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Abstract In order to find patterns in data, it is often necessary to aggregate or sum-
marise data at a higher level of granularity. Selecting the appropriate granularity is a
challenging task and often no principled solutions exist. This problem is particularly
relevant in analysis of data with sequential structure. We consider this problem for a
specific type of data, namely event sequences. We introduce the problem of finding
the best set of window lengths for analysis of event sequences for algorithms with
real-valued output. We present suitable criteria for choosing one or multiple win-
dow lengths and show that these naturally translate into a computational optimisation
problem. We show that the problem is NP-hard in general, but that it can be approx-
imated efficiently and even analytically in certain cases. We give examples of tasks
that demonstrate the applicability of the problem and present extensive experiments
on both synthetic data and real data from several domains. We find that the method
works well in practice, and that the optimal sets of window lengths themselves can
provide new insight into the data.
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Fig. 1 Analysis of data at different levels of granularity may reveal different patterns in the data. In this
example, visualisation of the relative frequency of an event—using sliding windows of different lengths—
reveals different trends in the data. The generative process for this sequence is described in Section 6.2.

1 Introduction

Event sequences often contain continuous variability at different levels. In other
words, their properties and characteristics change at different rates, concurrently. For
example, the sales of a product may slowly become more frequent over a period of
several weeks, but there may be interesting variation throughout a week at the same
time. To provide an accurate and robust view of such multi-level structural behaviour,
one needs to determine the appropriate levels of granularity for analysing the under-
lying sequence. This is especially relevant when using a sliding window.

Sliding windows are frequently used in several sequence analysis tasks, such as
mining frequent episodes (Mannila et al 1997), finding biological or time series mo-
tifs (Chiu et al 2003; Das and Dai 2007), analysing electroencephalograms (EEGs)
(Sornmo and Laguna 2005), or in linguistic analysis of documents (Biber 1988).
However, such methods are often parametrised by a user-defined window length and
it can be unclear how to choose the most appropriate window length(s).

This problem can be solved by defining an appropriate objective function and
using an optimisation algorithm to select the best window length. In some cases an
appropriate cost function may be easy to specify, but that is not always so. Besides,
using a single window length may leave out important information. In this paper,
we introduce a framework and a generally applicable objective function that aims at
finding a small set of window lengths that together provide as much information as
possible about the underlying data, with respect to a quantity of interest.

Example. Consider as a statistic the frequency of an event in an event sequence.
Such statistics may involve variation at different levels simultaneously. Figure 1
shows an example of the relative frequency of an event over time computed using
sliding windows of lengths 1562 and 6250 (the generative process for this sequence
is described in Section 6.2). We observe that each window describes a different view
of the data: the longer window suggests a smoothly increasing frequency throughout
the sequence, while the shorter window captures a periodic behaviour of the statistic.
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Summary of Contributions. We introduce a novel framework and a generally ap-
plicable objective function to find the most informative set of window lengths for
analysing event sequences with any algorithm that outputs real numbers. We prove
that optimising the objective function is NP-hard in general, and show that we can
approximate the solution efficiently using an existing algorithm with some modifi-
cations. We also prove that for certain simple statistics and data distributions, the
optimisation problem can be solved exactly analytically. We show that these exact
solutions are useful to compare empirical results with.

Furthermore, we give examples of tasks that demonstrate the applicability of the
problem to different domains, and study optimal window lengths for both synthetic
and real data. We present experiments on data from several application domains: text
books, DNA sequences, and sensor measurements. We find that the optimisation al-
gorithm works sufficiently well, that the optimal window lengths for finding patterns
in various types of data vary significantly, and that the optimal window lengths them-
selves can also provide useful information about the data.

This manuscript is an extended version of Lijffijt et al (2012). the main differences
are the following. The problem setting is more general and we provide more justifica-
tion for why the proposed criteria for selecting window lengths are useful, i.e., that it
enables a user to infer the values of the relevant statistic at all window lengths as well
as possible. We propose a different optimisation algorithm (see above). We prove that
the problem can be solved analytically in certain cases. All experiments have been
redesigned, are more extensive and now include significance testing. We study an
additional type of data: real-valued sensor measurements.

Outline. The remainder of this paper is outlined as follows. The related work is
discussed in Section 2, and the formal problem setting is presented in Section 3. The
framework and the generally applicable objective function are introduced in Section
4, the experiments are reviewed in Section 7, and the paper is concluded in Section 8.

2 Related Work

Sliding windows have been used in many application domains that involve sequences
(discrete or continuous). However, window lengths are chosen either empirically or
they are optimised for the task at hand. To the best of our knowledge, no earlier work
has proposed a principled method for choosing a set of window lengths that optimally
summarise the data for a given statistic and data mining task. To provide a context
for this work, we briefly review the main approaches from several domains.

String and Text Mining. Sliding windows are used frequently in string mining.
Indexing methods for string matching based on n-grams (Li et al 2007a), i.e., sub-
sequences of length n, employ sliding windows of fixed or variable length to create
dictionaries and speed-up approximate search for strings in large collections of texts.
Determining the appropriate window length is a challenge, as small window lengths
result in higher recall but large index structures.

In text mining, looking at different linguistic dimensions of text results in extract-
ing different views of the underlying text structure (Biber 1988). One way to quantify
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these views is by using sliding windows. Recently, an interactive text analysis tool!
has been developed for exploring the effect of window length on three commonly
studied linguistic measures: type-token ratio, proportion of hapax legomena, and av-
erage word length. However, the window length is user-defined.

Bioinformatics. Several sliding window approaches have been proposed for ana-
lysing large genomes and genetic associations. Existing methods can be categorised
into two groups: fixed-length vs. variable-length sliding windows (Bourgain et al
2000; Toivonen et al 2000; Mathias et al 2006; Li et al 2007b; Papapetrou et al 2012).
For the case of fixed-length windows it is hard to determine the optimal window
length per task while variable-length windows provide higher flexibility.

