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Abstract. Event sequences often contain continuous variability at dif-
ferent levels. In other words, their properties and characteristics change
at different rates, concurrently. For example, the sales of a product may
slowly become more frequent over a period of several weeks, but there
may be interesting variation within a week at the same time. To provide
an accurate and robust “view” of such multi-level structural behavior,
one needs to determine the appropriate levels of granularity for analyz-
ing the underlying sequence. We introduce the novel problem of finding
the best set of window lengths for analyzing discrete event sequences.
We define suitable criteria for choosing window lengths and propose an
efficient method to solve the problem. We give examples of tasks that
demonstrate the applicability of the problem and present extensive ex-
periments on both synthetic data and real data from two domains: text
and DNA. We find that the optimal sets of window lengths themselves
can provide new insight into the data, e.g., the burstiness of events affects
the optimal window lengths for measuring the event frequencies.

Keywords: event sequence, window length, clustering, exploratory data
mining

1 Introduction

Many sequences involve slowly changing properties, mixed with faster changing
properties. For example, the sales of a product may slowly become more frequent
over a period of several weeks, but there may be interesting variation throughout
a week at the same time. To provide an accurate and robust “view” of such
multi-level structural behavior, one needs to determine the appropriate levels of
granularity for analyzing the underlying sequence.

Sliding windows are frequently employed in several sequence analysis tasks,
such as mining frequent episodes [25], discovering poly-regions in biological se-
quences [29], finding biological or time-series motifs [6, 7], analysis of electroen-
cephalogram (EEG) sequences [30], or in linguistic analysis of documents [3]. A
major problem is that such methods are often parametrized by a user-defined

** This work was supported by the Finnish Centre of Excellence for Algorithmic Data
Analysis Research (ALGODAN).
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Fig. 1. Frequency change of an event in a sequence X of length 100,000. We use two
sliding windows of lengths 1562 and 6250. The generative process for this sequence is
described in Section 5.2. We observe that the two window lengths describe two different
views of the data.

window length and it can be unclear how to choose the appropriate window
length that guarantees optimal execution of the task at hand.

This problem can be avoided by either (i) defining an appropriate objective
function and using an optimization algorithm to select the best window length,
or (i) using all possible window lengths at the same time. The first approach
has, on one hand, the limitation that a single window length may leave out im-
portant information that would be discovered when using other window lengths.
On the other hand, studying all window lengths does not have this deficiency,
however, it may be challenging to analyze the large amount of information. The
method proposed in this paper is to use a small set of window lengths that
together provide as much information as possible about the underlying data.
We demonstrate that for many sequences an optimal balance between the two
previous problems can be obtained.

Example. The frequency of an event in a sequence may show variation
at different levels. Figure 1 shows an example of the relative frequency of an
event over time, which is computed using two incremental sliding windows of
lengths 1562 and 6250. The generative process for this sequence is described in
Section 5.2. We observe that each window length tells us a different “story” about
the frequency of the event. In other words, each window describes a different
view of the data: the longer window suggests a “smoothly” increasing frequency
throughout the sequence, while the shorter window captures a periodic behavior
in the event frequency.

Contribution. In this paper we introduce the novel problem of finding a
good set of window lengths for analyzing discrete sequences. We define suitable
criteria and an efficient method for choosing window lengths, and give examples
of tasks that demonstrate the applicability of the problem to different domains.
We perform extensive experiments on real data from two application domains:
text books and DNA sequences. We find that the scales of the occurrence pat-
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terns of various events (e.g., word types or DNA segments) vary significantly,
and that the optimal scales can provide useful new insight into the data. Finally,
we conduct an evaluation of optimal window lengths for random data to compare
the empirical results with.

