> Size matters <

Finding the most informative set of window lengths Jefrey Lijffijt, Panagiotis Papapetrou and Kai Puolamäki Aalto University, Finland and Birkbeck University of London, UK

> Problem setting

Event sequences often contain variability at different levels. Figure 1 gives an example of a sequence with multi-scale trends. Choosing the *length of a sliding window* is difficult yet important.

> Solution

We propose to use an *optimized set of window lengths* that summarizes all other possibly interesting window lengths.

> Method

Let $X_{\omega}(i)$ be the sub-sequence of sequence X with window length ω starting at index i.

For a set of window sizes Ω and a set of indices Icompute $f(X_{\omega}(i))$, for all $\omega \in \Omega$, $i \in I$, where f is a statistic parameterized by the length of the window. Define distance $d(\omega_s, \omega_t) = \sum_{i \in I} (f(X_{\omega_s}(i)) - f(X_{\omega_t}(i)))^2$.

Now, we want to find the set of k window lengths that explain most of the variation in X. Or, equivalently:

 $\underset{R:R\subseteq\Omega,|R|=k}{\text{minimize}}\sum_{\omega_s\in\Omega}\min_{\omega_t\in R}d(\omega_s,\omega_t)$

Optimization algorithm:

- Compute k-means clustering with Lloyd's algorithm
- Add the window lengths closest to each centroid
- Repeat *rep* times and choose the best solution