A variable window length framework for genetic association analysis employs
principal component analysis to find the optimum window length (Tang et al 2009).
Sliding windows have also been used for searching large biological sequences for
tandem repeats (Benson 1999), motifs (Das and Dai 2007), and poly-regions (Papa-
petrou et al 2006). In all cases it is assumed that there exists only one optimum length
and the solution is limited to the task of genetic association analysis.

Stream Mining. A typical task in stream mining is to detect and monitor frequent
itemsets in an evolving stream, counted over sliding windows. We present a brief
survey of the use of sliding windows in stream mining, though the overall setting is
very different from the problem studied in this paper and a setup requiring online
learning is not considered here.

In the case of the fixed-length window model the length of the window is set at the
beginning, and the data mining task is to discover recent trends in the data contained
in the window (Demaine et al 2002; Golab et al 2003; Karp et al 2003; Jin et al
2008). In the time-fading model (Lin et al 2005) the full stream is taken into account
in order to compute itemset frequencies but the frequencies are weighted by recency,
i.e., recent transactions have a higher weight as compared to older transactions.

The tilted-time window (Giannella et al 2003) can be seen as a combination of
different scales reflecting the alteration of the time scales of the windows over time. In
the landmark model, particular time periods are fixed while the landmark designates
the start of the system until the current time (Jin and Agrawal 2005; Karp et al 2003).
Calders et al (2008) introduced a frequency measure based on a variable window
length by defining the frequency as the maximal frequency over all windows until the
latest event. Variants of these methods have been proposed for specific objectives.

Time Series. Enumerating frequently occurring patterns is a common problem in
time series. Such patterns are called motifs due to the analogy to their discrete coun-
terparts in computational biology. Efficient motif discovery algorithms have been
proposed, based on sliding windows, for summarising and visualising massive time
series databases (Chiu et al 2003; Mueen et al 2009).

Papadimitriou and Yu (2006) proposed a method for discovering locally optimal
patterns in time series at multiple scales along with a criterion for choosing the best
window lengths. However, this is a local heuristic and applies only to continuous
data. Also related is the problem of scale-space decomposition of time-series (Vespier

! http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
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et al 2012), which aims at defining several frequency bands that correspond to the
components of a signal.

Fourier and Wavelet transforms (S6rnmo and Laguna 2005) are used pervasively
to analyse periodicity in time-series. Although it may be possible to apply such meth-
ods for certain statistics, these methods are not generally applicable to the problem
setting considered here. Fourier and Wavelet transforms require numeric input, while
we focus on selecting window lengths for finding local patterns in event sequences
where the event labels are not restricted to numbers.

Finally, several algorithms have been proposed recently for efficient discovery of
motifs of variable length (Li et al 2012; Yingchareonthawornchai et al 2013; Mueen
2013). The key challenge in motif discovery is how to enumerate motifs of variable
length efficiently without performing exhaustive search of all possible lengths. Al-
though granularity selection is a problem in motif discovery, the general problem
studied in this paper deviates from the objective of motif discovery. We do not aim
at finding repeated patterns of variable length in time series, but rather for the most
informative set of window lengths for analysing event sequences.

3 Problem Setting
3.1 Preliminaries

Given a set of event labels L, an event sequence S of length n is defined as S =
($15---,8,), where s; € L, forall i € {1,...,n}. We denote the subsequence of S start-
ing at position i with length ® as S; o = (si,...,Si+0—1). We use the term window
length to refer to the length of the subsequences, w. Thus, analysis of the data using a
sliding window of length @ and step size 1 means that we look at all subsequences of
S of length . We assume that an analyst using our method is interested in analysing
data using an algorithm takes as input a subsequence S; , and outputs a real number
f(Si ). We refer to this output f(S; ) : L — R as the statistic (of interest). Exam-
ples of possible statistics f are given in Section 3.3, but in principle f can be any
function or algorithm.

3.2 Problem Definition

Our aim is to find a set O of k granularity levels (window lengths) that are most
informative with respect to the statistic f and the event sequence S. An intuitive way
to express the informativeness is to measure how well we can predict values of the
statistic f at other granularity levels. Hence, the problem can be translated into finding
a set of kK window lengths that allows an analyst to predict f as well as possible for
all window lengths that we are interested in.

To this end, we assume that the end-user is able to specify a set £ that contains
all potentially interesting window lengths. We argue that a set of window lengths 0 is
most informative if it enables an end-user to infer the behaviour of the data (i.e., the
statistic f) at all window lengths in €2 as well as possible. This expression allows us
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to formulate the problem of finding the most informative set of window lengths as a
regression problem.

Depending on the task at hand, one may consider different regression/objective
functions. In general the objective function depends both on a set 6 of k window
lengths and the parameters of a regression function, such that, at each position i in S,
if we are given the value of f at those k window lengths, we can accurately estimate
f for all other window lengths at position i. In this paper, we consider an objective
function that corresponds to solving k-medoids clustering in the output space.

More formally, let Q = {w,...,®,} be the set of m window lengths that we
consider potentially interesting for analysing the structure of S. We denote the subset
of k window lengths that we select, i.e., the interesting parameters of the optimisation
problem, as 8 = {6,...,6;} C Q. Although the predictive model may contain other
parameters, we are not interested in their values; our aim is that those parameters
should be easy to guess approximately for a user. Thus, we are interested only in the
corresponding window lengths.

Let f(S,0,i) ={f(Si,),---f(Si0,)} be the set of real numbers that corresponds
to the values of f at position i € {1,...,n*} for the k window lengths in 6. For sim-
plicity we define n* = n+ 1 — maxgeq (), which ensures that we do not consider
subsequences that are partly unknown. The following definition allows us to state the
optimisation problem more succinctly.

