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Proxy Re-Encryption (PRE) allows one user to delegate the decryption rights of his/her
ciphertexts to another user. Since the introduction of Multi-Hop Identity-Based PRE
(MH-IBPRE) by Green and Ateniese, the ciphertext size and the decryption complexity grow
linearly in the number of re-encryption “hops”. In this paper, for the first time, we propose
an MH-IBPRE that maintains the (constant) ciphertext size and computational complexity
regardless of the number of re-encryption hops. Moreover, our scheme is bidirectional
and also supports conditional re-encryption. The scheme is proven secure against selective
identity and chosen-ciphertext attacks and collusion resistant in the standard model. As of
independent interest, we also show that the conditional re-encryption can also be extended
to a set of conditions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Public Key Encryption (PKE) is a useful cryptographic primitive, whereby it allows a user to encrypt data under the public
key of a receiver such that only the legitimate receiver with the corresponding private key can access the data. In social
networks, a data is often shared among different users. A user, say Alice, can share a data, e.g., a picture or video with her
friend, say Bob, without loss of confidentiality by using the traditional PKE. Sometimes, Bob might choose to further share
the same data with another user, say Carol. In the context of PKE, Bob should first decrypt the ciphertext of the data sent
by Alice, and next re-encrypt the data to Carol so as to finish data sharing. This, nevertheless, does not scale well when Bob
is off-line or unavailable. An alternative way is that Bob delegates a proxy to encrypt the data to Carol when he is absent.
However, this kind of delegation relies on either the accessibility of the data or knowledge of Bob’s private key in the view
of proxy.

To increase the flexibility of data sharing in the context of PKE, Blaze, Bleumer and Strauss [3] defined the notion
of Proxy Re-Encryption (PRE), in which a semi-trusted proxy is allowed to transform a ciphertext intended for Alice into
another ciphertext of the same plaintext intended for Bob using a given re-encryption key without accessing the underlying
plaintext. If the re-encryption key allows the proxy to transform ciphertexts intended for Alice (i.e. delegator) to ciphertexts
intended for Bob (i.e. delegatee) and vice versa, the scheme is bidirectional. Whereas, if the re-encryption key only supports
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the transformation from Alice to Bob (resp. from Bob to Alice), the scheme is unidirectional. PRE further comes to two
flavors: one is single-hop PRE, and the other is multiple-hop PRE. If a ciphertext can be re-encrypted from Alice to Bob and
cannot be further converted, the scheme is single hop. In multi-hop setting, a ciphertext can be re-encrypted from Alice to
Bob and to Carol, and so on. The latter might be more desirable than the former in practice as it provides the flexibility
of re-delegation, that is, the delegatee can re-delegate the ciphertexts to another users. PRE is applicable to many network
applications, such as secure distributed files systems [1] and cloud storage systems (such as SugarSync1 and Box2).

To implement PRE in the identity-based cryptographic setting with multi-hop property, Green and Ateniese [14] defined
the notion of multi-hop identity-based proxy re-encryption (MH-IBPRE), and proposed a concrete scheme satisfying the new
notion. The scheme allows a proxy to re-encrypt ciphertexts under an identity, e.g., IDAlice , to another identity, e.g., IDBob ,
such that Bob can also decrypt, while the proxy can further re-encrypt the ciphertexts intended for a new identity, say
IDCarol , and so on. Since the introduction by Green and Ateniese [14], there are a few MH-IBPRE schemes that have been
proposed in the literature.

Motivation. MH-IBPRE explores the applications of PRE in practice. In recent years, many Internet users and companies
choose to store their data in cloud storage systems due to its considerable storage space. We here use cloud storage systems
as an example to illustrate the application for MH-IBPRE so as to motivate our work. Suppose a group A of N employees
will share some of their data mutually to fulfill a business project cooperatively. By employing MH-IBPRE, the data sharing
can be fulfilled efficiently as follows. Without loss of confidentiality, each employee (e.g., A.1) might first encrypt his/her
data (e.g., mA.1) under the identity (e.g., IDA.1) before uploading to the cloud. To share mA.1 with another employee, say
A.2, A.1 may generate a re-encryption key rkA.1→A.2 (from A.1 to A.2) for the cloud server (acting as a proxy) such that the
server can further re-encrypt the ciphertexts of A.1 to A.2 (e.g., Enc(IDA.1,mA.1) → Enc(IDA.2,mA.1)). When mA.1 is further
shared with others (e.g., A.3), A.2 will upload a new re-encryption key rkA.2→A.3 to the cloud. The cloud then performs the
corresponding conversion for A.3.

Although MH-IBPRE is proposed to employ the delegation of decryption rights in the context of IBE without losing
confidentiality, it yields a price that both the size of ciphertext and decryption complexity grow linearly in the number
of re-encryption hops. For example, if an original ciphertext Enc(IDA.1,mA.1) is chosen to be delegated via the direction
A.1 → A.2 → A.3 → A.4, then the size of the re-encrypted ciphertext (as well as decryption complexity) for A.4 will be
triple larger than that of the original ciphertext. This is undesirable in practice because of the incurred linear communication
bandwidth, storage cost and computation complexity.

Like traditional PRE, MH-IBPRE also incurs a potential risk for access control as the re-encryption power of a proxy
cannot be controlled precisely. Generally speaking, given a re-encryption key rkA.1→A.2 the proxy is allowed to re-encrypt
all A.1’s ciphertexts stored in the cloud to A.2 without any discrimination. This might contradict A.1’s will because A.1
might only prefer to share some data tagged with a specified condition, e.g., “public”, other than the data labeled with
“private” with A.2. Furthermore the sharing data might be described by a set of conditions other than a single one. For
instance, A.1 shares the data, which is uploaded to the cloud in “July” containing keywords “meeting, project”, with A.2.
Here the condition set associated with the sharing data is seen as W = {July,meeting,project}.

As some data is allowed to be shared mutually among different employees, it indicates that the re-encryption for the
ciphertext of the data should be considered in a bidirectional way (e.g., A.1 ↔ A.2). It will bring convenience for the data
sharing if a pair of delegator and delegatee uses a bidirectional re-encryption key instead of two separated unidirectional
ones. For example, given a re-encryption key rkA.1,A.2 the proxy can fulfill not only the re-encryption from A.1 to A.2, but
also the other way round. Here the number of re-encryption keys delivered in the communication channel could be reduced.
If there are N employees in the group, only N − 1 (i.e. O (N)) other than N × (N − 1) (i.e. O (N2)) re-encryption keys are
required to be constructed and stored in the cloud. Nevertheless, none of existing MH-IBPRE supports the bidirectional
property to date.

Open problems. The existing MH-IBPRE schemes leave us two interesting open problems: one is the fine-grained con-
trol of re-encryption, and the other is the construction of MH-IBPRE with constant complexity in terms of computation
and communication. To tackle the problems, a novel MH-IBPRE system is desirable. The new scheme should not only sup-
port the bidirectional property, but also enjoy constant-size ciphertexts and decryption complexity no matter how many
re-encryption hops have been traversed. Furthermore, it should allow the re-encryption power of the proxy to be limited to
some pieces of conditions on the re-encryption key specified by the delegator (i.e. supporting conditional re-encryption).