2 Related Work

String and text mining. Sliding windows have been used extensively in string
mining. Indexing methods for string matching based on n-grams [21], i.e., sub-
sequences of length n, employ sliding windows of fixed or variable length to
create dictionaries and speed-up approximate string search in large collections
of texts. Determining the appropriate window length is always a challenge, as
small window lengths result in higher recall but large index structures. In text
mining, looking at different linguistic dimensions of text results in extracting
different “views” of the underlying text structure [3]. One way to quantify these
views is by using sliding windows. Recently, an interactive text analysis tool®
has been developed for exploring the effect of window length on three commonly
used linguistic measures: type-token ratio?, proportion of hapax legomena, and
average word length. However, the window length is user-defined.
Bioinformatics. Several sliding window approaches have been proposed for
analyzing large genomes and genetic associations. Two groups of methods ex-
ist in the literature that are characterized by fixed-length and variable-length
sliding windows [4, 22, 26, 29, 32]. For the case of fixed-length windows it is hard
to determine the optimal window length per task while variable-length windows
provide higher flexibility. A variable window length framework for genetic associ-
ation analysis employs principal component analysis to find the optimum window
length [31]. Sliding windows have also been used for searching large biological
sequences for poly-regions [29], motifs [7], and tandem repeats [2]. Nonetheless,
in all cases mentioned above it is assumed that there exists only one optimum
length and the solution is limited to the task of genetic association analysis.
Stream mining. A common task in stream mining is to detect and monitor
frequent items or itemsets in an evolving stream, counted over sliding windows.
We present a brief survey of the use of sliding windows in stream mining, even the
overall setting is very different from the problem studied in this paper and a setup
requiring online learning is not covered by this paper. In the case of the fixed-
length window model the length of the window is set at the beginning, and the
data mining task is to discover recent trends in the data contained in the window
[8,13,15,17]. In the time-fading model [20] the full stream is taken into account
in order to compute itemset frequencies while time sensitivity is emphasized so
that recent transactions get a higher weight as compared to earlier transactions.
In addition, a tilted-time window [12] can be seen as a combination of different
scales reflecting the alteration of the time scales of the windows over time. In the
landmark model, particular time periods are fixed while the landmark designates

! http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
2 The ratio of distinct tokens (words) to the total number of tokens in the text.
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the start of the system until the current time [16,17]. A frequency measure based
on a flexible window length was introduced [5], where the frequency of an item
is defined as the maximal frequency over all windows until the most recent event
in the stream. Several variants of the above methods have been proposed, as well
as adaptations of basic methods for different objectives.

Time series. A common data mining problem in time series is the enumer-
ation of previously unknown but frequently occurring patterns. Such patterns
are called “motifs” due to their close analogy to their discrete counterparts in
computational biology. Efficient motif discovery algorithms have been proposed,
based on sliding windows, for summarizing and visualizing massive time series
databases [6,27]. A method for discovering locally optimal patterns in time se-
ries at multiple scales has been proposed [28] along with a criterion for choosing
the best window lengths. This is, however, a local heuristic and applies only to
continuous data.

Based on the above discussion, sliding windows have been widely used in
many application domains that involve sequences (discrete or continuous). How-
ever, window lengths are chosen either empirically or they are optimized for the
task at hand. To the best of our knowledge, no earlier work has proposed a prin-
cipled method for choosing the set of appropriate window lengths that optimally
summarize the data for a given statistic and data mining task.

3 Problem Setting

3.1 Preliminaries

Given a set of event labels o, a sequence of events is defined as X = x1...xz,,
with each z; € 0. We denote as X;(i) = x;...x;4+;—1 the subsequence of length
J starting at position ¢ in X. We quantify the “information” of a subsequence
X, (i) with a statistic f(X;(i)). For example, f may be defined as the relative
frequency of an event ¢ € ¢ in X, (i), i.e.,

) # of occurrences of q in X;(i)
f(X;5(0) = . ; (1)
! |1 X5 (0]
where, by definition, | X (i)| = j. Alternatively, f may be defined as the type/token
ratio of a sequence, i.e.,

_ # of distinct events in X (i)
1 X5 (4)]

In principle f can be any function, but in the experiments (Sections 5 and 6) we
use only the two functions given in Equations (1) and (2).

Since X may be structured at different levels with respect to statistic f, we
are interested in finding the set of k window lengths that capture most of the
structure in X. A window is defined as a slice of a sequence [25], or in other
words it corresponds to a subsequence of X.