Definition 1 (Reconstruction Function) A reconstruction function g(f(S,0,i),®) :
R¥ x 1 — R is a function that, given the set of values f (S,0,i) and a window length
, estimates the value of f for window length @; in other words, g is an estimator for
f (Si,a))~

Figure 2 provides an illustration of the mechanism of a reconstruction function.
The optimisation problem that corresponds to the granularity selection task is then
the following:

Problem 1 (k-Windows Problem) Given an event sequence S, a statistic f, and a
set of window lengths €, find a set of k window lengths 6 = {6;,...,6,} C Q2 and a
reconstruction function g that minimise

1
n*

n
Y Y (f(Sali) ~(7(5,6.0),)".

i=1 weQ

The reconstruction function g can in principle be any regression function. However,
this would lead to a practically impossible optimisation task, as it is infeasible to ex-
plore the space of all possible regression models. Hence, we propose that, depending
on the task at hand, we can restrict the set of possible models to obtain a tractable op-
timisation problem. For example, we can restrict g to the class of nearest neighbour
regressors (see Section 4.1), in which case the optimisation problem is equivalent to
the k-medoids clustering problem.

The idea here is that any additional parameters used by g, i.e., those that are not
in £(S, 6,i), are kept implicit and not shown to the user. Neither is g itself considered
to be interesting. Hence, we should restrict g to regression functions that are easy to
comprehend by end-users. In the remainder of this paper we study only the nearest
neighbour regressor, which is introduced in Section 4.1.
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Fig. 2 Illustration of the reconstruction function g. Each row corresponds to a window length in Q and
each column to a position in the event sequence S. Function g estimates the value of the statistic f for all
window lengths at position i in S, based on the values of f for a small set window lengths {6y, ...,6;}, in
this case k = 3.

3.3 Examples of statistic f

We give three examples of statistic f, each of which is also used in the experimental
evaluation. The first definition of f is the relative frequency of an event g € A:

#of occurrences of qin S; e
P .

f(Siw) = (D

Note that by definition @ = |S; |- Alternatively, f may be defined as the hapax
legomenon ratio of a sequence, i.e.,

#of events occurring exactly once in S;
° .

f(Sio) = 2

For real valued data the mean can be used as a statistic, in which case f is defined by

1 i+o—1
fSiw) =2 X s (3)
J=1

The utility of these three definitions in practice is shown in Sections 6 and 7.

4 Solving k-Windows Using k-Medoids

In this section, we introduce our approach to selecting the k most informative window
lengths. To do so, we choose as reconstruction function g a partition-based nearest
neighbour regressor. This restricted problem setting is defined in Section 4.1. In Sec-
tion 4.2 an auxiliary data structure, called the Window-Trace matrix, is introduced,
and the optimisation algorithm is described in Section 4.3.
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4.1 Partition-based Regression

To make the problem setting tractable, we restrict the reconstruction function g to the
following class of regression functions.

Definition 2 (k-Partition NN Regressor) A k-partition nearest neighbour regressor
is a reconstruction function g(f(S,0,i),®) : R x 1 — R that implicitly contains a
partitioning of the set Q into k non-overlapping clusters. Each cluster is represented

by a single window length, i.e., g(f(S, 0,i),®) = f(S;e,), Where 0; € 6 is the repre-
sentative window length for the cluster where @ belongs.

In the remainder of this paper, we study we restrict to studying the nearest neigh-
bour regressor g. Problem 1 then translates to the problem of partitioning the set of all
window sizes (2 into k clusters and selecting for each cluster one representative win-
dow size, such that the expectation of the squared error is minimised. This problem
is equivalent to the k-medoids clustering problem.

Since the statistic f is unconstrained and the k-medoids clustering problem is
NP-Hard (Aloise et al 2009), this optimisation problem is also NP-Hard, although
this may not be true for all statistics f. Several optimisation algorithms to obtain
good approximations; the algorithm that we propose to be appropriate in this setting
is described in Section 4.3.

4.2 The Window-Trace Matrix

To solve Problem 1 we use an auxiliary matrix, called the Window-Trace (W-T) ma-
trix. This matrix stores the values of statistic f for a set of indices in I and for all
window lengths in Q. More specifically, let S be the input sequence and f the statis-
tic at hand. Then the W-T matrix 7 contains all values of f(S; ) for all window
lengths @ € Q and all indices i € I. . is given by

Tji = f(Si)- )

The most accurate representation is obtained by choosing I = {1,...,n*}. How-
ever, for the reasons of computational efficiency we select the set of indices I by
sampling N indices from {1,...,n*} uniformly in random and without replacement,
where N is a given parameter. Furthermore, we use ﬂj* to denote the row of .7 cor-
responding to window length ;.

4.3 Optimization Algorithm

To solve the optimisation problem given in Section 4.1, we use the Clustering
LARge Applications (Clara) algorithm (Kaufman and Rousseeuw 1990), which
is a well-known algorithm to efficiently solve the k-medoids problem. However, we
use a small improvement to increase the quality of the solution, which is described in
the remainder of this section.
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Algorithm 1 Clara++(.7, k, r, s)

0, = uniform([1,...,n]) {Pick a number between 1 and n uniformly at random,  is the number of rows
in 7}
fori=2tokdo
©; =rand([1,...,n]) {Pick a number between 1 and n at random with probability proportional to the
distance to the closest medoid in ©}
end for
cost™ = oo

fori=1tordo
S = @ Uuniform({1,...,n}\ ©,s —k) {Assign S a set that contains @, the best set of medoids
currently known, and pick s — k other row indices uniformly at random}
T+
TS=| : {Select the s rows of .7 whose index is in S}
@ = PAM++(.75 k) {Compute PAM++ solution on sample}
cost = computeClusteringCost(.7, ®) {Compute cost for full matrix }
if cost < cost” then
0"=0
cost® = cost
end if
end for
return ©*

The general strategy of Clara is to repeatedly take a small data sample and solve
the clustering problem on the sample using the Partitioning Around Medoids
(PAM) subroutine. The data sample always contains the current best medoids, and
these are updated whenever a solution is found that has lower error on the full data.
Arthur and Vassilvitskii (2007) study the effects of seeding—the process of choosing
the initial representatives for each cluster—for the k-means algorithm, and introduce
a simple method of ‘careful’ seeding that leads to an approximation ratio on the
solution. Their improved algorithm is known as k-means++.

