Morfessor software, which is a
program that takes as input a corpus of unannotated text and produces a segmentation
of the word forms observed in the text. The segmentation obtained often resembles a
linguistic morpheme segmentation. Morfessor is not language-dependent. The number
of segments per word is not restricted to two or three as in some other existing mor-
phology learning models. The current version of the software essentially implements
two morpheme segmentation models presented earlier by us (Creutz and Lagus, 2002;
Creutz, 2003).

The document contains user’s instructions, as well as the mathematical formula-
tion of the model and a description of the search algorithm used. Additionally, a few
experiments on Finnish and English text corpora are reported in order to give the user
some ideas of how to apply the program to his own data sets and how to evaluate the
results.

1 Introduction

In the theory of linguistic morphology, morphemes are considered to be the smallest
meaning-bearing elements of language. Any word form can be expressed as a combi-
nation of morphemes, as for instance the following English words: ‘arrange+ment+s,
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foot+print, mathematic+ian+’s, un+fail+ing+ly’.
It seems that automated morphological analysis would be beneficial for many nat-

ural language applications dealing with large vocabularies, such as speech recogni-
tion and machine translation; see e.g., Siivola et al. (2003), Hacioglu et al. (2003),
Lee (2004). Many existing applications make use of words as vocabulary base units.
However, for highly-inflecting languages, e.g., Finnish, Turkish, and Estonian, this is
infeasible, as the number of possible word forms is very high. The same applies (pos-
sibly less drastically) to compounding languages, e.g., German, Swedish, and Greek.

There exist morphological analyzers designed by experts for some languages, e.g.,
based on the two-level morphology methodology of Koskenniemi (1983). However,
expert knowledge and labor are expensive. Analyzers must be built separately for each
language, and the analyzers must be updated on a continuous basis in order to cope
with language change (mainly the emergence of new words and their inflections).

As an alternative to the hand-made systems there exist algorithms that work in
an unsupervised manner and autonomously discover morpheme segmentations for the
words in unannotated text corpora. Morfessor is a general model for the unsupervised
induction of a simple morphology from raw text data. Morfessor has been designed to
cope with languages having predominantly a concatenative morphology and where the
number of morphemes per word can vary much and is not known in advance. This dis-
tinguishes Morfessor from resembling models, e.g., Goldsmith (2001), which assume
that words consist of one stem possibly followed by a suffix and possibly preceded by
a prefix.

Morfessor is a unifying framework for four morphology learning models presented
earlier by us. The model called “Recursive MDL” in Creutz and Lagus (2002) has
been slightly modified and we now call it the Morfessor Baseline model. The follow-up
(Creutz, 2003) is called Morfessor Baseline-Freq-Length. The more elaborated models
(Creutz and Lagus, 2004; Creutz and Lagus, 2005) are called Morfessor Categories-
ML and Morfessor Categories-MAP, respectively.

In this work, we present the publicly available Morfessor program (version 1.0),
which segments the word forms in its input into morpheme-like units that we call
morphs. The Morfessor program only implements the Baseline models, that is the Mor-
fessor Baseline and Morfessor Baseline-Freq-Length model variants. Additionally, the
hybrids Morfessor Baseline-Freq and Morfessor Baseline-Length are supported. De-
tails on how these model variants differ from each other can be found in Section 3 and
particularly in Section 3.5.

The Morfessor program is available on the Internet at http://www.cis.hut.
fi/projects/morpho/ and can be used freely under the terms of the GNU Gen-
eral Public License (GPL)1. If Morfessor is used in scientific work, please refer to the
current document and cite it as follows:

1URL: http://www.gnu.org/licenses/gpl.html
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1.1 Structure of the document

It has been our intention to write a document with a “modular” structure. Readers can
focus on the topics that are of interest to them and pay less attention to the rest.

Section 2 is a user’s manual of the software addressed to those interested in apply-
ing the program to their own text corpora.

Section 3 describes the mathematics behind the Morfessor Baseline models. The
derivation of some formulas are presented separately in Appendices A, B, and C.

The search algorithm for finding the optimal morph segmentation is described in
Section 4.

Some experiments are reported in Section 5. These may inspire the users to perform
similar experiments on their own data and may give an idea of how to possibly evaluate
the result.

The work is concluded in Section 6.

2 User’s instructions for the Morfessor program

Version 1.0 of the Morfessor program can be used for two purposes: (1) learning a
model, that is a morph lexicon and morph probabilities, in an unsupervised manner
from text and segmenting the words in the text using the learned model (see Sec-
tion 2.1), (2) using a model learned earlier for segmenting word forms into morphs
(see Section 2.2). In the latter case, the word forms to be segmented can be entirely
new, that is, they were not observed in the data set that the morph model was trained
on.

The Morfessor program is implemented as a Perl script and it consists of one sin-
gle file. In order to run the program a Perl interpreter must thus be available on the
computer. We have tested Morfessor only on a Linux operating system, but cost-free
Perl interpreters exist also for Windows and other operating systems.

2.1 Learning a morph segmentation for the words in text

2.1.1 Input data file

The Morfessor program requires that a data file is fed to it using the -data option:
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morfessor1.0.pl -data filename

The data file must be a word list with one word per line. The word may be preceded by
a word count (frequency) separated from the word by whitespace; otherwise a count
of one is assumed. If the same word occurs many times, the counts are accumulated.
The following is an excerpt of the contents of a possible data file:

...

13 autistic

14 auto

1 autobiographical

1 autobiography

1 autocrats

2 autograph

3 autoloader

1 automate

1 automated

...

Note that Morfessor does not perform any automatic character conversion except that
it removes superfluous whitespace and carriage return characters. For instance, if you
want an upper-case and its corresponding lower-case letter to be treated as the same
character you need to perform the desired conversion and filtering prior to using the
Morfessor program.

Morfessor can be run on different-sized data sets. The number of words in the data
can vary from a few thousands of words to millions of words. For more details on pos-
sible data set sizes, memory consumption and running time estimates, see Section 5.