F(X;5(2)) (2)
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3.2 Problem Definition

Our goal is to capture several different levels of structure with respect to f
by optimizing an objective function. Depending on the task at hand one may
consider different objective functions. The objective function we propose in this
paper (described in Problem 1 below) is to explain most of the “variation” in
the data.

Let £2 be the set of all window lengths that we would like to consider in
analyzing the structure of X. We also assume that we are given a distance
function d(w;,w;) that, given two window lengths w;,w; € {2, quantifies the
distance between the two structures in X captured by each of them. We present
suitable choices for d in Section 4, an example is the sum of squared errors.

We propose to find the £ window lengths that capture most of the variance
in X:

Problem 1 (Mazimal variance). Given a discrete sequence X, find a set R =
{w1,...,wr} of k window lengths that explain most of the variation in X, i.e.,
find a set R that minimizes

Z min d(w;, w;).

w;ER
w; €N 7

The above formulation corresponds to clustering. The resulting window lengths
will be the centroids of the k clusters that explain the variation in X at differ-
ent levels, and together the k centroids explain most information present in all
possible window lengths.

The centroids can be viewed as code-book vectors that could be used to
present the time series with any window length, with a minimal quadratic loss.
Similar techniques are used, e.g., in lossy image compression to quantize the color
space, where the code-book vectors can then be used to represent the pixels in
fewer number of bits [10].

The above formulation is useful and applicable to real data scenarios, as
shown by our experimental findings in Section 6. A method for solving Problem
1 is discussed in the following section.

4 WinMiner

In this section, we describe our proposed method, called WinMiner. We first
introduce an auxiliary data structure, called Window-Trace matriz. Then, we
describe an algorithm for solving Problem 1 using this matrix. We also study
the computational complexity of WinMiner and present a sampling approach for
reducing the time and space complexity of the method.

4.1 The Window-Trace Matrix

To solve Problem 1 we use an auxiliary matrix, called the Window-Trace (W-T)
matriz, which is used to store the values of statistic f for each sliding window
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Fig. 2. Illustration of a W-T matrix 7 for function f, given a sequence X = z1...xy
and a set of window lengths 2 = {w1,...,wm}. Each cell in the matrix corresponds to
the value of f at position 7 in X, for window length wj.

in X. More specifically, let X be the input sequence and f the statistic at hand.
Then the W-T matrix 7 contains all values of f(X,(¢)) for all window lengths
and a restricted set of sequence positions. We define I = max({2) and m = |£2|.
Then, 7 is given by

Tii=f(Xo,(0)) Viel,...omiel,...,n—1+1 (3)

Effectively, row 4 of matrix 7, denoted as 7;,, contains a time series describ-
ing the behavior of statistic f over time for window length w;. In this setting,
d(w;,wj) can be defined to express the distance between the corresponding time
series of w; and wy, i.e., rows T, and Tj,. In our experiments, d is set to be the
sum of squared errors. An illustration of 7 is shown in Figure 2.

4.2 WinMiner

The minimization problem described in Problem 1 is equivalent to clustering.
According to our problem setting, a set of k representative window lengths needs
to be identified.

We use d(w;,w;) = Z;i“('ﬁ-k — Tix)?, i.e., the sum of squared errors, as
the distance function between two rows of T, which results in Problem 1 being
equivalent to the k-means problem. In general, the k-means problem is NP-
Hard, but in practice we can use the iterative k-means algorithm to obtain a
good approximation efficiently.

The execution of the k-means algorithm on 7 results in k clusters of window
lengths. However, the centroids of these clusters do not necessarily correspond
to a single window length, and in practice the centroids will often be a weighted
sum of many window lengths. We obtain the final approzimately optimal set of
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window lengths R by choosing the k£ window lengths that correspond to rows
of T that have the smallest distance to each of the k cluster centroids. Note
that K-means is run rep times and the best solution is reported. We call this
algorithm WinMiner and its pseudocode is given in Algorithm 1.

Algorithm 1 Finding the k most variant points WinMiner(d, {2, k, rep)

for i =1 to rep do
{C1,...,Cx} = K-means(d, k) {k-means returns k cluster centroids.}
Ri={}
for j =1to k do
R: = R; U{argmin,cp d(Cj,7)}
end for
loss; = ) cominger,; d(w,T)
end for
best = arg min;e (1
return Rpest

rep} 1088;

.....

