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Abstract

There is an increasing need for automated systems for health monitoring and
care assistance. According to UN forecasts the relative number of elderly
people in the world will be doubled by 2050, compared to 2005. Now people
must visit a doctor to assess their ability to perform activities of daily living
(ADLs), and discover diseases such as dementia. Systems can assist in this
process by keeping track of the daily behavior of people. Such monitoring
system are potentially more accurate, less invasive and require less time from
medical experts than occasional personal doctor visits. To realize continuous
monitoring systems, algorithms for activity recognition are required. In this
thesis we present a new algorithm for recognizing activities based on a single
wearable sensor, a triaxial accelerometer.

First, using motif discovery techniques, we show many activities such as
walking contain strongly repetitive patterns and we show that such patterns
are often similar for different people. Secondly we introduce a discrete rep-
resentation for the numerical time series of acceleration samples and use the
MDL-based data mining algorithm Krimp to build a classifier for activities
on top of this representation. We show for activities containing basic mo-
tion patterns our new approach outperforms earlier algorithms. We do so by
evaluating our algorithm on a publicly available data set.
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Chapter 1

Introduction

We perform many activities of daily life in a similar fashion every day. We get
up, have breakfast, go to work, come home again, have dinner, relax a bit and
go to bed to repeat the same pattern the next day. It is possible to use pattern
recognition algorithms on sensor data, from cameras or motion detectors, to
monitor this daily rhythm.

Monitoring physical activity and it’s daily rhythm is interesting for sev-
eral reasons. For example Hayes et al. (2004) and Verghese et al. (2002) have
shown dementia can be detected at an early stage by studying the variation in
movement and gait of elderly. Monitoring activity patterns for abrupt changes
can be used to detect falling, after which an emergency service or caretaker
can be notified automatically as shown by Chen et al. (2005). Jain et al. (2006)
have build a system to assist people with a memory impairment in daily life,
which requires the computer system to be aware of ‘normal’ behavior. This
list of applications in the medical domain is by no means exhaustive and the
application also covers other domains. On the border of the lifestyle and med-
ical domain, Consolvo et al. (2008) study motivating people to stay (or get) in
shape by giving feedback on their energy expenditure. The energy expen-
diture estimate is based on activity tracking. In a more broad perspective
activity recognition algorithms give operational context for programs, which
will enable ambient intelligent systems as described in Verhaegh et al. (2003).

We focus on wearable devices for the recognition of activities. This topic
is not new. For example Patterson et al. (2005), Wang et al. (2007) and Stikic
et al. (2008) use a wrist-worn RFID reader to monitor the objects used by an
individual, which in turn is used to predict the activity the person is involved
in. The activities recognized are instrumental activities of daily living such as
preparing a meal, taking medication, cleaning the home, shaving and brush-
ing teeth. Another approach is using sensors to determine a person’s location
(in the home) and deduce activities such as dining or shopping as shown
by Liao et al. (2005) or predict the path through a home as shown by Aip-
perspach et al. (2006) respectively. An interesting and perhaps less expected
method is to use an on-body accelerometer to deduce what activities the user
is engaged in. Among others, Bao & Intille (2004) and Huynh & Schiele (2006)
have shown these movement patterns can be used to classify basic activities
such as walking, running or sitting. Some studies use accelerometers along
with other sensors, such as a heart rate monitor (Tapia et al. 2007), RFID tags
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CHAPTER 1. INTRODUCTION

(Stikic et al. 2008), an array of sensors including temperature, infrared, pres-
sure, microphone etc. (Van Laerhoven & Cakmakci 2000), or a house filled
with wired and wireless sensors (Logan et al. 2007) to recognize all of the
aforementioned activities. In Minnen et al. (2005) basic repetitive motions in
activities are identified, which may be used for activity classification. At this
moment there are small special purpose devices with accelerometers on the
market which can be worn on a belt or in a trouser pocket. It is also possible
to built accelerometers into watches or mobile phones. For example the Nokia
5500 Sports mobile phone is already equipped with such a sensor (Kirkeby &
Kahari 2007).

In this thesis we present a new approach to building an activity classifier
using a single triaxial accelerometer. In earlier studies on activity recognition,
either an unreasonable amount or combination of sensors is used, or only
some standard classification algorithms, such as decision trees, are used to
build the classifier. We show activities can be deduced more robustly from this
single sensor than has been shown so far. To do this we use a new algorithm
which is better suited to handle this type of data.

This thesis is outlined as follows. We start with an introduction to the
publicly available data set we use to train and evaluate the classifier in Chap-
ter 2. In Chapter 3 we review motif discovery to find frequent patterns in
activities. Based on the results we introduce a discrete representation for the
data in Chapter 4. Also in Chapter 4 we discuss the compression-based clas-
sification algorithm Krimp, which uses frequent patterns similar to the ones
found in Chapter 3, to describe activities. In Chapter 5 we present the results
of the classification algorithm and use intermediate results of the algorithm
to identify anomalous behavior. Finally, in Chapter 6 we summarize the main
conclusions of this thesis.
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Chapter 2

Data Set

The data set we use was produced by Ling Bao and Steven Intille as part of
the House_n project (House_n Research Group 2007). One of the goals of
the project was activity recognition for health care. The data set is publicly
available at http://architecture.mit.edu/house_n/data/. This chapter is
outlined as follows. In Section 2.1 we give an introduction to the data set, and
in Section 2.2 we review the results of the associated paper from Bao & Intille
(2004) to set the benchmark for Chapter 5. Subsequently, in Section 2.3 we
discuss some initial preprocessing of the data, and in Section 2.4 we present
an overview of the activities in the dataset based on their intensity. Finally in
Section 2.5 we show how to clean up the data set.

2.1 General Information

For the ease of the reader we summarize the important properties of the data
collection process as discussed in Bao & Intille (2004). The data set consists
of samples from five biaxial accelerometers worn simultaneously on different
parts of the body: hip, wrist, arm, ankle and thigh. The accelerometers were
attached to the subject using medical gauze and all have a fixed orientation.
One axis measures vertical acceleration, the other measures the forward accel-
eration. Technical specifications of the sensors can be found in Bao & Intille’s
(2004) article. Each of the accelerometers is sampling at 76.25 Hz, which is
sufficient compared to the minimum of 20 Hz investigated by Bouten et al.
(1997). Some derived properties of the data will be discussed throughout this
thesis.

Twenty subjects, who were not affiliated with the researchers participated
in the experiment. They received a gift certificate for ice cream as a reward for
participating. The subjects are aged in the range 17 to 48, 13 were male and 7
female. For each of the subjects the experiment consisted of two parts. In the
first part they had to do an obstacle course, in which they were handed out a
list of assignments they could do in their own fashion. To minimize awareness
of what was being measured assignments such as the following were given.

“Reward yourself by eating some snacks and drinking some water in the
common room. Snacks, cups, and water from the sink can be found in the
House_n kitchen.”
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2.2. CLASSIFICATION RESULTS CHAPTER 2. DATA SET

Subjects were given a watch and had to annotate start and stop times for activ-
ities themselves. For each subject between 82 and 160 minutes of activity was
recorded. In the second part subjects had to do an activity course in which a
list of activities was given which they had to execute in order. Because natural
language definitions are often ambiguous, a description for each activity was
given, see Bao’s (2003) thesis. Again subjects had to annotate start and stop
times themselves and no researcher or camera monitored them. For each sub-
ject between 54 and 131 minutes of activity was recorded in this fashion. Due
to the weather some subjects skipped one or a few activities.

This data set is special for three reasons.

1. Real world circumstances.
The accelerometers were not wired and could not be easily damaged so
subjects could move around freely. Subjects were free to go outside of
the laboratory. In the obstacle course subjects were even explicitly told
to go outside.

2. Naturalistic and self-annotated by users.
Between activities subjects had to write down start and end times and
no one watched them execute their tasks.

3. Large number of daily activities.
Many other data sets consist of only postures or specific movements
or only a few daily activities. This data set includes sedentary, light,
moderate and vigorous activities. Also some activities involve the entire
body, while others are predominantly leg or arm based.

2.2 Classification Results

For building a classifier the open source package Weka (Witten & Frank 2005)
was used. The algorithm giving the best result is C4.5 (Decision Tree) with
an overall score of 84.26%± 5.178 (mean ± standard deviation) for leave-one-
subject-out cross-validation. The other analyzed algorithms are Decision Ta-
ble, Instance-Based Learning and Naïve Bayes. The general result of 84.26%
was reached when using all five biaxial accelerometers as input for the clas-
sification algorithms. Since we use input from only one accelerometer in our
algorithm, we summarize the Decision Tree results for experiments with one
or two accelerometers in Figure 2.1. The extracted features were mean, energy,
frequency-domain entropy and correlation using a sliding window of 6.7 sec-
onds (512 samples) with 50% overlap. From each activity the first and last
10 seconds were removed because often this contained the activity of writing
down the time while standing still, instead of the activity in the list.

Some basic knowledge can be extracted from the generated decision tree.
For the sedentary activities (sitting, standing still, lying down) mean accelera-
tion is the decisive factor. For ambulatory activities and bicycling the level of
hip acceleration is very important. To distinguish between the high intensity
activities running and bicycling the frequency domain entropy and arm-hip
correlation are used. To discriminate between working on a PC, eating & drink-
ing, reading, strength training, window scrubbing, vacuum cleaning and brushing
teeth the arm posture, mean acceleration and energy are used. The activities
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Accelerometer(s) Left In Recognition Accuracy Difference
Hip −34.12± 7.115

Wrist −51.99± 12.194
Arm −63.65± 13.143

Ankle −37.08± 7.601
Thigh −29.47± 4.855

Thigh and Wrist −3.27± 1.062
Hip and Wrist −4.78± 1.331

Figure 2.1: Difference in overall recognition accuracy for using one or two
accelerometers instead of all five. Taken from Bao & Intille (2004).

stretching, window scrubbing, riding the elevator and riding the escalator have low
recognition rates and require higher level analysis to be detected robustly.

In the analysis of the results the researchers conclude “some activities are rec-
ognized well with subject-independent training data, others appear to require subject-
specific training data”. And thus “there may be limitations to a pre-trained algo-
rithm. Although activities such as running or walking may be accurately recognized,
activities that are more dependent upon individual variation and the environment (e.g.
stretching) may require person-specific training (Intille et al. 2004)”.

In this thesis we build an algorithm for detecting the same activities while
using only one sensor at the hip, because that is far more convenient to wear.
The authors of the original paper already give a hint in this direction by stating
“Acceleration of the hip is the second best location for activity discrimination. This
suggests that an accelerometer attached to a subject’s cell phone, which is often placed
at a fixed location such as on a belt clip, may enable recognition of certain activities.”
It may be useful to combine classification results of hip and wrist to detect a
bigger range of activities. Note the combination of the wrist with hip or thigh
gives only slightly worse results compared to using all five accelerometers.
We state one more conclusion from Bao & Intille’s (2004) article.

“Classification accuracy rates between 80% to 95% for walking, run-
ning, climbing stairs, standing still, sitting, lying down, working
on a computer, bicycling and vacuuming are comparable with recog-
nition results using laboratory data from previous works.”

This statement will be our benchmark. We will come back to this in Chapter
5. As far as we know this data set has not been used in other papers yet.

2.3 Preprocessing

In the data set samples are taken from a biaxial accelerometer. In the rest of
this section we assume samples are taken from a triaxial accelerometer. To
adapt the following definitions from the general case to the data set we can
simply ignore the z direction in the rest of this section.

Assume the input signal consists of samples taken consecutively from a
triaxial accelerometer sensor. Each observation consists of the acceleration in
m/s2 in the x, y and z directions and a time stamp t in milliseconds. Since
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the sample rate is approximately constant we omit the time stamp and simply
number all samples 1, . . . , n. The entire sample set of n ordered observations
from an experiment can be written as the series

T = (x1, y1, z1); . . . ; (xn, yn, zn) ∀i ∈ {1, . . . , n} : xi, yi, zi ∈ R. (2.1)

The sensors also measure the gravity field, so if the device is stationary
it will measure 1g acceleration. We assume we do not know the orientation
of the x, y and z directions. If the orientation of the three axis would be
constant we could calculate the absolute orientation in the three dimensional
plane using earth’s gravity. But because the sensor cannot be mounted exactly
the same in each experiment and because the orientation can shift during an
experiment (i.e. the device axes rotate) we cannot calculate the orientation ac-
curately. This also means it is impossible to compute speed or displacement in
any direction accurately. The orientation bias causes a serious problem when
working with the raw sensor data. We explain this with a simple example.

Suppose our learning algorithm tries to find patterns in an experiment
where our subject was walking. Assume the orientation of the sensor was
very different from all other experiments. Because of the unique orientation
of the sensor, the (combination of) values of the three axis might be unique
as well. A supervised learning algorithm might learn this combination is
indicative for walking. Since the unique values are caused by the orientation,
the algorithm actually learned a pattern consisting purely of noise. This is of
course disastrous for the generalization of the resulting models.