Although there have been studies on the effects of seeding for Clara algorithm,
e.g., by Pakhira (2008), these are different from the change proposed here. Specifi-
cally, the change that we make to the original Clara algorithm is both in the initial
seeding and in the seeding in the PAM subroutine that produces a clustering on a subset
of the data points. The approximation ratio of (Arthur and Vassilvitskii 2007) holds
also for the k-medoids method studied here, since the k-means++ seeding method
gives a proper k-medoids solution, the bound is without further optimisation, and the
cost can only decrease further during the remaining steps of Clara. We expect this
‘careful’ seeding to substantially increase the result quality.

We name the improved variants Clara++ and PAM++, respectively. Pseudocode
for the methods is given in Algorithms 1 and 2. The parameters r and s are related to
a trade-off between quality and time complexity, they are the number of repetitions
and number of samples included in the PAM subroutine, respectively. In the original
Clara algorithm these are not considered to be parameters and have default values
of r =5 and s = 40 4 2k (Kaufman and Rousseeuw 1990). However, we will study
the effects of increasing the default values in Section 6.
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Algorithm 2 PAM++(.7, k)

0, = uniform([1,...,n]) {Pick a number between 1 and n uniformly at random,  is the number of rows
in 7}
fori=2tokdo
©; =rand([1,...,n]) {Pick a number between 1 and n at random with probability proportional to the
distance to the closest medoid in ©}
end for
Op1a = {}
while 8,,; # © do
Opg =0
fori=1tondo
L; = argmin )
end for
fori=1tokdo
C = {x| Ly = i} {Find the set of points in cluster i}
0; = argmin, ¢ Yyec || Ter — Ty ||* {Pick best medoid for cluster i}
end for
end while
return @

1 (| Tk — T, %) {Label each point with nearest medoid }

A Matlab implementation of the method and scripts for reproducing all experi-
ments can be found on the website of the first author?.

Computational Complexity. Let N be the number of columns of .7, i.e., the num-
ber of samples, and let m be the number of rows of .7: m = ||. The memory required
to store the Window-Trace matrix .7 is & (m-N) and if we assume that the complex-
ity of computing the statistic f(S; ) is constant, then the computational complexity
to create the W-T matrix is also &'(m-N).

Clara++ consists of the initial selection of £k medoids and then executing the
PAM++ subroutine r times, each on a data sample of size s, plus computing the cost
of the clustering on each iteration. The initialisation of the k medoids has a com-
putational complexity of &'(k-m-N), because we have to compute the distance to
all other points for each medoid. Let ¢ denote the number of iterations required for
convergence of the PAM++ subroutine. Since computing the full distance matrix takes
O(s*-N) steps, the computational complexity of PAM++ is &(s?> - N+t -k-s+1-s%)
and since by definition k < s this simplifies to @(s*- (N +1¢)). Also, we know that
computing the cost of a clustering has complexity & (k-m-N), thus we find that the
total computational cost of Clara++is &(r-s*- (N+t)+r-k-m-N). That is, the cost
is linear in the number of window lengths m and the number of data samples N and
the number of repetitions r, but quadratic in s, the number of samples considered in
an iteration of PAM++.

Notice that, given the set of window lengths to consider, €2, the parameters of
the optimisation algorithm, N, r, and s, determine the computational cost. Hence, one
can choose freely choose an appropriate trade-off between solution quality and speed.
In practice, solutions can be computed quickly, for example, computing one of the
solutions for the largest data set studied in this paper (Section 7.3) takes 80 seconds
using a straightforward Matlab implementation running on a single processor core
(Intel Core 15 2.4 GHz notebook processor).

2 Currently http://users.ics.aalto.fi/lijffijt
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5 Analytical Solutions

For certain statistics and data distributions, it is possible to derive the solution, or at
least the function for the distance between two window lengths, exactly. In this sec-
tion, we present an analytical solution for the case where the statistic is the frequency
of an event and the event sequence comes from a Bernoulli process. From the result
it follows that for a Bernoulli process, the set of window lengths (i.e., the clustering)
is independent of the frequency of an event.

Preliminaries. Let (X1, ...,X,) be a sequence of Bernoulli random variables with
common parameter p, i.e., X; € {0,1},Pr({X; =1}) = p, forall i € {1,...,n}. The
random variables could, for example, denote the occurrences of an event. Similar to
the notation for event sequences, we use X; ¢ to denote the subsequence of length @
starting at position i, (X;,...,Xi+e—1). Let the statistic f be the relative frequency of
ones:

Yy X 5)

The selection of an optimal set of window lengths is based on the squared error
between predictions made using those window lengths (Problem 1). Under the con-
straint of using a k-partition nearest neighbour regressor, the predictions correspond
to the value of the nearest window length (Section 4.1). Thus, to select the optimal
window lengths, we have to compute the distance (squared error) between all pairs
of window lengths. We find that the distance between window lengths is as follows.

Theorem 1 For the statistic and generative process described above, the expected
distance between two window lengths y and o, with y < @, is

T h(1-p).