2.1.2 Optional parameters

The program can be run without setting any further parameters. However, the follow-
ing parameters are available for fine-tuning the behavior of the program:

-finish float This sets the convergence threshold for the search algo-
rithm. The program stops and outputs the result, if from
one training epoch to the next the overall code length
(logprob) of the representation of the model and data
decreases less than this value multiplied by the number
of word types (distinct word forms) in the data (see Sec-
tion 4). The default value is 0.005 (bits) per word type.
To make the program run faster increase this value, but
some accuracy may be lost. The value must be within
the range: 0 < float < 1.
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-rand integer This sets the random seed for the non-deterministic
search algorithm (see Section 4). The default value is
zero.

-savememory [int] This option can be used for reducing the memory
consumption of the program (by approximately 25 %).
When using the memory saving option every word in
the input data is not guaranteed to be processed in ev-
ery training epoch. This leads to slower convergence
and longer (nearly doubled) processing time. The inte-
ger parameter is a value that affects the randomness of
the order in which words are processed. High values in-
crease randomness, but may slow down the processing.
The default value is 8. If the -savememory option is
omitted, the memory saving feature is not used, which
is the best choice in most situations.

-gammalendistr

[float1 [float2]]

A gamma distribution is used for assigning prior prob-
abilities to the lengths of morphs (see Section 3.5).
Float1 corresponds to the most common morph length
in the lexicon and float2 is the β parameter of the gamma
pdf (probability density function). The default values
for these parameters are 7.0 and 1.0, respectively. If this
option is omitted, morphs in the lexicon are terminated
with an end-of-morph character, which corresponds to
an exponential pdf for morph lengths (for more details
consult Section 3.5).

-zipffreqdistr

[float]

A pdf derived from Mandelbrot’s correction of Zipf’s
law is used for assigning prior probabilities to the fre-
quencies (number of occurrences) of the morphs. The
number (float) corresponds to the user’s belief of the
proportion of hapax legomena, that is morphs that oc-
cur only once in the morph segmentation of the words in
the data. The value must be within the range: 0 < float
< 1. The default value is 0.5. If this option is omitted a
(non-informative) morph frequency distribution derived
from combinatorics is used instead (consult Section 3.5
for details).
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-trace integer The progress of the processing is reported during the ex-
ecution of the program. The integer consists of a sum
of any or all of the following numbers, where the pres-
ence of the number in the sum triggers the corresponding
functionality:
1: Flush output, i.e., do not buffer the the output stream,
but output it right away.
2: Output progress feedback (how many words pro-
cessed etc.)
4: Output each word when processed and its segmenta-
tion.
8: Trace recursive splitting of morphs.
16: Upon termination output the length distribution of
the morphs in the lexicon obtained.

2.1.3 Output

The Morfessor program writes its output to standard output. Some of the lines output
by the program are preceded by a number sign (#). These can be considered as “com-
ments” and include, e.g., all information produced using the -trace option. The
main part of the output consists of the morph segmentations of the words in the input.
The format used is exemplified by the following morph segmentations of some words.
The words are preceded by their occurrence count (frequency) in the data:

...

13 autistic

14 auto

1 auto + biograph + ical

1 auto + biography

1 auto + crat + s

2 autograph

3 autoloader

1 automate

1 automate + d

...

The output can be directed to a file using the following syntax:

morfessor1.0.pl -data inputfilename > outputfilename

If additionally some optional parameters are defined, Morfessor can be invoked, e.g.,
like this:

morfessor1.0.pl -savememory -gammalendistr 10 -trace 19

-data inputfilename > outputfilename
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2.2 Using an existing model for segmenting new words

Once a morph segmentation model has been learned from some text data set, it can
be used for segmenting new word forms. In this segmentation mode of the Morfessor
program no model learning takes place. Each input word is segmented into morphs
by the Viterbi algorithm, which finds the most likely segmentation of the word into
a sequence of morphs that are present in the existing model. (In order to ensure that
there is always at least one possible segmentation, every individual character in the
word that does not already exist as a morph can be suggested as a morph with a very
low probability.)

In order to use an existing model for segmenting words, Morfessor is invoked as
follows:

morfessor1.0.pl -data filename1 -load filename2.

Filename1 is the input word list containing the word forms to be segmented. It has
exactly the same format as in Section 2.1.1 above. Filename2 refers to the segmen-
tation model and is simply the output of an earlier run of the Morfessor program (see
Section 2.1.3 above).

No further parameters apply to the segmentation mode of the Morfessor program.
The output is written to standard output and is of exactly the same format as in Sec-
tion 2.1.3.

It may be of interest to some users that repeatedly running the same word list
through the Morfessor program while always replacing filename2 with the most recent
output corresponds to performing Expectation-Maximization (EM) using the Viterbi
algorithm on the morph segmentations.

3 Mathematical formulation

The formulation of the Morfessor model is presented in a probabilistic framework, in-
spired by the work of Brent (1999). Since the currently released Morfessor software
only implements the Morfessor Baseline models, which have been presented earlier
in Creutz and Lagus (2002) and Creutz (2003), the following presentation only con-
tains the mathematical formulation of these models variants. For the later Morfes-
sor Category models the interested reader is referred to Creutz and Lagus (2004) and
Creutz and Lagus (2005).

