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ABSTRACT
We study the performance of three dynamic programming
methods on music retrieval. The methods are designed for
time series matching but can be directly applied to retrieval
of music. Dynamic Time Warping (DTW) identifies an op-
timal alignment between two time series, and computes the
matching cost corresponding to that alignment. Significant
speed-ups can be achieved by constrained Dynamic Time
Warping (cDTW), which narrows down the set of positions
in one time series that can be matched with specific posi-
tions in the other time series. Both methods are designed
for full sequence matching but can also be applied for sub-
sequence matching, by using a sliding window over each
database sequence to compute a matching score for each
database subsequence. In addition, SPRING is a dynamic
programming approach designed for subsequence matching,
where the query is matched with a database subsequence
without requiring the match length to be equal to the query
length. SPRING has a lower computational cost than DTW
and cDTW. Our database consists of a set of MIDI files
taken from the web. Each MIDI file has been converted to
a 2-dimensional time series, taking into account both note
pitches and durations. We have used synthetic queries of
fixed size and different noise levels. Surprisingly, when look-
ing for the top-K best matches, all three approaches show
similar behavior in terms of retrieval accuracy for small val-
ues of K. This suggests that for the specific application
area, a computationally cheaper method, such as SPRING,
is sufficient to retrieve the best top-K matches.
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Time series data occur in a wide range of real-world ap-
plications and are used to represent a variety of data do-
mains, such as scientific measurements, financial data, mu-
sic, human activity, etc. Thus, in multiple domains, large
databases of sequences are used as knowledge repositories.
At the same time, retrieving information of interest in such
repositories becomes a challenging task, due to the large
amounts of data that need to be searched.

Subsequence matching is the problem of identifying, given
a query sequence and a database of sequences, the database
subsequence that best matches the query sequence. Achiev-
ing efficient subsequence matching is an important problem
in domains where the database sequences are much longer
than the queries, and where the best subsequence match for
a query can start and end at any position of any database
sequence.

One such domain is music. We assume that the knowledge
repository is a database of music pieces. Every music piece
consists of notes, with each note being described by a pitch
(which corresponds to the sound frequency of the note) and
a duration. An example of a music piece is shown in Fig-
ure 1, where we can see the music score of the song Happy
Birthday to You. Pitch and duration are two distinctive
characteristics for a music piece and determine its melody;
hence, in order to provide a sufficient music representation,
we consider a music piece to be a sequence of pitches with
their corresponding durations.

Since the melody of two music pieces can be the same but
in different tempo, or in higher frequency, both pitch and
duration should be properly normalized. Thus, instead of
the absolute pitch of each note, we use the Relative Pitch
(RP), which is the pitch difference of two adjacent notes.
The note duration is represented using the Duration Ratio
(DR), which is the ratio of the durations of two adjacent
notes. The DR of the last note is 1. This type of normal-
ization has also been used in several music retrieval systems
[29, 10, 38, 26].

Using the above representation, each music piece is defined
as a 2-dimensional time seriesX = {(pi, di)), i = 1, . . . , |X|},
where pi the relative pitch of each pair of consecutive notes
and di is their respective duration ratio. A query sequence
corresponds to a music piece that is either hummed or played
by some music instrument. At runtime, the query is also
transformed to a 2-dimensional time series using the same
representation. In this setting, existing time series subse-
quence matching methods can be applied directly to retrieve
the best match of the query in a music database.

Typically, similarity between sequences is measured us-



Figure 1: A music sheet of the music score
for the song happy birthday to you taken from
http://www.8notes.com.

ing algorithms based on dynamic programming (DP) [4]. In
particular, dynamic time warping (DTW) [16] is widely used
for time series data. Constrained Dynamic Time Warping
(cDTW) is a modification of DTW that places constraints
on the possible alignment between two sequences [32]. These
DP-based algorithms can be used both for full sequence and
for subsequence matching, and identify the globally optimal
subsequence match for a given query [23, 25, 33]. While
this complexity is definitely attractive compared to exhaus-
tively matching the query with every possible database sub-
sequence, in practice subsequence matching is still a com-
putationally expensive operation in many real-world appli-
cations, especially in the presence of large database sizes.
In this paper, we study the performance of three exist-

ing time series subsequence matching methods on music re-
trieval. We assume that each query can be of arbitrary
length, i.e., it can be a part of the melody of a music piece we
are looking for in our database and not necessarily the whole
piece. This is a more realistic setting for the field of music
retrieval as people usually tend to remember parts of the
melody of a music song and not the whole melody. Under
this assumption, we study three major time series match-
ing algorithms: Dynamic Time Warping (DTW) [16], con-
strained Dynamic TimeWarping (cDTW) [32], and SPRING
[33]. Since the first two are designed for full sequence match-
ing, we use a sliding window over the whole database, equal
to the query length, to compute the matching score of each
possible subsequence.

