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Abstract—Gesture recognition using RGB-D sensors has cur-
rently an important role in many fields such as human–computer
interfaces, robotics control, and sign language recognition. How-
ever, the recognition of hand gestures under natural conditions
with low spatial resolution and strong motion blur still remains
an open research question. In this paper we propose an online
gesture recognition method for multimodal RGB-D data. We
extract multiple hand features with the assistance of body and
hand masks from RGB and depth frames, and full-body features
from the skeleton data. These features are classified by multiple
Extreme Learning Machines on the frame level. The classifier
outputs are then modeled on the sequence level and fused together
to provide the final classification results for the gestures. We apply
our method on the ChaLearn 2013 gesture dataset consisting of
natural signs with the hand diameters in the images around 20–40
pixels. Our method achieves an 85% recognition accuracy with
20 gesture classes and can perform the recognition in real-time.

I. INTRODUCTION

Human action and gesture recognition have been popular
research topics for the last few decades [1], [2]. The research
has mainly been conducted based on image and video data,
with some attention on motion capture. The RGB image
is, however, vulnerable e.g. to illumination variation and to
cluttered backgrounds. On the other hand, motion capture
systems provide very accurate skeletal data, but the high cost
of the equipment and software and the mobility limitations
prevent wide application of the technology. Nowadays, the
commodity RGB-D (RGB and depth) sensors, such as the
Microsoft Kinect, which provide depth information along with
the standard RGB video, are widely used e.g. in gaming,
HCI [3], and robotics [4] due to the portability and low
cost. Several algorithms have been developed to extract the
human skeleton from the depth maps in real-time [5]. These
algorithms classify a large 3D point cloud into about a dozen
human skeleton joint coordinates and thus provide analogous,
albeit noisier, data compared to motion capture.

Previously the research on gesture recognition has often
been based on only a single data modality, such as the RGB
frames, depth information, or the skeleton model. As the
availability of multiple data sources has recently increased,
multimodal methods have started to show their advantages over
a single data modality. In our work, we use multimodal data
from the skeleton model, RGB, and depth through fusion in a
common gesture recognition framework.

Gesture recognition systems can be roughly divided into
body gesture and hand gesture recognition systems. As the

name implies, the former systems focus on whole body
movements and the latter ones concentrate on hand config-
urations and movement of the hands and arms. Hand gesture
recognition can further be divided into two classes, static and
dynamic gesture recognition. For static recognition, each frame
represents a hand gesture, for example an OK sign, and by
processing one frame the system recognizes one gesture. On
the other hand, dynamic gestures are composed of multiple
frames, and these series of frames containing hand information
form together one hand gesture, such as waving hand. In other
words, a dynamic gesture can be considered as a combination
of multiple static gestures, which makes the dynamic gesture
recognition more challenging.

Dynamic gesture recognition is often used for human–
computer interfaces, gaming, and recognition of natural ges-
tures and sign language. Compared to control applications,
where the performer can often control the speed of the hand
movement to ease the recognition, e.g. the signing of sign
language is performed in a faster and more natural way, which
easily results in more motion blur (see Fig. 1). In our work we
build a dynamic hand gesture recognition system for language-
related applications using RGB-D data. This is a challenging
problem due to the complexity of the visual cues, uncontrolled
setting, and low spatial and temporal resolution [6].

A lot of research has been conducted on hand gesture
recognition. The main approaches can be roughly grouped into
appearance-based and model-based modeling [7]. Especially
recently, due to the depth information being easily accessible,
the model-based methods are gaining more attention [8], [9].
However, in almost all studies the hands are presented in
good lighting conditions and in relatively high resolution: they
either dominate the image [10], or are at least in the range
of 100×100 pixels [11]. In order to segment the hands, skin
color is often used as a cue with RGB data [8], [12]; in
some situations, the gestures are constrained by stretching the
hands far front from the body so the hands can be easily
segmented by depth information [13]. In our task, the gestures
are performed in a natural way in varying lighting conditions
and with the hand regions of about 20–40 pixels in width and
height, as illustrated in Fig. 1. In this paper, we propose the use
of simple appearance-based hand features in online recognition
of natural dynamic hand gestures based on RGB-D sensor
data. This paper is a continuation of our initial experiments in
[14]; here we provide a comprehensive evaluation of different
appearance-based hand features, propose hand segmentation,
and show considerably improved recognition results.