4.3 Computational Complexity

Let n be the size of the data and m = |£2|, as in Section 4.1. We then have that
the size of the Window-Trace matrix 7 is O(m - n). Also, the computational
complexity and memory required to create and store it are equal to the size.
The computational complexity for WinMiner is then the number of repetitions
times the complexity of K-means over the matrix 7. Each iteration of K-means
starts with an expectation step, in which each of the m points of dimension n
is compared to each of the k cluster centroids, and then assigns them to the
closest. In the ordinary k-means algorithm, the maximization step takes only m
times n steps, because each point belongs to only one cluster. Thus, assuming
the algorithm requires 7 iterations to converge, the total complexity of WinMiner
is O(rep-i-k-n-m).

In the experiments in Sections 5 and 6, K-means is limited to 200 iterations,
but often much less iterations are required to reach convergence. In the next
section we discuss that there is usually no need to compute 7 over the entire
data set and sampling can be used to greatly reduce the complexity of WinMiner.

4.4 Reducing the Complexity by Sampling

As shown in Section 4.3, one factor that affects the time complexity of WinMiner
is the number of columns of 7. We can speed up our algorithm by sampling
uniformly a small set of columns from 7, instead of using the full matrix.

In Section 5.2, we investigated empirically what would be the appropriate
sampling rate to obtain a solution close to the solution that was obtained on
the full matrix, assuming that the underlying sequence was generated using a
variable rate Bernoulli process.
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5 Evaluation on Synthetic Data

In any data mining task, it is important to be able to evaluate the significance
of a result. Because of the complex set-up of our method, it is difficult to derive
analytical results for what to expect regarding optimal sets of window lengths,
expected cost of clustering, or expected minimal distances for the furthest pairs
algorithm, even for simple random processes such as the Bernoulli process. To
provide a baseline for the results in Section 6, we designed five experiments based
on randomly generated data, where we know precisely what the properties of the
data are.

5.1 Bernoulli Process with Fixed Rate

We are interested in the performance of two statistics: the cost of the optimal
clustering and the set of window lengths given by WinMiner. We can use Algo-
rithm 2 to generate random data from a Bernoulli process with fixed rate, given
parameters n and p, which are the length of the sequence and the probability of
the event occurring at any position, respectively.

Algorithm 2 Simulate a fixed-rate Bernoulli process SIM1(n, p)

for i = 1 ton do
X (1) = Bernoulli(p)
end for

Experiment 1. Since WinMiner is a non-deterministic approximation algorithm,
the output may vary, even with the same input sequence. In the first experiment,
we tested the stability of the solution in terms of the optimal window lengths
given by WinMiner. Because WinMiner returns a set, comparing two solutions is
not trivial. For brevity and ease of interpretation, we use k = 3 and only one
sequence generated by Algorithm 2. We use n = 10,000 and p = 0.1 to generate
the sequence and the number of repetitions (parameter rep) for WinMiner is
set to 5, which should ensure reasonable approximations. The statistic is set to
the relative frequency of the event, as defined in Equation 1. The results are
presented in Figure 3. We observe that the result of WinMiner is the same in
97 out of 100 repetitions. The stability of the solution indicates that the chosen
number of repetitions (parameter rep = 5) is sufficiently high.

Experiment 2. A data set, even with the same parameter settings, may give
quite different results. Thus, secondly, we tested the stability of the solutions
given by WinMiner for various values of k. We generated 100 data sets and
tested the optimal window lengths for k = 3,...,5 on each data set. The other
parameters were kept the same as in the previous experiment. The results are
presented in Figure 3. We observe there is much more variation than in the
previous experiment, which can be explained by the fact that a different input
sequence is used for each repetition. The observed variance in the figure can be
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Fig. 3. Solutions for Experiments 1 and 2. The left figure shows the solutions found by
WinMiner over repeated runs on a single sequence, using k = 3. We observe that the
solutions are very stable over the different runs, which indicates that the chosen number
of repetitions is sufficient. The right figure shows the solutions found by WinMiner over
100 synthetic data sets generated using fixed parameters, for increasing values of k. The
solid dots represent the median values and the dashed lines give the 90% confidence
intervals. We observe that there is more variance in this case, and the amount can be
used as a baseline for other experiments.