We can counter this problem easily by taking the L2-norm of the input
vector for each observation.

ti =
√

x2
i + y2

i + z2
i ∀i ∈ {1, . . . , n} (2.2)

Along with reducing noise we get a free bonus of reducing the dimensionality
from three to one. The new simplified list of n observations is given by

T = t1, . . . , tn ∀i ∈ {1, . . . , n} : ti ∈ R. (2.3)

This concludes our first preprocessing step. See Figure 2.2 for an example
of preprocessed data. Next we show some basic differences between various
activities.

2.4 Overview of Activities

The data set consists of twenty activities. All of the activities are considered to
contain a specific basic motion. We only consider the hip sensor which brings
a restriction on motions we can detect. In Figure 2.3 we find an overview of
the relative intensity distribution for all activities in the data set, aggregated
over all subjects. The acceleration for each activity is normalized to have mean
zero as discussed in Chapter 4 and cleaned as discussed in Section 2.5. We
immediately see some activities are alike while other activities can be easily
distinguished from each other. The ambulatory activities walking, carrying and
climbing stairs are very much alike, and very different from all others. Running
has unmatched acceleration and is unique in it’s distribution. Sitting, working
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time in seconds

Figure 2.2: Preprocessed sample obtained from fifteen seconds of walking.

on PC, watching TV, reading and lying down contain virtually no acceleration
at the hip sensor. Standing still, eating/drinking, brushing teeth, folding laundry
and riding escalator contain only a very small amount of acceleration, which
is probably just noise in the annotation. We expect it contains small parts
of another activity, for example walking. The other activities contain enough
acceleration to be detectable. Our challenge is to build an algorithm that
classifies unseen data as one of the activities. We review the results in Chapter
5.

2.5 Cleaning Up

Annotation of the data has been done between activities by the participants
themselves. Each part of the data set consists of a fairly long activity and
often small parts of the data do not really belong to the activity. For example
standing still appeared to contain parts of walking. In Bao & Intille (2004) it is
argued this method of annotation is an advantage because hand-annotating
data is costly and this approach enables collection of a larger data set at the
same cost. While this is true, we can use an automated approach to clean up
the data a bit.

Cleaning the data is necessary to ensure the estimated accuracy of the
classifier reflects the true performance as well as possible. While training the
algorithm noise is not a big problem. A learning algorithm should be robust
to noise in the data set, and for our MDL-based algorithm this is especially
true, because the algorithm captures only generalizations in the data. During
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Figure 2.3: Histogram counts for all activities.
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evaluation of the activity classifier noise can be a problem. To accurately mea-
sure the performance of the resulting classifier, the annotation error should be
kept to a minimum. Suppose a test set contains data from the activity sitting,
but is annotated with walking and suppose also our algorithm detects this as
the activity sitting (which is not hard, as will be shown in Section 5). In our
evaluation we measure an error, while in fact the recognition was correct. We
use the following method for cleaning up the data from some of the activities.
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Figure 2.4: Selection of data from activity walking based on moving variance.

Consider Figure 2.4. The top shows the second sample of walking for the
first subject, which clearly contains small parts of a passive activity. The bot-
tom graph shows the moving variance over windows of the past 2.25 seconds
(2.25 ∗ 76 = 171 samples), except for the first 170 samples for which the win-
dow 1 to 171 is used. The selection indicated by the red line is where the
variance is over 20. Because in Chapter 5 we use test sets equal to 10 seconds
we select only the samples with variance over 20 for a consecutive period of
10 seconds or more. The moving variance has a response delay, to compensate
for this the selection is shifted to the left by 1 second. The value 20 is chosen
such that no data belonging to the class is thrown away. For example here the
part with variance over 20 from the start is not selected. Based on the sample
data selected in Figure 2.4 we conclude this method works very well for clean-
ing up the data. To give an overview how the cleaning procedure affects the
full data set the following table lists all activities, the selection value, whether
data should be above or below the selection value and the percentage of data
selected.
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Activity Selection Value Above/Below Selection %
Walking 20 Above 93%
Carrying 20 Above 95%
Sitting 100 Below 100%
Working on PC 100 Below 100%
Standing 100 Below 72%
Eating/drinking - - 100%
Watching TV 100 Below 97%
Reading 100 Below 99%
Running 500 Above 70%
Bicycling 5 Above 90%
Stretching 5 Above 29%
Strength-training 5 Above 83%
Scrubbing 5 Above 55%
Vacuuming - - 100%
Folding laundry - - 100%
Lying down 100 Below 99%
Brushing teeth - - 100%
Climbing stairs 20 Above 90%
Riding elevator - - 100%
Riding escalator - - 100%

Selection for some activities, such as stretching and scrubbing, is quite strict,
while for most activities almost all data is left as it is. In Figure 2.5 the selec-
tion of the second stretching sample for the third subject is plotted, which is
typical for all samples of stretching. We find short acceleration patterns up to 5
seconds with no acceleration between these patterns. This may indicate a test
set window of 10 seconds may be too short for this activity and also the mov-
ing variance window of 2.25 seconds may be too short for this activity to clean
up the data. For most activities the moving variance window is sufficient and
a short window makes it possible to detect short interruptions of an activity.
Therefore we do not change the moving variance window length. Stretching
(arms and legs) is probably very hard to detect anyway using a sensor mounted
at a subject’s hip. In the stretching data for subject three there is a fair amount
of acceleration at the arm and wrist, but relatively scarce acceleration at the
lower body.

In Figure 2.6 we find the selection of the first sample of scrubbing for the
second subject. For (window) scrubbing also a lot of data is thrown away and
also contains more acceleration at the wrist and arm than at the lower body.
However, the acceleration between the lower and upper body is correlated
and acceleration patterns do tend to last 10 seconds or longer. In the Figure
we see most of the data not selected is flat, i.e. between −5 and 5. One could
argue a moment of standing still can be part of the longer activity scrubbing,
but because we search for basic motions in an activity we consider such a
moment to interrupt the activity. Hence we expect the selection for scrubbing
is appropriate.
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Figure 2.5: Selection of data from activity stretching based on moving variance.

760 1520 2280 3040 3800 4560 5320 6080 6840 7600 8360
0

50

100

150

200

250

Samples

M
o

v
in

g
 v

a
ri

a
n

c
e

760 1520 2280 3040 3800 4560 5320 6080 6840 7600 8360

-25

-15

-5

5

15

25

Samples

N
o

rm
a

liz
e

d
 a

c
c
e

le
ra

ti
o

n

Figure 2.6: Selection of data from activity scrubbing based on moving variance.
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Chapter 3

Motif & Discord Discovery

We expect certain activities, such as walking or running to have specific accel-
eration patterns. Our aim is to detect activities and abnormal situations, so
in this chapter we discuss finding frequently recurring patterns and abnor-
mal deviations. These two topics relate to several research domains in time
series data mining: indexing, clustering and anomaly detection. Indexing is
the problem of finding time series similar to an input series and clustering
is the problem of finding natural grouping of similar time series. Anomaly
detection is defined as searching subsequences of a time series deviating from
a given “normal” situation. Searching for patterns in time series is also called
motif discovery, hence we use the term motif to identify a frequently occurring
pattern. Multiple approaches exist for finding motifs and in this chapter we
discuss two algorithms. First, in Section 3.1 we discuss SAX, a fairly new
algorithm, and in Section 3.2 we discuss the results of motif discovery using
SAX. Secondly, in Section 3.3, we review the results using Euclidean distance
to find motifs.

3.1 SAX

Symbolic Aggregate approXimation (SAX) is a symbolic representation for
time series which can be used for many purposes (Lin et al. 2003). It is unique
in the sense it is the only symbolic representation which allows lower bound-
ing under the Lp-norm. It is relatively new but has already been shown a
powerful and often used tool for time series analysis, see Keogh (2008). We
use it here for motif discovery because it is simple and powerful and because
the discrete representation used in the classification algorithm in Chapter 4 is
inspired by SAX. Converting the input time series to the SAX representation
is done in three steps. In this section we discuss each of them separately.

3.1.1 Sliding window

For motif discovery one usually cuts time series into smaller parts by using a
sliding window. Instead of using the entire input series T = t1, . . . , tn algo-
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Figure 3.1: Result of cutting a sample with eight points into sequences of length five
using a sliding window.

rithms work on the list of subsequences
S1 = {t1, . . . , tm}
S2 = {t2, . . . , tm+1}

...
Sn−m+1 = {tn−m+1, . . . , tn}

 .

Each subsequence has a fixed size m, the window length, which is given as
input parameter to the motif discovery algorithm, in this case SAX. This pa-
rameter determines the length of the motifs we find. See Figure 3.1 for an
illustration of the created subsequences. The strength of the sliding window
lies mainly in using each observation as a starting point for a subsequence and
normalizing each such subsequence independently. This ensures the dissimi-
larity caused by both time and value offset of the subsequences is minimized
when comparing two sequences.

Normalizing each subsequence also causes values related to a single ob-
servation to differ per subsequences: t2 ∈ S1 6= t2 ∈ S2. Since this is confusing
we use the notation

Si = {s1,i; . . . ; sm,i} ∀i ∈ {1, . . . , n−m + 1}. (3.1)

where the values of each subsequence Si can be calculated by

sj,i =
tj+i−1

∑m+i−1
k=i tk

∀j ∈ {1, . . . , m}. (3.2)

3.1.2 PAA

The following steps (PAA and discretization) operate on each of the subse-
quences separately. In the SAX method each subsequence Si is normalized
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independently to obey µ(Si) = 0 and σ(Si) = 1, where µ is the mean and σ
the standard deviation of all the elements in a subsequence. This minimizes
the distortion caused by differences in offset, as illustrated in Figure 3.2. The
second step in the process is to compute for each subsequence Si the Piece-
wise Aggregate Approximation (PAA), denoted by Si, as Si = s1,i; . . . ; sw,i with
w ≤ m, being the dimensionality of the approximation. Assume m

w ∈ N. For
any subsequence Si we can compute the values s1,i; . . . ; sw,i using the equation

sj,i =
w
m

m
w j

∑
k= m

w (j−1)+1
sk,i ∀j ∈ {1, . . . , w}. (3.3)

1 2 3 4 5 6 7 8 9 10

0

Mean value offset

1 2 3 4 5 6 7 8 9 10

0

Scale offset

1 2 3 4 5 6 7 8 9 10

0  

Time offset

Figure 3.2: Subsequences that differ only by mean value (top), value scale (center)
and time offset (bottom).

As said this reduces the dimensionality from m to w, which speeds up the
motif discovery. PAA also smooths the input series because we average over
multiple values. Although PAA can be defined for any positive integers m
and w, we only choose m and w such that m divisible by w. We come back to
choosing values for m and w at the experimental results in Section 3.2.

3.1.3 Discretization

The third and last step is discretization of the subsequence Si. In SAX, sample
data is assumed to be normally distributed. In time series this is often the
case and the assumption allows easy calculation of equiprobable intervals. As
we can see in Figure 3.3, our data does not exactly fit a normal distribution, it
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Figure 3.3: A histogram of the PAA values in the experiment in section 3.2 and a
Gaussian distribution fitted to the values.

is a bit left skewed and has a higher peak. However, it sufficiently resembles
the normal distribution for this step to work.

We ignore the difference and continue as if our data has a Gaussian dis-
tribution. Denote α = |A| the size of the alfabet A = a1, . . . , aα we use. To
discretize the data, we compute breakpoints B = β0, . . . , βα dividing the in-
put space into equiprobable regions. We define β0 = −∞ and βα = ∞. We
select β1, . . . , βα−1 such that for any sj,i we have P(sj,i ∈ [β0, β1]) = P(sj,i ∈
[β1, β2]) = . . . = P(sj,i ∈ [βa−1, βa]). We can also derive the values from Table
3.1.

α = 3 α = 4 α = 5 α = 6
β1 −0.43 −0.67 −0.84 −0.97
β2 0.43 0.00 −0.25 −0.43
β3 0.67 0.25 0.00
β4 0.84 0.43
β4 0.97

Table 3.1: Lookup table for deriving breakpoints.

Assign all values in a certain interval to the corresponding character ŝj,i =
ak iff sj,i ∈ [βk, βk+1] with a1 = a, a2 = b etc. Now we end up with a series of
characters Ŝi = ŝ1,i; . . . ; ŝm,i for each subsequence. We refer to this character
series as the SAX string corresponding to a subsequence Si. This concludes
the conversion to the SAX representation.

3.1.4 SAX Summary

For the ease of the reader we summarize the steps once more, see Figure 3.4
for a graphical overview.
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1. Cut the time series T into subsequences S1, . . . , Sn−m+1 using a slid-
ing window and normalize each subsequence Si to have µ(Si) = 0 and
σ(Si) = 1.

2. Compute for each subsequence Si the Piecewise Aggregate Approxima-
tion Si.

3. For each subsequence discretize Si to Ŝi using the computed breakpoints
β0, . . . , βα.
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Figure 3.4: Computing the associated SAX string: {a, a, b, b, c, c, c, a, c, a}.

3.2 Motif discovery using SAX

For finding motifs with the SAX representation we simply count how many
times each SAX string occurs. All strings with equal SAX strings are called
matches.