(a) Left to right, top to bottom; the images shows a series of frames sampled
from an Italian anthropological sign: cosa ti farei (what would you do)

(b) A closer look of the left hand with double sampling rate from the above
series, each image is 40×40 pixels, and the corresponding depth-based masks

Fig. 1: Example of a dynamic gesture (an Italian cultural sign)

Hidden Markov Models (HMM), Conditional Random
Fields (CRF) and Support Vector Machines (SVM) are popular
classifiers often used in gesture recognition systems. These
algorithms require, however, high computation resources and
a lot of data for training the models. Online recognition of
the gestures can also be difficult due to the computational
requirements of the evaluation of the classifiers, especially
in the case of SVMs. In our work we use extreme learning
machines (ELM) [15] in a frame-based recognition scheme
with simple and low-complexity features, enabling gesture
recognition in real-time. Furthermore, the ELM model training
for one feature only requires a couple of minutes with datasets
of realistic size, which may be considered as “online” training
for many applications.

II. RELATED WORK

Hand gesture recognition using RGB-D data has recently
gained more focus in the computer vision community [10],
[11], [16], [17]. In many applications, in order to be able to
extract clear hand shapes or features, the hands are required
to occupy a significantly large portion of the input image. For
example, in [10], 19 static hand gestures are recognized for
robot control. The hand is separated from the background using
the depth image with depth thresholding and is represented
by the hand contour and by the tips of the fingers. Similarly,
[13] segments the hand also by depth information, with the
hand restricted to lie within a certain depth range and be
outstretched from the body. The contour and the tips of the
hand are extracted and nine static hand gestures are recognized.

As the resolution of the hand size gets smaller, it becomes
more challenging to robustly detect and segment the hands. In
some solutions, certain accessories are used to facilitate the
recognition. In [18], the authors claim that it is impossible to
recognize hand gestures over one meter distances due to the

low resolution of the Kinect sensor, so they use an additional
HD camera and color gloves. The contour of static hand
gestures is extracted as a polygon and classified by polygon
matching, with 11 static gestures in the test set. In [16], the
user is required to wear a black belt on the wrist to separate the
hand from the arm, and the shape of the hands is described as a
time-series curve. Finger Earth Mover’s Distance is then used
to measure the dissimilarity between 10 static hand shapes.

Instead of extracting the shape of the hands as features,
some feature extraction methods are directly applied to the
bounding box of the hand. In [11], a Gabor filter is applied on
the hand bounding box and classification with 26 static hand
gestures is performed with random forests.

Dynamic gesture recognition is closely related with sign
language recognition. [19] uses a depth sensor and an action
graph to classify between 12 dynamic American Sign Lan-
guage (ASL) signs with a reported accuracy of 87.7%. A cell
occupancy feature and a silhouette feature are extracted from
the hand region. In [17], 19 ASL signs are recognized by a
combination of Kinect skeleton models and hand features with
an accuracy of 76.12%. The angular information between the
joints is extracted from the skeleton, and each hand is modeled
by a mixture of six Gaussians. PCA is then applied onto the
72 MoG parameters to reduce the dimensionality of the hand
feature to 20 dimensions.

III. HAND FEATURES

Gesture and action recognition based purely on skeletal
data has proved to be useful in many situations [20], [21].
The skeletal features are nevertheless not able to capture hand
configurations, which often represent meaningful linguistic
symbols. Examples shown in Fig. 2 illustrate one case where
the skeletal features are not alone sufficient to distinguish
between the gestures.

Fig. 2: Different gestures with similar skeleton alignment

The tracking of the hands in uncontrolled settings and
with natural gestures is a challenging task due to high di-
mensionality of the hand configuration, illumination variation,
self-occlusion, and motion blur. Several methods (e.g. [8])
require robust skin color segmentation which can be difficult in
uncontrolled environments, especially if no initialization can
be performed. In this work, we use the 2D hand locations
provided by the Kinect skeleton model and extract features
from fixed hand regions centered at the hand locations. We
divide the hand region into a regular grid of pixel cells. To
compensate for the inaccuracies in the determination of the
hand locations, we use reasonably large cells of pixels.