used in future experiments to draw conclusions with respect to the significance
of differences in sets of window lengths obtained for various events or data sets.
Experiment 3. Thirdly, we tested how the solutions depend on the average
frequency of an event in the sequence. We leave most of the parameters as in
the previous experiment, but now produce only one solution for each problem
and repeat the process for varying value of p. We vary p from 0.01 to 0.50 in
steps of 0.01. We do not have to study the behavior for p > 0.50 because the
results will be symmetric to those between p = 0.01 and p = 0.50. The results
are presented in Figure 4 and they suggest that there is no clear pattern. Hence,
we can conclude that the event frequency has no direct influence on the optimal
window lengths.

5.2 Bernoulli Process with Variable Rate

In the previous experiments, the frequency of the event remained fixed over
time, which leads to the sequence having structure only on a single scale. To test
the power of WinMiner in finding the true underlying scale at which the data
is structured, we designed an algorithm to simulate a Bernoulli process with
variable rate.

The full process is described in Algorithm 3. The first component of the vari-
able rate is based on a slow increase of the event frequency over time, which
ranges from 0.5 - p at the start to 1.5 - p at the end of the sequence X. The
second component consists of the event frequency going up and down rhythmi-
cally, based on a sine wave with peak amplitude 0.5 and mean 0. Finally, both
components are added together to give the variable event frequency, multiplied
by the parameter p. The extra parameter, ¢, decides the periodicity of the sine



10 Size Matters: Finding the Most Informative Set of Window Lengths

Solution for Experiment 3 Solution for Experiment 4
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Fig. 4. Solutions for Experiments 3 and 4. The left figure shows the solutions found by
WinMiner over sequences obtained from simulating a Bernoulli process with fixed rate p,
for varying values of p. We find that there is no direct correlation between the optimal
set of window lengths and the event frequency. The right figure shows the solutions
found by WinMiner on a sequence obtained from simulating a Bernoulli process with
rate that varies over time, using various numbers of samples. The solid dots represent
the median values and the dashed lines give the 90% confidence intervals. We observe
that the solutions for 1,024 and more samples are practically equivalent.

wave, and thus the second scale. We have generated a sequence with parameters
n = 100,000, p = 0.1 and ¢ = 16. The sequence has 10,009 events and has also
been used to generate Figure 1.

Algorithm 3 Simulate a variable-rate Bernoulli process SIM2(n, p, ¢)

for : = 1ton do
t1 =054+ (i —1)/(n—1); // Multiplier for scale 1: [0.5-1.5]
to = 0.5 -sin(c-2-7- (i —1)/(n —1)); // Multiplier for scale 2: [—0.5-0.5]
X (1) = Bernoulli(p - (t1 + t2))

end for

Experiment 4. As discussed in Section 4.4, we can obtain the optimal set of
window lengths for this sequence without analyzing the full W-T matrix. We
investigated empirically how many samples of 7 we would need (by performing
uniform sampling on the columns of 7') to obtain a solution close to the solution
that was obtained on the full matrix, i.e., the solution in Figure 5. We have
varied the number of samples from 64 to 16,384 using powers of 2 and computed
the solution 10 times for each sample size to assess the variance. We have used
window lengths from 1 up to [n/c|] = 6,250 (which is the scale of the second
component in the data) and k = 3. Figure 4 illustrates the results for WinMiner.
We observe that the solution for Problem 1 is remarkably robust; the solutions
using only 64 samples are already quite accurate approximations and from 1024
samples and up, the solutions are practically equivalent. Thus, we can conclude
that 1,024 samples is sufficient for this data.
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Fig. 5. The representation of the data based on the solution for £ = 3 of Problem 1
on a sequence obtained from simulating a Bernoulli process with rate that varies over
time. The variable trend in the data is clearly shown by the shorter window lengths,
while the longest window length reveals the slow trend.