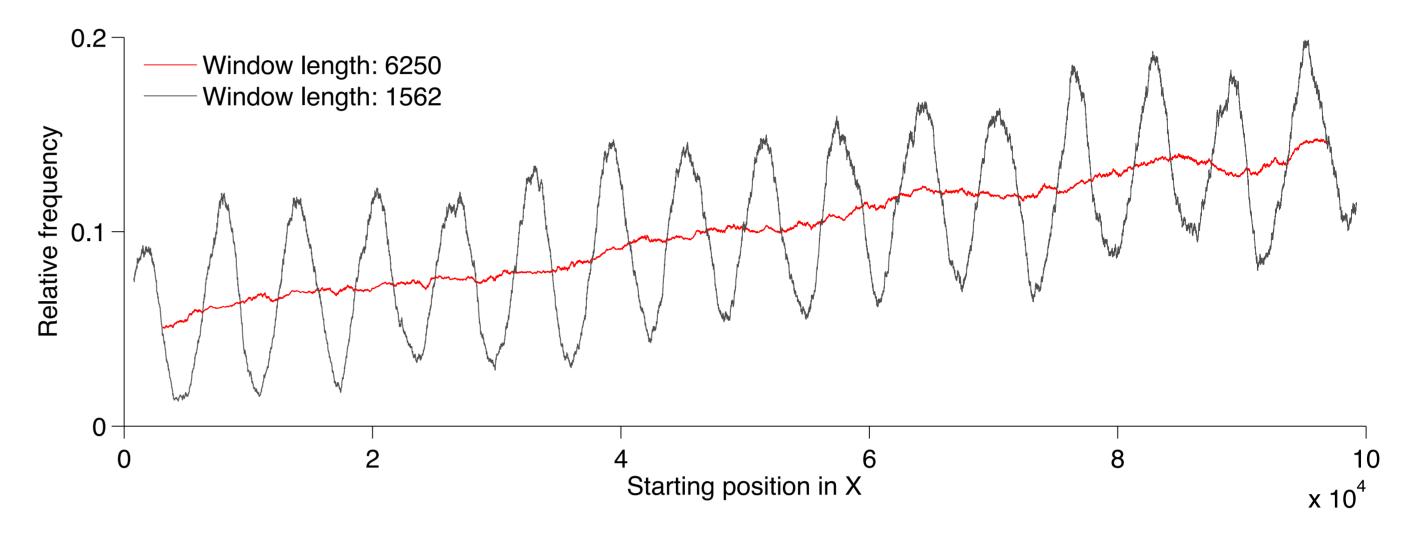


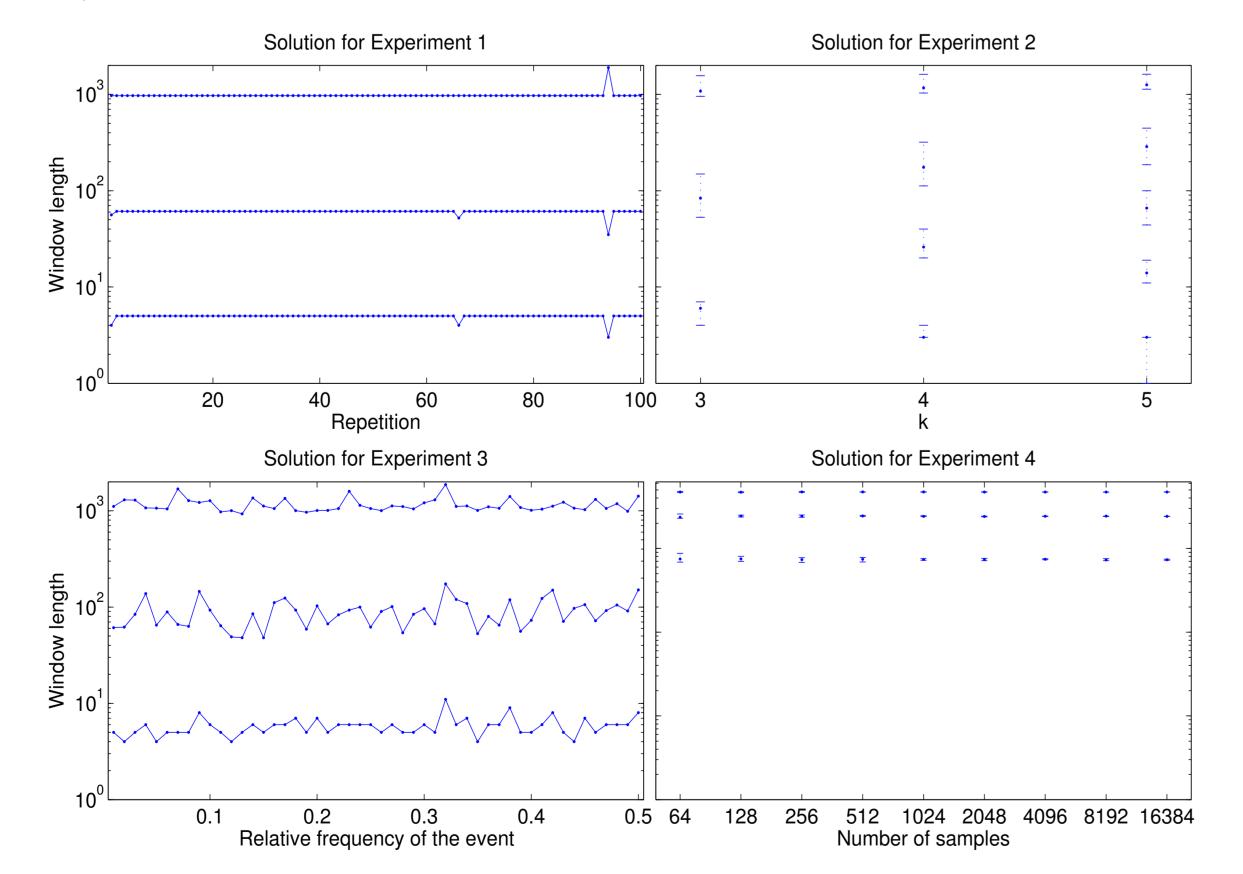
Figure 1: Example of the relative frequency of an event in an event sequence. We observe that the sequence contains two trends: a slow increase (red line) and a rhythmic component (grey line).

> Burstiness of words

We computed the optimal sets of window lengths for several bursty and non-bursty words in Jane Austen's *Pride & Prejudice*. Burstiness is estimated by computing the MLE for the Weibull distribution on the inter-arrival times of a word.

> Solution stability

We tested the stability of the optimization algorithm in a series of experiments using synthetic data.
1) Test the stability on a single Bernoulli sequence.
2) Test the stability over similar sequences.
3) Test the dependency on the event frequency.
4) Test how many data samples are required.



Frequency	Non-bursty	Index	Bursty	Index
Low $[39-41]$	met, rest, right, help	1 - 4 w	vrite, de, william, read	5 - 8
Medium $[175-228]$	time, soon, other, only	v 9–12 la	ady, has, can, may	13 - 16
High [600–1666]	with, not, that, but	17 - 20 y	vou, is, my, his	21 - 24
k = 3	k =	4	k = 5	
Window length				

Figure 3: Bursty words give longer window lengths, because the scale structure is less gradual then for uniformly distributed words.

Word index

10

20

20

Word index

> Other experiments

20

10

Word index

15

Type/token ratio throughout several novels of Charles Dickens.

Frequency of (di-)nucleotides in DNA of

Figure 2: Results from the four experiments. Experiments 1 and 2 show that the optimization algorithm is highly robust. Experiment 3 shows that, when tracing relative event frequencies, the solution is independent of the absolute frequency. Finally, experiment 4 shows that 1,000 samples is sufficient to have almost no uncertainty.

Homo Sapiens and Canis Familiaris.

> Acknowledgements

This work has been funded by the Finnish Centre-of-Excellence in Algorithmic Data Analysis (ALGODAN) and the Finnish Doctoral Programme in Computational Sciences (FICS). We thank Heikki Mannila for useful feedback and discussions.

ECML-PKDD, Bristol, UK, September 24-28, 2012