1.1. Our contributions

• This paper formalizes the definition and security notion for bidirectional multi-hop identity-based conditional proxy
re-encryption (BiMH-IBCPRE).
1. In the definition, a condition is required as an auxiliary input to the re-encryption key generation, encryption, re-

encryption and decryption algorithms.

1 https://www.sugarsync.com/.
2 https://www.box.com/.

https://www.sugarsync.com/
https://www.box.com/


K. Liang et al. / Theoretical Computer Science 539 (2014) 87–105 89
2. In the security notion, this paper proposes the game-based definition of selective condition and selective identity and
adaptive chosen-ciphertext (IND-sCon-sID-CCA) security, in which an adversary is restricted to output the challenge
condition and the challenge identity before seeing the public parameters. Meanwhile, this paper proposes the defi-
nition of collusion resistance for BiMH-IBCPRE, in which the proxy cannot compromise the entire private key of the
delegator even colluding with the corresponding delegatee.

• This paper, for the first time, proposes a BiMH-IBCPRE scheme to tackle the open problems left by the existing MH-IBPRE
schemes. The proposed scheme is a type of MH-IBPRE, but additionally captures bidirectional, conditional re-encryption,
constant decryption complexity and constant-size ciphertext properties. Note there are subtleties in combining bidirec-
tional property, conditional re-encryption with MH-IBPRE to achieve a secure scheme, therefore our construction is not
trivial. The paper also presents an extension of the new scheme which can support conditional re-encryption with a set
of conditions.

• Our scheme can be proved IND-sCon-sID-CCA secure and collusion resistant in the standard model under the decisional
3-weak bilinear Diffie–Hellman inversion assumption. It is the first bidirectional PRE (in general) achieving collusion
resistance.

• When compared with all existing MH-IBPRE schemes constructed in the standard model, our scheme achieves better
performance in efficiency, and offers fine-grained decryption rights delegation to delegator without degrading security
level.

1.2. Paper organization

The rest of this paper is organized as follows. In Section 2, we present the related work and the difficulty of achieving
collusion resistance in bidirectional setting. In Section 3, we give the definitions and security models for BiMH-IBCPRE. In
Section 4, we introduce some basic knowledge of bilinear map, complexity assumption, one-time signature and pseudoran-
dom function family that will be used throughout the paper. In Section 5, we propose our basic BiMH-IBCPRE scheme in
the standard model, and meanwhile, give the corresponding security proof. In Section 6, we give an efficient extension of
our basic scheme. In Section 7, we compare our scheme with some well-known MH-IBPRE systems. In Section 8, we explore
the applications of BiMH-IBCPRE. Finally, Section 9 concludes the paper. Appendix A presents the security proof of our basic
scheme.

2. Related work

Following the concept of decryption rights delegation introduced by Mambo and Okamoto [22], Blaze, Bleumer and
Strauss [3] formalized the notion of PRE, and proposed a seminal bidirectional PRE scheme with CPA security. In 2003, Ivan
and Dodis [18] proposed formal definitions of the bidirectional and unidirectional proxy functions, and implemented the
functions based on cryptographic primitives such as IBE. Later on, Ateniese et al. [1] proposed three CPA-secure unidirec-
tional PRE schemes and demonstrated some practical applications for PRE. After that, many well-known unidirectional PRE
schemes (e.g., [15,20,35,16,17]) have been proposed.

In 2007, Canetti and Hohenberger [7] defined the CCA security model for PRE, and proposed two CCA-secure bidirectional
multi-hop PRE schemes with constant-size ciphertexts: one is constructed in the random oracle model, and the other is
built in the standard model. Later on, Deng et al. [11] constructed a CCA-secure bidirectional single-hop PRE scheme in the
random oracle model. In 2010, Matsuda, Nishimaki and Tanaka [23] proposed a bidirectional multi-hop PRE scheme that has
been pointed out to be not CCA secure by Weng, Zhao and Hanaoka [36]. The aforementioned bidirectional PRE schemes,
however, suffer from collusion attacks where a dishonest proxy can compromise the entire private key of the delegator by
colluding with the corresponding delegatee. Therefore, how to be collusion resistant in the bidirectional setting remains
elusive.

To employ PRE in the context of IBE (i.e. supporting identity-based re-encryption), Green and Ateniese [14] defined
the notion of IBPRE and proposed two concrete constructions in the random oracle model: one is CCA-secure unidi-
rectional single-hop, and the other is unidirectional multi-hop with CPA security. Later on, Tang, Hartel and Jonker [29]
proposed a CPA-secure IBPRE scheme with random oracles, in which the delegator and the delegatee can belong to different
domains. The previous schemes, however, are not collusion resistant. To hold against collusion attacks, the following unidi-
rectional single-hop IBPRE schemes are proposed. Two CPA-secure IBPRE schemes without random oracles were proposed
by Matsuo [24]. In 2010, Wang et al. [31,32] proposed two IBPRE schemes in the random oracle model: one is CPA-secure
supporting the revocability of proxy’s re-encryption rights, and the other is CCA-secure allowing the proxy to be malicious
(rather than being semi-trusted). In 2011, Mizuno and Doi [25] constructed an IBPRE scheme in the standard model with
CPA security based on Waters IBE [33] and an ElGamal-type PKE scheme. Later, two CPA-secure IBPRE schemes without
random oracles were proposed by Luo, Shen and Chen [21]: one is single-hop and the other is multi-hop. Recently, Liang
et al. [19] proposed the first CCA-secure unidirectional single-hop IBPRE in the standard model supporting conditional re-
encryption. The scheme can be regarded as the combination of IBPRE and conditional PRE. Note that conditional PRE will
be further introduced later.
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Table 1
Functionality and security comparison.

Schemes [7] [14] [9] [27] Ours

Security CCA CPA RCCA CCA CCA
Without RO ✓ ✕ ✓ ✓ ✓

Direction ↔ → → → ↔
Conditional re-encryption ✕ ✕ ✕ ✕ ✓

Constant size ciphertext ✓ ✕ ✕ ✕ ✓

Collusion resistance ✕ ✕ ✕ ✓ ✓

In [14], Green and Ateniese left the construction of a CCA-secure unidirectional MH-IBPRE as an open problem. To solve
the problem, Chu and Tzeng [9] proposed an MH-IBPRE scheme without random oracles which is secure against replayable
chosen-ciphertext attacks (RCCA) [8]. In 2010, Wang et al. [30] proposed the first CCA-secure MH-IBPRE with random oracles.
Nevertheless, these schemes all suffer from collusion attacks. Recently, Shao and Cao [27] proposed a generic construction
for CCA-secure unidirectional MH-IBPRE in the standard model, and meanwhile presented a concrete construction based
on a fully secure IBE scheme [34]. The construction, however, has to depend on a hierarchical IBE that is IND-aID-CCA
secure. Previously introduced MH-IBPRE schemes incur high communicational and computational complexity as the size of
ciphertext and the decryption cost grow linearly in the number of re-encryption hops. This paper focuses on solving such a
problem.