A. Static Hand Features

Histograms of oriented gradients (HOG) [22], originally
proposed for human pedestrian detection, have recently been
successfully used in many other applications as well. In this
work we extract HOG features according to [23], resulting in
a 31-dimensional feature for each cell.

Local binary patterns (LBP) [24]. We extract LBPs with
an 8-neighborhood and a radius of 2 pixels, and perform
the uniform mapping of the LBP labels, resulting in a 59-
dimensional histogram feature for each cell.

Gabor filter based hand feature (Gab.), extracted according
to [11]. The hand images are convolved with a bank of Gabor
filters at 4 scales and 4 orientations. A Gaussian function
centered at the center of each cell is applied on the convolved
image and the values are summed across the whole image to
form each element of the feature vector. The dimensionality
of the feature is 16 for each cell in the used grid.

B. Hand Segmentation

Robust segmentation of the hand regions for dynamic hand
gesture recognition is challenging due to several aspects. As
already mentioned, skin color segmentation can be challenging
in an uncontrolled setting. We therefore use the depth informa-
tion to obtain segmentations of the hands. The body mask is
obtained by segmenting the full body of the performer of the
gestures from the background. This is straightforward provided
that there is enough depth difference between the performer
and the background.

For obtaining the hand mask, we assume that the corre-
sponding hand is the closest object to the RGB-D sensor within
the considered hand region. We then mark all pixels with depth
value less that a certain threshold to belong to the hand object.
As a post-processing step, we use morphological opening and
closing to smooth the mask boundaries (see Fig. 1).

C. Temporal Hand Features

We also extract two kinds of temporal hand features.
HOG3D [25] is a spatio-temporal descriptor of histograms of
3D gradient orientations. The binning of the gradients is done
in polar coordinate space. We use the default values of 5 and
3 bins for the xy and xt planes, respectively, resulting in a
15-dimensional feature for each cell.

Histogram of oriented 4D normals (HON4D) [26] was
recently proposed to describe a depth sequence as a histogram
of surface normal orientations in 4D. The holistic descriptor
described in [26] represents the whole sequence, whereas we
are extracting frame-level descriptors. The authors however
propose also a local HON4D descriptor extracted around
skeletal joints, which is the variant we use in this paper. The
dimensionality of the descriptor is 120.

IV. GESTURE RECOGNITION FRAMEWORK

In this section, we provide a brief description of the full
gesture recognition framework used in the experiments of this
paper. See Fig. 3 for a block diagram of the framework. A
more complete description of the framework is given in [14].

A. Skeletal Features

We extract two features from the skeletal data: normalized
3D joint positions and pairwise distances between joints.

Normalized 3D Joint Positions (NP). The skeletal data pro-
vides 3D joint positions of the whole body. The 3D coordinates
of these joints are, however, not invariant to the position and
size of the actors. Therefore we transform all skeletons into
the same orientation by aligning the plane formed by the root
and the hips from all frames into the same plane [20]. To make
the feature size-invariant, we also normalize the skeletons so
that the sum of the distances of all connected joints is one.
For gestures related to whole body movement, the whole set
of joints from the above feature can be used; for gestures only
with partial body movement, such as hand and arm gestures,
a subset can be selected. In this work, we use the following
upper-body joints: the spine, shoulder center, head, shoulders,
elbows, wrists and the hands.

Pairwise Distances (PD). We also extract the pairwise dis-
tances between the joints from the skeletal data. The distances
form a vector which is then L1-normalized to one. In this
work, the used joints include the above 11 joints and the hip
center.

Temporal Differencing. A gesture is formed by a sequence
of frames. In order to preserve temporal information in the
sequence, we calculate the temporal difference of features in
the sequence using a fixed temporal offset [20]. The final
skeletal features (NP and PD) are obtained by concatenating
the original features and the temporal differences.

