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PART |
Introduction to lext Mining



Why text mining

 The amount of text published on paper, on the web,
and even within companies is inconceivably large

e \WWe need automated methods to

 Find, extract, and link information from
documents



Main ‘problems’

Classification: categorise texts into classes (given
a set of classes)

Clustering: categorise texts into classes (not given
any set of classes)

Sentiment analysis: determine the sentiment/
attitude of texts

Key-word analysis: find the most important terms
In texts



Main ‘problems’

Summarisation: give a brief summary of texts
Retrieval: find the most relevant texts to a query
Question-answering: answer a given question

Language modeling: uncover structure and
semantics of texts §

And answer-questioning? el =



Definitions from Wikipedia

Related domains

Text mining [...] refers to the process of deriving high-quality
information from text.

Information retrieval (IR) is the activity of obtaining information
resources relevant to an information need from a collection of
information resources.

Natural language processing (NLP) is a field of computer
science, artificial intelligence, and linguistics concerned with the
interactions between computers and human (natural) languages.

Computational linguistics is an interdisciplinary field
concerned with the statistical or rule-based modeling of natural
language from a computational perspective.



PART Il
Clustering & Topic Models



Main topic today

e Jext clustering & topic models

e Useful to categorise texts and to uncover structure
INn text corpora



Primary problem

* How to represent text

e \What are the relevant features”



Main solution

* Vector-space (bag-of-words) model

W1 2 W13

Text 1 W1 1
Text 2 W2 1 W2 2 W23

Text 3 W3 1 W3 2 W33



Simple text clustering

Clustering with k-means algorithm and cosine similarity

|dea: two texts are similar it the frequencies at which
words occur are similar

Score in [0,1] (since w;; > 0)

Widely used in text mining



Demo

Reuters-21578
8300 (categorised) newswire articles

Clustering is a single command in Matlab

Data (original and processed .mat):

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html



http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

More advanced clustering

» |Latent Dirichlet Allocation (LDA)
* Also known as topic modeling

* |dea: texts are a weighted mix of topics

« [The following slides are inspired by and figures are taken from
David Blei (2012). Probabilistic topic models. CACM 55(4): 77-84.]



Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (th

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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Technically (1/2)

* Topics are probabillity distribution over words

* The distribution defines how often each word
occurs, given that the topic is discussed

* Texts are probability distributions over topics

e The distribution defines how often a word Is due
to a topic

* [hese are the free parameters of the model



Technically (2/2)

 For each word in a text, we can compute how probable it is that

It belongs to a certain topic

* (Given the topic probability and the topics, we can compute the
Latent (= hidden)

likelihood of a document /
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* The optimisation problem is to find the posterior distributions for

the topics and the texts (see article)



Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found

in this article.
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Active area of research: extensions of LDA

Figure 5. Two topics from a dynamic topic model. This model was fit to Science from 1880

to 2002. We have illustrated the top words at each decade.
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Active area of research: extensions of LDA

Figure 5. Two topics from a dynamic topic model. This model was fit to Science from 1880

to 2002. We have illustrated the top words at each decade.
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summary

* Jext mining is concerned with automated methods to

* Find, extract, and link information from text

* Jext clustering and topic models help us
* Organise text corpora
* Find relevant documents

e Uncover relations between documents



Further reading

* David Blei (2012). Probabilistic topic models.
Communications of the ACM 55(4): 77-84.

e Christopher D. Manning & Hinrich Schtze (1999).
Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA.