The above mentioned PREs (in general) cannot support fine-grained control on re-encryption such that the proxy can
re-encrypt all ciphertexts of delegator to delegatee without any discrimination [37]. To address the problem in traditional
PRE setting, Type-Based PRE (TBPRE) [28] and Conditional PRE (CPRE) [38] were proposed, in which the proxy can re-encrypt
a ciphertext tagged with a condition if and only if the re-encryption key corresponding to the same condition is given
by the delegator. In 2009, Weng et al. [37] proposed a new CPRE scheme by re-formalizing the definitions and security
notions, and pointed out the secure risk of [38]. To hide the condition from proxy, Fang, Susilo and Wang [12] proposed
a CCA-secure CPRE with condition anonymity in the standard model. Despite there are a few PRE schemes supporting
conditional re-encryption property, how to achieve this property in the MH-IBPRE setting remains open. This paper also
deals with the problem.

Difficulty of being secure against collusion attacks in bidirectional setting. In traditional PRE with bidirectional property,
such as [7,11], the re-encryption key algorithm takes the private keys of delegator and delegatee as input, and outputs a
re-encryption key, denoted as rekey. Due to the construction of rekey (e.g., rekey = x/y, x and y are the private keys of
delegator and delegatee), the proxy can compromise the private key of the delegator by colluding with the delegatee. Thus,
how to hold against collusion attacks in the bidirectional setting that remains open.

Intuitively, one might think that by using a random value, e.g., a β , to randomize the delegator’s private key such
that rekey = (β · x)/y, the problem can be solved. However, this is an undesirable approach. We use Canetti and Ho-
henberger’s bidirectional PRE scheme (the one with random oracles) [7] as an example to give a specific explanation.
Note that for convenience we only analyze the components of ciphertext to be participated into re-encryption and de-
cryption. In [7], the components of an original ciphertext are A = svk, B = pkr , C = e(g, H(svk))r · m, where pk = gx

(sk = x), g ∈ G, x, r ∈R Z
∗
q , H is a target collusion resistant hash function, m is the plaintext and svk is the verification

key of a one time signature scheme. Given a rekey = x/y (where y is the private key of the corresponding delegatee), the
proxy outputs B ′ = B y/x = (gxr)y/x = gry . In decryption, the delegatee with y can recover m as m = C/e(B ′, H(A))1/y =
e(g, H(svk))r · m/e(gry, H(svk))1/y . Here if we use β to randomize x such that rekey = (β · x)/y, then the output of the
re-encryption will become B ′ = B y/β·x = (gxr)y/β·x = g yr/β .

It is clear that the delegatee (with knowledge of y) cannot recover the plaintext without knowledge of β . Hence, when
generating rekey the delegator might choose to encrypt β under the public key of the delegatee such that the delegatee
can recover m. If so, the bidirectional property cannot be maintained any more as rekey = ((β · x)/y,Enc(pky, β)) is only
applicable to the re-encryption from the delegator to the delegatee but not the inverse case. In addition, by colluding with
the delegatee, the proxy still can compromise x with knowledge of y and β .

Alternatively, the delegator might hide β from the proxy and the delegatee by letting it be an exponent of its public key,
that is, pk = gβ·x (sk = x). Here B will become B = (gβ·x)r . Then the proxy will output B ′ = B y/(β·x) = (g(β·x)r)y/(β·x) = gry

such that the delegatee can recover m with y. It seems that the bidirectional property and collusion resistance can be
obtained simultaneously as the proxy is only able to compromise β · x rather than x by collusion. This approach, however,
comes at a price that the size of public key is linear in the number of re-encryption keys. For example, if there are N
distinct re-encryption keys of a user to be uploaded to the proxy, then the user has to generate N corresponding public
keys. Therefore, the above approach does not scale well in practice.

We compare our scheme with four multi-hop PRE schemes in terms of functionality and security in Table 1. Despite
identity-based re-encryption, conditional re-encryption, collusion resistance and constant size ciphertext properties have all
four been partially achieved by existing schemes, there is no efficient CCA-secure proposal that achieves the properties
simultaneously in the standard model. This paper is the first to achieve the goal.
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3. Definition and security models

3.1. Definition of BiMH-IBCPRE

Definition 1. A Bidirectional Multi-Hop Identity-Based Conditional Proxy Re-Encryption (BiMH-IBCPRE) scheme consists of
the following six Probabilistic Polynomial Time (PPT) algorithms and protocol:

1. (mpk,msk) ← Setup(1λ,n): on input a security parameter λ ∈ N and n ∈N the allowable maximum number of condition
in the system, the algorithm Setup outputs a master public key mpk and a master secret key msk for Private Key
Generator (PKG).

2. skID ← KeyGen(mpk,msk, ID): on input mpk, msk, and an identity ID ∈ {0,1}∗ , the key generation algorithm KeyGen
outputs a private key skID for the identity ID.

3. Re-Encryption Key Generation Protocol: for simplicity, hereafter we use i and j to denote IDi and ID j in the re-
encryption key.
(a) prk(W , j) ← PReKeyGen(mpk, skID j , W ): on input mpk, a private key skID j for identity ID j , and a condition set

W = {wz | 1 ≤ z ≤ n, wz ∈ {0,1}∗}, the partial re-encryption key generation algorithm PReKeyGen outputs a partial
re-encryption key prk(W , j) under W and ID j .

(b) rki→ j|W ← ReKeyGen(mpk, skIDi ,prk(W , j), W ): on input mpk, a private key skIDi for identity IDi , a partial re-
encryption key prk(W , j) and a set W of conditions, the re-encryption key algorithm ReKeyGen outputs a re-
encryption key rki→ j|W from IDi to ID j under W . Note IDi and ID j are two distinct identities.

(c) rk j→i|W ← ReKeyBiGen(rki→ j|W ): on input a re-encryption key rki→ j|W from an identity IDi to another identity ID j
under a set W of conditions, the re-encryption key derivation algorithm outputs a new re-encryption key rk j→i|W
from ID j to IDi under W . Note that this algorithm also allows the re-encryption key rk j→i|W holder to generate a
new re-encryption key rki→ j|W .

4. C(IDi ,W ) ← Enc(mpk, IDi, W ,m): on input mpk, an identity IDi , a set W of conditions and a message m ∈ {0,1}λ , the
encryption algorithm Enc outputs a first-level ciphertext (i.e. original ciphertext) C(IDi ,W ) under IDi and W . Note that
IDi and W are implicitly included in the ciphertext.

5. C(ID j ,W ) ← ReEnc(mpk, rki→ j|W , C(IDi ,W )): on input mpk, a re-encryption key rki→ j|W , and a ciphertext C(IDi ,W ) , the
re-encryption algorithm ReEnc outputs a re-encrypted ciphertext C(ID j ,W ) or a symbol ⊥ indicating that the ciphertext
C(IDi ,W ) is invalid.