B. Early Fusion

Each kind of feature has its own advantages to capture
distinctive information from the original data whereas a com-
bination of features can compensate each other and enforce the
distinctiveness of the features. Therefore, in the early fusion
stage, we concatenate two or more features before the frame-
level classification.

C. Frame-Level Classification

Let us assume there are M gestures A = {A1, . . . , AM}
and let us define cm ∈ {0, 1} , 1 ≤ m ≤ M . If cm is
one, then the sequence belongs to the gesture Am, otherwise
it does not. The row vector y = [c1 . . . cm . . . cM ]
indicates the gesture that the sequence belongs to. Each gesture
sequence s is represented by the features of its frames, i.e. s =
{x1, ..., xk, ..., xK}, where K is the number of frames. Now,
(xk, y) form K training input–output pairs for the classifier.

The Extreme Learning Machine (ELM) [15] belongs to
the class of single-hidden layer feed-forward neural networks.
Traditionally such networks have been trained using a gradient-
based method such as the backpropagation algorithm. In ELM,
the hidden layer weights and biases do not need to be learned
but are assigned randomly, which makes the learning extremely
fast. The only unknown parameters are the output weights
which can be obtained by finding a least-squares solution.

Given P training samples {xi, yi}Pi=1, where xi ∈ Rn and
yi ∈ RM , the standard ELM model with L hidden neurons
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Fig. 3: The framework of the dynamic gesture recognition system

can be represented as

yi = f(xi) =

L∑
j=1

βjg(ωj · xi + bj) , (1)

where g(·) is a nonlinear activation function, βj ∈ RM are the
output weights, ωj ∈ Rn is the weight vector connecting the
input layer to the jth hidden neuron and bj is the bias of the jth
hidden neuron. Both ωj and bj are assigned randomly during
the learning process. With Y = [yT

1 yT2 · · · yT
P ]T ∈ RP×M

and β = [βT
1 βT

2 · · ·βT
L ]T ∈ RL×M , Eq. (1) can be written

compactly as
Hβ = Y , (2)

where the hidden layer output matrix H is

H =

g(ω1 · x1 + b1) · · · g(ωL · x1 + bL)
...

. . .
...

g(ω1 · xP + b1) · · · g(ωL · xP + bL)


P×L

. (3)

If L = P , the matrix H is square and invertible, and the
model can approximate the P training samples with zero error.
However, in most cases the number of hidden neurons is much
smaller than the number of training samples, i.e. L� P , and
we obtain the smallest norm least-squares solution of (2) as

β̂ = H†Y , (4)

where H† is the Moore-Penrose generalized inverse of H.

D. Sequence-Level Gesture Recognition

Given a test sequence {x1, . . . , xq, . . . , xQ}, ELM provides
the output weight (Eq. (1)) of each class m for each frame.
We convert the outputs into probabilities with logistic sigmoid

p(cm = 1|xq) =
1

1 + exp(−γyqm)
, (5)

where yqm is the mth component of yq .

We aggregate the frame-level probabilities to form the
sequence-level classification result using a function dm :

RQ → R. We use here the weighted arithmetic mean

dm =

Q∑
q=1

wq p(cm = 1 | xq) (6)

where the weights wq are obtained from a normalized Gaus-
sian distribution, wq = 1

ZN (q; Q
2 , σ

2), normalized so that∑Q
q=1 wq = 1.

E. Late Fusion

The final stage in the recognition framework is late fusion,
where we use the geometric mean to fuse the sequence-level
classification outputs of the different subsets of the feature-
wise and early-fusion results, d̄m =

∏
j d

j
m, where djm is the

sequence-level classification result for the jth feature.

Finally, we classify a test sequence by

ĉm =

{
1 if m = m′ where m′ = arg max

i
d̄i

0 otherwise .
(7)

V. EXPERIMENTS

In this section, we describe gesture recognition experiments
performed with the ChaLearn Multi-modal Gesture Recogni-
tion Challenge 2013 dataset [27], [6]. Our setup here differs
from that of the common challenge as we consider here gesture
recognition only, i.e. we assume that the start and end points of
the gestures are known, and we do not use the audio modality.