2. RELATED WORK
A large body of literature addresses the problem of se-

quence matching. Several methods assume that sequence
similarity is measured using the Euclidean distance [11, 7,
21, 22] or variants [1, 30, 41]. However, such methods can-
not handle even the smallest misalignment caused by time
warps, insertions, or deletions. Robustness to misalignments
is achieved using distance measures based on dynamic pro-
gramming, such as dynamic time warping (DTW) [16] and
edit distance based approaches [19, 39, 8, 17, 9, 24]. In
the remaining discussion we restrict our attention to the dy-

namic time warping distance measure, which is the most
popular measure for time series.

Sequence matching methods can be divided into two cat-
egories: (1) methods for full sequence matching, where the
best matches for a query are constrained to be entire database
sequences, and (2) methods for subsequence matching, where
the best matches for a query can be arbitrary subsequences
of database sequences. Several well-known methods only ad-
dress full sequence matching [14, 34, 40, 42], and cannot be
easily used for efficient retrieval of subsequences.

Some methods transform subsequence matching to full se-
quence matching, by cutting database sequences into small
pieces, and requiring each query to correspond to an en-
tire such piece. One example is the query-by-humming sys-
tem described in [43], where each database song is cut into
smaller, disjoint pieces. Such approaches fail when the query
corresponds to a database subsequence that is not stored as
a single piece.

An indexing structure for unconstrained DP-based subse-
quence matching is proposed in [27]. However, as database
sequences get longer, the time complexity for that method
becomes similar to that of unoptimized DP-based matching.
The method in [28] can handle such long database sequences;
the key idea is to speed up DTW by reducing the length of
both query and database sequences. The length is reduced
by representing sequences as ordered lists of monotonically
increasing or decreasing segments. By using monotonicity,
that method is only applicable to 1-dimensional time series.
A related method that can be used for multidimensional
timeseries is proposed in [15]. In that method, time series
are approximated by shorter sequences, obtained by replac-
ing each constant-length part of the original sequence with
the average value over that part.

The SPRING method for efficient subsequence match-
ing under unconstrained DTW is proposed in [33]. In that
method, optimal subsequence matches are identified by per-
forming full sequence matching between the query and each
database sequence. Subsequences are identified by prepend-
ing to each query a“null” symbol that matches any sequence
prefix with zero cost. The complexity of that method is lin-
ear to both database size and query size.

The more powerful lower-bounding method LB Keogh [14]
was developed for efficient time series matching. The main
idea is to use the warping constraint to create an envelope
around the query sequence. Then, using a sliding window
of size equal to the query, we can estimate a lower bound
of the matching cost between the query and each possible
subsequence. Since LB Keogh gives a lower bound on the
actual distance, this approach can be used to prune a large
number of subsequences. For the subsequences that cannot
be pruned, the exact dynamic programming algorithm is
used to compute the distances and ultimately find the best
match.

Music retrieval has been studied widely. Several algo-
rithms have been developed and various music represen-
tations have been studied. Several probabilistic methods
(HMMs) have been developed for music retrieval [3, 20, 35,
36]. However, they are computationally expensive due to the
required training and very tough task of creating models to
represent all kinds of music. An extended HMM architec-
ture Factorial HMM has been proposed to model music [13],
more specifically Bach’s chorales. Factorial HMMs are based
on a factored, distributed representation of the hidden state



variable. Due to their complicated structure, inference and
learning is intractable, and approximate learning is neces-
sary. Although the model may be effective in capturing the
statistical structure in the Bach’s chorales, it is not built for
any query processing as such.
Dynamic programming approaches seemed to be the most

promising both in terms of accuracy and computational cost
[12, 38, 18, 43].

3. SUBSEQUENCE MATCHING
We study three existing time series subsequence match-

ing methods, Dynamic Time Warping, constrained Dynamic
Time Warping, and SPRING.