Definition 1. Two SAX strings Ŝi = ŝ1,i; . . . ; ŝw,i and Ŝj = ŝ1,j, . . . , ŝw,j are a
match if and only if

∀k ∈ {1, . . . , w} : ŝk,i = ŝk,j

When using this approach with a sliding window there is a small problem
we must address. The SAX string Ŝi is very likely to be equal to the SAX
string Ŝi+1. This is a trivial match we are not interested in. These trivial
matches have caused a lot of trouble in previous time series research (Keogh
& Lin 2005). We use the following definition inspired by Chiu et al. (2003) to
define interesting matches.

Definition 2. A match between two SAX strings Ŝi and Ŝj associated with
subsequences Si and Sj respectively is non-trivial if and only if |i− j| ≥ m.
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There are other definitions possible. Such as defining the matching of two
SAX strings is non-trivial iff there is a non-matching SAX string between the
two subsequences. But the current definition suits our purpose. A maximum
size set of non-trivial matches for a subsequence can be computed in linear
time from the set of all matches. Algorithm 3.1 outputs a maximum size
set. Note the solution may not be unique, but we compute only one solution.
Given are a list of match indices I, ordered from low to high, and the window
length m.

Algorithm 3.1 Compute largest set of non-trivial matches.

nonTrivial(I, m)
1 N = ∅
2 minIndex = 0
3 for i← 1 to size(I)
4 do index ← I(i)
5 if index ≥ minIndex
6 then N.add(index)
7 minIndex ← index + m
8 return N

The parameters have to be set such that they produce motifs that are long
but still have a lot of non-trivial matches. For this data set there is no test to
measure the quality of a motif, so we have to judge this ourselves. We define
the best motif as the motif having the largest set of non-trivial matches.

In the following experiments we use the data of the activity walking from
the activity course (the second part of experiment) of subject 1. Consider
Figures 3.5 and 3.6. Figure 3.5 shows the preprocessed sequence of all data
annotated with walking, which covers approximately 241 seconds. The motif in
the figure is the best motif found using a window length m = 50, a word size
w = 10 and an alfabet size α = 3. The rectangles drawn over the data indicate
the positions of the non-trivial matches for the motif. Figure 3.6 shows the
same sequence but is a zoom-in on 25 seconds of this data. The motif in the
figure has a length of approximately 0.66 seconds, which is impressive for
data from a process with high variation. In total it has 59 non-trivial matches.
We can see in Figures 3.6 and 3.7 the subsequences belonging to the motif
resemble each other very well. We conclude the sampled data for walking
is quite stable. To validate this result we now look at motif discovery using
Euclidean distance.

3.3 Motif discovery using Euclidean distance

We define the distance between two subsequences using the Euclidean dis-
tance (ED).

Definition 3. The distance between two subsequences Si and Sj is defined as

d(Si, Sj) =

√
m

∑
k=1

(sk,i − sk,j)2.
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Figure 3.5: Overview of best SAX motif using parameters m = 50, w = 10, α = 3.
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Figure 3.6: Zoom-in of best SAX motif using parameters m = 50, w = 10, α = 3.
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Figure 3.7: Plot of non-trivial subsequences matched as the best SAX motif using
parameters m = 50, w = 10, α = 3.

Due to using this distance measure we need to redefine matches and non-
trivial matches. We use definitions similar to Chiu et al. (2003).

Definition 4. Given a real number r ≥ 0, two subsequences Si and Sj are a
match if and only if

d(Si, Sj) ≤ r.

Definition 5. Given two real numbers r ≥ 0, c ≥ 1 and three subsequences Si,
Sj and Sk such that j < k, d(Si, Sj) ≤ r, and d(Si, Sk) ≤ r,
Sj and Sk are non-trivial matches of Si if and only if

|j− k| ≥ m and ∃l ∈N : (j < l < k) & (d(Si, Sl) > c · r)

Both distance and matching are symmetrical relations for any pair of sub-
sequences. We illustrate non-trivial matching is not symmetrical. Given Sj
and Sk are non-trivial matches of Si does not imply Sj and Sk are a match.
If they are not a match, then Sj cannot occur in a non-trivial matching for Sk
and vice versa. Hence, for the ED measure, non-trivial matching can only be
defined for triples of subsequences. Note it is possible to choose i = j or i = k,
in which case the relation is symmetrical. Note also the largest set contain-
ing non-trivial matches of Si does not necessarily include Si and may not be
unique. To find a largest set of non-trivial matches we can use Algorithm 3.1
just as with SAX.

We select c =
√

2 implying the last test in the definition gives us the con-
venient test d(Si, Sk)2 ≥ 2 · r2. Actually we never compute d(Si, Sj) but only
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d(Si, Sj)2 because it does not involves taking a square root, which is a costly
operation, and the test gives the same result.

The algorithm we use for finding motifs using ED is as simple as with
finding motifs using SAX: first we cut the input data into pieces using a slid-
ing window and then for each subsequence we count how many non-trivial
matches it has. We run two experiments. In the first experiment we count
non-trivial matches using the PAA representation and in the second exper-
iment we count non-trivial matches using the representation after applying
only the sliding window and normalization.
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Figure 3.8: SAX (top) and ED (bottom) motif based on subsequence S4347. The original
subsequence is marked in green.

The parameter r determines the maximal distance between matching sub-
sequences. In the first experiment we choose r = 1.0. We compute, for each
subsequence, all non-trivial matches using the distance between the corre-
sponding PAA vectors. The two best motifs found have 89 matches each.
These motifs are based on subsequences S4347 and S10678. In Figures 3.8 and
3.9 we compare the SAX and the ED motifs based on these subsequences.
Consider Figure 3.8. Because of the chosen parameter r the SAX motif oc-
curs less frequent. The motif is often found and at similar places for both
methods. We conclude the difference between the SAX motif and the ED
motif is small. Consider Figure 3.9. The difference between the SAX motif
and the ED motif in this figure is big. The difference is even more explicit in
Figure 3.10. In this Figure we see the preprocessed values corresponding to
the non-trivial matches in Figure 3.9. ED gives a few matches for which it is
questionable whether they actually are matches, but SAX clearly misses a lot
of good matches. This is caused by the strict boundaries used in SAX. Any
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Figure 3.9: SAX (top) and ED (bottom) motif based on subsequence S10678. The
original subsequence is marked in green.

two observations that have only minor difference can be mapped to different
characters and hence do not match the motif using the current algorithm.

For the second experiment we select r = 4.0 and compute for each sub-
sequence the largest set of non-trivial matches. We use only the sliding win-
dow to compute subsequences and normalize each subsequence Si to have
µ(Si) = 0 and σ(Si) = 1. The best motif is based on subsequence S9348, which
has 84 non-trivial matches. Figure 3.11 shows an overview of the non-trivial
matches in the series. Figure 3.12 shows the corresponding subsequences. It
occurs frequently in the series and gives a clear pattern, i.e. most matches are
good matches.

3.4 Generalizations

It is interesting to know how well the motifs found in the experiments in
Sections 3.2 and 3.3 generalize over people and over activities. Given in this
thesis we build a generally applicable activity classifier, a good motif would
generalize well over people but not over activities.

Let us consider generalization over people first. We concatenate the data
annotated with walking from subjects one to five. We repeat the motif discov-
ery experiment using SAX as in Section 3.2. The data set for the five subjects
together is eight times as large as for subject one alone. In the experiment
in Section 3.2 the best SAX motif occurred 59 times, so extrapolation would
lead to 59 · 8 = 472 occurrences. The best motif found in the extended data
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Figure 3.10: SAX (top) and ED (bottom) subsequences corresponding to motif based
on subsequence S10678.

set occurs 445 times, only slightly less than we would expect assuming per-
fect generalization. The result can be seen in Figure 3.13. We also find in the
figure the motif occurs in all five parts of the data set. We conclude the motifs
generalize well over people.

To see how well motifs generalize over different activities we concatenate
data of subject 1 from the activities walking, sitting, running, bicycling and
vacuuming. In Figure 3.14 we find the best motif in the data set, which has 640
non-trivial occurrences. It is the flat motif corresponding to no acceleration.
Most of the data from sitting contains no acceleration and matches this motif.
We also see the motif matches small parts of the other activities. This is not
strange because in Section 2.5 we already showed various activities partly
consist of no acceleration. For this chapter the data was only preprocessed,
not cleaned. Since this flat motif is not very interesting we look for the best
motif from running. This motif, shown in Figure 3.15, has 160 non-trivial
matches. We see a few matches are in different activities, but mostly it matches
subsequences from running. We conclude the motifs mostly match a single
activity, which is precisely what we want.

3.5 Discords

For building a classifier we are interested in finding regularity in the data.
For other purposes, such as fall-detection, we are also interested in finding
deviations from the regular patterns. The opposite of a motif is called a dis-
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Figure 3.11: ED (without PAA) motif based on subsequence S9348.

cord, which is a pattern deviating from all others. Hence, the search for these
patterns is discord discovery. We now conduct some small experiments to
find out whether the methods for finding motifs can also be used for finding
discords.

For each of the experiments in Sections 3.2 and 3.3 we conduct a simple
test. We count how many patterns have only a single non-trivial match. Under
the definition of matching for both SAX and ED, any subsequence will match
itself. Thus there are no subsequences with zero matches and a single non-
trivial match is the lower bound. We summarize the results in Table 3.2.

Test Average #matches # Discords
SAX, α = 3 16.23 3402
EDPAA, r = 1.0 17.65 615
EDnoPAA, r = 4.0 22.43 1693
SAXmindist0 , α = 8 17.58 529

Table 3.2: Number of discords for each experiment.

In SAX a lot of subsequences are unique because of the inflexible break-
points. In Lin et al. (2003) it is proven SAX strings can be used to give a lower
bound on the Euclidean distance between PAA vectors. Two SAX strings Ŝi
and Ŝj have a lower bound distance of 0 if and only if |ŝi,k − ŝj,k| ≤ 1 ∀k =
1, . . . , m, or in words, the k-th value of Si is in the same as or an adjacent inter-
val of the k-th value of Sj for all k = 1, . . . , m. This is probably a more suitable
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Figure 3.12: Subsequences corresponding to ED (without PAA) motif based on sub-
sequence S9348.

approach to find discords and the result is in the table as SAXmindist0 . We
find in the table the number of discords is indeed much lower while having
approximately the same number of matches.

The number of discords is for each of the experiments very high. There is
no measure available to assess how many anomalous patterns are actually in
the data set, but there is also no reason to assume there are any discords in
the data set. Clearly the parameters used in the experiments are set too strict
for the purpose of detecting discords. We leave the search for parameters for
anomaly detection open for further research.

3.6 Conclusion

Considering the motifs discovered in Sections 3.2 and 3.3, finding regular pat-
terns in the given time series works well. In Section 3.4 we showed both
numeric (ED) and discrete (SAX) motifs generalize well over people, but not
over activities. We conclude both representations are useful as input to a clas-
sification algorithm to discriminate between activities. We use these results in
Chapter 4 to build a classification algorithm.
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Figure 3.13: Occurrences of SAX motif {b, b, c, c, b, c, b, a, a, a} in walking data from
subjects 1–5.
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Figure 3.14: Occurrences of SAX motif {b, b, b, b, b, b, b, b, b, b} in data from various
activities.
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Figure 3.15: Occurrences of SAX motif {c, b, a, a, b, c, c, b, a, a} in data from various
activities.
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Chapter 4

Compression-based
Classification

Compared to the previous work presented in Chapter 1, we take a fairly dif-
ferent approach to building a classifier. In the data mining area of association
analysis a lot of research has been done on finding frequent patterns in dis-
crete data sets. Recent work shows great promise in using frequent patterns
for describing a data set i.e. for classification or clustering (Van Leeuwen
et al. 2006). We discuss this technique throughout Chapter 4 and show it also
works well for classification of activities in Chapter 5. We start by adding
some preprocessing steps.

4.1 Preprocessing revisited

Recall that after preprocessing (Section 2.3), our input data is given by

T = t1, . . . , tn.

To use our classification algorithm we have to convert this time series to a
discrete representation. The algorithm to convert the data consists of three
stages inspired by SAX and the motif discovery results of Chapter 3.

1. Normalization: For each value subtract the moving average of the last 38
samples.

2. Smoothing: For each value ti set ti ←
ti−8+...+ti+...+ti+8

15 .

3. Discretization: Convert each value to an appropriate character using a set
of breakpoints.

We now explain each of these steps separately.

4.1.1 Normalization

The sliding window step used in Chapter 3 causes a lot of data multiplication.
Taking into account all windowed data severely slows the process of building
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Figure 4.1: Top two graphs are samples of walking and bottom two graphs show the
samples after normalization.

a classifier. A second ’problem’ is normalizing the variance eliminates infor-
mation about the intensity of the acceleration. This is not noise we want to
remove, but a valuable resource for identifying the current activity. Therefore
we choose to normalize each observation individually such that the mean of
the entire series is zero, i.e. µ(T) = 0, and leave the variance of the data as it
is. In Figure 4.1 we find an example of normalizing two samples of walking
data. We find in the figure the offset shift is removed while the general pattern
of the data is unchanged.

4.1.2 Smoothing

Inspired by the intermediate PAA representation used in SAX we smooth each
observation by taking the mean over fifteen adjacent values. The difference
between this method and PAA is there is no dimensionality reduction here.
Although it is probably a good idea to use some form of reduction we leave
this open for further research. We illustrate the effect of smoothing in Figure
4.2.