The mathematics of the original publications has undergone some modifications
in order to enable us to produce a unifying framework and in order to correct a few
inaccuracies. In addition, the Minimum Description Length (MDL) formulation in
Creutz and Lagus (2002) has been replaced by a probabilistic maximum a posteriori
(MAP) formulation in the current work. Conveniently, MDL and MAP are equivalent
and produce the same result, as is demonstrated, e.g., by Chen (1996).
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3.1 Maximum a posteriori estimate of the overall probability

The task is to induce a model of language in an unsupervised manner from a corpus
of raw text. The model of language (M) consists of a morph vocabulary, or a lexi-
con of morphs, and a grammar. We aim at finding the optimal model of language for
producing a segmentation of the corpus, i.e., a set of morphs that is concise, and more-
over gives a concise representation for the corpus. The maximum a posteriori (MAP)
estimate for the parameters, which is to be maximized, is:

arg max
M

P (M| corpus) = arg max
M

P (corpus |M) · P (M), where (1)

P (M) = P (lexicon, grammar). (2)

As can be seen above (Eq. 1), the MAP estimate consists of two parts: the probability
of the model of language P (M) and the maximum likelihood (ML) estimate of the
corpus conditioned on the given model of language, written as P (corpus |M). The
probability of the model of language (Eq. 2) is the joint probability of the probability
of the induced lexicon and grammar. It incorporates our assumptions of how some
features should affect the morphology learning task. This is the Bayesian notion of
probability, i.e., using probabilities for expressing degrees of prior belief rather than
counting relative frequency of occurrence in some empirical test setting.

In the following, we will describe the components of the Morfessor model in
greater detail, by studying the representation of the lexicon, grammar and corpus.

3.2 Lexicon

The lexicon contains one entry for each distinct morph (morph type) in the segmented
corpus. We use the term “lexicon” to refer to an inventory of whatever information one
might want to store regarding a set of morphs, including their interrelations.

Suppose that the lexicon consists of M distinct morphs. The probability of coming
up with a particular set of M morphs µ1 . . . µM making up the lexicon can be written
as:

P (lexicon) = M ! · P (properties(µ1), . . . , properties(µM)). (3)

This indicates the joint probability that a set of morphs, each with a particular set
of properties, is created. The factor M ! is explained by the fact that there are M !

possible orderings of a set of M items and the lexicon is the same regardless of the
order in which the M morphs emerged. (It is always possible to afterwards rearrange
the morphs into an unambiguously defined order, such as alphabetical order.)

In the Baseline versions of Morfessor, the only properties stored for a morph in the
lexicon is the frequency (number of occurrences) of the morph in the corpus and the
string of letters that the morph consists of. The representation of the string of letters
naturally incorporates knowledge about the length of the morph, i.e., the number of
letters in the string.
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We assume that the frequency and morph string values are independent of each
other. Thus, we can write:

P (properties(µ1), . . . , properties(µM)) = P (fµ1
, . . . , fµM

) · P (sµ1
, . . . , sµM

), (4)

where f represents the morph frequency and s the morph string. Section 3.5 describes
the exact pdf:s (probability density functions) used for assigning probabilities to par-
ticular morph strings and morph frequency values.

3.3 Grammar

Grammar can be viewed to contain information about how language units can be com-
bined. In the later versions of Morfessor a simple morphotactics (word-internal syntax)
is modeled. In the Baseline models, however, there is no context-sensitivity and thus
no grammar to speak of. The probability P (lexicon, grammar) in Equation 2 reduces
to P (lexicon). The lack of a grammar implies that a morph is as likely regardless of
which morphs precede or follow it or whether the morph is placed in the beginning,
middle, or end of a word.

The probability of a morph µi is a maximum likelihood estimate. It is the frequency
of the morph in the corpus, fµi

, divided by the total number of morph tokens, N . The
value of N equals the sum of the frequency of each of the M morphs types:

P (µi) =
fµi

N
=

fµi
∑M

j=1 fµj

. (5)

3.4 Corpus

Every word form in the corpus can be represented as a sequence of some morphs that
are present in the lexicon. Usually, there are many possible segmentations of a word.
In MAP modeling, the one most probable segmentation is chosen. The probability of
the corpus, when a particular model of language (lexicon and non-existent grammar)
and morph segmentation is given, takes the form:

P (corpus |M) =
W
∏

j=1

nj
∏

k=1

P (µjk). (6)

Products are taken over the W words in the corpus (token count), which are each split
into nj morphs. The kth morph in the j th word, µjk, has the probability P (µjk), which
is calculated according to Eq. 5.

3.5 Properties of the morphs in the lexicon

A set of properties is stored for each morph in the lexicon, namely the frequency of the
morph in the corpus and the string of letters the morph consists of. Each particular set
of properties is assigned a probability according to given probability distributions.
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The models presented in Creutz and Lagus (2002) and Creutz (2003) differ in the
way they assign probabilities to different morph length and frequency values. Version
1.0 of the Morfessor program supports both previous models, slightly modified. What
we here call the Morfessor Baseline model is based on Creutz and Lagus (2002) and
what we call Morfessor Baseline-Freq-Length is based on Creutz (2003). Additionally
there are hybrids of the two, which we call Morfessor Baseline-Freq and Morfessor
Baseline-Length.

The Baseline-Freq and Baseline-Freq-Length model variants differ from the other
models in that an explicit prior probability distribution is used that affects the frequency
distribution of the morphs and that incorporates the user’s estimate of the proportion
of hapax legomena, i.e., morph types that only occur once in the corpus.

The Baseline-Length and Baseline-Freq-Length model variants differ from the other
models in that a prior probability distribution is used that affects the length distribution
of the morphs and that incorporates the user’s estimate of the most common morph
length in the lexicon.

The pdf:s used for modeling morph frequency and morph length are described
below. For the Baseline model, Sections 3.5.1 and 3.5.3 apply. For the Baseline-Freq
model, Sections 3.5.2 and 3.5.3 apply. For the Baseline-Length model, Sections 3.5.1
and 3.5.4 apply, and for the Baseline-Freq-Length model, Sections 3.5.2 and 3.5.4
apply.

3.5.1 Frequency modeled implicitly

By implicit modeling of morph frequency we mean that the user does not input his prior
belief of a desired morph frequency distribution. In this approach, we use one single
probability for an entire morph frequency distribution. The value of P (fµ1

, . . . , fµM
)

in Eq. 4 is then:

P (fµ1
, . . . , fµM

) = 1/

(

N − 1

M − 1

)

=
(M − 1)!(N −M)!

(N − 1)!
, (7)

where N is the total number of morph tokens in the corpus, which equals the sum of
the frequencies of the M morph types that make up the lexicon. The derivation of
the formula can be found in Appendix A. This probability distribution corresponds to
a non-informative prior in the sense that only the total number of morph tokens and
types matter, not the individual morph frequencies.