Experiment 5. Finally, we tested if we can retrieve the two scales that are
present in the synthetic sequence. To prevent making it too easy for the algo-
rithm, we use window lengths up to 20,000 and generate only 1,000 columns of
the Window-Trace matrix 7. In a typical setting, we do not know how many
scales a data set has. It is useful to note that a higher k£ always provides more
information, thus choosing k too high is better than too low. For exploratory
purposes, we use k = 3. In previous experiments we found that the solution for
Problem 2 always includes the smallest window length, thus, to obtain a more
interpretable result, the minimum window length is set to 50. Figure 5 illus-
trates the results for WinMiner. We find that the variable trend in the data can
be identified well by solving Problem 1.

6 Evaluation on Real Data

To evaluate the usefulness of our problem setting in practice, we have designed
three experiments on real data. In Section 6.1 we consider tracking the frequency
of several words of varying type and frequency throughout the novel Pride and
Prejudice. In Section 6.2 we study what window lengths would be appropriate for
tracking the evolution of type/token ratio throughout several novels of Charles
Dickens and try to relate the findings to previous linguistic research. Finally,
in Section 6.3, we examine tracking the frequency of nucleotides and pairs of
nucleotides in two reference genomes from the NCBI repository.

6.1 Optimal Window Lengths for Several Words

The influence of burstiness [18] and dispersion [14] of words in natural language
corpora has become an important concept in research in linguistics [14], natural
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Table 1. Using the MLE estimate for the Weibull 8 parameter as a measure of bursti-
ness, we have selected these 24 words for comparison in our experiments. The words
are the four most and least bursty words in three manually chosen frequency brackets.
Bursty words exhibit greater variation in local frequency and non-bursty words are
almost equally frequent throughout the book.

Frequency ‘ Non-bursty Index ‘ Bursty Index
Low [39-41] met, rest, right, help 1-4|write, de, william, read  5-8
Medium [175-228]|time, soon, other, only 9-12|lady, has, can, may 13-16
High [600-1666] |with, not, that, but  17-20|you, is, my, his 21-24

language processing [24] and text mining [23]. Burstiness and dispersion are both
indicators for the stability of the frequency of a word, i.e., a poorly dispersed
or very bursty word tends to be highly frequent in some (parts of) texts and
infrequent in all other (parts of) texts. The difference between the two measures
is the level of granularity used in the analysis; burstiness is computed over run-
ning text, while dispersion is measured at the level of texts. In Section 5.1, we
concluded that the optimal set of window lengths does not have a relation to
the frequency of the event studied, thus it would be interesting to know if the
optimal set of window lengths does depend on the burstiness of an event in a
sequence.

To test this, we used the following experiment. We downloaded the popu-
lar novel Pride and Prejudice by Jane Austen, which is freely available through
Project Gutenberg®. The novel has approximately 120,000 words. We then se-
lected 24 words from three frequency bins, of which 12 are bursty and 12 are
non-bursty. In this case, we measured the burstiness of a word by fitting a Weibull
distribution to the inter-arrival time distribution of the word, then the shape pa-
rameter of the distribution is a measure for burstiness [1,23]. The Weibull (or
stretched exponential) distribution is a two-parameter exponential family distri-
bution which can be used to model the distribution of the interarrival-times of
the words. The words are listed in Table 1. To study the effect of burstiness on
the optimal sets of window lengths, we varied the parameter k from three to five
and used window lengths from 1 to 4000.

The result is shown in Figure 6. The measurements for the bursty words are
highlighted using a gray background. The results for Problem 1 (blue lines) are
very interesting. We observe that for the non-bursty words, the results indeed
appear to be all the same. Interestingly, the sets of optimal window lengths
clearly contain longer windows for the bursty words, for any choice of k. This may
be due to the fact that the bursty word exhibits a larger scale structure (bursts
and intervals between bursts) than non-bursty more uniformly distributed words.