4.1.3 Discretization

The discretization is the same as used in SAX. We compute beforehand a set
of breakpoints B = {β0, . . . , βα} and assign to each observation the character
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Figure 4.2: Effect of smoothing on a normalized sample of walking data.

associated with the interval. So

t̂i ← aj iff ti ∈ [β j−1, β j]

In SAX the intervals all cover a region with equal probability. Given our
data set it is possible to estimate such intervals but it would not reflect reality.
Let us write C as the set of activities and let us rewrite the probability of some
preprocessed observation ti having a value in some interval [β j−1, β j] as the
sum over the marginal probabilities for the activities:

P
(
ti ∈ [β j−1, β j]

)
= ∑

c∈C
P
(
ti ∈ [β j−1, β j]|ti = f (c)

)
· P(c) (4.1)

This shows a serious problem for estimating the breakpoints. The length of the
samples for each activity does not reflect the a priori distribution of activities.
Because we have no knowledge on the a priori distribution of activities in
reality, it is impossible to compute equiprobable intervals.

We know we want our classification algorithm to discriminate between
activities. Therefore the breakpoints have to be chosen such that the resulting
representation still allows this. It is unknown how to pick good breakpoints
and it will probably influence the quality of the classifier to a large extent.
Therefore we will vary the breakpoints during the experiments. So for actual
value choices we refer to Chapter 5.
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4.1.4 Preprocessing summary

After adding these three steps the entire preprocessing phase contains four
steps:

1. Compute the L2-norm

2. Normalize using moving average

3. Smooth by averaging

4. Discretize using breakpoints

4.2 Krimp

In recent years several algorithms using frequent item sets for classification
have been developed. One of those is Krimp (Van Leeuwen et al. 2006), which
is based on the Minimum Description Length (MDL) principle. The idea be-
hind MDL is best illustrated by a small quote from Grünwald (2005):

“The goal of statistical inference may be cast as trying to find regularity
in the data. ”Regularity” may be identified with ”ability to compress.”
MDL combines these two insights by viewing learning as data com-
pression: it tells us that, for a given set of hypotheses H and data set D,
we should try to find the hypothesis or combination of hypotheses in H
that compresses D most.”

MDL is an implementation of the Kolmogorov Complexity, which is de-
fined as the shortest program to output D and then halts. Unfortunately, as
shown by Li & Vitányi (1997), the shortest program is both uncomputable and
suffers from bias because of specific constructs in languages etc. MDL tries
to overcome these problems by restricting the possible models and choosing
models that are generally applicable. A central idea in MDL is using two-part
codes: L(H), describing the cost of the hypothesis, and L(D|H), describing
the cost of the data given the hypothesis. We could say Krimp is a version
of MDL for specific inputs: databases containing discrete values. The time
series we now have after preprocessing fit perfectly to this algorithm. We now
discuss how the algorithm works.

4.2.1 Generating Frequent Patterns

The first step to capturing the characteristics of a database is generating all
frequent patterns. In the next step (Section 4.2.2) we make a selection of the
frequent patterns and link them to codes for the compression. We need some
definitions to understand precisely what is happening.

Definition 6. A pattern is a series of characters

p = {p1, . . . , pm} ∀pi ∈ p : pi ∈ A

Denote |p| = m the length of the pattern.
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Definition 7. A pattern p = {p1, . . . , pm} occurs in series T = t1, . . . , tn at
position i if and only if

∀j ∈ {1, . . . , m} : pj = ti+j−1

Definition 8. Given a pattern p = {p1, . . . , pm} and a series T = t1, . . . , tn, the
set X(p) is the largest non-trivial set of indices where p occurs in T. The set
X(p) is non-trivial if and only if

∀i, j ∈ X(p) : |i− j| ≥ m

Denote the cardinality of X(p) as |X(p)|, which equals the number of
unique indices in the set. We also refer to this as the support. Note the largest
non-trivial set can, like in Section 3.3, be computed from the set of all indices
where p occurs in T using a greedy algorithm. The property of non-triviality
is used to make sure we do not over-count the number of occurrences of a
pattern in the series. We illustrate this with a small example. Given a series
T = {a, a, a, a, a} the pattern p = {a, a} occurs at indices 1,2,3 and 4. Dur-
ing encoding we want each observation to be encoded only once. Given that
restriction, the pattern fits only twice in the series. Our definition gives the
same answer (|X(p)| = 2). We are now ready to define the most important
property.

Definition 9. Given a positive integer minsup, a pattern p is frequent in series
T if and only if |X(p)| ≥ minsup.

As said we want an algorithm to generate all frequent patterns. Now that
we know exactly what that means we can build such an algorithm. To build an
algorithm we use two important properties deduced from the series T being
ordered:

1. If pattern p = {p1, . . . , pm} occurs in T at position i then one of the exten-
sions {p1, . . . , pm, pm+1} also occurs at position i, unless the occurrence
is at the end of T.

2. And vice versa, if pattern p = {p1, . . . , pm, pm+1} occurs in T at position
i the shorter version {p1, . . . , pm} occurs in T at position i as well.

In the algorithm we use two tables with the same structure. One (denoted
FP) contains the frequent patterns and the other (denoted CP) contains the
candidates for expansion. The tables contain the patterns on the left hand
side and all the indices where the pattern occurs in T at the right hand side.

p1 I(p1)
p2 I(p2)
. . . . . .

As input FP and CP contain the singleton patterns p1 = {a1} , p2 =
{a2} , . . . , pα = {aα} and their associated index sets I(p1), I(p2), . . . , I(pα). To
generate all frequent patterns we use Algorithm 4.1, where the function non-
trivialSize in line 8 returns the size of the set of non-trivial matches returned
by the algorithm nonTrivial in Section 3.2.

The algorithm returns precisely all frequent patterns, because of the dis-
cussed properties deduced from T being an ordered series. It is also very
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Algorithm 4.1 Generating the set of frequent patterns in time series T.

AllFrequentPatterns(T, FP, CP)
1 while CP 6= ∅
2 do (p, I(p))← (p, I(p)) ∈ CP
3 CP.remove (p, I(p))
4 m← length(p)
5 E← T (I(p) + m) #I(p) + m is a list of indices
6 for i← 1 to α
7 do I({p1, . . . , pm, i})← {e ∈ E : e = i}
8 if nontrivialSize (I({p1, . . . , pm, i})) ≥ minsup
9 then CP.add({p1, . . . , pn, i} , I({p1, . . . , pn, i})

10 FP.add({p1, . . . , pn, i} , I({p1, . . . , pn, i})
11 return FP

efficient: each candidate is generated only once (based on property 1) and
only all relevant candidates are generated (based on property 2). Note in this
algorithm the tables FP and CP are not ordered in any specific way. There-
fore when adding patterns they can be added in the most computationally
efficient way (i.e. at the end of the table). Note that any pattern added to CP
is frequent. So using just one ordered table is also possible, but this way it is
easier to adapt the algorithm to generating restricted sets of frequent patterns,
which we discuss next.

Given a low value for minsup there is a vast set of frequent items. Al-
though it is the job of Krimp to pick out a good set of patterns and it might
be unrivaled in terms of quality of the result, it is also very costly in terms of
computation time. We will come back to the computation time in Chapter 5.
There exist some simple approaches to reduce the size of the frequent pattern
set, and we use one of them in the experiments and compare the results to the
results of using the full set in Chapter 5.

Definition 10. Given a positive integer minsup, a pattern p = {p1, . . . , pn} is
maximally frequent in series T if and only if

|X(p)| ≥ minsup and ¬∃q = {p1, . . . , pn, qn+1} : |X(q)| ≥ minsup

In simple words p is maximally frequent if it is frequent and there is no
character we can extend p by such that the extended pattern q is frequent. We
generate the set of maximally frequent items by using the algorithm for all
frequent patterns and only adding a pattern to FP if no pattern is added to
CP in the for-loop, instead of adding each candidate pattern directly to FP.

Having defined and generated the set of frequent patterns we move on to
the learning phase of Krimp.

4.2.2 Building Code Tables

As with many classification algorithms the characteristics of the classes have
to be extracted first. In Krimp this means building a code table for each class.
The classification itself can be done very fast using the precomputed code
tables. A code table consists of two columns:
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Pattern Code-length
{a} L({a})
{b} L({b})
{c} L({c})
{a, b} L({a, b})
{c, a} L({c, a})

. . . . . .

The code table (CT) always contains all possible singleton patterns (i.e.
the unique characters) at the top. The other patterns in the table are ordered
ascending first by length and secondly by support. Before we can build a code
table we must first discuss the coding scheme.

Compression of the time series is achieved by converting the input series
to a list of codes. Krimp uses a lossless compression scheme, meaning there
exists a function mapping the codes back to the original series. For such a
function to exists the coding must have the following three properties.

1. The codes must cover the entire input series; each of the observations
must be encoded.

2. The codes cannot overlap each other; no observation is allowed to be
encoded by multiple codes.

3. Each code must be unique and correspond to a single pattern.

Any coding scheme having these three properties produces a unique and
invertible mapping from input data to codes and is a lossless compression
scheme.

The coding algorithm used in Krimp works as follows. To encode T we take
the last pattern in CT that occurs in T, replace the covered part by the code
and recursively encode the remaining parts of T until it is entirely encoded.
An example: given T = {t1, . . . , ti−1, ti, . . . , tj, tj+1, . . . , tn} and a pattern p
occurring at i (so p =

{
ti, . . . , tj

}
), encode ti, . . . , tj with the code associated

with p and recursively encode {t1, . . . , ti−1} and {tj+1, . . . , tn}.
Actually we are not interested in the actual codes, but only in the lengths

of the codes. The code lengths should be chosen such that the length of the
entire code sequence is minimized. From information theory (Grünwald 2005)
we know the optimal length of a code is given by

`CT(pi) = −log (P(pi|T)) = −log

(
f req(pi)

∑pj∈CT f req(pj)

)
. (4.2)

Where f req(pi) (the frequency of pattern pi) is the number of times it is used in
the encoding. This is not the same as the support, which equals the number
of times pi occurs in T. We can also compute the length of the entire sequence
of codes by

LCT(T) = − ∑
pi∈CT

f req(pi) · log

(
f req(pi)

∑pj∈CT f req(pj)

)
. (4.3)

MDL theory tells us we have to penalize any hypothesis for the complexity
of the model, in this case the size of the code table. Clearly the cost for storing
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the codes in the right column of the code table should equal the length of the
codes. For the left column we use the length of each pattern encoded with the
standard table (ST), which is the initial code table containing only the singleton
patterns. The size of the entire table now becomes

L(CT) = ∑
pi∈CT

`ST(pi) + `CT(pi). (4.4)

It has been proven by Siebes et al. (2006) that the optimal set of patterns is
the set minimizing

L(CT, T) = L(CT) + LCT(T). (4.5)

Any subset (of the set of frequent patterns) which contains the singleton
patterns is a valid code table. Since the frequent pattern set is very large,
it is infeasible to compute L(CT, T) for each possible code table. Therefore
we use a simple heuristic algorithm called Naïve-Compression (Van Leeuwen
et al. 2006) to find a good code table. We order the set of frequent patterns
descending first by support and secondly by length. Now we try for each
pattern – in order – to insert it into the code table at the right place and
recompute the total size L(CT, T). If the new size L(CT, T) is smaller, the
pattern stays in the table, otherwise we remove it again.

4.3 Classification Algorithm

The classification algorithm is based on the principle that a series belonging
to a certain class ci ∈ C will be compressed well by the code table associated
with that class. Using the Naïve Bayes assumption we expect the following
equation to be true (Van Leeuwen et al. 2006)

If `CTi (T) < `CTj(T) then P(T|ci) > P(T|cj) (4.6)

Here we define the coded length as the sum of the codes used in the
encoding

`CTi (T) = ∑
pj∈CTi

−log

(
f req(pj)

∑pk∈CTi
f req(pk)

)
(4.7)

This leads to the classification Algorithm 4.2.

Algorithm 4.2 Classifying series T using the list of Code Tables CT.

Classify(T, CT)
1 class← 0
2 lmin ← ∞
3 for i← 1 to #classes
4 do li ← `CTi (T)
5 if li < lmin
6 then class← i
7 lmin ← li
8 return class
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Chapter 5

Experimental Results

In this section we review the results of Krimp as an activity classifier. In Sec-
tion 5.1 we discuss setting the parameters for the experiments. In Section 5.2
we show the result for the entire data set. In Section 5.3 we look at a sub-
set of activities where Krimp achieves higher accuracy than other algorithms.
We discuss some slightly altered experimental setups in Section 5.4. In Sec-
tion 5.5 we review the results of detecting irregularities with Krimp. Finally,
we improve the classification results from Section 5.5 by introducing flexible
matching in Section 5.6.

5.1 Test Set-Up

Table 5.1 summarizes the parameters used in the experiments. We motivate
each choice separately.