6. m ← Dec(mpk, skIDi , C(IDi ,W )): on input mpk, a private key skIDi for identity IDi , and a ciphertext C(IDi ,W ) , the decryption
algorithm Dec outputs a message m or a symbol ⊥ indicating that the ciphertext C(IDi ,W ) is invalid.

For simplicity, we omit mpk in the expression of the algorithms input in the rest of the paper.

Correctness: For any security parameter λ ∈ N, any n ∈ N, any identities {IDi ∈ {0,1}∗ | 1 ≤ i ≤ l, l = poly(1λ)}, any condi-
tion set W = {wz | 1 ≤ z ≤ n, wz ∈ {0,1}∗} and any message m ∈ {0,1}λ , if (mpk,msk) ← Setup(1λ,n), skID ← KeyGen(msk, ID)

(for all ID used in the system), rki→i+1|W ← ReKeyGen(skIDi ,prk(W ,i+1), W ), and prk(W ,i+1) ← PReKey-Gen(skIDi+1 , W ), we
have ∀i ∈ {1, ..., l},m ← Dec(skIDi ,Enc(IDi, W ,m)) and

1. Correctness for the multi-hop property:

m ← Dec
(
skIDl ,ReEnc

(
rkl−1→l|W ,ReEnc

(
rkl−2→l−1|W , ...,ReEnc

(
rk1→2|W ,Enc(ID1, W ,m)

))
. . .

))
.

2. Correctness for the bidirectional property: ∀i, j ∈ {1, ..., l}, i �= j,

m ← Dec
(
skID j ,ReEnc

(
rki→ j|W ,Enc(IDi, W ,m)

));
m ← Dec

(
skIDi ,ReEnc

(
ReKeyBiGen(rki→ j|W ),Enc(ID j, W ,m)

))
,

where the re-encryption key rk j→i|W ← ReKeyBiGen(rki→ j|W ) (resp. rki→ j|W ← ReKeyBiGen(rk j→i|W )3). Note that given
rki→ j|W (resp. rk j→i|W ) the proxy can fulfill a bidirectional re-encryption between two distinct identities IDi and ID j

under a set W of conditions with the help of algorithm ReKeyBiGen.

3.2. Security models

In this section we concentrate on formulating the security notion for BiMH-IBCPRE including IND-sCon-sID-CCA security
and collusion resistance. Before proceeding, we define the notations that to be used in the definition as follows.

3 In this paper we let rk j→i|W = (rki→ j|W )−1.



92 K. Liang et al. / Theoretical Computer Science 539 (2014) 87–105
• Delegation chain. Suppose in a BiMH-IBCPRE scheme there is a re-encryption key set RK = {rki1→i2|W , ..., rkil−1→il |W }
(l ≥ 2), under the same condition set W = {wz | 1 ≤ i ≤ n, wz ∈ {0,1}∗}, for any re-encryption key rki j→i j+1|W in
RK , i j �= i j+1. We say that there exists a delegation chain under W from identity IDi1 to identity IDil , denoted as
(W , IDi1 → ... → IDil ). Due to the bidirectional property, we can achieve another re-encryption key set RKBiDerive =
{rkil→il−1|W , ..., rki2→i1|W } (l ≥ 2), under W , which can be denoted as (W , IDil → ... → IDi1 ). Therefore, given RK we
have a delegation chain (W , IDi1 ↔ ... ↔ IDil ) in the BiMH-IBCPRE scheme.

• Uncorrupted/corrupted identity. If the private key of an identity is compromised by an adversary, then the identity is
considered as a corrupted identity. Otherwise, the identity is an uncorrupted identity.

• Uncorrupted delegation chain. Suppose there is a delegation chain under a set W of conditions between identity IDi
and identity ID j (i.e. (W , IDi ↔ ... ↔ ID j)). If there is no corrupted identity on the chain, then it is an uncorrupted
delegation chain. Otherwise, it is a corrupted one.

Definition 2. A BiMH-IBCPRE scheme is IND-sCon-sID-CCA secure if there is no PPT adversary A which can win the game
below with non-negligible advantage. In the game, C is the challenger whom plays the game with the adversary A, λ is the
security parameter and n is the allowable maximum number of condition in the system.

1. Init. A outputs a challenge identity ID∗ and a challenge set W ∗ of conditions to C .
2. Setup. C runs Setup(1λ,n) and sends mpk to A.
3. Phase 1. A is given access to the following oracles.

(a) Private key extraction oracle Osk(ID): on input an identity ID, C returns skID ← KeyGen(msk, ID).
(b) Re-encryption key extraction oracle Ork(IDi, ID j, W ): on input two distinct identities IDi and ID j , and a con-

dition set W , C returns a re-encryption key rki→ j|W ← ReKeyGen(skIDi ,PReKeyGen(skID j , W ), W ), where skIDi ←
KeyGen(msk, IDi), skID j ← KeyGen(msk, ID j), and IDi, ID j ∈ {0,1}∗ . Note that A can derive rk j→i|W from rki→ j|W
with algorithm ReKeyBiGen.

(c) Re-encryption oracle Ore(IDi, ID j, W , C(IDi ,W )): on input two distinct identities IDi and ID j , a condition set W , and
a ciphertext C(IDi ,W ) under IDi and W , C returns a re-encrypted ciphertext C(ID j ,W ) ← ReEnc(rki→ j|W , C(IDi ,W )),
where rki→ j|W ← ReKeyGen(skIDi ,PReKeyGen(skID j , W ), W ), skIDi ← KeyGen(msk, IDi), skID j ← KeyGen(msk, ID j), IDi ,
ID j ∈ {0,1}∗ . Note that it could be possible for A to issue the query (ID j, IDi, W , C(IDi ,W )) to Ore . If so, C will first
generate rk j→i|W and get rki→ j|W ← ReKeyBiGen(rk j→i|W ), and further re-encrypt C(IDi ,W ) using rki→ j|W .

(d) Decryption oracle Odec(IDi, C(IDi ,W )): on input an identity IDi , and a ciphertext C(IDi ,W ) , C returns m ←
Dec(skIDi , C(IDi ,W )), where skIDi ← KeyGen(msk, IDi), IDi ∈ {0,1}∗ .

