
P-N-RMiner: A Generic
Framework for Mining Interesting

Structured Relational Patterns

Jefrey Lijffijt, Eirini Spyropoulou, Bo Kang, Tijl De Bie
University of Bristol

[JL, BK, TDB ➞ Ghent University, ES ➞ Barclays]

1

Motivation

2

Example
Suppose we have some data,

and we are interested in lifestyle patterns.

3

Profession
User

Age

Check-in
times

What will we find?

For example: “many people aged 30–45 check in
somewhere both between 7.30 and 8.30 in the
morning and between 11.30 and 12.30 around noon”

Could be interesting if unexpected

Example

4

Profession
User

Age

Check-in
times

Example
Complicated data

5

Profession
User

Age

Check-in
times

Example
Complicated data

It is relational

Multiple professions, many check-in times

Cannot be flattened without loss of information
6

Profession
User

Age

Check-in
times

Example
Complicated data

It has structured attributes

Time of day, age, professions (hierarchy or DAG)

No pattern mining framework deals with all these
7

Profession
User

Age

Check-in
times

Example
Complicated data

Typical solution: choose a granularity, discretise

Different patterns may need different granularity

Worse, some patterns require mixed granularity
8

Profession
User

Age

Check-in
times

Complicated data

How to avoid discretisation?

These structures are similar

Can all be modelled as partial orders

Example

9

Profession
User

Age

Check-in
times

Profession
User

Age

Check-in
times

Figure 1. Example schema of users and check-in times. Additionally, we
know the age and profession of the users. There are three relationship types:
there are relationships between (1) users and check-in times, (2) users and
ages, and (3) users and professions.

• We formalise the problem and a matching pattern syntax,
in a manner as generic as possible (Sec. II). To achieve
this, we adopt an abstract formalisation in terms of a
partial order over the structured values. For example, with
the time-of-day and book ratings, the partial order is over
the intervals, where one is ‘smaller’ than another if it is
included in it. For taxonomy terms, one taxonomy term
is smaller than another if it is a specialisation of it.

• We formalise the interestingness of such patterns. This is
a non-trivial contribution over the approach applicable for
the N-RMiner pattern syntax (Sec. III).

• We provide an algorithm for efficiently enumerating all
such patterns. This is a non-trivial extension of the
algorithmic approach used in N-RMiner (Sec. IV).

II. PROBLEM FORMALISATION

Notation. We formalise a relational database as a tuple
D = (E, t,R, R,⌫). Here, E denotes the set of entities, and
t : E ! {1, . . . , k} is a function that gives the type of an
entity (assuming k types). R denotes the set of all relationship
instances in the database, while R ✓ {1, . . . , k}⇥ {1, . . . , k}
denotes the set of tuples of entity types whose entities may
have relationships, according to the schema of the database.
The elements of R will be referred to as the relationship types.
So far, this is identical to the formalisation in [5].

As an example, consider the schema illustrated in Figure 1.
There are four entity types: User (1), Check-in times (2),
Profession (3), and Age (4). The numbering is arbitrary. The
set E contains all entities of all types. The set of allowed
relationships is R = {(1, 2), (1, 3), (1, 4)} and R contains all
actual instances of such relationships.

In the Check-ins data (Figure 1), Age, Check-in times, and
Profession could all be structured attributes; the values of Age
are numerical, Check-ins times are numerical but without full
order, and Profession has hierarchical structure. One could be
interested in finding patterns in such data not only including
an exact age such as 32, but also intervals such as [25–35]. The
set of all such intervals can be modelled as a partial order. An
example of such a partial order is given in Figure 2.

Hence, we consider one additional element in the data
model: a partial order ⌫ that represents implication of relation-
ships across entities of the same type. That is, e ⌫ f means
that if any entity g is related to f , i.e., (f, g) 2 R, then g is
also related to e:

8e, f, g 2 E : e ⌫ f ^ (g, f) 2 R) (g, e) 2 R.

Only implications between entities of the same type are al-
lowed: e ⌫ f) t(e) = t(f). We assume that R contains both

1

2

3

4

[1–2]

[2–3]

[3–4]

[1–3]

[2–4]

[1–4]

Figure 2. Partial order of all intervals that are supersets of {1}, {2}, {3},
and {4}. The partial order corresponds to the superset relation.

the relationship instances between the basic entities present in
the database, as well as all relationship instances implied by
⌫. Where possible, we do not store implied edges explicitly.
Hence, we assume R contains all relationship instances only
for notational convenience.