3.5.2 Frequency modeled explicitly

By explicit modeling of morph frequency we mean that a probability distribution is
used that assigns a particular probability to every possible morph frequency value.
Here we assume that the frequency of one morph is independent of the frequencies of
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Figure 1. Probabilities of
morph frequencies according
to (1) a pdf derived from
Mandelbrot’s correction
of Zipf’s law (h = 0.5)
and (2) an approximately
exponential pdf resulting
from applying the non-
informative frequency prior
(N = 10 000, M = 5000).

the other morphs. Thus,

P (fµ1
, . . . , fµM

) =

M
∏

i=1

P (fµi
). (8)

An expression for P (fµi
) is derived in (Creutz, 2003) and it is based on Mandelbrot’s

correction of Zipf’s law. However, that derivation is unnecessarily complicated and
incomplete. A better derivation is given in Appendix B and the result is:

P (fµi
) = f log

2
(1−h)

µi
− (fµi

+ 1)log
2
(1−h). (9)

The parameter h represent the user’s prior belief of the proportion of hapax legomena,
i.e., morph types that occur only once in the corpus. Typically, the proportion of hapax
legomena is about half of all morph types.

In order to use this type of frequency prior in the Morfessor program, the
-zipffreqprior switch must be activated. Optionally, a value for h can be en-
tered. If omitted, a h value of 0.5 will be used by default. However, the difference ob-
tained when using this Zipfian prior instead of the noninformative prior in Section 3.5.1
is small.

Figure 1 illustrates the probability distributions obtained using the two approaches.
The Zipfian prior corresponds to a power law curve. The non-informative prior ap-
proximately results in an exponential distribution for the probability of the frequency
of an individual morph (see derivation in Appendix C). The curves are different, but
not radically different for small frequency values, which may explain why neither ap-
proach performs significantly better than the other.

3.5.3 Length modeled implicitly

We make the simplifying assumption that the string that a morph consists of is inde-
pendent of the strings that the other morphs consist of. Therefore, the joint probability
P (sµ1

, . . . , sµM
) in Eq. 4 reduces to the product of the probability of each individual
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morph string:

P (sµ1
, . . . , sµM

) =

M
∏

i=1

P (sµi
). (10)

We simplify further and assume that the letters in a morph string are drawn from a
probability distribution independently of each other. Thus, the probability of the string
of µi is the product of the probability of the individual letters, where cij represents the
j th letter of the morph µi:

P (sµi
) =

lµi
∏

j=1

P (cij). (11)

The probability distribution over the alphabet P (cij) is estimated from the corpus by
computing relative frequencies of each of the letters observed. The length of the string
is represented by lµi

.
Now, implicit modeling of morph length implies that there is a special end-of-

morph character that is part of the alphabet and is appended to each morph string in
the lexicon and marks the end of the string. The probability that a morph of a particular
length l will emerge in this scheme is:

P (l) = [1− P (#)]l · P (#), (12)

where P (#) is the probability of the end-of-morph marker. The probability is the
result of first choosing l letters other than the end-of-morph marker and finally the
end-of-morph marker. This is an exponential distribution, that is, the probability of
observing a morph of a particular length decreases exponentially with the length of the
morph.

3.5.4 Length modeled explicitly

Instead of using an end-of-morph marker for the morphs in the lexicon, one can first
decide the length of the morph according to an appropriate probability distribution and
then choose the selected number of letters according to Eq. 11.

As a probability distribution for modeling morph length, a Poisson distribution
could be applied. Poisson distributions have been used for modeling word length, when
word tokens (words of running text) have been concerned, e.g., by Nagata (1997).
However, here we model the length distribution of morph types (the morphs in the
lexicon) and we have chosen to use a gamma distribution. This produces the following
formula for the prior probability of the morph length lµi

:

P (lµi
) =

1

Γ(α)βα
lµi

α−1e−lµi
/β, (13)

where

Γ(α) =

∫

∞

0

zα−1e−zdz. (14)
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Figure 2: Length distributions for the morph types in Finnish and English lexicons (for
data sets comprising 250 000 words). A distribution describes the proportion of morphs
of a particular length, measured in letters. The solid line corresponds to the empirical
distribution of morph lengths in the gold standard segmentation of the words, i.e., the
desired result. The other curves are pdf:s that are suggested for modeling morph length
(see Section 3.5.4).

There are two constants, α and β that determine the exact shape of the gamma pdf.
The maximum value of the density occurs at lµi

= (α− 1)β, which corresponds to the
most common morph length in the lexicon. The value of β governs the spikiness of the
curve, the higher β the flatter and less discriminative is the pdf.

The Morfessor program makes use of a gamma prior distribution for morph length
when the -gammalendistr switch is activated. As optional parameters the user can
enter his prior belief of the most common morph length and a value for the β parameter.
If these are omitted the default values 7.0 and 1.0 will be used, respectively. The effect
of using a gamma pdf instead of the implicit exponential prior of Section 3.5.3 is
usually beneficial for rather small data sizes (up to tens of thousands of words), but the
difference diminishes for larger data sizes.

Figure 2 shows morph length distributions for Finnish and English data sets com-
prising 250 000 words. The gold standard corresponds to the length distribution ob-
tained for a correct linguistic morpheme segmentation. As can be seen, it is possible
to fit a gamma distribution (“Gamma, best fit”) rather well to the gold standard curve.
The attempt to fit a Poisson distribution (“Poisson, best fit”) is less successful, be-
cause too much probability mass is allocated to the smallest values. However, the best
segmentation results in practice are obtained, when an over-corrected gamma distri-
bution is used as a prior (“Gamma, actual”). The gamma pdf can be compared to the
implicit length prior (“Exponential”) that results from using an end-of-morph marker
(Section 3.5.3) instead of an explicit length distribution. The exponential distribution
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Figure 3. Hypothetical splitting trees for two En-
glish words.

reopen+ed open+minded

re+open mind+ed

re open mind ed

is clearly unrealistic when compared to the desired result in the gold standard, but it
nevertheless often works almost as well as the gamma prior.