A. Settings

1) ChaLearn 2013 dataset: The ChaLearn 2013 dataset
consists of M = 20 Italian cultural or anthropological signs,
examples of which are shown e.g. in Fig. 1 and Fig. 2, recorded
with a Kinect sensor. The data consists of multiple modalities:
RGB, depth maps, skeleton models, and audio. Our focus in
this work is on visual gesture recognition so we omit the audio
modality. This however makes our results rather incomparable
to the challenge submissions, as the performance of the audio
modality was found to be superior to the other modalities [28].
The dataset contains three parts: training (7754 gestures),
validation (3362 gestures), and test data (2742 gestures). The



TABLE I: Results with different hand features

static features temporal features
no mask body mask hand mask

grid HOG LBP Gab. HOG LBP Gab. HOG LBP Gab. HOG3D HON4D

2×2 59.9 50.9 44.9 62.5 59.3 50.9 68.1 59.5 55.3 54.3
3×3 64.3 50.8 50.1 65.0 60.7 55.0 68.9 59.5 57.6 61.1 63.5∗

4×4 65.0 - 49.3 64.7 - 54.8 67.1 - 58.5 60.8

gestures are performed by 27 actors, and each part of the
dataset is performed by a different set of actors. We use about
6000 gesture sequences from the training data for learning our
models. As our test set, we use the challenge validation data.
This is due to the lack of start and end points for the gestures
in the actual provided test data of the challenge.

2) Determination of the dominant hand: As the ChaLearn
2013 gestures are cultural signs, most of them can be per-
formed with either hand as the dominant one. Moreover, in
some gestures the performers do use both hands but generally
in a symmetric way. We therefore determine the dominant
hand for each gesture instance by measuring the total scope
of movement in 3D of both hands. The hand with a larger
movement scope is marked as the dominant one. We train
separate ELMs for the left and right dominant hands, and
during classification select the used ELM models based on
similar scope analysis of the current gesture. This was shown
to improve recognition accuracy in [14].

3) Parameters: In all experiments, we use fixed hand re-
gions of 40×40 pixels centered on the hand locations provided
by the skeleton model. The region is divided into either 2×2,
3×3, or 4×4 cells. For ELM, the number of hidden neurons
L is the only parameter. We also have the parameters γ
and σ2, corresponding to the slope of the logistic sigmoid
in (5), and the variance of the Gaussian weighting function
in (6), respectively. In these experiments, we use the values
L = 1500, γ = 1, and σ = 0.2Q. As the temporal offset of
the skeleton features (Section IV-A), we use an offset of six
frames, corresponding to 300 milliseconds.

B. Results

The used gesture recognition framework (Section IV) sup-
ports any number of parallel features to be used for recogni-
tion. The results of using the different hand features as single
features are shown in Table I. The LBP features were not
calculated for 4×4 cells due to the high dimensionality of the
features, and the HON4D feature was extracted without any
cell structure. First, we can observe that, for HOG and Gabor
features, using 3×3 cells seems to be a good compromise of
accuracy and feature dimensionality: the results are improved
over 2×2 cells, but further increasing the number of cells does
not improve the accuracy. For LBPs, using 2×2 cells seems
to be quite enough. Second, the hand segmentation is clearly
beneficial. The recognition accuracies with the hand masks
obtained with depth thresholding are higher than without the
masks. Interestingly, the body mask seems to be sufficient for
LBP features. The temporal features HOG3D and HON4D are
not superior to the static features, making it quite hard to justify
the extra complexity.