Pattern Syntax. Our aim is to find sets of entities that have
surprisingly many relationships. We will refer to a set of
entities and the relationship instances among them as a pattern.
The approach that we take is to first enumerate all possibly
interesting patterns, and then rank them according to their
interestingness. We define a pattern as potentially interesting
if it is complete, connected, maximal, and proper.

Definition 1: An entity set F ✓ E is complete iff

8(t1, t2) 2 R, 8ei, ej 2 F, t(ei) = t1, t(ej) = t2 :

(ei, ej) 2 R.

Definition 2: An entity set F ✓ E is connected iff

8e, f 2 F, e 6= f : (e, f) 2 R _ 9g 2 F, {e, g} connected
^{f, g} connected.

Definition 3: An entity set F ✓ E is maximal iff

@e 2 E : F [{e} is complete and connected.

Definition 4: An entity set F ✓ E is proper iff

8e 2 F, f 2 E, f ⌫ e : f 2 F.

That is, a pattern F is complete iff all relationship instances
between entities in F that are allowed by the database schema
are also present. A pattern F s.t. |F | � 2 is connected iff there
is a path between any two entities in F using only entities in
F . Any F s.t. |F |  1 is connected. A pattern F is maximal iff
no entity can be added without breaking completeness. Proper
means that all super entities of any entity in F are also in F .

We refer to sets that are complete, connected, and proper
as complete connected proper subsets (CCPSs), and to sets
that are also maximal as maximal CCPSs. In Section IV, we
will show that we can enumerate all maximal CCPSs using
the so-called fixpoint-enumeration algorithm. The number of
such maximal CCPSs may be large though, so in a second
step we score and rank them according to an appropriate
interestingness measure.

Pattern mining

The goal

Find interesting and surprising patterns in
massive data

The reality

Find massively many patterns in any data

10

Pattern mining

The goal

Find interesting and surprising patterns in
massive data

The solution

Score patterns for their interestingness

11

Interestingness

What makes a pattern interesting ?

Very many scores (e.g., Geng & Hamilton 2006)

Support, confidence, Piatetsky-Shapiro / lift,
accuracy, cosine, WRAcc, …

12

Interestingness

What makes a pattern interesting ?

Very many scores (e.g., Geng & Hamilton 2006)

Support, confidence, Piatetsky-Shapiro / lift,
accuracy, cosine, WRAcc, chi-square, …

≈ unexpected (frequency of) co-occurrence

13

Interestingness

What makes a pattern interesting ?

≈ unexpected (frequency of) co-occurrence

Some ‘recent’ encompassing frameworks:

Information theory (see De Bie 2011, 2013)

Hypothesis testing (see Lijffijt et al. 2014)

14

Interestingness

What makes a pattern interesting ?

≈ unexpected (frequency of) co-occurrence

Some ‘recent’ encompassing frameworks:

Information theory (this paper)

Hypothesis testing

15

Interestingness

16

Information-theoretic
interestingness

What makes a pattern interesting ?

≈ unexpected (frequency of) co-occurrence

= Surprisal = self-information = –log Pr(pattern)

17

Information-theoretic
interestingness

What makes a pattern interesting ?

≈ unexpected (frequency of) co-occurrence

= Surprisal = self-information = –log Pr(pattern)

Actually

self-information / description length

18

One minor problem

Unexpected as compared to …?

19

Subjective interestingness

Users have different prior beliefs about data/domain

Data mining is an iterative process, users learn as
analysis progresses

Information-theoretic framework (FORSIED) to deal with
this introduced by De Bie (KDD 2011, IDA 2013)

General setting of our research project (ERC Grant
FORSIED): Formalising Subjective Interestingness in
Exploratory Data Mining [we are hiring a PhD student]

20

Subjective interestingness
Unexpected as compared to …

Maximum entropy distribution that satisfies the prior beliefs

21

Subjective interestingness
Unexpected as compared to …

Maximum entropy distribution that satisfies the prior beliefs

Prior beliefs in the form of expectations

Row/column marginals / degree of nodes

First and second order moments for numerical vars

The following edges are present: …

22

Mining patterns

23

Relational Pattern Mining:
RMiner (Spyropoulou et al. 2014)

Relational: patterns across data tables with arbitrarily many links
(many-to-many etc.)

Database = entities + relationship instances

Every user, age, profession, time is an entity

There is a relationship instance between a user and an age if that
user has that age

24

Profession
User

Age

Check-in
times

Relational Pattern Mining:
RMiner (Spyropoulou et al. 2014)

Relational: patterns across data tables with arbitrarily many links
(many-to-many etc.)