4 Search algorithm

To find the optimal morph lexicon and segmentation a greedy search algorithm is uti-
lized. Initially each word in the corpus is a morph of its own. Different morph segmen-
tations are proposed and the segmentation yielding the highest probability is selected.
The procedure continues by modifying the segmentation, until no significant improve-
ment is obtained.

Instead of computing probabilities as such, the negative logarithm of the prob-
abilities (logprobs) are utilized and all products are replaced by sums. The nega-
tive logprobs can be considered as code lengths in the MDL framework. The code
length of some observation x is thus related to the probability of x as follows: L(x) =

− log P (x).
The search algorithm makes use of a data structure, where each distinct word form

in the corpus has its own binary splitting tree. Figure 3 shows the hypothetical split-
ting trees of the English words ‘reopened’ and ‘openminded’. The leaf nodes of the
structure are unsplit and they represent morphs that are present in the morph lexicon.
The leaves are the only nodes that contribute to the overall code length of the model,
whereas the higher-level nodes are used solely in the search. Each node is associated
with an occurrence count (i.e., frequency) indicating the number of times it occurs in
the corpus. The occurrence count of a node always equals the sum of the counts of its
parents. For instance, in Figure 3 the count of the morph ‘open’ would equal the sum
of the counts of ‘reopen’ and ‘openminded’.

During the search process, modifications to the current morph segmentation are
carried out through the operation resplitnode, which is presented as pseudo-code
in Algorithm 1. (Note that the pseudo-code does not correspond exactly to the structure
of the actual program code, but the difference is small. Note also that the probabilities
presented in Section 3 have been replaced by the corresponding code lengths.)

In the search, all distinct word forms in the corpus are sorted into random order
and each word in turn is fed to resplitnode, which produces a binary splitting tree
for that word. First, the word as a whole is considered as a morph to be added to the
lexicon. Then, every possible split of the word in two substrings is evaluated. The
split (or no split) yielding the lowest code length is selected. In case of a split, splitting
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Algorithm 1 resplitnode(node)
Require: node corresponds to an entire word or a substring of a word

// REMOVE THE CURRENT REPRESENTATION OF THE NODE //
if node is present in the data structure then

for all nodes m in subtree rooted at node do
decrease count(m) by count(node)
if m is a leaf node, i.e., a morph then

decrease L(corpus |M) and L(fµ1
, . . . , fµM

) accordingly
if count(m) = 0 then

remove m from the data structure
subtract contribution of m from L(sµ1

, . . . , sµM
) if m is a leaf node

// FIRST, TRY WITH THE NODE AS A MORPH OF ITS OWN //
restore node with count(node) into the data structure as a leaf node
increase L(corpus |M) and L(fµ1

, . . . , fµM
) accordingly

add contribution of node to L(sµ1
, . . . , sµM

)

bestSolution← [L(M| corpus), node]

// THEN TRY EVERY SPLIT OF THE NODE INTO TWO SUBSTRINGS //
subtract contribution of node from L(M| corpus), but leave node in data structure
store current L(M| corpus) and data structure
for all substrings pre and suf such that pre ◦ suf = node do

for subnode in [pre, suf] do
if subnode is present in the data structure then

for all nodes m in the subtree rooted at subnode do
increase count(m) by count(node)
increase L(corpus |M) and L(fµ1

, . . . , fµM
) if m is a leaf node

else
add subnode with count(node) into the data structure
increase L(corpus |M) and L(fµ1

, . . . , fµM
) accordingly

add contribution of subnode to L(sµ1
, . . . , sµM

)

if L(M| corpus) < code length stored in bestSolution then
bestSolution← [L(M| corpus), pre, suf]

restore stored data structure and L(M| corpus)

// SELECT THE BEST SPLIT OR NO SPLIT //
select the split (or no split) yielding bestSolution
update the data structure and L(M| corpus) accordingly
if a split was selected, such that pre ◦ suf = node then

mark node as a parent node of pre and suf
// PROCEED BY SPLITTING RECURSIVELY //
resplitnode(pre)
resplitnode(suf)
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of the two parts continues recursively and stops when no more gains in overall code
length can be obtained by splitting a node into smaller parts. After all words have been
processed once, they are again shuffled by random, and each word is reprocessed using
resplitnode. This procedure is repeated until the overall code length of the model
and corpus does not decrease significantly from one epoch to the next. (The threshold
value for when to terminate the search can be set using the -finish switch in the
Morfessor program. When the overall code length decreases less than the given value
from one epoch to the next, the search stops. The default threshold value is 0.005 bits
multiplied by the number of word types in the corpus.)

Every word is processed once in every epoch, but due to the random shuffling, the
order in which the words are processed varies from one epoch to the next. It would
be possible to utilize a deterministic approach, where all words would be processed in
a predefined order, but the stochastic approach (random shuffling) has been preferred,
because we suspect that deterministic approaches might cause unforeseen bias. If one
were to employ a deterministic approach, it seems reasonable to sort the words in order
of increasing or decreasing length, but even so, words of the same length ought to be
ordered somehow, and for this purpose random shuffling seems much less prone to
bias than, e.g., alphabetical ordering.

However, the stochastic nature of the algorithm means that the outcome depends
on the series of random numbers produced by the random generator. The effect of this
indeterminism can be studied by running the Morfessor program on the same data, but
using different random seeds. The random seed is set using the -rand switch. The
default random seed is zero.

5 Experiments

We report the results of two experiments carried out on Finnish and English data sets
of different sizes. In the first experiment (Section 5.2) we study the differences that are
obtained if the Morfessor model is trained on a word token collection (a corpus, where
a word can occur many times) compared to a word type collection (a word list or a
corpus vocabulary, where each distinct word form only occurs once). In the second
experiment (Section 5.3) we study the effect of using the gamma length prior with
different amounts of data.