TABLE II: Selected fusion results of skeletal and hand fea-
tures; the symbols “‖” and “+” denote early and late fusion

used features accuracy

NP 71.5
PD 70.4
NP‖PD 73.5
NP+PD 73.1

NP+PD+HOGha
3×3 82.9

NP+PD+LBPbo
3×3 79.5

NP+PD+HOG3D3×3 80.4
NP+PD+HON4D 80.1

used features accuracy

NP+PD+HOGha
3×3+LBPbo

3×3 83.7
NP+PD+HOGha

3×3+
85.3

HOG3D3×3+HON4D

NP‖HOGha
3×3 82.7

NP‖PD‖HOGha
3×3 83.9

NP‖PD‖LBPbo
3×3 78.9

NP+HOGha
3×3+HOG3D3×3+

85.5
(NP‖PD‖HOGha

3×3)

A selected set of results using early, late, and both feature
fusion methods are shown in Table II. The baseline of using
only (concatenated) skeletal features obtains an average accu-
racy of 73.5%. A considerable improvement can then be ob-
tained by including just one hand feature; the HOGha

3×3 feature1

with the highest single-feature accuracy is a natural choice.
With either an early or late fusion strategy, this raises the
accuracy to about 83–84%. Rather small further improvements
can then be obtained by including more features. The overall
highest accuracy of 85.5% is obtained by using several features
and both early and late fusion. The HOG features perform
consistently better than the LBP and Gabor features, but the
latter can still be beneficial in fusion in some cases.

As mentioned in Section V-A, due to the use of the vali-
dation set ground truth, comparing our results to the challenge
evaluation is purposeless. We can however compare our results
to those of the winners of challenge, as they provide their
recognition results also for the validation set in [28]. The
winners’ recognition system was based on audio and skeletal
information. They used MFCC features and Gaussian HMMs
for audio, and a Dynamic Time Warping based classifier for
the skeletons. For the validation set, they report accuracies
of 60.0%, 93.5%, and 99.6% for the skeleton features, audio
features, and feature fusion, respectively.

The experiments are conducted in on a Intel(R) Xeon(R)
CPU at 3.3 GHz and 16 GB of memory. For example, Table II
shows that the early fusion of NP, PD and HOGha

3×3 give a
reasonable trade off between accuracy and complexity. The
feature extraction of NP, PD, and HOG takes serially about
25 milliseconds and the classification by a single ELM is
about 0.1 ms per frame, therefore the recognition can be
accomplished in real time. Furthermore, in this configuration
only one ELM is needed for each hand, which corresponds to
about 1 to 3 minutes required to train the ELM classifiers for
the concatenated features for the whole training dataset.

VI. CONCLUSIONS

We approach the problem of online dynamic gesture
recognition from the viewpoint of static pose recognition
and use ELM as a standard multi-class classifier for frame-
level classification. The results are then aggregated into the
sequence level by weighted averaging. This approach provides
an adaptive and fast method for gesture recognition that has
also been successfully applied to full-body motion capture

1The superscript and subscript refer to the used mask and cell structure.



action classification with a large number of classes [20]. In
this paper, we study the usefulness of simple appearance-
based hand features in the recognition of natural dynamic hand
gestures in difficult conditions. Advanced 3D hand models,
such as in [8], undoubtedly have the potential to provide
more precise information about the hand configuration, but
are challenging to apply in an uncontrolled, temporally and
spatially low-resolution setting.

The ChaLearn 2013 dataset used in this work contains ges-
tures that are difficult to separate based on the skeleton model
alone, and the introduced Gabor, LBP and HOG based features
can provide useful information about the hand configurations.
The feature fusion experiments show that the hand features
indeed can increase the recognition accuracy even though the
used skeletal features were slightly more accurate as single
features on average. The dataset contains relatively many
gestures and is quite challenging for visual-only approaches.
The temporal hand features did not considerably improve the
results in this study, so the simpler image-based features might
be preferable especially in online recognition setups.

In this work, we have limited the discussion to closed
gesture recognition, that is, we have assumed that the start
and end points for the gestures are known and that each
performed gesture belongs to exactly one of the prespecified
gesture classes. Generally, in an online setup, this is not
the case and we have to perform both temporal gesture
segmentation or gesture spotting and thresholding to reject
non-gestures and gestures that do not belong to any of the
known gesture classes. There are many proposed approaches
for both problems, but they are still largely unsolved. The basis
of our method, i.e. static multi-class gesture classification on
the frame level, would however suggest that our method can
easily be adapted into the sliding-window continuous gesture
recognition framework. The proposed method is also readily
applicable to sign language recognition.
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