Note that if A issues invalid ciphertexts to Ore or Odec , C simply outputs ⊥. Moreover, the following queries cannot be
issued:
• Osk(ID) if ID∗ = ID or for any ID in an uncorrupted delegation chain under W ∗ which includes ID∗;
• Ork(IDi, ID j, W ∗) for any distinct IDi and ID j , if ID∗ will be in a corrupted delegation chain under W ∗ after issuing

the corresponding re-encryption key.
4. Challenge. A outputs two distinct equal length messages (m0, m1) to C . C returns the challenge ciphertext C∗

(ID∗,W ∗)
=

Enc(ID∗, W ∗,mb) to A, where b ∈R {0,1}.
5. Phase 2. A continues making queries except the followings:

(a) Osk(ID) if ID∗ = ID or for any ID in an uncorrupted delegation chain under W ∗ which includes ID∗;
(b) Ork(IDi, ID j, W ∗) for any distinct IDi and ID j , if ID∗ will be in a corrupted delegation chain under W ∗ after issuing

the corresponding re-encryption key.
(c) Ore(IDi, ID j, W ∗, C(IDi ,W ∗)) if (IDi, W ∗, C(IDi ,W ∗)) is a derivative of (ID∗, W ∗, C∗

(ID∗,W ∗)
), but ID j is a corrupted iden-

tity or ID j is in a corrupted delegation chain.4 As of [7], a derivative of (ID∗, W ∗, C∗
(ID∗,W ∗)

) is defined as follows.
i. (ID∗, W ∗, C∗

(ID∗,W ∗)
) is a derivative of itself.

ii. If (IDi, W ∗, C(IDi ,W ∗)) is a derivative of (ID∗, W ∗, C∗
(ID∗,W ∗)

), (IDi′ , W ∗, C(IDi′ ,W ∗)) is a derivative of (IDi, W ∗,
C(IDi ,W ∗)), then (IDi′ , W ∗, C(IDi′ ,W ∗)) is a derivative of (ID∗, W ∗, C∗

(ID∗,W ∗)
).

iii. If A has issued a re-encryption key query on (IDi, ID j, W ) to obtain rki→ j|W , and achieved C(ID j ,W ) ←
ReEnc(rki→ j|W , C(IDi ,W )), then (ID j, W , C(ID j ,W )) is a derivative of (IDi, W , C(IDi ,W )).

iv. If A can run C(ID j ,W ) ← ReEnc(ReKeyGen(skIDi ,prk(W , j), W ), C(IDi ,W )), then (ID j, W , C(ID j ,W )) is a derivative of
(IDi, W , C(IDi ,W )), where skIDi ← KeyGen(msk, IDi), prk(W , j) ← PReKeyGen(skID j , W ) and skID j ← KeyGen(msk, ID j).

v. If A has issued a re-encryption query on (IDi, ID j, W , C(IDi ,W )) and obtained C(ID j ,W ) , then (ID j, W , C(ID j ,W )) is
a derivative of (IDi, W , C(IDi ,W )).

(d) Odec(IDi, C(IDi ,W ∗)) if (IDi, W ∗, C(IDi ,W ∗)) is a derivative of (ID∗, W ∗, C∗
(ID∗,W ∗)

).
6. Guess. A outputs a guess bit b′ ∈ {0,1}. If b′ = b, A wins.

The advantage of A is defined as ε1 = AdvIND-sCon-sID-CCA
BiMH-IBCPRE,A (1λ,n) = |Pr[b′ = b] − 1

2 |.

4 Namely, ID∗ is in a corrupted delegation chain under W ∗ after re-encryption.
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Remarks. When W = null, the model above is for BiMH-IBPRE. The model will become IND-sCon-sID-CPA if A cannot query
Ore and Odec .

Usually a traditional PRE has two types of security notion: one is for the original ciphertext security, and the other is for
the re-encrypted ciphertext security (which usually implies collusion resistance). From our security model, it can be seen
that we only define the first type of security notion, i.e. the security of original ciphertext (as the challenge is an original
ciphertext). We state that the security model already implies the security for re-encrypted ciphertext in the BiMH-IBCPRE
setting with a limitation that the challenge identity must be in an uncorrupted delegation chain under the challenge con-
dition.5 The above statement is valid because of the bidirectional and multi-hop properties of a BiMH-IBCPRE. Specifically,
if given an l-th level (i.e. being re-encrypted l − 1 times) re-encrypted ciphertext under identity ID j and challenge condi-
tion W ∗ as challenge, A can convert the ciphertext to the original (1-th) one under identity IDi and W ∗ , i.e. the original
ciphertext without any re-encryption. This can be done as the uncorrupted delegation chain under W ∗ between ID j and
IDi is allowed to be issued by A in the our model. Similarly, given an original ciphertext under IDi and W ∗ as challenge,
A also can construct an l-th re-encrypted ciphertext under ID j and W ∗ with knowledge of the delegation chain. Therefore,
it makes no difference for A to be given either an original ciphertext or a re-encrypted one as challenge.

In Definition 2, we do not allow A to issue the queries of partial re-encryption key. The reason is that we assume there
is a secure channel between delegator and delegatee, such as SSL, for delivering partial re-encryption key in our system.
However, this assumption does not indicate that A cannot obtain any partial re-encryption key. For instance, there may
be a re-encryption key from IDi (corrupted by A) to ID j under a condition set W ′ (which is not the challenge W ∗). With
knowledge of rki→ j|W and skIDi , A may recover a partial re-encryption key prk(W , j) . This can be seen in our construction
(please refer to Section 5).

Note that a stronger security notion, i.e. allowing A to issue the partial re-encryption key queries, can be extended from
our model by giving A an additional oracle Oprk which takes an identity ID and a condition set W as input and outputs a
partial re-encryption key. Nevertheless, Oprk must follow a restriction where if an identity ID is in a delegation chain under
W ∗ containing the challenge identity ID∗ , then the oracle outputs ⊥. This is necessary because if such a partial re-encryption
key is given, A can generate a re-encryption key from ID to a corrupted identity such that ID∗ is in a corrupted delegation
chain under W ∗ . This contradicts our IND-sCon-sID-CCA game.

We next proceed to the definition of collusion resistance. Since the security model defined in Definition 2 is based on
the selective model (i.e. sCon-sID), we define the collusion resistance for BiMH-IBCPRE below in the selective model as well.

Definition 3. A BiMH-IBCPRE scheme is collusion resistant if the advantage AdvCR
A (1λ,n) is negligible for any PPT adversary

A in the following experiment. Set O = {Osk,Ork}.

AdvCR
A

(
1λ,n

) = Pr
[
skID∗ ∈ Ω : (ID∗, W ∗, State

) ← A
(
1λ

)
, (mpk,msk) ← Setup

(
1λ,n

); skID∗ ← AO (mpk, State)
]

where λ is the security parameter, ID∗ and W ∗ are the challenge identity and the challenge condition set, Ω is the valid
private key space, Osk and Ork are the oracles defined in Definition 2, but there is no constraint for querying them except
for Osk(ID∗).

Below we show that the IND-sCon-sID-CCA security already implies collusion resistance.

Theorem 1. If a BiMH-IBCPRE scheme achieves IND-sCon-sID-CCA security as defined in Definition 2, it also achieves collusion resis-
tance.

Proof. In the game of Definition 2, an adversary A is allowed to access the re-encryption keys rki∗→ j|W ∗ and rk j→l|W ,
where W �= W ∗ , W ∗ is the challenge condition set, ID∗

i is the challenge identity, ID j is an uncorrupted identity and IDl is
corrupted by A.