Eld(o.n] =" Tp

Proof See Appendix A.

We observe that there is no interaction between the window lengths ¥, @ and
the event probability p, which implies that all distances relative to each other are
independent of p. Thus, for this specific statistic and data distribution, the optimal
window lengths are unaffected by the event frequency, and depend only on the set of
window lengths Q.

Optimal Window Lengths for a Bernoulli Process. To investigate what optimal
solutions would look like for a Bernoulli process, we have conducted the following
experiment. Using the PAM++ algorithm, we have computed optimal sets of window
lengths for k = |0| = 3, 4, 3, 6, and window lengths from 1 to m = 1024, 4096, 16384,
65536, using the distance function given above.

The result is visualised in Figure 3. Due to the discreteness of the optimisation
problem, and the fact that we do not solve the optimisation problem exactly, there are
some minor variations, but the overall trend is very clear: the window lengths in each
set follow an exponential pattern.
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Fig. 3 Optimal sets of window lengths for analysis of data arising from a Bernoulli process, for various
number of optimal window lengths k (different figures) and various maximum window lengths (indicated
by color). Each dot represents an optimal window length and the dotted lines connect the window lengths
from each set. We observe that, although there are small deviations, the optimal window lengths in each
set grow exponentially.

6 Evaluation on Synthetic Data

Although we have analytically derived what to expect regarding optimal sets of win-
dow lengths for two basic types of random processes (see Section 5), we do not know
to what extent there is variation in the solution given by the Clara++ algorithm,
which is important in determining the significance of a result. To provide a baseline
for the results in Section 7, we have designed four experiments based on randomly
generated data, where we know precisely what the properties of the data are.

6.1 Bernoulli Process with Fixed Rate

We are interested in the variation of the set of window lengths given by Clara++. We
use Algorithm 3 to generate random data from a Bernoulli process with fixed rate,
given parameters n and p, which are the length of the sequence and the probability of
the event occurring at any position, respectively.

Algorithm 3 Simulate a fixed-rate Bernoulli process SIM1(n, p)

fori=1tondo
S(i) = Bernoulli(p)
end for
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Experiment 1. Since Clara++ is non-deterministic, the output may vary, even
with the same input sequence. In the first experiment, we tested the stability of the
solution in terms of the optimal window lengths, using a single sequence generated
by Algorithm 3 with parameters n = 1,999 and p = 0.1.

We investigated how stable the result of the algorithm is, while varying the num-
ber of repetitions from 10 to 80 (doubling the value each time) and the number of
samples from 40 to 320 (also by doubling the value each time). We varied the num-
ber of clusters from 1 to 4 and we used window lengths from 1 to 1,000. As the
statistic we used the relative frequency of the event (Equation 1). We repeated the
experiment for each setting 100 times. For comparison, we also tested the variability
of the PAM++ algorithm.

The results are presented in Figure 4. We observe that the variation with the de-
fault parameter settings is quite large. For example, the results for k = 4 in the top
left figure show that the smallest window length is sometimes larger than the second
largest window length in another run. We see also that the variation is greatly reduced
when increasing the number of repetitions and/or the number of samples.

In the bottom right figure, we find that the set of window lengths is quite stable
when we set the number of repetitions (r) and the number of samples (s) both to
80. As shown in Section 4.3, the computational complexity is linear in the number
of repetitions (and independent of the size of the data because we use sampling),
so typically it will be possible to use more repetitions and samples to improve the
certainty of obtaining a close to optimal result.

Experiment 2. Several data sets, even if they are from the same generative pro-
cess, may give quite different results. Thus, secondly, we tested the stability of the
solutions given by Clara++ for different data sets that have the same properties. We
generated 1 data set with parameters n = 1,999, p = 0.1, and then produced 100
versions by randomly permuting the indices of the sequence. We tested the optimal
window lengths for k = 1 —4 on each data set. We used 80 repetitions and 80 samples
as parameters for Clara++, because we found in the previous experiment that these
are good choices, and the other parameters were kept the same as in the previous
experiment.

The results are presented in Figure 5. We observe that there is much more vari-
ation than in the previous experiment, which can be explained by the fact that the
input sequences are slightly different in each repetition. The observed variance can
be used in future experiments to draw conclusions with respect to the significance of
differences in sets of window lengths obtained for various events or data sets.

6.2 Bernoulli Process with Variable Rate

In the previous experiments, the frequency of the event is fixed over time, which
leads to the sequence having structure only on a single scale. To test the ability of
our method for finding the true underlying scale at which the data is structured, we
designed an algorithm to simulate a Bernoulli process with variable rate.

The full process is described in Algorithm 4. The first component of the variable
rate is based on a slow increase of the event frequency over time, which ranges from
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Fig. 4 Stability of the set of window lengths from Clara++ for varying number of repetitions (one value
per figure) and number of samples (adjacent bars in each figure). Squares, triangles, circles and diamonds
represent the medians for various window lengths, the dotted lines represent 90 % confidence intervals and
dashed lines denote that the confidence intervals for the window lengths are overlapping. For comparison,
the variability for the PAM++ algorithm is also shown for each number of window lengths. We observe that
increasing the number of repetitions and the number of samples both have a considerable positive effect in
reducing the variability of the result.

Algorithm 4 Simulate a variable-rate Bernoulli process SIM2(n, p, ¢)

fori=1tondo
t;1 =0.5+4 (i—1)/(n—1); // Multiplier for scale 1: [0.5-1.5]
tp=0.5-sin(c-2-7w-(i—1)/(n—1)); // Multiplier for scale 2: [—0.5-0.5]
S(i) = Bernoulli(p - (t; +12))

end for

0.5 - p at the start to 1.5 p at the end of the sequence S. The second component
consists of the event frequency going up and down rhythmically, based on a sine wave
with peak amplitude 0.5 and mean 0. Finally, both components are added together to
give the variable event frequency, multiplied by the parameter p. The extra parameter,
¢, decides the periodicity of the sine wave, hence the second scale. We have generated
a sequence with parameters n = 100,000, p = 0.1 and ¢ = 16. The sequence has
10,009 events and has also been used to generate Figure 1.