Additionally, we report the measured memory consumption and running times of
the Morfessor program on a PC for some of the data sets (Section 5.4).

First, we briefly describe the data sets and evaluation measures used in the experi-
ments.
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5.1 Experimental setup

We are concerned with a linguistic morpheme segmentation task. The goal is to find
the locations of morpheme boundaries as accurately as possible. As a gold standard for
the desired locations of the morpheme boundaries, Hutmegs is used (see Section 5.1.2).
Hutmegs consists of fairly accurate conventional linguistic morpheme segmentations
for a large number of Finnish and English word forms.

5.1.1 Finnish and English data sets

The Finnish corpus consists of news texts from the CSC (The Finnish IT Center for
Science)2 and the Finnish News Agency (STT). The corpus contains 32 million words.
It has been divided into a development set and a test set, each containing 16 million
words.

For experiments on English we use a collection of texts from the Gutenberg project
(mostly novels and scientific articles)3, and a sample from the Gigaword corpus and the
Brown corpus4. The English corpus contains 24 million words. It has been divided into
a development and a test set, each consisting of 12 million words. The development
sets are utilized for selecting parameter values; in the current experiments the only
parameter concerned is the most common morph length used in connection with the
gamma length prior. The results that are reported are based on the test sets, which are
used solely in the final evaluation.

Typically, a comparison of different algorithms on one single data set size does
not give a reliable picture of how the algorithms behave when the amount of data
changes. Therefore, we evaluate our algorithm with increasing amounts of test data.
The amounts in each subset of the test set are shown in Figure 4a, both as number of
word tokens (words of running text) and number of word types (distinct word forms).
Figure 4b further shows how the number of word types grows as a function of the
number of word tokens for the Finnish and English test sets. As can be seen, for
Finnish the number of types grows fast when more text is added, i.e., many new word
forms are encountered. In contrast, with English text, a larger proportion of the words
in the added text has been observed before.

5.1.2 Morphological gold standard segmentation

The Helsinki University of Technology Morphological Evaluation Gold Standard (Hut-
megs) (Creutz and Lindén, 2004) contains morpheme segmentations for 1.4 million
Finnish word forms and 120 000 English word forms. The morpheme segmentations

2http://www.csc.fi/kielipankki/
3http://www.gutenberg.org/browse/languages/en
4The Gigaword sample and the Brown corpus are available at the Linguistic Data Consortium:

http://www.ldc.upenn.edu/.
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Figure 4: (a) Sizes of the test data subsets used in the evaluation. (b) Curves of the
number of word types observed for growing portions of the Finnish and English test
sets.

have been produced semi-automatically using the two-level morphological analyzer
FINTWOL for Finnish (Koskenniemi, 1983) and the CELEX database for English
(Baayen et al., 1995). Both inflectional and derivational morphemes are marked in the
gold standard. The Hutmegs package is publicly available on the Internet5. For full ac-
cess to the Finnish morpheme segmentations, an inexpensive license must additionally
be purchased from Lingsoft, Inc.6 Similarly, the English CELEX database is required
for full access to the English material7.

As there can sometimes be many plausible segmentations of a word, Hutmegs pro-
vides several alternatives when appropriate, e.g., English ‘evening’ (time of day) vs.
‘even+ing’ (verb). There is also an option for so called “fuzzy” boundaries in the
Hutmegs annotations, which we have chosen to use. Fuzzy boundaries are applied in
cases where it is inconvenient to define one exact transition point between two mor-
phemes. For instance, in English, the stem-final ‘e’ is dropped in some forms. Here
we allow two correct segmentations, namely the traditional linguistic segmentation in
‘invite’, ‘invite+s’, ‘invit+ed’ and ‘invit+ing’, as well as the alternative interpretation,
where the ‘e’ is considered part of the suffix, as in: ‘invit+e’, ‘invit+es’, ‘invit+ed’ and
‘invit+ing’.

5http://www.cis.hut.fi/projects/morpho/
6http://www.lingsoft.fi
7The CELEX databases for English, Dutch and German are available at the Linguistic Data Consor-

tium: http://www.ldc.upenn.edu/.
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5.1.3 Evaluation measures

As evaluation measures, we use precision and recall on discovered morpheme bound-
aries. Precision is the proportion of correctly discovered boundaries among all dis-
covered boundaries by the algorithm. Recall is the proportion of correctly discovered
boundaries among all correct boundaries. A high precision thus tells us that when
a morpheme boundary is suggested, it is probably correct, but it does not tell us the
proportion of missed boundaries. A high recall tells us that most of the desired bound-
aries were indeed discovered, but it does not tell us how many incorrect boundaries
were suggested as well. In order to get a comprehensive idea of the performance of a
method, both measures must be taken into account.

The evaluation measures can be computed either using word tokens or word types.
If the segmentation of word tokens is evaluated, frequent word forms will dominate in
the result, because every occurrence (of identical segmentations) of a word is included.
If, instead, the segmentation of word types is evaluated, every distinct word form,
frequent or rare, will have equal weight. When learning the morphology of a language,
we consider all word forms to be as important regardless of their frequency. Therefore,
in this paper, precision and recall for word types is reported.

For each of the data sizes 10 000, 50 000, and 250 000 words, the algorithms are
run on five separate subsets of the test data, and the average results are reported. Fur-
thermore, statistical significance of the differences in performance have been assessed
using T-tests. The largest data sets, 16 million words (Finnish) and 12 million words
(English) are exceptions, since they contain all available test data, which constrains the
number of runs to one.

5.2 Learning a morph lexicon from word tokens vs. word types

Different morph segmentations are obtained if the algorithm is trained on a collection
of word tokens vs. word types. The former corresponds to a corpus, a piece of text,
where words can occur many times. The latter corresponds to a corpus vocabulary,
where only one occurrence of every distinct word form in the corpus has been listed.

We use the Morfessor Baseline model variant (see Section 3.5) to study how these
two different types of data lead to different morph segmentations. In the Baseline, no
explicit prior pdf:s are used for modeling morph frequency or length.