Parameter Setting
Cross-validation Leave one subject out
Window length 760 samples (= 10 seconds)
Type Frequent Item All vs. Maximal Only
Minimum Support 100% to 0.05%
Breakpoints [−∞,−34,−30, . . . ,−2, 2, . . . , 30, 34, ∞],

[−∞,−33,−27, . . . ,−3, 3, . . . , 27, 33, ∞],
[−∞,−36,−28, . . . ,−4, 4, . . . , 28, 36, ∞],
[−∞,−35,−25,−15,−5, 5, 15, 25, 35, ∞],
[−∞,−30,−18,−6, 6, 18, 30, ∞],
[−∞,−35,−21,−7, 7, 21, 35, ∞]

Table 5.1: Settings used throughout this chapter.

We want the classifier to work accurately for unknown subjects. Leave one
subject out cross-validation gives the most accurate result regarding the real
performance of the classifier.

To detect precisely when an activity starts and ends the window length
should be as small as possible. In Bao & Intille (2004) a window of 512 samples
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(≈ 6.7 seconds) is used to ensure each window contains some repetition of
the basic movements involved in the activity. We make a safe choice of 760
samples (= 10 seconds) with no overlap between windows.

As explained in Section 4.2.1, reducing the set of all frequent patterns
speeds up the process of building the classifier, but may reduce the accuracy
of the classification algorithm. We consider the full frequent pattern set and
the set of maximal frequent patterns. When the set is not explicitly mentioned
we use the full frequent pattern set.

Cycles of movement, for example two steps while walking, can take up to
1.5 seconds (= 100 samples). So even a pattern covering the entire data set
perfectly has a frequency of 1% in the data set. We expect a minimum support
of 1% or lower is required for a good classifier. We vary the minimum support
from 100% (equals use Standard Code Table) to 0.025%. To be able to compare
unequally sized data sets fairly we use relative minimum support.

It is unknown what the effect on the accuracy of the classifier is of choosing
certain breakpoints, therefore we simply use a number of fixed sized intervals.
Only data annotated with running exceeds −30 and +30 making the chosen
interval ranges broad enough for recognition of any activity.

5.2 Results All Activities

We use the regular definition of accuracy measured over the entire data set.

accuracy =
#observations correctly classified

#observations
(5.1)

And the regular definitions of precision and recall measured for each class
separately.

precision =
#observations of class i classified as i

#observations classified as i
(5.2)

recall =
#observations of class i classified as i

#observations of class i
(5.3)

To compare our experimental results we give the full classification matrix
from Bao & Intille (2004) in Table 5.2. The total accuracy is 50.1%. Precision
and recall is not very high for most activities and for some, i.e. climbing stairs
and strength-training, both precision and recall is very low. We assume there
are two causes for not too good results. There are annotation errors in the
data set, meaning large parts of riding elevator, riding escalator is actually data
where the subject is walking or standing. Similar problems occur for the zero-
acceleration classes (sitting, working on PC etc.). When looking at the input
data there are clearly some parts not annotated correctly. In some cases the
classification algorithm may have produced the true answer but in the scoring
is it counted as incorrect. The second cause for disappointing results is that
the classification algorithm can be improved. The goal of this chapter is to
prove that.

As explained in Chapter 2 the assumption of unknown orientation was not
used in the paper of Bao & Intille (2004). We expect that some activities like
sitting, eating and working on PC are impossible to distinguish from each other
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Class a b c d e f g h i j k l m n o p q r s t Recall %
(a) Walking 615 127 0 0 15 10 0 0 40 21 7 25 11 51 3 0 22 47 43 13 58.6
(b) Carrying 160 271 6 2 66 16 2 2 42 50 31 109 23 129 50 1 27 195 223 36 18.8
(c) Sitting 2 0 480 75 1 9 59 49 0 0 5 20 9 0 0 93 0 0 2 0 59.7
(d) Working on PC 0 0 198 559 3 29 60 42 1 3 10 2 1 1 2 2 0 0 1 2 61.0
(e) Standing 3 5 1 2 659 14 0 2 1 38 16 8 13 9 9 2 9 4 4 10 81.5
(f) Eating/drinking 6 1 18 34 19 562 15 5 0 7 12 2 41 8 16 5 43 2 2 5 70.0
(g) Watching TV 0 2 44 21 1 6 229 82 0 1 1 0 0 0 1 25 1 0 0 2 55.0
(h) Reading 1 2 140 71 30 28 180 343 13 0 14 24 5 22 8 159 2 3 0 2 32.8
(i) Running 63 48 0 0 5 3 0 0 375 12 7 5 4 9 3 0 10 6 5 5 67.0
(j) Bicycling 8 20 1 1 33 9 1 0 1 668 16 10 10 31 7 0 16 3 3 24 77.5
(k) Stretching 14 15 16 21 33 26 25 24 2 29 291 34 28 69 42 3 36 7 18 13 39.0
(l) Strength-training 25 42 18 24 30 31 31 39 3 29 60 61 16 89 32 9 22 16 20 9 10.1
(m) Scrubbing 5 6 0 2 21 51 1 6 2 27 17 7 169 33 51 2 77 4 7 9 34.0
(n) Vacuuming 7 5 3 4 15 12 10 18 4 9 32 9 16 726 20 0 16 2 3 7 79.1
(o) Folding laundry 4 13 2 9 28 36 3 3 4 5 56 7 20 24 570 5 52 2 15 6 66.0
(p) Lying down 0 0 3 2 17 29 14 13 0 2 2 26 2 5 1 712 3 0 2 0 85.5
(q) Brushing teeth 11 9 0 1 64 86 1 1 4 22 28 13 100 66 57 0 224 5 19 36 30.0
(r) Climbing stairs 108 118 0 0 9 8 0 2 13 15 11 13 14 37 5 0 12 6 19 20 1.5
(s) Riding elevator 109 118 0 1 53 82 0 6 6 27 36 52 60 88 67 3 71 44 276 53 24.0
(t) Riding escalator 8 5 0 0 10 10 0 1 2 13 16 8 5 19 4 1 14 4 5 55 30.6
Precision % 53.5 33.6 51.6 67.4 59.3 53.2 36.3 53.8 73.1 68.3 43.6 14.0 30.9 51.3 60.1 69.7 34.1 1.7 41.4 17.9

Table 5.2: Full classification matrix from Bao & Intille (2004)

under that assumption. The subject’s posture can be recognized if the orienta-
tion of the two axis compared to the body is known. This is actually the only
information available from the hip sensor in the aforementioned activities.

Class a b c d e f g h i j k l m n o p q r s t Recall %
(a) Walking 115 37 0 0 0 0 0 0 0 2 1 3 0 0 0 0 0 2 1 0 71.4
(b) Carrying 41 114 0 0 0 0 0 0 0 2 0 11 0 2 0 0 0 5 0 0 65.1
(c) Sitting 0 0 51 59 15 10 2 3 0 0 0 0 0 0 6 18 15 0 0 0 28.5
(d) Working on PC 0 0 66 75 10 9 5 7 0 0 0 0 0 0 6 29 10 0 0 0 34.6
(e) Standing 0 0 32 29 19 9 4 4 0 6 0 0 0 22 5 21 7 0 0 0 12.0
(f) Eating/drinking 0 1 26 14 17 7 5 7 0 0 0 5 1 8 33 12 36 1 0 0 4.0
(g) Watching TV 0 0 40 50 11 3 2 4 0 0 0 0 0 6 8 23 3 0 1 1 1.3
(h) Reading 0 0 64 68 11 4 2 7 0 0 0 0 0 7 10 28 8 0 1 1 3.3
(i) Running 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 100.0
(j) Bicycling 2 0 0 0 0 0 0 0 0 88 0 7 0 22 0 0 1 0 0 0 73.3
(k) Stretching 5 5 0 0 0 0 0 0 0 0 0 4 1 7 0 0 0 1 0 0 0.0
(l) Strength-training 11 2 0 0 0 0 0 0 0 2 1 28 0 16 0 0 0 7 1 0 41.2
(m) Scrubbing 1 0 0 0 0 0 0 0 0 2 1 3 0 6 1 0 1 0 0 0 0.0
(n) Vacuuming 1 5 0 0 4 2 0 0 0 37 2 44 0 105 18 0 8 5 4 0 44.7
(o) Folding laundry 3 1 5 3 19 6 2 4 0 2 0 8 0 41 74 4 41 0 0 0 34.7
(p) Lying down 0 0 79 70 15 10 1 4 0 0 0 0 0 0 10 14 5 0 2 1 6.6
(q) Brushing teeth 1 0 10 7 15 13 3 1 0 11 0 3 1 28 41 7 42 0 1 1 22.7
(r) Climbing stairs 9 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 57.9
(s) Riding elevator 14 10 2 1 4 5 0 0 0 1 0 9 0 5 6 2 11 0 13 0 15.7
(t) Riding escalator 2 4 5 6 8 9 1 0 0 0 0 1 0 11 6 7 8 0 5 2 2.7
Precision % 56.1 58.8 13.4 19.6 12.8 8.0 7.4 17.1 100.0 57.5 0.0 22.2 0.0 36.7 33.0 8.5 21.4 61.1 44.8 33.3

Table 5.3: Full classification matrix using Krimp

Consider the results of our algorithm in Table 5.3. For the experiment a
minimum support of 0.10% is used, breakpoints are set to [−∞,−36,−28, . . . ,
−4, 4, . . . , 28, 36, ∞] and only the data of the first five subjects is used, because
of the duration of the test. Overall accuracy is 30.9%. For the activities walk-
ing, carrying, running, strength-training and climbing stairs, Krimp scores better
on both precision and recall. For running our classifier achieves an amazing
100.0% precision and recall. For riding elevator and riding escalator the preci-
sion is better but the recall is worse. For bicycling, brushing teeth, vacuuming
and folding laundry the precision and recall are slightly worse. For the other
activities the results are much worse. We already expected this phenomenon
for the activities where this is no acceleration at all, but it also occurs in some
low acceleration activities.

Although we do not have the decision tree results under the unknown
orientation assumption we review the results for boxing the activities into 4
categories ranging from passive to intense activities. We use the categories
listed in Table 5.4.
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Category Activities
Very low intensity Sitting, Working on PC, Standing,

Eating/drinking, Watching TV, Reading,
Folding Laundry, Lying down, Brushing teeth,
Riding elevator and Riding escalator

Low intensity Bicycling, Stretching, Strength-training,
Scrubbing and Vacuuming

Medium intensity Walking, Carrying and Climbing stairs
High intensity Running

Table 5.4: Activities categorized based on acceleration intensity.

Class category 1 2 3 4 Recall %
(1) Very low intensity 7203 974 363 31 84.0
(2) Low intensity 952 2486 179 12 68.5
(3) Medium intensity 612 547 1647 95 56.8
(4) High intensity 0 0 0 375 100.0
Precision % 82.2 62.0 75.2 73.1

Table 5.5: Boxed results from Bao & Intille (2004).

Class category 1 2 3 4 Recall %
(1) Very low intensity 1644 176 37 0 88.5
(2) Low intensity 40 376 45 0 81.6
(3) Medium intensity 1 21 371 0 94.4
(4) High intensity 0 0 0 70 100.0
Precision % 97.6 65.6 81.9 100.0

Table 5.6: Boxed results from Krimp.

In Table 5.5 we find the results from Bao & Intille (2004) boxed into the
four categories and in Table 5.6 we find the results from Krimp boxed into the
four categories. The overall accuracy is 75.7% and 88.5% respectively. While
the performance of Krimp was significantly worse in the full activity set, here
the results from Krimp are superior in all categories. Important to note is both
these boxed results show us very well that misclassifications are made mainly
between activities in the same category. Note the number of observations is so
much lower because we only use data from the first five subjects and a longer
window with no overlap between windows.

We have seen for the activities in the very low intensity category our ap-
proach is not going to achieve satisfactory accuracy, while for other activities
(medium/high categories) our first attempt is already superior. For some
of the activities in the very low and low intensity categories it was already
identified in Bao & Intille (2004) higher level analysis (for example temporal
reasoning) is required to robustly recognize these activities. In the next section
we focus on boosting the accuracy for the medium and high intensity classes.
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5.3 Results Ambulatory Activities

Parameter Value
Breakpoints [−∞,−36,−28, . . .− 4, 4, . . . , 28, 36, ∞]
Minimum support 0.10%
Class category a b i r Recall %
(a) Walking 119 39 0 3 73.9
(b) Carrying 42 128 0 5 73.1
(i) Running 0 0 70 0 100.0
(r) Climbing stairs 9 15 0 33 57.9
Precision % 70.0 70.3 100.0 80.5

Table 5.7: Results for ambulatory activity from Krimp.

We start by looking at the test results in Table 5.7. The results are gathered
using the same parameters as in Section 5.2, but with a data set consisting
only the four activities from the medium and high intensity categories. The
overall accuracy is 75.6%, which is not bad considering the activities are very
similar. We are interested in the effect of the parameters to determine how we
can improve this result.

Let us first consider changing the minimum support value. From the set
of all patterns Krimp chooses a set of patterns that describes (compresses) the
data well. Although we use the heuristic Naïve-Compression (see Section
4.2.2) to build the Code Tables, we expect adding patterns to the frequent
pattern set can only improve the result. This is even more clear when we take
into account the patterns are ordered by support before inserting them into the
Code Table. For example if a minimum support of 0.20% gives 200 frequent
patterns and a minimum support of 0.10% gives 250 frequent patterns, the
Code Table for both sets is the same after evaluating 200 patterns. The 50
extra patterns have a support between 0.20 and 0.10% and are inserted later
than the 200 frequent patterns with support ≥ 0.20%. Assuming ability to
compress equals ability to classify, we expect a lower support always yields a
better result.