6.2 Type/Token Ratio Throughout Several Novels

A recent study in linguistics considered the homogeneity of 14 novels by Charles
Dickens [9]. We investigated if the optimal set of window lengths shows significant

3 http://www.gutenberg.org/
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Fig. 6. Optimal sets of window lengths for analyzing the evolving frequency of 24
words in the novel Pride and Prejudice, for various choices of k. Each dot corresponds
to a window length selected for that word, and lines are added to aid the comparison
over words. The words range from low to high frequency and have the same order as
in Table 1. We observe that the window lengths depend on the burstiness of a word,
e.g., the fifth to eight word have high burstiness and have consistently higher window
lengths than words one to four, which are not bursty. The same holds for words 13 to
16 and 21 to 24, which are also bursty, compared to words 9 to 12 and 17 to 20.
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Fig. 7. Optimal sets of window lengths for analyzing the evolving type/token ratio of
15 novels, for various choices of k. Each dot corresponds to a window length selected
for that word, given the value of k, and lines are added to aid the comparison over
words. Surprisingly, the solution set for each of the novels is almost the same.

variation over this set of novels. We downloaded the fourteen novels discussed
by Evert [9], and used Pride and Prejudice as the fifteenth novel. We again used
window lengths from one to 4,000 and varied k from three to five. However, the
statistic used is now type/token ratio, as given in Equation (2).

The result is shown in Figure 7. The sets of window lengths found by our

method is remarkably robust, suggesting that the novels are indeed quite similar
in structure.
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Fig. 8. Optimal sets of window lengths for analyzing the evolving frequency of nu-
cleotides in Homo sapiens chromosome 1 and Canis familiaris chromosome 1, for k = 5.

6.3 Frequency of Nucleotides in Biological Sequences

Studies in biology and bioinformatics have shown that DNA chains consist
of a number of important, known functional regions, at both large and small
scales, which contain a high occurrence of one or more nucleotides [29]. Ex-
amples of such regions include: isochores, which correspond to multi-megabase
regions of genomic sequences that are specifically GC-rich or GC-poor and ex-
hibit greater gene density; CpG islands, that correspond to regions of several
hundred nucleotides that are rich in the dinucleotide CpG which is generally
under-represented (relative to overall GC content) in eukaryotic genomes and
there presence in the genome has been associated with gene expression in nearby
genes.

We have studied Chromosome 1 of two organisms: Homo sapiens (human)
and Canis familiaris (dog), of lengths 225 and 122 million nucleotides, re-
spectively. The data has been downloaded from the NCBI data repository*. We
focused on six event types: the four nucleotides A, C, G, and T, as well as din-
ucleotides TA and CG. We tested WinMiner for kK = 5 and window lengths up
to 4,000. The statistic used in our experiments was the relative event frequency.
To speed up our method we sampled 10,000 columns from the W-T matrix.

In Figure 8 we see a comparison of the 5 best window lengths found by
WinMiner for the two organisms. We observe that the four single nucleotides
as well as dinucleotide CG (which is indicative of the gene structure) exhibit
highly similar behavior for both organisms. This is explained by the high genomic
structural similarity between humans and dogs [19]. Nonetheless, we see that
dinucleotide TA has a substantially different behavior. This is due to the fact
that TA is known to be the least stable of all dinucleotides [11] and in many cases
indicative of Transcription Factor Binding Sites (TFBS), which are different in
the two organisms.

4 http://www.ncbi.nlm.nih.gov
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7 Conclusions

We have studied the novel problem of identifying a set of window lengths that
contain the maximal amount of information in the data. We have presented
a generally applicable objective function that users could employ, which can
also be efficiently optimized. We have extensively studied the performance of
the proposed optimization algorithm, as well as the identified solutions for two
examples of sliding window statistics on both synthetic data and real data. We
have illustrated that the results on synthetic data are useful as a baseline for
practical use, and that sampling can be used to obtain the optimal set of window
lengths based on a small sample of the data, making the method practical for
(collections of ) sequences of any size. Moreover, we have shown that the window
lengths themselves can show interesting properties of the data; among other
findings, we have identified the relation between the burstiness of events and the
optimal window lengths.

An open problem is how many window lengths users should employ in prac-
tical settings. In principle, more windows is always more informative, and in
many situations users may be able to easily identify when the set of results is
too large.
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