Figure 5 shows how precision and recall of segmentation develop for the two ap-
proaches (word tokens vs. word types) with different amounts of data. The general
trend for both languages is that when a larger data set is utilized, precision increases
while recall decreases. Furthermore, for every data size, learning from word types
leads to clearly higher recall and only slightly lower precision than learning from word
tokens8. Table 2 shows the segmentation of some words segmented by the Baseline

8According to T-tests the differences between measured precision and recall values are statistically
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Figure 5: Comparison between the use of word tokens and word types as data for the
Morfessor Baseline algorithm. The evaluation is performed on Finnish and English
data sets of different sizes. (The exact sizes are reported in Figure 4a.) Arrows indicate
the direction of increasing data size. The data points are averages over five runs on
different subsets of the test data, except for the largest data set, where only one set was
available (the entire test data). The standard deviations are shown as intervals around
the data points. The graphs show that word types are generally a better choice, because
the points on the word type curves lie on a higher level of recall and on almost as high
a level of precision as the corresponding points on the word token curves.

algorithm when applied to the largest data sets, using both word tokens and word types
as input. As can be seen, splitting is less common in the word token approach. If word
tokens are used as data, common word forms tend to be added to the morph lexicon
as entries of their own, regardless of whether a sensible morph segmentation could be
found for them. This solution is of course the optimal one if one wishes to code a large
corpus (instead of a vocabulary). But this is not optimal, if one wishes the method to
be able to identify the inner structure of words regardless of how frequent they are.

We conclude that to obtain the linguistically best segmentation, it is better to learn
using word types rather than word tokens. Furthermore, in order to obtain higher
precision, the size of the data set can be increased.

5.3 Evaluation of the explicit gamma length prior

To study the effect of the explicit gamma length prior (Section 3.5.4), we compared
the Morfessor Baseline-Length model variant to the Morfessor Baseline model variant
which implicitly assumes an exponential length prior (Section 3.5.3). The experiments

significant at the 0.01 level for both Finnish and English and all tested data sizes.
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Table 2: Morph segmentations learned by the Morfessor Baseline variant for a few
Finnish and English words. The frequency of the word forms in the data is indicated
as well as the segmentation produced both when the word frequencies are utilized in
the training (“wtoken”) and when not (“wtype”). The Finnish examples are inflections
of the word ‘hellä’ (tender, affectionate). The segmentations in the “wtype” column
happen to be correct, except for the plural marker ‘i’ that has been attached to the stem
in the two last words.

Finnish English
freq wtoken wtype freq wtoken wtype

41 hellä hellä 624 tender tender
6 hellää hellä + ä 12 tenderer tender + er
2 he + llään hellä + än 25 tenderest tender + est
1 hellä + ksi hellä + ksi 1 tender + heartedness tender + hearted + ness
6 hellänä hellä + nä 3 tender + ize tender + ize

42 hellästi hellä + sti 124 tenderly tender + ly
2 helli + ksi helli + ksi 427 tenderness tender + ness
3 hellinä helli + nä 1 tenderness + es tender + ness + es

were carried out on several data set sizes using both Finnish and English word types.
Figure 6 depicts the resulting precisions and recalls for each experiment. Evidently

the use of an appropriate length prior improves the results markedly in particular with
small data sets. With larger data sets the effect of the gamma prior is weaker. Nev-
ertheless, the differences are statistically significant for all tested data set sizes (T-test
level 0.01). In general the tendency that prior information is most useful with small
data sets, is to be expected, since the more data there is, the more one can rely on the
data to speak for itself.

5.4 Memory consumption and running time estimates

The memory consumption and running time of the Morfessor 1.0 program are roughly
proportional to the number of word types in the data. The statistics of running the
program on some data sets have been collected into Table 3. The measurements have
been obtained on a PC with an AMD Duron 900 MHz processor and 512 MB RAM. In
short, the memory consumption is moderate, but the running time for very large data
sets may seem long. Note that the program is a Perl script that is not precompiled.
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Figure 6: Evaluation of the use of a gamma distribution as a prior for morph length
as opposed to using an implicit exponential length distribution. Arrows indicate the
direction of increasing data size and the intervals around the data points are standard
deviations. A gamma distribution for morph length is beneficial especially for small
data sizes, because the “gamma curves” start off at a higher level of precision than the
“exponential curves”.

6 Conclusive remarks

We hope that the Morfessor program will be useful to other researchers in their work.
Comments and questions are welcome. Currently, only the Baseline and Baseline-
Length versions of Morfessor exist as public resources. The later models (Morfessor
Categories-ML and Categories-MAP) may be released in the future. By supplying pub-
lic benchmarking resources, we wish to contribute to the promotion of research in the
fascinating field of unsupervised morphology discovery and morpheme segmentation.
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special thank goes to Teemu Hirsimäki for commenting and modifying the pseudo-
code part of the description of the search algorithm. Furthermore, we would like to
thank Krister Lindén for his continuous interest towards our work and his valuable
feedback.

22



Table 3: Measured memory consumption and running times for some Finnish and En-
glish data sets. The sizes of the data sets are indicated as both the number of word
tokens and the number of word types in the data. The figures marked with an as-
terisk (*) were obtained using the -savememory switch of the Morfessor program.
Compared to the corresponding figures that result from not using the memory saving
option, the memory consumption is lower, but the running time is considerably longer.

Language Word tokens Word types Memory consumpt. Running time
English 250 000 20 000 8 MB 7 min.
Finnish 250 000 70 000 19 MB 35 min.
English 12 000 000 110 000 25 MB 35 min.
Finnish 16 000 000 1 000 000 220 MB 8 hours
Finnish 16 000 000 1 000 000 160 MB* 15 hours*
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A Derivation of a noninformative frequency prior

Suppose that there are a total number of N morph tokens in the segmented corpus
and that these morphs represent M different morph types. What is the probability of
coming up with a particular frequency distribution, i.e., a set of M frequencies that
sum up to N?