3.1 Dynamic Time Warping
Dynamic time warping (DTW) identifies an optimal align-

ment between two time series, and computes the matching
cost corresponding to that alignment. In DTW an individ-
ual element of one sequence can be matched with at least
one and possibly more elements of the other sequence, thus
allowing for each series to be stretched locally along the time
axis.
Given two N -dimensional time series Q = (Q1, . . . , Q|Q|)

andX = (X1, . . . , X|X|), the Dynamic TimeWarping match-
ing cost D(Q,X) is defined recursively using a dynamic pro-
gramming matrix D of size (|Q| + 1)x(|X| + 1). A null el-
ement is added at the beginning of Q and X and has the
property that it matches with another null element with a
score of ‘0’ and any other element with a score of ∞. Let
Dij denote the element at the ith row and jth column of D.
Then, the dynamic time warping cost D(Q,X) is defined as
follows:

D0,0(Q,X) = 0 . (1)

D0,j(Q,X) = ∞ . (2)

Di,0(Q,X) = ∞ . (3)

Di,j(Q,X) = Lp(Qi, Xj) + min

 Di,j−1(Q,X)
Di−1,j(Q,X)
Di−1,j−1(Q,X)

(4)

∀(i = 1, . . . , |Q|; j = 1, . . . , |X|) .
D(Q,X) = D|Q|,|X|(Q,X) . (5)

Notice that Lp(Qi,Xj) is the Lp norm difference of Qi

and Xj .

3.2 Constrained Dynamic Time Warping
Constrained DTW (cDTW) is obtained from DTW simply

by placing an additional constraint, which narrows down
the set of positions in one sequence that can be matched
with a specific position in the other sequence. We consider
only using the Sakoe-Chiba band [32] constraint where the
lengths of the two time series sequences are the same. Given
a warping width w, this constraint is defined as follows:

Di,j(Q,X) = ∞ if |i− j| > w . (6)

The term “Sakoe-Chiba band” is often used to characterize
the set of (i, j) positions for which Di,j is not infinite. No-
tice that if w = 0, cDTW becomes the Lp distance. While
a simple modification of DTW, cDTW has been shown to
be significantly more efficient than DTW for full sequence

matching [14], and to also produce more meaningful match-
ing scores [31].

Given the above definitions, the subsequence match of Q
in a databaseX is the subsequenceXopt = (Xj , . . . , Xj+|Q|−1)
that minimizes D(Q,Xopt). Similarly to other approaches
for subsequence matching under cDTW, e.g., LB Keogh [14],
we require that the subsequence match have the same length
as the query. A simple approach for finding the subsequence
match of Q is the sliding-window approach: we simply com-
pute the matching cost between Q and every subsequence of
X that has length |Q|.

The sliding window approach is speeded up by the LB Keogh
[14] lower-bounding method, often by orders of magnitude,
by computing an efficient lower bound of the matching cost,
that can be used to reject many subsequences without com-
puting the exact cDTW cost between Q and those subse-
quences.

3.3 SPRING
Both DTW and cDTW described above, need to use a slid-

ing window in order to determine the optimal subsequence
match of a query in a large database. A straightforward
extension to the definition of DTW is to include an extra
character at the beginning of the query sequence that has
the property of matching with every database position with
a score of ‘0’. This allows a warping path to start at database
position and not always the first position (as in DTW). The
recursive definitions for this extension should be adjusted
accordingly as we need to store multiple warping paths and
not only one.

The SPRING [33] algorithm uses the same recursive def-
initions as those used by DTW, with the only difference in
Equations 2 and 5, which are now, respectively, changed to:

D0,j(Q,X) = 0. (7)

D(Q,X) = min
j=1,...,|X|

{D|Q|,j(Q,X)}. (8)

This extra “sink” state allows a match to start at any po-
sition of the target sequence X. The computational time of
SPRING is O(|Q||X|). By defining D0,j = 0, arbitrary pre-
fixes of X are allowed to be skipped (i.e., matched with zero
cost) before matching Q with the optimal subsequence in
X. By defining D(Q,X) to be the minimum D|Q|,j(Q,X),
where j = 1, . . . , |X|, we allow the best matching subse-
quence of X to end at any position j. Overall, this definition
matches the entire Q with an optimal subsequence of X.

To speed up search, an embedding-based approximate method,
EBSM [2], can be used. This method is properly designed
for efficient subsequence matching under SPRING and can
achieve significant speed-ups (of over an order of magnitude)
with very low losses in accuracy.

4. EXPERIMENTAL EVALUATION
We evaluated the performance of DTW, cDTW, and SPRING

on real music data.