Suppose a BiMH-IBCPRE scheme is not collusion resistant, that is, given skIDl and rk j→l|W , A can compromise the private
key skID j . After receiving the challenge ciphertext C∗

(ID∗,W ∗)
from the challenger C , A can re-encrypt the ciphertext by using

rki∗→ j|W ∗ to obtain the re-encrypted ciphertext C∗
(ID j ,W ∗) . A further decrypts C∗

(ID j ,W ∗) by using skID j so as to know the

value of the bit b. Accordingly, the security of IND-sCon-sID-CCA fails that contradicts our security notion.
Therefore, the IND-sCon-sID-CCA security implies collusion resistance.
This completes the proof of Theorem 1. �

4. Preliminaries

Below we review negligible function, bilinear maps and the complexity assumption used in our security proof, and next
introduce strongly existential unforgeable one-time signature and the pseudorandom function family.

5 This must be followed in multi-hop setting. This is so because if the adversary A obtains a delegation chain under the challenge condition containing
the challenge identity and a corrupted identity (in the chain), A (with knowledge of the delegation chain) can re-encrypt the challenge ciphertext to
another ciphertext which can be decrypted by using the private key skID j , where ID j is corrupted.
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4.1. Negligible function

A function φ(n) : N → R is negligible in n if 1/φ(n) is a non-polynomially-bounded quantity in n.

4.2. Bilinear maps

Let BSetup be an algorithm that on input the security parameter λ, outputs the parameters of a bilinear map as
(q, g,G1,GT , e), where G1 and GT are multiplicative cyclic groups of prime order q, where |q| = λ, and g is a random
generator of G1. The mapping e : G1 ×G1 → GT has three properties: (1) Bilinearity: for all a,b ∈R Z

∗
q , e(ga, gb) = e(g, g)ab;

(2) Non-degeneracy: e(g, g) �= 1GT , where 1GT is the unit of GT ; (3) Computability: e can be efficiently computed.

4.3. The decisional l-th weak bilinear Diffie–Hellman inversion assumption

Definition 4. Given the tuple (g,h, gα, gα2
, ..., gαl

, T ) ∈ G
l+2
1 × GT , the decisional l-wBDHI∗ problem is to decide whether

T = e(g,h)α
l+1

, where h is a generator of G1 and α ∈ Z
∗
q . Define

∣∣Pr
[
A

(
g,h, gα, ..., gαl

, e(g,h)α
l+1) = 0

] − Pr
[
A

(
g,h, gα, ..., gαl

, T
) = 0

]∣∣
as the advantage AdvD-l-wBDHI∗

A of an adversary A in winning the decisional l-wBDHI∗ problem. We say that the decisional
l-wBDHI∗ assumption [4] holds in G1 if no PPT A has non-negligible advantage.

4.4. Strongly existential unforgeable one-time signatures

A strongly existential unforgeable one-time signature (OTS) [2] consists of the following algorithms:

1. (Ks, K v) ← Sign.KeyGen(1λ): on input a security parameter λ ∈ N, the algorithm outputs a signing/verification key pair
(Ks, K v ).

2. σ ← Sign(Ks, M): on input a signing key Ks and a message M ∈ ΓSig , the algorithm outputs a signature σ , where ΓSig

is the message space.
3. 1/0 ← Verify(K v , σ , M): on input a verification key K v , a signature σ and a message M , the algorithm outputs 1 if σ

is a valid signature of M , and output 0 otherwise.

Definition 5. An OTS scheme is one-time strongly unforgeable chosen-message attack (sUF-CMA) secure if the advantage
AdvOTS

A (1λ) is negligible for any PPT adversary A in the following experiment.

AdvOTS
A

(
1λ

) = Pr
[
Verify

(
K v ,σ ∗, M∗) = 1 : (Ks, K v) ← Sign.KeyGen

(
1λ

);
(M, State) ← A(K v);σ ← Sign(Ks, M); (M∗,σ ∗) ← A(K v ,σ , State); (M∗,σ ∗) �= (M,σ )

]
,

where State is the state information.

4.5. Pseudorandom function family

Let PRF :K×D →R be a pseudorandom function family [13], and G :D →R be a truly random function family, where
K is the set of function keys, D and R are the domain and range, respectively. In short, we use PRFk(m) to represent
PRF(k,m). The advantage of a PPT adversary A in attacking the pseudorandomness of PRF is defined as:

AdvPRF
A

(
1λ

) = ∣∣Pr
[
A

(
m ∈ D,PRFk(m)

) = 1 : k
R← K

] − Pr
[
A

(
m ∈ D, G(m)

) = 1
]∣∣,

where λ is a security parameter. If AdvPRF
A (1λ) is negligible for any PPT adversary A in attacking the pseudorandomness of

the function family PRF , then PRF is a pseudorandom function family.

5. A CCA-secure BiMH-IBCPRE scheme

In this section we first briefly introduce the roadmap of our construction, and then propose a concrete construction for
CCA-secure BiMH-IBCPRE in the standard model. Meanwhile, we present the security proof right after the construction.
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5.1. Basic construction

Construction intuition. The scheme is constructed based on a Hierarchical Identity-Based Encryption (HIBE) [4], a pseu-
dorandom function [13], and a one-time signature scheme [2]. Our technical roadmap is different from that of [14,9,27].
In [14], Green and Ateniese began with Boneh and Franklin IBE [6] and next extended the IBE to a CPA-secure MH-IBPRE
in the random oracle model. Chu and Tzeng [9] used the CHK transformation [5] to convert Waters IBE [33] to a CCA-
secure 2-level IBE scheme, and then extended it to an RCCA-secure MH-IBPRE in the standard model. In [27], a CCA-secure
MH-IBPRE without random oracles is built on top of a strongly CPA-secure HIBE scheme [34]. Note that [14,9,27] are con-
structed in the unidirectional setting.

However, we start with a 3-level HIBE scheme [4] such that an identity of a message receiver, a condition set associated
with the message and a verification key can be respectively assigned to different level upon encrypting the message, and
further extend the scheme to be secure against CCA by leveraging the CHK transformation. We next employ the technology
of CPRE and a pseudorandom function in the CCA-secure 3-level HIBE scheme so as to propose an IBPRE with conditional
re-encryption (i.e. CCA-secure IBCPRE). The usage of pseudorandom function is to guarantee the validity of re-encryption
such that once the re-encryption result is mutated by an adversary, the mutation can be told. Note we will give more details
in the security proof of our construction.

Furthermore, we adapt the CCA-secure IBCPRE to achieve the bidirectional property (i.e. CCA-secure Bi-IBCPRE) by revis-
ing the construction of re-encryption key. We allow a proxy to use a re-encryption key to partially “decrypt” an original
ciphertext such that the delegatee can recover the plaintext by using his/her private key. The most subtle part is the genera-
tion of re-encryption key. The re-encryption key generation takes the private keys of a delegator and a delegatee as input. To
preclude the proxy from accessing the underlying plaintext, we first use random factors to mask the private keys to become
random elements, and next leverage the elements to construct the re-encryption key. Intuitively, these random elements
will also mask the re-encryption result such that the delegatee cannot recover the plaintext unless he/she has knowledge of
them (e.g., the elements are encrypted intended for the delegatee). But if the delegatee knows the random elements, then
the proxy can easily compromise the entire private key of the delegator by colluding with the delegatee. Accordingly, the
system cannot hold against collusion attacks. To address the problem, we make use of the property of bilinear pairing in
the sense that we leverage random factors (which are unknown to both the proxy and the delegatee) to hide the private
keys’ components but these factors will be eliminated eventually in re-encryption phase.