We further suppose that the probability distribution is a noninformative prior, that
is, all frequency distributions are equally likely. It follows that the probability of one
particular distribution is one divided by the number of possible ways of choosing M

positive integers (the M frequencies) that sum up to N .
Imagine that the N morph tokens are sorted into alphabetical order and each morph

is represented by a binary digit. Since some morphs occur more than once, there will
be sequences of several identical morphs in a row. Now, initialize all N bits to zero.
Next, every location, where the morph changes, is switched to a one, whereas every
location, where the morph is identical to the previous morph, is left untouched. There
are

(

N
M

)

possibilities of choosing M bits to switch in a string of N bits. However, as
the value of the first bit is known to be one, it can be omitted, which leaves us with
(

N−1
M−1

)

possible binary strings. Therefore the probability of the frequency distribution
is:

P (frequency distribution) = 1/

(

N − 1

M − 1

)

=
(M − 1)!(N −M)!

(N − 1)!
. (15)

B Derivation of a Zipfian frequency prior

Zipf has studied the relationship between the frequency of a word, f , and its rank, z.
The rank of a word is the position of the word in a list, where the words have been
sorted according to falling frequency. Zipf suggests that the frequency of a word is
inversely proportional to its rank. Mandelbrot has refined Zipf’s formula, and suggests
a more general relationship; see, e.g., (Baayen, 2001):

f = C(z + b)−a, (16)

where C, a and b are parameters of a text.
Let us derive a probability distribution from Mandelbrot’s formula. The rank of a

word as a function of its frequency can be obtained by solving for z from Eq. 16:

z = C
1

a f−
1

a − b. (17)

Suppose that one wants to know the number of words that have frequency f rather
than the rank of a word with frequency f . We denote this frequency of frequency f by
n(f). An estimate for n(f) is obtained as the difference in rank between a word with
frequency f and a word with frequency f + 1:

n(f) = z(f)− z(f + 1) = C
1

a

(

f−
1

a − (f + 1)−
1

a

)

. (18)

25



A probability distribution for f is obtained by dividing n(f) by the total number of
word tokens, which equals the sum of frequencies over all possible frequencies. We
denote the highest frequency by F . Thus,

P (f) =
n(f)

∑F
f ′=1 n(f ′)

=
C

1

a

(

f−
1

a − (f + 1)−
1

a

)

∑F
f ′=1 C

1

a

(

f ′−
1

a − (f ′ + 1)−
1

a

)
=

f−
1

a − (f + 1)−
1

a

1− (F + 1)−
1

a

. (19)

When the highest frequency F is assumed to be big, we can make the approximation
F ≈ ∞ without any loss of accuracy that is of practical significance:

P (f) ≈ lim
F→∞

f−
1

a − (f + 1)−
1

a

1− (F + 1)−
1

a

= f−
1

a − (f + 1)−
1

a . (20)

Rather than setting a value for the parameter a we want to shape the probability
distribution according to our prior belief of the proportion of hapax legomena (h), i.e.,
the proportion of words occurring only once in the corpus:

h = P (1) = 1−
1

a − 2−
1

a = 1−
(1

2

)
1

a . (21)

Substituting a in Eq. 20 by h yields:

P (f) = f log
2
(1−h) − (f + 1)log

2
(1−h). (22)

The exponent log2(1 − h) is always negative. Therefore the resulting probability dis-
tribution follows a power law and it is represented by a straight line when plotted in
a graph with logarithmic scales on both axes. We assume that the derived probability
distribution applies to morphs as well as to words.

C Probability of the frequency of individual morphs

It is difficult to compare the implications of the Zipfian frequency prior in Eq. 22 to
those of the noninformative prior in Eq. 15. The Zipfian prior separately assigns a
probability to the frequency of each morph, whereas the noninformative prior at once
assigns a probability for the whole frequency distribution. In the following we will
derive an approximation of the probability of the frequency of an individual morph in
the noninformative prior scheme. This facilitates a comparison between the Zipfian
and noninformative prior approaches.

Suppose that there are N morph tokens and M morph types. Next, f occurrences
of a new morph are added, which increases the number of morph tokens to N + f

and the number of morph types to M + 1. We compute the conditional probability of
adding a morph with frequency f when the initial position (N, M ) is given:

P (f |N, M) =
P (f, N, M)

P (N, M)
=

P (freq. distr.(N + f, M + 1))

P (freq. distr.(N, M))
. (23)

26



According to Eq. 15 this equals:

P (f |N, M) =

(

N − 1

M − 1

)

/

(

N + f − 1

M

)

=
(N − 1)!M !(N −M + f − 1)!

(N + f − 1)!(M − 1)!(N −M)!
.

(24)
The factorials are rewritten using Stirling’s approximation: n! ≈ (n/e)n

√
2πn:

P (f |N, M) =
(N − 1)N−1/2MM+1/2(N −M + f − 1)N−M+f−1/2

(N + f − 1)N+f−1/2(M − 1)M−1/2(N −M)N−M+1/2
. (25)

The factors that are constant with respect to f are rewritten as C1:

P (f |N, M) = C1 ·
(N −M + f − 1)N−M+f−1/2

(N + f − 1)N+f−1/2
. (26)

For f values that are much smaller than N and M approximately the following holds
for the bases: N −M + f − 1 ≈ N −M and N + f − 1 ≈ N . Thus,

P (f |N, M) = C1 ·
(N −M)N−M+f−1/2

NN+f−1/2
= C1 ·

(N −M)N−M−1/2(N −M)f

NN−1/2Nf
. (27)

The factors that are now constant with respect to f are combined with C1 into C2:

P (f |N, M) = C2 ·
(N −M)f

Nf
= C2 ·

(N −M

N

)f
. (28)

This results in an exponential distribution. That is, the probability decreases exponen-
tially with the value of the frequency. (This only applies to f values that are small
compared to the total number of tokens N and types M .) The exponential distribution
can be directly compared to the power-law distribution that results from applying the
Zipfian prior in the previous section.
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