4.1 Datasets and Queries
We created a database of 5, 641 MIDI files that we gath-

ered by performing an extensive search on the web, covering
many music genres, such as blues, rock, pop, classical, jazz,
country, and also national anthems and themes from movies
and tv series. To obtain the representation of pitch intervals
and IOIR, we did the following steps: first, for each MIDI



file we extracted for all channels (a MIDI file consists of at
most 16 channels) the highest pitch at every time click. Ex-
cept for channel 10 which is used for drums, this channel was
ignored. Then, we converted the tuples of pitch and time
click to tuples of pitch intervals and IOIR. This procedure
resulted in a music database consisting of a total of 10, 749
time series with length at least 200.
To get an overview of the performance of all three al-

gorithms in a real-life setting, we use queries that are cre-
ated by selecting random subsequences in the database and
adding various amounts of noise. For evaluation, we use 200
subsequences selected uniformly at random over the 10, 749
tracks and within the track at a uniformly random starting
point. We add noise at each query by replacing x% of the
points by points selected randomly from the database. We
test each query with 5, 10, 15, 20, 25, and 30% of noise.
All experiments were performed on a quad-core Intel Core
2 Q9550 processor using Matlab with the Matlab Parallel
Computing Toolbox and Matlab Compiler. Our implemen-
tations, data, and repeatability instructions are available at
http://www.hiit.fi/software/music.

4.2 Evaluation
To evaluate the performance, we compared the three dy-

namic programming techniques in terms of the ranking of
the queries. Consider a query Q and a database of n music
songs, X = {X1, . . . , Xn}, and assume that the true match
of Q is sequence Xmatch. Given a subsequence matching
method M , the absolute rank of Q is defined as the number
of database sequences for which M(Q,Xi) ≤ M(Q,Xmatch),
where M(Q,Xi) is the matching score of Q and Xi using
method M . The relative rank of Q is the absolute rank
divided by the number of tracks in the database. We are
mainly interested in the performance of the methods in re-
trieving the correct song in the first K hits, where K is a
small number, like 20 or 50.
Figure 2 shows the percentage of queries for which the true

match is within the first 50 songs retrieved. We observe for
5% noise that the true match is within the first 10 matches
in more than 95% of the cases. The performance degrades
slowly as the amount of noise increases and even at a noise
level of 25%, all three algorithms find the true match within
the first ten matches in 4 out of 5 cases. We also find, in
Figure 2, that the three algorithms perform similarly for this
top-50 scenario. Also, if the song is not within the first 20
matches, then there is very little chance that it is within the
first 50 matches at any noise level, which is indicated by a
flat line in Figure 2.
In Figure 3 we find the full performance curves of the three

algorithms for each noise level. We observe in all cases the
curve of SPRING is, on average, lower than those of DTW
and cDTW, indicating a lower performance. The difference
between DTW and cDTW is very small in any case. So,
cDTW can be considered superior, because it is by definition
much faster to compute and, on top, effective lower bounding
measures can be used.
In terms of retrieval runtime, SPRING is in turn faster

than cDTW over a sliding window. We should mention that
the top-K performance is more important for our specific
application. Clearly, as also shown in Figure 2, all three
methods are the same in terms of accuracy for K = 50,
which is a realistic value for this application. Thus, in this
setting, SPRING would be preferable to cDTW, as it can

achieve the same accuracy at a lower runtime.

5. ASSISTIVE ENVIRONMENTS
In the context of event detection in assistive environments,

the methods discussed could be used for multimedia and ob-
ject detection and characterization. In such environments,
noise is expected to be present in various measurements and
representations. One common type of noise in time series
is the repetition of the same event (i.e., note) or the oc-
currence of the same series of events but in different phase
or frequency. For such types of noise, “warping distance”-
based methods are highly applicable and recommended due
to their ability to perform many-to-one mappings between
the aligned time series. To avoid confusion, we should point
out that other types of noise, such as additional events with
relatively higher or lower values (i.e., notes with very high
or low pitch values or durations with respect to the target
sequence) are still a bottle-neck for the methods discussed in
this paper. For such types of noise, LCSS-based approaches
[5, 6, 37] would be more appropriate.

6. CONCLUSIONS
We studied the performance of three time series subse-

quence matching methods on the domain of music retrieval.
Each music piece was represented by taking into account, for
each note, both pitch and duration values. Our experiments
show that DTW, cDTW, and SPRING have quite similar
performance when the number of matches is relatively small,
as in the top-K scenario. This suggests that in the case
where query lengths are arbitrary, SPRING would be prefer-
able due to its low computational cost, as opposed to DTW
and cDTW. Significant speed-ups could be achieved by us-
ing LB Keogh [14] and EBSM [2] for cDTW and SPRING
respectively. However, in this work we only study the re-
trieval accuracy of the aforementioned dynamic program-
ming methods.
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