Experiment 3. As discussed in Section 4.2, we try to estimate the optimal set of
window lengths for a sequence using a W-T matrix based on samples from the data.
We investigated empirically how many samples .7 should be based on to obtain a
solution close to the solution that was obtained on the full matrix, i.e., the matrix .7
that covers the whole input sequence. We have varied the number of samples from
1 to 16,384 using powers of 2 and computed the solution 100 times for each sample
size to assess the variance. We have used window lengths from 1 up to |n/c| = 6,250
(which is the scale of the second component in the data) and k = 3.
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process with rate that varies over time, using various numbers of samples to construct the Window-Trace
matrix 7. Squares, triangles and circles represent the medians for various window lengths, the dotted lines
represent 90 % confidence intervals and dashed lines denote that the confidence intervals for the window
lengths are overlapping. Surprisingly, the variability in the solutions does not decrease significantly when
increasing the number of samples beyond 32.

Figure 6 illustrates the results. We observe that the solutions are remarkably ro-
bust: the solutions using only 8 samples are already quite accurate approximations
and from 32 samples and up, the solutions are practically equivalent. Thus, we can
conclude that for simple data sets like this, a Window-Trace matrix based on 32 po-
sitions in S is sufficient.

Experiment 4. Finally, we tested if we can retrieve the two scales that are present
in the synthetic sequence. To prevent making it too easy for the algorithm, we use
window lengths from 1 to 20,000 and the Window-Trace matrix .7 is based on 1,000
indices in S. In a typical setting, we do not know how many scales a data set has.
It is useful to note that a higher k always provides more information, thus choosing
k too high is better than too low. For exploratory purposes, we use k = 3. Figure 7
illustrates the results. We find that the variable trend in the data can be identified well.

As a sanity check, we have computed the optimal solution for a data set generated
with Algorithm 3 with an equal number of events. The prediction error on both data
sets with both solutions is given in Table 1. We observe that the solutions are clearly
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Fig. 7 The representation of the data based on the solution for k = 3 on a sequence obtained from simu-
lating a Bernoulli process with rate that varies over time. The variable trend in the data is clearly shown by
the shorter window lengths, while the longest window length reveals the slow trend.

Table 1 A cross-comparison of the total prediction error for two comparable synthetic data sets with the
optimal solution for either sequence. The solutions are clearly different from each other and the prediction
error differs by a factor of two or more.

Fixed-rate optimal solution ~ Variable-rate optimal solution

Data sequence (16148, 9058, 3044) (16050, 3055, 1018)
Fixed rate 0.71-10% 1.91-10°
Variable rate 0.22-10° 0.11-10°

specific to the data, and that in both cases optimising the set of window lengths for
the data specifically leads to only half as much error. We also observe that the data
from the time-varying process is much more predictable, the error is almost ten-fold
lower. This is expected, as the data from the fixed rate process is maximally random.

Notice that our objective is to find a set of window lengths that is most infor-
mative with respect to the chosen statistic and the event sequence. The method is
not designed to find subtle differences in structure that have only a small effect of
the informativeness of a set of window lengths. Hence, we do not expect, e.g., that
the window lengths found here would be sensitive to small variations in periodicity
of the signal or that would be efficient in distinguishing components of the signal
with approximately similar frequencies. Other methods are better suited to find such
structures, such as FFT in the case of periodicity.

6.3 Choosing Proper Parameter Values

Based on the previous experiments we draw the following conclusions regarding the
parameter choices:

— We find that the accuracy of the solution can be increased by using more repe-
titions in the Clara++ algorithm. We recommend at least 80 repetitions, instead
of the default value of 5. More complex data and a larger set of window lengths
possibly require more repetitions.

— Increasing the number of samples also has a strong effect on the accuracy of
the solution. However, increasing the value should be done with care, as it the
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computational complexity is quadratic in the number of samples. We recommend
to use 80 samples or more, instead of the default value of 40+2k.

— The number of samples in the Window-Trace matrix can be small; 32 samples is
sufficient for a Bernoulli sequence.

— For these synthetic sequences, the uncertainty present in the data is larger than
the variability of the solutions for the optimisation problem.

7 Evaluation on Real Data

To evaluate the usefulness of our problem setting in practice, we have designed four
experiments on real data. In Section 7.1 we consider tracking the frequency of several
words of varying type and frequency throughout the novel Pride and Prejudice. In
Section 7.2 we study what window lengths would be appropriate for tracking the evo-
lution of hapax legomenon ratio throughout texts from various genres. In Section 7.3
we examine tracking the frequency of nucleotides and dinucleotides in two reference
genomes from the NCBI repository, and in Section 7.4 we identify the appropriate
window lengths for analysing multi-scale structured time series.

7.1 Optimal Window Lengths for Several Words

Burstiness (Katz 1996) and dispersion (Gries 2008) of words in natural language cor-
pora have become important concepts in research in linguistics (Gries 2008), natural
language processing (Madsen et al 2005) and text mining (Lijffijt et al 2011). Bursti-
ness and dispersion are used interchangeably to refer to measures for the variability
of the frequency of a word, i.e., a poorly dispersed or very bursty word tends to be
highly frequent in some (parts of) texts and infrequent in all other (parts of) texts.
In Section 5, we have shown that the optimal set of window lengths does not have
a relation to the frequency of the event studied, thus it would be interesting to know
if the optimal set of window lengths does depend on the burstiness of an event in a
sequence.