Database = entities + relationship instances

Every user, age, profession, time is an entity

There is a relationship instance between a user and an age if that
user has that age

25

Profession
User

Age

Check-in
times

Essentially a graph:
nodes = entities,

edges = relationship
instances

Relational Pattern Mining:
RMiner (Spyropoulou et al. 2014)
Database = entities + relationship instances

RMiner

Find all potentially interesting patterns

= all completely connected sets of entities

Rank the patterns for interestingness

26

Profession
User

Age

Check-in
times

Relational Pattern Mining:
RMiner (Spyropoulou et al. 2014)
Database = entities + relationship instances

P-N-RMiner

Find all potentially interesting patterns

= all completely connected sets of entities

Rank the patterns for interestingness

27

Profession
User

Age

Check-in
times

Outline of algorithm
Instantiation of fix-point enumeration (Boley et al. 2010)

Works for any strongly accessible set system

All feasible generalisations of a set can be constructed by
adding one element at a time

For every set except the empty set, an element exists that if
removed, a feasible set is obtained

Proof for this in the paper

Closure operator is specific and dets. efficiency (optimal here?)

28

Ranking

29

Information-theoretic
interestingness

What makes a pattern interesting ?

≈ unexpected (frequency of) co-occurrence

= Surprisal = self-information = –log Pr(pattern)

Actually

self-information / description length

30

Interestingness

For experiment, we used marginals as prior beliefs

The user knows the ‘frequency’ of entities, but
not of the relations between entities

Background distribution is the maximum entropy
distribution given the prior beliefs as constraints

31

Interestingness
It is straightforward to include other knowledge

Users may want to input their own ‘beliefs’

This is why interestingness is subjective

(Beliefs need not even be correct)

Or incorporate a pattern after reading it

Iterative data mining / pattern set mining
32

Case studies

33

Foursquare check-ins

P1: 1.6% of the users checked in frequently
between [6am–7am], as well as [10.20am–10.50am]

P4: 4.5% of the users checked in frequently
between [1.10am–2.30am], [4.30pm–6.30pm], as
well as [8.30pm–9.30pm]

34

User Check-In

Circadian

Cheng et al. (ICWSM 2011)

Amazon book ratings

P1: 23 customers and 8 books, all of which are
different versions of the book “Left Behind: A Novel
of the Earth’s Last Days”, a rating [1–5] and the
subjects Fiction and Christianity.

Amazon copies reviews between similar items

35

Rating

BookCustomer Subject

https://snap.stanford.edu/data/amazon-meta.html

https://snap.stanford.edu/data/amazon-meta.html

Subgroup discovery

36

4 5 6 7 8
Sepal length

1.5

2

2.5

3

3.5

4

4.5

S
e
p
a
l w

id
th

4 5 6 7 8
Sepal length

0

1

2

3

4

5

6

7

P
e
ta

l l
e
n
g
th

4 5 6 7 8
Sepal length

0

0.5

1

1.5

2

2.5

3

P
e
ta

l w
id

th

1 2 3 4 5
Sepal width

0

1

2

3

4

5

6

7

P
e
ta

l l
e
n
g
th

1 2 3 4 5
Sepal width

0

0.5

1

1.5

2

2.5

3

P
e
ta

l w
id

th
0 2 4 6 8

Petal length

0

0.5

1

1.5

2

2.5

3

P
e
ta

l w
id

th

How: take class label as mandatorily present

Subspace clustering

37

How: natural setting for P-N-RMiner

4 5 6 7 8
Sepal length

2

2.5

3

3.5

4

4.5

S
e
p
a
l w

id
th

38

4 5 6 7 8
Sepal length

0

1

2

3

4

5

6

7

P
e
ta

l l
e
n
g
th

38

4 5 6 7 8
Sepal length

0

0.5

1

1.5

2

2.5

P
e
ta

l w
id

th

38

2 2.5 3 3.5 4 4.5
Sepal width

0

1

2

3

4

5

6

7

P
e
ta

l l
e
n
g
th

38

2 2.5 3 3.5 4 4.5
Sepal width

0

0.5

1

1.5

2

2.5

P
e
ta

l w
id

th

38

0 2 4 6 8
Petal length

0

0.5

1

1.5

2

2.5

P
e
ta

l w
id

th

38

Summary
P-N-RMiner is a general solution for mining
interesting patterns in data, supporting

Relational data

Structured attributes

Subjective prior beliefs

Iterative data mining

38

Thank you!

39

Scalability
There is polynomial-time delay between two closure
steps (Spyropoulou et al. 2014)

We can capitalise on the partial order structures (this
paper)

That actually gives a noticeable speed-up (this paper)

However, no polynomial-time delay between two outputs
(proof will appear in follow-up)

This algorithm cannot be applied to very large data

40