Due to our re-encryption key generation technique, the re-encryption algorithm will always yield constant-size re-
encrypted ciphertext no matter how many re-encryption hops have been traversed. This is so because there is no need
to construct additional encryption for random factors in re-encryption key generation phase any more. Thus it is not diffi-
cult for us to extend the above resulting scheme to support multi-hop re-encryption.

Here we propose our basic construction for BiMH-IBCPRE where a ciphertext is only tagged with a single condition w ,
and in the next section (i.e. Section 6), we further extend the basic scheme to support multiple conditions which are
denoted as a condition set W = {wz | 1 ≤ z ≤ n, wz ∈ Z

∗
q}. Denote by [M]λ1−λ the first λ1 − λ bits of bit-string M , and [M]λ

the last λ bits of bit-string M . Below is the description of our construction.

1. Setup(1λ,n). Given the security parameter λ and n the allowable maximum number of conditions in the sys-
tem (here n = 1), run (q, g,G1,GT , e) ← BSetup(1λ), choose α ∈R Z

∗
q , f1, f2, g2, g3,h1,h2,h3 ∈R G1, and prepare

a pseudorandom function PRF : GT × G1 → {0,1}λ1 (which takes an element in GT as the function key and
an element in G1 as input, and outputs a λ1-bit pseudorandom string), where λ1 is a security parameter as
well. Let w ∈ Z

∗
q be a condition, (Sign.KeyGen, Sign,Verify) be an OTS scheme, and assume the verification key

output by Sign.KeyGen(1λ) is in Z
∗
q . The master secret key is msk = gα

2 , and the master public key is mpk =
(q, g,G1,GT , e, f1, f2, g1, g2, g3,h1,h2,h3,PRF, (Sign.KeyGen, Sign,Verify)), where g1 = gα .

2. KeyGen(msk, ID). Given the master secret key msk and an identity ID (i.e. an identity I = (ID)), choose r ∈R Z
∗
q , and

output the key

skID = (
gα

2 · (hID
1 · g3

)r
, gr,hr

2,hr
3

) ∈ G
4
1.

A system user with knowledge of skID can generate the following private key due to the key derivation of HIBE [4].
Given skID = (a0,a1,b2,b3), I = (ID, w), choose a t ∈R Z

∗
q and output

sk(ID,w) = (
a0 · bw

2 · (hID
1 · hw

2 · g3
)t

,a1 · gt,b3 · ht
3

) = (
gα

2 · (hID
1 · hw

2 · g3
)r′

, gr′
,hr′

3

)
,

where r′ = r + t .
3. Enc(IDi, w,m). Given an identity IDi , a condition w and a message m, choose an OTS key pair (Ks, K v) ←

Sign.KeyGen(1λ) and σ ∈R GT , s ∈R Z
∗
q , set C0 = K v ,

C1 = [
PRFσ (C3)

]λ1−λ∥∥[
PRFσ (C3)

]
λ
⊕ m, C2 = σ · e(g1, g2)

s,

C3 = gs, C4 = (
hIDi

1 · hw
2 · hK v

3 · g3
)s

,

C5 = (
f w
1 · f2

)s
, C6 = Sign

(
Ks, (C1, C3, C4, C5)

)
,

and output the first-level ciphertext C(IDi ,w) = ((IDi, w), C0, C1, C2, C3, C4, C5, C6), where IDi ∈ Z
∗
q , m ∈ {0,1}λ .
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4. Re-Encryption Key Generation Protocol.
(a) PReKeyGen(skID j , w). ID j first deduces sk(ID j ,w) = (a0 j,a1 j,b3 j) (under I = (ID j, w)) from skID j , next chooses

ρ1,ρ2 ∈R Z
∗
q and sets β1 = a0 j

−1 · ( f w
1 · f2)

ρ1 , β2 = gρ1 , β3 = a1 j
−1 · gρ2 , β4 = b−1

3 j · hρ2
3 , β5 = (hw

2 · g3)
ρ2 , β6 = hρ2

1 .
ID j then sends the partial re-encryption key prk(w, j) = (β1, β2, β3, β4, β5, β6) to IDi .

(b) ReKeyGen(skIDi ,prk(w, j), w). IDi first generates sk(IDi ,w) = (a0i,a1i,b3i) (under I = (IDi, w)), chooses ρ3,ρ4 ∈R Z
∗
q ,

computes rk1 = a0i · β1 · ( f w
1 · f2)

ρ3 , rk2 = gρ3 · β2, rk3 = a1i · β3 · gρ4 , rk4 = b3i · β4 · hρ4
3 , rk5 = (hw

2 · g3)
ρ4 · β5,

rk6 = hρ4
1 · β6 and outputs rki→ j|w = (rk1, rk2, rk3, rk4, rk5, rk6).

(c) Derive a new re-encryption key rk j→i|w from rki→ j|w by running rk j→i|w ← ReKeyBiGen(rki→ j|w). The proxy sets
rk j→i|w = rk−1

i→ j|w , i.e. rk j→i|w = (rk−1
1 , rk−1

2 , rk−1
3 , rk−1

4 , rk−1
5 , rk−1

6 ).
5. ReEnc(rki→ j|w , C(IDi ,w)). Given a re-encryption key rki→ j|w and a ciphertext C(IDi ,w) , the re-encryption algorithm works

as follows.
(a) Verify the validity of the ciphertext:

e
(
C3, f w

1 · f2
) ?= e(g, C5), e

(
C3,hIDi

1 · hw
2 · hC0

3 · g3
) ?= e(g, C4),

Verify
(
C0, C6, (C1, C3, C4, C5)

) ?= 1. (1)

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(b) Compute C (l)
2 = C (l−1)

2 ·e(rk3,C4)·e(rk2,C5)

e(rk1·rk
C0
4 ·rk

IDi
6 ·rk5,C3)

, output the re-encrypted ciphertext C(ID j ,w) = ((IDi, w), C0, C1, C (l)
2 , C3, C4,

C5, C6), where l ≥ 2 denotes the level of the ciphertext. If l = 1, C (1)
2 is from the first-level ciphertext.

6. Dec(skIDi , C(IDi ,w)). Given a private key skIDi for IDi and a ciphertext C(IDi ,w) , the decryption algorithm works as follows.
IDi first deduces the private key sk(IDi ,w) = (a0i,a1i,b3i) (under I = (IDi, w)) from skIDi (under I = (IDi)), and next does
the followings.
(a) Verify the validity of the ciphertext by checking Eq. (1). If the equation does not hold, output ⊥. Otherwise, proceed.