To test this, we conducted the following experiment. We downloaded the popular
novel Pride and Prejudice by Jane Austen, which is freely available through Project
Gutenberg (http://www.gutenberg.org/). The novel has approximately 120,000 words.
We selected the 30 most and least bursty words with a frequency of at least 100. In
this case, we measured the burstiness of a word by fitting a Weibull distribution to the
inter-arrival time distribution of the word, then the shape parameter of the distribution
is a measure for burstiness (Altmann et al 2009; Lijffijt et al 2011). The Weibull (or
stretched exponential) distribution is a two-parameter exponential family distribution
which can be used to model the distribution of the interarrival-times of the words. To
study the effect of burstiness on the optimal sets of window lengths, we used k = 3
and window lengths from 1 to 2000.

The result is shown in Figure 8. The value for the Weibull 8 parameters are given
at the top of the figure. We identify a clear trend: for the two smaller window lengths,
we observe that these are longer for bursty words than for non-bursty words, al-
though there is quite some variation within the two groups. The effect is strongest
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Fig. 8 Optimal sets of window lengths for analysing the evolving frequency of 60 words in the novel
Pride and Prejudice, for k = 3. Squares, triangles and circles represent the medians for various window
lengths, the dotted lines represent 90 % confidence intervals and dashed lines denote that the confidence
intervals for the window lengths are overlapping. The words are sorted by burstiness, i.e., the Weibull 8
parameter. We observe that the variability of the window lengths over different runs is quite large, but that
the algorithm chooses significantly longer window sizes in the case of bursty words. This trend is most
visible for the middle window lengths (triangles).

for the words “I”” and “you”, which are the most frequent bursty words. Although the
effect is weak, the average and median window lengths for the longest windows are
also higher for bursty words than for non bursty words (mean/median non-bursty vs.
bursty: 1083/1083 vs. 1136/1134, std. non-bursty vs. bursty: 63 vs. 81).

The fact that bursty words give longer window lengths may be due to the fact
that they exhibit a larger scale structure (bursts and intervals between bursts) than the
more uniformly distributed non-bursty words. The variation over individual words
inside the groups is likely due to an interaction with the frequency of the word and
because the Weibull 8 conveys not exactly the same ‘burstiness’ as is captured by our
method.

7.2 Hapax Legomenon Ratio in Several Genres

The genre of a text largely determines its structure, which can be measured in terms
of several linguistic features, for example the hapax legomenon ratio of texts (Biber
1988). We investigated if the optimal set of window lengths shows significant varia-
tion over texts from different genres, using the British National Corpus (The British
National Corpus 2007) and the genre annotation from (Lee 2001). We have randomly
sampled 100 texts from the BNC for each of the main genres in the corpus: conver-
sation, imaginative fiction, academic prose and newspaper texts. The statistic used
is now hapax legomenon ratio, as given in Equation (2), and we have used window
lengths from 1 to 1,000 and k = 3.
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Fig. 9 Optimal sets of window lengths for analysing the evolving Hapax legomenon ratio for 400 texts
from the British National Corpus, for various genres. Each point corresponds to a window length selected
for that book, given the value of &, and red lines present the averages of the four genres. Both imaginative
prose and conversations are significantly different from the other three genres (p < 1073, Wilcoxon rank-
sum test, all three averages). The selected window lengths are shorter, possibly indicating a more uniform
scale structure.

The result is shown in Figure 9. Although the set of window lengths varies over
texts within each genre, we find that imaginative prose and conversations each seem
to have a different structure than the texts from other three genres. This suggests that
the scale structure of imaginative prose is more uniform than for other genres. A likely
explanation is that the texts in the imaginative prose class are long coherent stories,
while the texts in the other classes are collections of articles, topics and conversations.

7.3 Frequency of Nucleotides throughout DNA

Studies in biology and bioinformatics have shown that DNA chains consist of a num-
ber of important, known functional regions, at both large and small scales, which
contain a high occurrence of one or more nucleotides (Papapetrou et al 2006). Exam-
ples of such regions include: isochores, which correspond to multi-megabase regions
of genomic sequences that are specifically GC-rich or GC-poor and exhibit greater
gene density; CpG islands, that correspond to regions of several hundred nucleotides
that are rich in the dinucleotide CpG which is generally under-represented (relative
to overall GC content) in eukaryotic genomes and their presence in the genome has
been associated with gene expression in nearby genes.

We have studied Chromosome 1 of two organisms: Homo Sapiens (human) and
Canis Familiaris (dog), of lengths 225 and 122 million nucleotides, respectively.
The data has been downloaded from the NCBI data repository®. We focused on six
event types: the four nucleotides A, C, G, and T, as well as dinucleotides TA and
CG. We tested our algorithm using k£ = 3 and window lengths up to 10,000. The
statistic used in our experiments was the relative event frequency and we sampled
1,000 columns for the W-T matrix.

In Figure 10 we see a comparison of the best window lengths found by our algo-
rithm for the two organisms. We observe that the four single nucleotides as well as

3 http://www.ncbi.nlm.nih.gov
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Fig. 10 Optimal sets of window lengths for the evolving frequency of nucleotides in Homo Sapiens chro-
mosome 1 and dog chromosome 1, for k = 5.

the two dinucleotides exhibit highly similar behaviour for both organisms. This is ex-
plained by the high genomic structural similarity between humans and dogs (Kirkness
et al 2003). Nonetheless, we see that the nucleotides C and G and both dinucleotides
behave substantially different from the nucleotides A and T. One may think that this
is merely a frequency effect, as the nucleotides A and T are much more frequent.
However, from Section 5 we know that the frequency of an event does affect the
distances between window lengths, but not the clustering.

