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Summary 

•  Situation: We study event sequences 
–  Sequence of labels, e.g., words or amino acids 
–  (A, C, T, G, G, C, G, G, A, T, T, A) 

•  Aim: Find subsequences where a given event is 
surprisingly frequent or infrequent 

 
•  Subsequence = part of a long event sequence 

•  Surprising = improbable, assuming no structure 
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Example: text analysis 
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Burstiness measure 
[Altmann et al. 2009] 



Some basics 

•  Approach is based on statistical significance testing 

•  The null hypothesis is that the event probability is p 

•  Given a random subsequence of length m with count k 
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Problem setting 

•  Basic procedure: 
 low p-value à significant structure 

•  However, we analyse all subsequences of a given length m 
 
•  Account for multiple hypotheses to prevent spurious results 
 
•  Family-wise error rate control: 
       Pr(FP > 0) ≤ α 
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Declared significant 
No Yes 

Null 
hypothesis 

True TN FP 
False FN TP 



Traditional solutions 

•  Apply post-hoc correction (Hochberg’s procedure) 
 à Low power, does not account for dependencies 

 
•  Or, use randomisation 

 à Computationally demanding 

•  Alternative proposed in paper: analytical upper-bound 
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The dependency structure 

•  Full sequence:  

•  Sequence 1: 
•  Sequence 2: 
•  … 
•  Sequence n-m+1: 

•  Test statistic 

•  FWER adjusted p-value: 
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Zi,m = Xi +…+ Xi+m−1

X1,…,Xm( )
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X1,…,Xn( ) : Xi ∈ 0,1{ },  Pr Xi =1( ) = p



Approximation 

•  Computing this exactly is computationally costly 

•  Approximation: 
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= Pr {Z1,m ≥ k}( )+Pr {Z2,m ≥ k}∩{Z1,m < k}( )
+Pr {Z3,m ≥ k}∩{Z2,m < k}∩{Z1,m < k}( )+…
≤ Pr {Z1,m ≥ k}( )+ (n−m) ⋅Pr {Z2,m ≥ k}∩{Z1,m < k}( )



Upper bound 

•    

•  Binomial and cumulative binomial can be computed in 
O(1) time [Loader, 2000] 

•  See paper for upper bound in low-frequency direction 
and for subsets of all subsequences 
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pH = (n−m) ⋅Pr {Z2,m ≥ k}∩{Z1,m < k}( )+Pr {Z1,m ≥ k}( )
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Uniformity/Power 
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Uniform distribution
m = 100, p = 0.001
m = 100, p = 0.01
m = 100, p = 0.1
m = 1000, p = 0.001
m = 1000, p = 0.01
m = 1000, p = 0.1
m = 10000, p = 0.001
m = 10000, p = 0.01
m = 10000, p = 0.1



Uniformity Hochberg’s procedure 
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m = 100, p = 0.001
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Some words occur uniformly 
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We find more than β measure indicates 
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You can find bursts that co-occur 
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Conclusion 

•  Aim: 
–  Find subsequences where a given event is 

surprisingly frequent or infrequent 

•  Method: 
–  Find all subsequences of a given length 
–  Control family-wise error rate 

–  Analytical approximation 
–  O(1) complexity per subsequence 
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