As explained in Section 5.1 we do not know whether the character intervals
determined by the breakpoints should be smaller or bigger, so let us look at
the results in Table 5.8. For four of the breakpoint settings (1, 4, 5 and 6) the
highest accuracy is achieved using the lowest minimum support value (0.05%),
and for the other two breakpoint settings the highest accuracy is achieved with
the second lowest minimum support value (0.10%). We observe that in general
a lower minimum support increases the accuracy. In contrast with what we
expected, it does not increase monotonically.

Considering the differences between the breakpoints we see for high min-
imum support (1.60% to 0.20%) the smaller intervals (1 to 3) are superior,
while for low minimum support (0.10% and 0.05%) the larger intervals (5 and
6) perform better. These results are not easy to explain, but in the remainder
of this section we try to get some additional insight.

To make the results more comparable let us look at Figure 5.1, which shows
a graphical overview of the frequent pattern sets’ and Code Tables’ sizes. We
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Breakpoints Minsup Accuracy
(1) {−34,−30, . . . ,−2, 1.60% 71.1%

2, . . . , 30, 34} 0.80% 71.7%
0.40% 70.8%
0.20% 73.2%
0.10% 74.1%
0.05% 75.6%

(2) {−33,−27, . . . ,−3, 1.60% 67.0%
3, . . . , 27, 33} 0.80% 67.4%

0.40% 71.5%
0.20% 72.8%
0.10% 75.4%
0.05% 74.3%

(3) {−36,−28, . . . ,−4, 1.60% 73.4%
4, . . . , 28, 36} 0.80% 69.1%

0.40% 72.6%
0.20% 74.5%
0.10% 75.6%
0.05% 75.2%

(4) {−35,−25, . . . ,−5, 1.60% 71.3%
5, . . . , 25, 35} 0.80% 64.1%

0.40% 70.4%
0.20% 71.1%
0.10% 72.8%
0.05% 75.4%

(5) {−30,−18,−6, 1.60% 61.3%
6, 18, 30} 0.80% 55.1%

0.40% 64.4%
0.20% 70.8%
0.10% 76.9%
0.05% 78.0%

(6) {−35,−21,−7, 1.60% 67.6%
7, 21, 35} 0.80% 67.8%

0.40% 69.5%
0.20% 69.3%
0.10% 74.1%
0.05% 80.1%

Table 5.8: Overview of all classification results.

notice for each of the breakpoint settings the number of candidate patterns
grows linearly as the support decreases (note both axis have logarithmic scale).
Each time the minimum support is halved the number of candidates becomes
∼ 2.3 times as big. At equal minimum support level the number of candidate
patterns is higher for bigger breakpoint intervals. Between breakpoint settings
1 and 6 the difference is a factor two. For the Code Table sizes the inverse
holds. Bigger breakpoint intervals give a smaller Code Table.

To explain this let us reason from the perspective of the number of charac-
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Figure 5.1: Size of full frequent pattern sets and Code Tables for each of the parameter
settings.

ters. The number of characters for each of the breakpoint settings is 19, 13, 11,
9, 7 and 7 respectively. It is not strange there are longer patterns in the data
set if we use a smaller alfabet to describe the input values, thus the number of
candidate patterns grows. It is also not strange we need less patterns to give a
good description of a database with a smaller alfabet. So the results of Figure
5.1 are easily explainable. This insight implies the use of a bigger alfabet re-
quires a lower setting for the minimum support to have equally long patterns.
Which in turn means comparison of breakpoints at a fixed minimum support
level is not entirely fair. We verify this hypothesis by looking directly at the
pattern lengths.

In Figure 5.2 we compare for two settings of breakpoints and two settings
of minimum support the length of the patterns and their coverage of the data
set. We see the coverage for walking, carrying and climbing stairs is very similar
in all four cases. The area above (and left of) each curve tells us how long
the patterns in the final Code Table are, weighed by the amount of data they
encode. We see this area is bigger in the bottom two graphs, compared to
the top two and also a lower minimum support gives a larger area above the
curve. Looking closely we also see the area above the curve in the top right
graph is smaller than in the bottom-left graph, for each of the four activities.
This confirms our assumption a smaller alfabet gives much longer patterns in
the Code Table and makes the comparison at fixed minimum support unfair.
We keep this in the back of our mind while interpreting results.
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Figure 5.2: Cumulative cover vs. length of patterns under variation of breakpoints
and minimum support.

5.4 Variations

We investigate three variations of the results in Section 5.3. First, in Section
5.4.1, we consider the effect of using input data from ten subjects instead of
five subjects. In Section 5.4.2, we look at reducing the set of frequent patterns
to speed up the learning phase of Krimp. Finally, we look at the classification
performance when we add cycling and sitting to the data set in Section 5.4.3.

5.4.1 Ten Subjects

We expect increase in performance because a better generalization is achieved
when using data from more subjects. Consider the classification results for
using 10 subjects compared to 5 subjects in Table 5.9. For each choice of
breakpoints and minimum support more subjects gives a better result. The
increase in accuracy ranges from 3.2% to 5.6%. From this we make the impor-
tant conclusion the differences between people are too big for Krimp to find
good generalizations given sample data from only a few persons.

Most probably the results could be improved further by using data from
even more subjects or lowering the support. Unfortunately a test with cross-
validation, breakpoint settings 6, minimum support 0.20% and data from 10
subjects already takes 80 hours with our current implementation in Matlab on
a PC with a 1.86 GHz Intel Core 2 Duo Processor (only one core is used by
Matlab). So we leave this challenges open for others.
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Breakpoints Minsup Accuracy Accuracy
10 Subjects 5 Subjects

(1) {−34,−30, . . . ,−2, 0.40% 75.3% 70.8%
2, . . . , 30, 34} 0.20% 76.9% 73.2%

(2) {−33,−27, . . . ,−3, 0.40% 75.2% 71.5%
3, . . . , 27, 33} 0.20% 77.3% 72.8%

(3) {−36,−28, . . . ,−4, 0.40% 75.8% 72.6%
4, . . . , 28, 36} 0.20% 78.2% 74.5%

(4) {−35,−25, . . . ,−5, 0.40% 74.8% 70.4%
5, . . . , 25, 35} 0.20% 76.7% 71.1%

(5) {−30,−18,−6, 0.40% 69.2% 64.4%
6, 18, 30} 0.20% 75.7% 70.8%

(6) {−35,−21,−7, 0.40% 71.2% 69.5%
7, 21, 35} 0.20% 74.9% 69.3%

Table 5.9: Overview of all classification results using subjects 1 to 10.

5.4.2 Reducing The Frequent Pattern Set

In Section 4.2.1 we explained reducing the set of frequent patterns reduces the
computational complexity of the learning phase of Krimp, which accounts for
> 99.5% of the total computational cost of a test run. In Table 5.10 are the
results of the classification using only maximally frequent patterns. The clas-
sification accuracy is not easy to compare, in some cases maximally frequent
patterns performs better in other cases all frequent patterns performs better.
For breakpoint settings 5 and 6, which perform the best overall, all frequent
patterns is in general superior at equal settings of minsup. An important
trend we observe in the results is the best accuracy given fixed breakpoints is
never achieved with the lowest minimum support. We conclude for the pur-
pose of classification the description of the data becomes worse when using
maximally frequent patterns with support lower than 0.1 ∼ 0.05%.

The speed increase is significant. In Figure 5.3 we find a comparison of the
number of frequent patterns generated as candidates for the Code Tables and
the number of patterns selected for the Code Tables. We discuss only the cases
with low minimum support (0.10%, 0.05%). The number of frequent patterns
generated are two to six times lower in the maximally frequent pattern case,
depending on the choice of breakpoints. We observe the number of maxi-
mally frequent patterns at each level of minsup is quite stable for different
breakpoint settings, and is actually a bit smaller for increased interval sizes,
whereas in the all frequent patterns case the number of frequent patterns
grows rapidly. For low minimum support the number of patterns selected for
the Code Tables is bigger than when using all frequent patterns.

Considering these overviews we conclude using maximally frequent pat-
terns is not advisable, because the only positive aspect is computational costs
of training and the negative aspect is worse performance and bigger Code
Tables. Training the classifier needs to be done only once and after that the
computational cost of the classifier is important, which depends only on the
Code Table size.
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Breakpoints Minsup Accuracy All Accuracy Max
Freq Patterns Freq Patterns

(1) {−34,−30, . . . ,−2, 1.600% 71.1% 73.2%
2, . . . , 30, 34} 0.800% 71.7% 72.4%

0.400% 70.8% 65.9%
0.200% 73.2% 71.9%
0.100% 74.1% 75.6%
0.050% 75.6% 72.4%
0.025% 68.3%

(2) {−33,−27, . . . ,−3, 1.600% 67.0% 70.4%
3, . . . , 27, 33} 0.800% 67.4% 68.5%

0.400% 71.5% 65.7%
0.200% 72.8% 72.4%
0.100% 75.4% 73.7%
0.050% 74.3% 73.0%
0.025% 72.8%

(3) {−36,−28, . . . ,−4, 1.600% 73.4% 74.5%
4, . . . , 28, 36} 0.800% 69.1% 68.7%

0.400% 72.6% 68.9%
0.200% 74.5% 72.6%
0.100% 75.6% 72.4%
0.050% 75.2% 73.0%
0.025% 70.2%

(4) {−35,−25, . . . ,−5, 1.600% 71.3% 69.1%
5, . . . , 25, 35} 0.800% 64.1% 61.3%

0.400% 70.4% 64.4%
0.200% 71.1% 69.8%
0.100% 72.8% 71.7%
0.050% 75.4% 73.7%
0.025% 72.8%

(5) {−30,−18,−6, 1.600% 61.3% 62.9%
6, 18, 30} 0.800% 55.1% 62.2%

0.400% 64.4% 56.8%
0.200% 70.8% 66.5%
0.100% 76.9% 74.1%
0.050% 78.0% 74.1%
0.025% 73.2%

(6) {−35,−21,−7, 1.600% 67.6% 66.7%
7, 21, 35} 0.800% 67.8% 68.5%

0.400% 69.5% 54.4%
0.200% 69.3% 65.9%
0.100% 74.1% 72.1%
0.050% 80.1% 70.8%
0.025% 69.8%

Table 5.10: Overview of all classification results using only maximal frequent patterns.

5.4.3 Cycling And Sitting

To show the maximal performance of the current solution we add to the data
set the activities cycling and sitting, which should be easily separable from the
other activities since they are both from another intensity category. Look at
the results in Table 5.11. Both precision and recall for cycling and sitting are
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Figure 5.3: Size of maximal frequent pattern sets and Code Tables for each of the
parameter settings.

above 85% and the activities are separated clearly from the other activities.
An overall accuracy of 82.5% shows again the potential of Krimp for activity
classification.

Parameter Value
Breakpoints [−∞,−36,−28, . . .− 4, 4, . . . , 28, 36, ∞]
Minimum support 0.05%
Class category a b c i j r Recall %
(a) Walking 112 41 0 0 3 5 69.6
(b) Carrying 40 130 0 0 4 1 74.3
(c) Sitting 0 0 169 0 10 0 94.4
(i) Running 0 0 0 70 0 0 100.0
(j) Cycling 2 1 0 0 116 1 96.7
(r) Climbing stairs 10 15 0 0 0 32 56.1
Precision % 68.3 69.5 100.0 100.0 87.2 82.1

Table 5.11: Results for six activities from Krimp.

5.5 Detecting Anomalies

Recall the basic principle of Krimp. We expect good compression with data be-
longing to a certain class and bad compression with data not belonging to that
class. In practice is it often unclear whether the compression value `CTi (T),
calculated during classification for each class i, is good or bad. In this section
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we extract information from situations where compression is reasonable, but
notably different from good. In particular we look at how the compression
values vary for an anomalous walking pattern.

We conducted the following experiment. Six subjects wearing a triaxial
accelerometer in the pocket of their pants had to walk a small predetermined
course through our building. All subjects are colleagues of us. We assume
the data is fairly realistic, because each subject walked at his/her own pace
and in it’s natural environment. Each subject had to walk down a hallway for
approximately a minute, descend two floors over a few stairs, walk through
a hallway again and ascend two floors over stairs where they arrived at the
starting point. In total the experiments lasts about three minutes for each
subject. The triaxial accelerometer is sampled at 40 Hz and we use almost
the same preprocessing as discussed in Chapter 4, so normalization over 0.5
second window and smoothing by averaging over 5 values. Breakpoints are
set in the same fashion by using fixed size intervals. Subject 6 had a bruised
foot and used a crutch to support himself while walking and climbing stairs.
Our goal is to detect this from the compression cost in Krimp.

Let us first look at the result of the classification from Krimp in Table 5.12.
The minimum support has been set at 0.05% and all results are generated by
using leave-one-subject-out cross-validation.