Figure 11 illustrates the running frequency over the first 200,000 bases for chro-
mosome 1 of Homo Sapiens, for all four nucleotides and the two dinucleotides, us-
ing the optimal window lengths. We observe that the different window lengths give
somewhat different views of the data. As expected, the exact locations of bursts of
the dinucleotide are identified most accurately by the shortest window length. How-
ever, the significance of each burst is seen directly from the line corresponding to
the longest window length, since that line takes a fairly constant value throughout
most of the sequence. Hence, there is clear value in using multiple window lengths,
although in case two window lengths may be sufficient.

7.4 Smoothing of Time Series

An example of a time series with multi-scale structure comes from the Infrawatch
project (Knobbe et al 2010; Vespier et al 2012). The data consists of 24 hours of
measurements from a strain sensor on a bridge (the Hollandse brug in the Nether-
lands). The data contains structure at three time scales: a high frequency component
generated by individual cars and trucks passing on the bridge, a medium frequency
component generated by traffic jams, and a low frequency component generated by
weather effects (e.g., temperature). The sensor was sampled at 10 Hz and the total
length of the time series is 860,953 measurements.

We tested our method on this data with the following parameter setting. Since
the scale space is potentially very large, and the frequencies below 1 Hz (window
length 10) are not interesting, we constructed the set of potentially interesting window
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Fig. 11 Frequency of the studied (di-)nucleotides over the first 200,000 bases for chromosome 1 of Homo
Sapiens, using the best window lengths for that (di-)nucleotide.

lengths Q = {10, 14,20,...,163840,231705}, i.e., rounded powers of /2 starting at
window length 10. Also we use N = 1,000 and k = 3.

The result is presented in Figure 12. At a first glance, it is difficult to say whether
the three window lengths correspond directly to the three time scales that are present
in the data, because the window lengths correspond to different views and not to fre-
quency bands, as studied, for example, by Vespier et al (2012). Still, we observe that
the three window lengths give very different views of the data, each of which repre-
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Fig. 12 Smoothing of a time-series containing measurements from a strain sensor on a bridge in the
Netherlands, using an optimised set of three window lengths. The top figure shows the full sequence (24
hours), while the bottom figure shows a zoom-in on the traffic jam that occurred between 9am and 10am.

sents a different time scale. The substantial difference between the window lengths
becomes most clear in the zoomed-in figure. Evidently, this provides strong support
for our claim that it can be useful to study a set of window lengths.

8 Conclusions

We have studied the novel problem of identifying a set of window lengths that con-
tain the maximal amount of information in the data. We have presented a generally
applicable objective function that users could employ, which can also be efficiently
optimised algorithmically, or analytically for certain simple statistics and data distri-
butions. We have extensively studied the performance of the proposed optimisation
algorithm, as well as the identified solutions for three examples of sliding window
statistics on both synthetic data and real data. We have illustrated that the analytical
results and the computational results on synthetic data are useful as a baseline for
practical use. We have illustrated how sampling can be used to obtain the optimal set
of window lengths more efficiently, making the method practical for (collections of)
sequences of any size. Moreover, we have shown that the window lengths themselves
can show interesting properties of the data; among other findings, we have identi-
fied relations between the optimal window lengths and (1) the structure of sequences
composed of multiple interleaved sources and (2) the burstiness of events.

A question left for further research is how many window lengths a user should
employ in practical settings. One may be able to find a good trade off by exploring the
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value of the loss function for various number of window lengths, while an alternative
approach is to just select the number of window lengths as high as practically feasible,
since more windows is always more informative. Although it was our initial goal,
we have not explored the use of the method in an interactive setting, where a user
could for example fix one or more window lengths in advance, give the optimisation
algorithm hints about good window lengths, or construct the set of window lengths
interactively. There are clearly many interesting opportunities for future research in
this direction.
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A Proof of Theorem 1.

Preliminaries. Let (X1,...,X,) be a sequence of Bernoulli random variables with common parameter p,
ie,X;€{0,1},Pr({X;=1}) =p, foralli € {1,...,n}. The random variables could, for example, denote
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the occurrences of an event. Similar to the notation for event sequences, we use X;  to denote the subse-
quence of length @ starting at position i, (X,...,Xi+e—1). Let the statistic f be the relative frequency of
ones:
1 i+o—1
fXio)= o Y X 5)
J=t
The selection of an optimal set of window lengths is based on the squared error between predictions
made using those window lengths (Problem 1). Under the constraint of using a k-partition nearest neigh-
bour regressor, the predictions correspond to the value of the nearest window length (Section 4.1). Thus,
to select the optimal window lengths, we have to compute the distance (squared error) between all pairs of
window lengths. We find that the distance between window lengths is as follows.

Theorem 1 For the statistic and generative process described above, the expected distance between two
window lengths Y and ®, with Yy < @, is

o—y

Eld(w,7)]= o7

p(1-p).

Proof The expected distance between two window lengths ¥ and @ is
1 )
Eld(@.7)] =E |- Y (/Xiy) — (Xio)

i=1

Since Xi,...,X, are i.i.d. random variables, this simplifies to

Eld(0,7] =E[(/(%1) ~ f(X10))°].

Assuming without loss of generality that ¥ < @, we find that
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Thus we can rewrite the expected distance as
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These three expectations are

E[/(X1,)?] 17(17/—17) 2
E [f(XHy,w—y) ] = pai:)lj) +p°, and

E [f(xl.,y)f(xuy‘wfy)] = PZ-
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For brevity, we skip the derivation for these three expectations. They can be derived, for example, using
the fact that the variance of a binomial distribution is Var [Bin(n, p)] = E [Bin(n, p)?] — E[Bin(n, PP =
np(1 — p), and its expectation is E[Bin(n, p)] = np.

By writing out the expected distance we find that

— 2 — —
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= TW!’(I -p)