Subject Class 1 2 Accuracy
1 (1) Walking 17 0 87.5 %

(2) Climbing stairs 3 4
2 (1) Walking 16 2 92.3 %

(2) Climbing stairs 0 8
3 (1) Walking 16 0 91.7 %

(2) Climbing stairs 2 6
4 (1) Walking 12 5 80.0 %

(2) Climbing stairs 0 8
5 (1) Walking 16 0 91.3 %

(2) Climbing stairs 2 5
6 (1) Walking 0 23 23.3 %

(2) Climbing stairs 0 7
Total (1) Walking 77 30 75.7 %

(2) Climbing stairs 7 38

Table 5.12: Classification results when using cross-validation and data from subjects
1 to 6.

The overall accuracy is fairly high, and 23 out of 34 errors are made in the
test set of subject 6. This makes the classification results for subject 6 indeed
very different from the others. More important to recognize the anomaly are
the actual compression values. First we look into another issue. We expected
no errors in the “ordinary” subjects, and these errors are problematic because
in order to detect differences we have to make sure our description of the
“normal” case is as perfect as possible. The errors may be caused by the
presence of the data of subject 6 in the learning set.

We remove subject 6 from the data set and validate the classifier again.
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The result is listed in Table 5.13. It appears subject 4 now scores very bad.
After evaluation it was discovered he wore the device in the back pocket of
his trouser. There is a clear difference in score and apparently the patterns
found by Krimp are not general enough to bridge the difference. It may be
this issue can be resolved by using a larger data set for training, unfortunately
we have no means to investigate this.

Subject Class 1 2 Accuracy
1 (1) Walking 17 0 91.7 %

(2) Climbing stairs 2 5
2 (1) Walking 18 0 92.3 %

(2) Climbing stairs 2 6
3 (1) Walking 14 2 91.7 %

(2) Climbing stairs 0 8
4 (1) Walking 3 14 44.0 %

(2) Climbing stairs 0 8
5 (1) Walking 16 0 100.0 %

(2) Climbing stairs 0 7
Total (1) Walking 68 16 83.6 %

(2) Climbing stairs 4 34

Table 5.13: Classification results when using cross-validation and data from subjects
1 to 5.

Subject Class 1 2 Accuracy
1 (1) Walking 17 0 95.8 %

(2) Climbing stairs 1 6
2 (1) Walking 18 0 96.2 %

(2) Climbing stairs 1 7
3 (1) Walking 15 1 95.8 %

(2) Climbing stairs 0 8
5 (1) Walking 16 0 100.0 %

(2) Climbing stairs 0 7
Total (1) Walking 66 1 96.9 %

(2) Climbing stairs 2 28

Table 5.14: Classification results when using cross-validation and data from subjects
1, 2, 3 and 5.

The results of the classification without subjects 4 and 6 are in Table 5.14.
This result is indeed more satisfactory. We conclude Krimp has again shown
it’s strength in classification. In Table 5.15 we find the classification results for
subjects 4 and 6 using the classifier trained on the ‘normal’ subjects 1, 2, 3 and
5. In the classification results there is a clear difference between the ‘normal’
and ‘abnormal’ subjects.

We proceed to the overview of compression values in Figure 5.4. On the
vertical axis is the compression value for climbing stairs and on the horizontal
axis is the compression value for walking. Any observation is assigned the
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Subject Class 1 2 Accuracy
4 (1) Walking 3 14 44.0 %

(2) Climbing stairs 0 8
6 (1) Walking 0 23 20.0 %

(2) Climbing stairs 1 6

Table 5.15: Classification results when trained on data from subjects 1, 2, 3 and 5.

class with the lowest compression value, thus any observation above the blue
line is classified as walking and below the blue line as climbing stairs. The
difference between the compression values for each class is an indicator for
the certainty of an observation matching one class better than the other class.
Thus observations further away from the blue line are with more certainty
classified as walking or climbing stairs. All observations drawn with a triangle
are samples from walking and all observations drawn with a circle are samples
from climbing stairs. We can see the misclassified observations from subjects
1, 2, 3 and 5 (1 green triangle, 1 blue circle, 1 red circle) are very close to
the blue line, as well as several correctly classified observations. It is also
clear observations for both walking and combing stairs from subject 6 can be
recognized as different from observations from subject 1, 2, 3 and 5 when
considering both compression values at once. The same applies for most of
the observations from subject 4.
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Figure 5.4: Overview of compression values for detecting anomalous data from sub-
jects 4 and 6.

We expect good compression for observations belonging to a certain class
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and bad compression for observations belonging to a different class. Remark-
ably this rule appears not to apply here. We know the observations from
subjects 4 and 6 are different from the samples we used to train Krimp, but the
compression is actually better for both classes. It is possible to explain this.
One or more patterns that occurs frequently in the data used to train Krimp
occurs even more often in the observations from subjects 4 and 6. Overpres-
ence of the more frequent patterns makes the score lower instead of higher.
Certainly this is unexpected and a possible solution is discussed in Section
6.1. The other problem with detecting anomalies shown in Figure 5.4 is the
observations for subjects 4 and 6 are not assigned to the correct activity. So
if we detect an observation to be an anomaly we do not know which activity
it belongs to. We conclude it is possible to detect anomalies, but it is not as
simple as we expected.

5.6 Flex Matching

The result of Table 5.14, with an overall accuracy of 96.9% is very nice, but
as expressed earlier we expected no flaws at all and a possible solution may
be to gather more data from more subjects. To mitigate minor differences in
the acceleration pattern we introduce flexible matching in Krimp. As with SAX,
the symbolic representation used in this chapter lower bounds the Euclidean
distance between observations. In Section 3.5 we already discussed matching
patterns with a lower bound distance of zero, i.e. matching neighbouring
characters such as a and b. To introduce this into Krimp we adjust the coding
scheme and the algorithm for generating frequent patterns. The only change
to the coding scheme is the definition of when a pattern occurs in T.

Definition 11. A pattern p = {p1, . . . , pm} occurs in series T = t1, . . . , tn at
position i if and only if

∀j ∈ {1, . . . , m} : pj + 1 ≥ ti+j−1 and pj − 1 ≤ ti+j−1

So the pattern {a, e, b} matches {a, e, a} as well as {b, d, c} etc. We set no
maximum to the number of characters in the code that are substituted for a
neighbor. The basic encoding principle remains the same. So take the last code
in the code table, encode all parts of T where this code occurs and recursively
encode the rest of T with the other codes in the code table. The change for
the frequent pattern generation is the about the same. For each pattern we
adjust the frequency count (nontrivialSize (I({p1, . . . , pm, i}))) to account for
matches in T with characters substituted by neighboring characters.

There is a negative aspect of flex matching. The number of frequent pat-
terns is much higher than without flex matching. In fact for each pattern p
there are 3length(p) patterns in the flex matching. Since the running time of
Krimp grows linearly with the number of frequent patterns, an exponential
growth of the number of frequent patterns cannot be coped with. To avoid
generating a lot of non-interesting patterns we use the following heuristic.
While extending a pattern in the algorithm, if the support of an extended
pattern counting only matches where the extension-character matches exactly
is less than 1

3 of the support of the pattern where the extension-character
matches flexibly, we do not use that character for extension. We illustrate this
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with an example. Suppose we are extending frequent pattern {a} with char-
acter b and the pattern {a, a} occurs 20 times, {a, b} occurs 22 times, {a, c}
occurs 28 times and {a, d} occurs 10 times, all using flex matching. It appears
pattern {a, c} is the strongest pattern, but it may be that it does not match
any part of T. Suppose with exact matching the case is {a, a} occurs 2 times,
{a, b} occurs 18 times, {a, c} occurs 2 times and {a, d} occurs 8 times. In this
case we should prefer patterns {a, b} and {a, d} and our heuristic would leave
{a, a} and {a, c} out of the frequent pattern list (and not try to extend them),
because 2 < 20

3 and 2 < 28
3 respectively. For patterns consisting of a single

character we do not use flex matching.
The result for Krimp with flex matching for the data set of Section 5.5 using

cross-validation can be found in Table 5.16. The results for subjects 4 and 6
using the classifier trained on subjects 1, 2, 3 and 5 is in Table 5.17. In both
cases we use a minimum support of 0.4% instead of 0.05% as in Section 5.5 to
keep the number of frequent patterns tractable. The results for the ‘normal’
subjects are flawless with an accuracy of 100.0%. Another positive aspect of
flex matching is the Code Table becomes smaller. The Code Table trained on
subjects 1, 2, 3 and 5 contains 122 codes for walking and 98 codes for climbing
stairs compared to 243 codes for walking and 139 codes for climbing stairs with-
out flex matching. This is important for application on mobile devices because
smaller Code Tables require less storage space and computational power (and
thus battery power).

Subject Class 1 2 Accuracy
1 (1) Walking 17 0 100.0 %

(2) Climbing stairs 0 7
2 (1) Walking 18 0 100.0 %

(2) Climbing stairs 0 8
3 (1) Walking 16 0 100.0 %

(2) Climbing stairs 0 8
5 (1) Walking 16 0 100.0 %

(2) Climbing stairs 0 7
Total (1) Walking 67 0 100.0 %

(2) Climbing stairs 0 30

Table 5.16: Classification results when using cross-validation, flex matching and data
from subjects 1, 2, 3 and 5.

Subject Class 1 2 Accuracy
4 (1) Walking 4 13 32.0 %

(2) Climbing stairs 4 4
6 (1) Walking 1 22 26.7 %

(2) Climbing stairs 0 7

Table 5.17: Classification results using flex matching when trained on data from sub-
jects 1, 2, 3 and 5.

Since flex matching outperforms standard Krimp on this data set it is in-
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teresting to see whether it is easier to detect the anomalies in the data from
subjects 4 and 6. Consider Figure 5.5 giving the overview of the compression
values. The difference between the “normal” and the “anomalous” subjects is
huge and the difference between the classes for the ordinary subjects is also
clearly visible. We conclude flex matching is a clear improvement to Krimp for
this small data set.
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Figure 5.5: Overview of compression values for detecting anomalous data from sub-
jects 4 and 6 using flex matching.
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Chapter 6

Conclusion

In this chapter we summarize the conclusions reached throughout this thesis.
We also discuss the applicability of our approach and some drawbacks in
Section 6.1 and we suggest several promising directions of further research in
Section 6.2.

In general, we have proved activity classification using a single on-body
accelerometer can be done more robustly by using a new classification al-
gorithm. We have created an algorithm to map numerical time-series to a
discrete representation and evaluated the performance of the MDL-based clas-
sification algorithm Krimp on a data set for activity classification.

Before we arrived at the new classification algorithm we have shown in
Chapter 2 automated cleaning of the data set is possible and advisable when
working with a user-annotated data set, although we did not quantify the re-
sulting improvement. Also, in Chapter 3 we have shown activities frequently
contain patterns (motifs), which are typical for an activity and are similar be-
tween different people. Moreover these patterns could also be detected after
discretization of the data set. The approach for finding motifs may be used to
discover anomalous patterns, but the parameters we used are not fit to do so,
as illustrated in Section 3.5.

In Chapter 5, by evaluation on a realistic publicly available data set, we
have proven Krimp can be used to classify discretized numerical time-series.
In particular it can be used to classify activities from a single wearable ac-
celerometer. For the full set of 20 activities in the data set our approach per-
forms worse than a standard Decision Tree (DT) with an overall accuracy of
30.9% versus 50.1% for the DT. This is caused by our restriction to an unknown
sensor orientation. For some (mainly ambulatory) activities the precision and
recall is much higher for Krimp than for DT. We have shown activities can be
categorized and both the previous approach as our new algorithm make most
of the recognition errors within these intensity categories. For some applica-
tions it may be useful to use the classification category instead of the specific
activity because the result is more accurate. For these categorized activities
our classifier outperforms DT with an accuracy of 88.5% versus 75.7% for DT.
We have also evaluated the effect of the parameters of the discretization and
shown the performance of the classifier does not depend a lot on these pa-
rameter choices.

In Section 5.3 we have shown our new approach can distinguish different
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types of walking (walking, walking while carrying, running, climbing stairs) with
up to 80.1% accuracy and when also looking at sitting and cycling the accuracy
is 82.5% as can be found in Section 5.4. In Section 5.4 we have also proven
the accuracy of the classifier can be improved by using data from more people
than the five subjects used in all results mentioned here. Likely the results of
Krimp still allow for improvement. In Section 5.5 we have shown anomalous
behavior may be detected by using the intermediate compression values used
in Krimp. Last but not least we have shown in Section 5.6 an adapted coding
scheme for Krimp, flexible matching, improves the result of the classification
for small data sets. Also using the improved result from flex matching we
could clearly detect the data from two anomalous subjects differs from the
ordinary subjects. We did not try flexible matching on the large data set,
because of lack of time and because for sufficiently large data sets we do not
expect a significant improvement in results.

6.1 Discussion

First we discuss two drawbacks encountered while doing the experiments
described in this thesis.

1. Many machine learning algorithms have a slow learning process and
Krimp is no exception here. During the learning phase the entire data set
is encoding all over again after adding a new pattern to the Code Table.
This encoding cannot be done in a linear scan over the data but requires
a scan over the data for each of the codes in the Code Table in order. This
makes the learning process very slow and low minimum support values
unreachable for large data sets. In Section 5.4 we attempted to reduce
the set of frequent patterns up front, but we did not succeed without
losing accuracy of the classifier. Reducing the number of samples as
is done in the PAA step of SAX may increase the speed of the process
without losing accuracy.

2. Although MDL is intended to be a parameter-free learning algorithm,
the combined method of applying Krimp to numerical time series is not
parameter-free. Krimp itself requires only the minimum support as a
parameter, which is easy to choose because lower is better. Convert-
ing numerical time series to discrete series is a more tedious process.
In Section 5.3 the effect of varying breakpoints is not very big, but the
precise influence on the performance remains unclear. Also the param-
eter choice for the normalization window (0.5 seconds) and smoothing
(over 15 samples) are based on an educated guess, but not thoroughly
evaluated. The choice of parameters possibly allows for improvement.

A sensor that can be worn freely in the pocket or on a belt is much more
comfortable than a sensor that has to be taped on the body at a fixed location
with a set orientation. However, the assumption of unknown orientation of the
sensor makes detection of very low intensity activities impossible. Working
on a solution for this problem is important.

In a broader sense an issue with designing algorithms for activity recog-
nition is lack of clear goals and comparability between studies. Minnen et al.
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(2006) give some solutions to standardize the performance measure of an ac-
tivity classifier. Apart from the various performance measures used, a prob-
lem that remains is that each study uses a different data set, which makes
results incomparable. The main reason different data sets are used is each
study has a particular application in mind and there is no agreement on which
activities are useful to recognize. For medical applications it would be use-
ful to recognize activities already in use to assess independence of elderly,
but no study we are aware of discusses such a set of activities. For energy-
expenditure measurements it is important to recognize more vigorous and
ambulatory activities and this is precisely were Krimp scores better than other
algorithms, so in our opinion it is useful for this application.

6.2 Further Research

We have shown not all activities can be recognized by Krimp using a sin-
gle accelerometer worn at the hip. For different types of activities different
improvements could be made. To detect predominantly arm-based or up-
per body activities such as brushing teeth, eating, drinking and folding laundry
adding an accelerometer at the wrist is probably the most promising solu-
tion. For example detection could be done at both sensors independently and
compression scores could be combined by an algorithm to give a final answer.
To detect postures such as sitting or lying down sensor orientation is needed.
It is interesting to look for an algorithmic solution to compute this. Several
activities in the data set we used, such as riding the elevator or vacuum cleaning
contain no ‘basic’ motion which is repeated consecutively during the activity.
To detect these activities and many more complex activities never studied be-
fore such as sleeping versus lying down to relax need a form of reasoning to be
detected. Such activities cannot be deduced from 10 seconds of acceleration
data. Such reasoning is also necessary for ambient intelligent devices, but has
not received sufficient attention yet.

We discussed it is possible to detect anomalous behavior using the com-
pression values in Krimp in Section 5.5. In the case without flex matching the
change in values we had expected did not occur, in fact the exact opposite
change occurred. Although with flex matching the difference was very clear,
the same problem may have occurred. The problem has a theoretical founda-
tion, but the solution to this problem is probably not hard. The information
we should be interested in is not the compression value given by a certain
Code Table, because the question whether certain data is compressed well by
a Code Table cannot be answered by looking only at the compression value.
This is because not all data is equally regular. The information that tells us
whether data matches a Code Table is comparison of the codes distribution.
If the frequent patterns occur equally often, the data sets are probably highly
alike. To check this we can simply compute whether the cost `CT(pi) asso-
ciated with each code pi is approximately equal to the cost computed when
using the frequencies of each code in the new data. What is approximately
equal should of course be determined taking into account the natural variance
in the data set. We expect this approach works well.
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Appendix A

Classification Results

Full classification results for the data set of Bao & Intille (2004) for various
settings of breakpoints and minimum support. #Cand is the total number of
all frequent patterns generated over all cross-validation runs and all classes,
so Average(#Cand) = #Cand/(5 · 4) for 5 subjects and Average(#Cand) =
#Cand/(10 · 4) for 10 subjects. Select % is the relative number of frequent
patterns selected for the final Code Table. All experiments where run using
Matlab on a PC with a Intel Core 2 Duo 1.86 GHz processor, but Matlab uses
only a single core.
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Breakpoints Minsup #Cand Select % Accuracy Runtime
{−34,−30, . . . ,−2, 1.60% 807 48.3% 71.1% 0:14:54

2, . . . , 30, 34} 0.80% 1,870 62.6% 71.7% 0:53:04
0.40% 4,144 53.6% 70.8% 2:26:35
0.20% 9,428 40.4% 73.2% 5:57:59
0.10% 20,155 26.8% 74.1% 13:00:37
0.05% 42,500 15.5% 75.6% 27:44:12

{−33,−27, . . . ,−3, 1.60% 950 50.5% 67.0% 0:22:48
3, . . . , 27, 33} 0.80% 2,293 47.5% 67.4% 1:10:02

0.40% 5,396 40.5% 71.5% 3:21:04
0.20% 11,915 28.6% 72.8% 7:43:30
0.10% 24,594 18.4% 75.4% 16:10:20
0.05% 52,123 10.2% 74.3% 38:39:10

{−36,−28, . . . ,−4, 1.60% 1,105 48.0% 73.4% 0:28:19
4, . . . , 28, 36} 0.80% 2,785 35.0% 69.1% 1:20:36

0.40% 6,417 29.4% 72.6% 3:47:16
0.20% 14,069 21.5% 74.5% 8:58:34
0.10% 28,672 13.0% 75.6% 18:43:08
0.05% 61,618 6.9% 75.2% 46:49:30

{−35,−25, . . . ,−5, 1.60% 1,289 44.2% 71.3% 0:36:26
5, . . . , 25, 35} 0.80% 3,319 28.3% 64.1% 1:45:13

0.40% 7,529 22.4% 70.4% 4:36:04
0.20% 15,993 15.9% 71.1% 10:27:30
0.10% 33,079 9.6% 72.8% 22:15:41
0.05% 72,099 5.0% 75.4% 59:05:00

{−30,−18,−6, 1.60% 1,438 37.2% 61.3% 0:44:23
6, 18, 30} 0.80% 3,956 23.0% 55.1% 2:19:18

0.40% 8,731 16.5% 64.4% 5:39:28
0.20% 18,895 10.4% 70.8% 12:44:49
0.10% 41,395 6.0% 76.9% 29:11:00
0.05% 89,408 3.3% 78.0% 71:01:10

{−35,−21,−7, 1.60% 1,676 33.1% 67.6% 0:56:06
7, 21, 35} 0.80% 4,560 20.1% 67.8% 3:01:23

0.40% 9,719 14.0% 69.5% 7:00:46
0.20% 20,367 8.9% 69.3% 15:19:16
0.10% 43,047 5.2% 74.1% 37:42:50
0.05% 93,046 2.8% 80.1% 80:59:40

Figure A.1: Classification results for subjects 1:5 using all frequent patterns.

Utrecht University 61 Philips Research



APPENDIX A. CLASSIFICATION RESULTS

Breakpoints Minsup #Cand Select % Accuracy Runtime
{−34,−30, . . . ,−2, 1.60% 702 39.2% 73.2% 0:09:25

2, . . . , 30, 34} 0.80% 1,242 59.2% 72.4% 0:23:51
0.40% 2,264 68.0% 65.9% 0:46:39
0.20% 4,513 62.0% 71.9% 1:34:07
0.10% 8,740 53.2% 75.6% 3:02:09
0.05% 17,254 42.1% 72.4% 5:34:19
0.03% 34,044 29.8% 68.3% 10:06:54

{−33,−27, . . . ,−3, 1.60% 638 45.5% 70.4% 0:10:38
3, . . . , 27, 33} 0.80% 1,157 67.0% 68.5% 0:23:34

0.40% 2,272 66.9% 65.7% 0:47:14
0.20% 4,298 59.2% 72.4% 1:28:22
0.10% 8,472 49.2% 73.7% 2:51:25
0.05% 16,918 37.0% 73.0% 5:09:55
0.03% 34,033 25.6% 72.8% 9:19:49

{−36,−28, . . . ,−4, 1.60% 624 52.9% 74.5% 0:10:42
4, . . . , 28, 36} 0.80% 1,182 66.0% 68.7% 0:23:13

0.40% 2,144 62.0% 68.9% 0:43:07
0.20% 4,131 58.0% 72.6% 1:23:09
0.10% 7,961 48.2% 72.4% 2:33:30
0.05% 16,420 33.9% 73.0% 4:48:33
0.03% 33,237 23.5% 70.2% 8:42:17

{−35,−25, . . . ,−5, 1.60% 638 52.5% 69.1% 0:11:54
5, . . . , 25, 35} 0.80% 1,112 66.5% 61.3% 0:21:50

0.40% 1,973 63.1% 64.4% 0:39:50
0.20% 3,906 54.8% 69.8% 1:16:25
0.10% 7,499 44.2% 71.7% 2:19:22
0.05% 15,690 31.6% 73.7% 4:28:30
0.03% 34,033 25.6% 72.8% 9:19:49

{−30,−18,−6, 1.60% 598 51.8% 62.9% 0:10:52
6, 18, 30} 0.80% 1,048 58.7% 62.2% 0:21:16

0.40% 1,890 60.3% 56.8% 0:36:35
0.20% 3,653 50.6% 66.5% 1:08:36
0.10% 7,148 39.2% 74.1% 2:08:09
0.05% 15,330 29.0% 73.2% 4:13:48
0.03% 33,237 23.5% 70.2% 8:42:17

{−35,−21,−7, 1.60% 632 60.9% 66.7% 0:12:21
7, 21, 35} 0.80% 1,046 58.8% 68.5% 0:21:00

0.40% 1,804 59.0% 54.4% 0:34:02
0.20% 3,439 46.2% 65.9% 1:02:21
0.10% 7,116 37.7% 72.1% 2:07:14
0.05% 15,101 27.1% 70.8% 4:02:45
0.03% 31,831 22.2% 69.8% 8:28:01

Figure A.2: Classification results for subjects 1:5 using only maximally fre-
quent patterns.
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APPENDIX A. CLASSIFICATION RESULTS

Breakpoints Minsup #Cand Select % Accuracy Runtime
{−34,−30, . . . ,−2, 0.40% 8,214 69.3% 75.3% 11:56:08

2, . . . , 30, 34} 0.20% 18,526 54.7% 76.9% 30:10:00
{−33,−27, . . . ,−3, 0.40% 10,597 52.7% 75.2% 16:27:43

3, . . . , 27, 33} 0.20% 23,403 40.7% 77.3% 39:28:20
{−36,−28, . . . ,−4, 0.40% 12,560 35.5% 75.8% 18:03:54

4, . . . , 28, 36} 0.20% 27,721 28.1% 78.2% 44:10:10
{−35,−25, . . . ,−5, 0.40% 14,724 26.4% 74.8% 22:09:37

5, . . . , 25, 35} 0.20% 31,629 21.2% 76.7% 51:37:50
{−30,−18,−6, 0.40% 17,174 19.4% 69.2% 27:02:05

6, 18, 30} 0.20% 37,234 14.2% 75.7% 62:11:50
{−35,−21,−7, 0.40% 18,853 17.2% 71.2% 32:45:40

7, 21, 35} 0.20% 39,918 11.6% 74.9% 75:40:10

Figure A.3: Classification results for subjects 1:10 using all frequent patterns.

Breakpoints Minsup #Cand Select % Accuracy Runtime
{−34,−30, . . . ,−2, 0.40% 4,571 79.9% 71.9% 4:19:02

2, . . . , 30, 34} 0.20% 8,965 73.6% 74.5% 8:35:42
0.10% 17,667 65.8% 76.4% 17:59:30
0.05% 34,114 54.5% 78.5% 27:48:20

{−33,−27, . . . ,−3, 0.40% 4,577 77.3% 71.2% 4:19:34
3, . . . , 27, 33} 0.20% 8,736 71.5% 72.6% 9:18:38

0.10% 17,084 62.7% 77.7% 16:38:19
0.05% 33,994 49.1% 76.1% 26:13:00

{−36,−28, . . . ,−4, 0.40% 4,288 73.7% 71.0% 3:58:00
4, . . . , 28, 36} 0.20% 8,329 68.3% 74.8% 7:42:58

0.10% 16,066 59.9% 72.8% 14:58:11
0.05% 32,642 45.3% 76.9% 24:01:23

{−35,−25, . . . ,−5, 0.40% 3,929 70.2% 68.4% 3:42:32
5, . . . , 25, 35} 0.20% 7,958 66.1% 72.5% 7:14:33

0.10% 15,153 55.0% 74.3% 13:35:07
0.05% 31,116 42.2% 74.8% 21:40:29

{−30,−18,−6, 0.40% 3,799 68.2% 60.8% 3:24:05
6, 18, 30} 0.20% 7,409 59.3% 70.1% 6:49:04

0.10% 14,394 49.6% 78.7% 12:37:20
0.05% 30,461 37.5% 76.1% 20:12:13

{−35,−21,−7, 0.40% 3,658 68.6% 54.9% 3:15:01
7, 21, 35} 0.20% 7,025 57.4% 67.9% 6:01:17

0.10% 14,562 47.7% 76.1% 12:27:09
0.05% 30,076 36.3% 75.9% 19:51:02

Figure A.4: Classification results for subjects 1:10 using only maximally fre-
quent patterns.
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