(b) Compute σ = C (l)
2 · e(a1i ,C4)

e(a0i ·bC0
3i ,C3)

, and then verify [PRFσ (C3)]λ1−λ ?= [C1]λ1−λ . If the equation holds, output m = [C1]λ ⊕
[PRFσ (C3)]λ . Otherwise, output ⊥.

Remarks. We assume there is a secure channel (such as SSL) between the delegator and the delegatee in the re-encryption
key generation protocol. In addition, like [4], we can use a target collision resistant hash function [10]: H : {0,1}∗ → Z

∗
q

to hash each condition w , identity ID and verification key K v beforehand such that we can extend our scheme to handle
arbitrary-length condition, identity and verification key.

Correctness:

• When l = 1, C (1)
2 = σ · e(g1, g2)

s . With knowledge of private key sk(IDi ,w) = (a0i,a1i,b3i) = (gα
2 · (hIDi

1 · hw
2 · g3)

r, gr,hr
3),

the original receiver can compute

C (1)
2 · e(a1i, C4)

e(a0i · bC0
3i , C3)

= σ · e(g1, g2)
s · e(gr, (hIDi

1 · hw
2 · hK v

3 · g3)
s)

e(gα
2 · (hIDi

1 · hw
2 · g3)r · hr·K v

3 , gs)

= σ · e(g1, g2)
s

e(gα
2 , gs)

= σ · e(g1, g2)
s

e(g2, gs
1)

= σ .

• When l ≥ 2, suppose there is a delegation chain under w between IDi and ID j , i.e. (w, IDi ↔ ... ↔ ID j ), we have

C (2)
2 = C (1)

2 · e(rk3, C4) · e(rk2, C5)

e(rk1 · rkC0
4 · rkIDi

6 · rk5, C3)

= σ · e(g1, g2)
s · e(gri−ri+1 , (hIDi

1 · hw
2 · hK v

3 · g3)
s)

e((hIDi
1 · hw

2 · hK v
3 · g3)ri · (hIDi+1

1 · hw
2 · hK v

3 · g3)
−ri+1 , gs)

= σ · e(g1, g2)
s · e(g−ri+1 , (hIDi

1 · hw
2 · hK v

3 · g3)
s)

e((h
IDi+1
1 · hw

2 · hK v
3 · g3)

−ri+1 , gs)
,

C (3)
2 = C (2)

2 · e(rk′
3, C4) · e(rk′

2, C5)

e(rk′
1 · rk′C0

4 · rk′IDi
6 · rk′

5, C3)

= σ · e(g1, g2)
s · e(g−ri+2 , (hIDi

1 · hw
2 · hK v

3 · g3)
s)

e((h
IDi+2 · hw · hK v · g )−ri+2 , gs)

,

1 2 3 3
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...

C ( j)
2 = C ( j−1)

2 · e(rk′′
3, C4) · e(rk′′

2, C5)

e(rk′′
1 · rk′′C0

4 · rk′′IDi
6 · rk′′

5, C3)

= σ · e(g1, g2)
s · e(g−r j , (hIDi

1 · hw
2 · hK v

3 · g3)
s)

e((h
ID j

1 · hw
2 · hK v

3 · g3)
−r j , gs)

= σ · e(g1, g2)
s · e(g−r j , C4)

e((h
ID j

1 · hw
2 · hK v

3 · g3)
−r j , C3)

,

where l = j. With knowledge of private key sk(ID j ,w) = (a0 j,a1 j,b3 j) = (gα
2 · (hID j

1 · hw
2 · g3)

r j , gr j ,h
r j

3 ), the delegatee ID j
can compute

σ · e(g1, g2)
s · e(g−r j , C4) · e(a1 j, C4)

e((h
ID j

1 · hw
2 · hK v

3 · g3)
−r j , C3) · e(a0 j · bC0

3 j , C3)

= σ · e(g1, g2)
s · e(g−r j , C4) · e(gr j , C4)

e((h
ID j

1 · hw
2 · hK v

3 · g3)
−r j , C3) · e(gα

2 · (hID j

1 · hw
2 · hK v

3 · g3)
r j , C3)

= σ · e(g1, g2)
s

e(gα
2 , gs)

= σ · e(g1, g2)
s

e(g2, gs
1)

= σ .

5.2. Security analysis

Below we prove our BiMH-IBCPRE scheme IND-sCon-sID-CCA secure in the standard model.
Informally, we state that our scheme is secure against CCA. Suppose there is an adversary A that follows the constraints

defined in Definition 2. Let C∗
(ID∗,w∗)

= ((ID∗, w∗), C∗
0, C∗

1, C∗
2, C∗

3, C∗
4, C∗

5, C∗
6) be the challenge ciphertext. It is not difficult to

see that the components C∗
1 , C∗

3 , C∗
4 and C∗

5 are bound by the signature C∗
6 , the verification key C∗

0 , ID∗ and w∗ are bound
by C∗

4 , and C∗
2 is bound by the first λ1 − λ bits of C∗

1 (i.e. [PRFσ (C∗
3)]λ1−λ). Without any trivial queries for oracles Ork , Ore

and Odec ,6 the value of the bit b remains hidden to A. This is so because the verification key C∗
0 and the signature C∗

6
(as well as ID∗ and w∗) are independent of b, C∗

2 , C∗
3 , C∗

4 , C∗
5 can be regarded as the ciphertext of a 3-level BBG HIBE

scheme with CPA security, and the output of PRF randomly hides the value of the bit b (assuming PRF is picked up from
the pseudorandom function family).

We further show that A cannot obtain additional advantage in guessing the value of the bit b with the help of oracles
Ore and Odec . On one hand, if A submits a query ((ID∗, w∗), C∗

0, C ′
1, C ′

2, C ′
3, C ′

4, C ′
5, C ′

6) to Ore and Odec such that C∗
6 �= C ′

6,
C∗

1 �= C ′
1, C∗

2 �= C ′
2, C∗

3 �= C ′
3, C∗

4 �= C ′
4 and C∗

5 �= C ′
5, then the oracles will respond ⊥ as A cannot output a new and valid

signature C ′
6 with respect to the same verification key C∗

0 (assuming the underlying OTS scheme is strongly existential
unforgeable). On the other hand, if C∗

0 �= C ′
0, then the corresponding re-encryption and decryption will not help A in

guessing the value of the bit b as the ciphertext is generated under a different 3-level identity vector I = (ID∗, w∗, C ′
0).

From the challenge ciphertext, we can see that A can also submit a tuple ((ID∗, w∗), C∗
0, C∗

1, C ′
2, C∗

3, C∗
4, C∗

5, C∗
6) to the oracles

(where C∗
2 �= C ′

2). If the challenger can verify whether the querying ciphertext is either an invalid one or a derivative of the
challenge ciphertext, then A still cannot obtain any additional advantage in winning the game. This verification depends on
the capability of the recovery of C∗

2 . This is so because if C ′
2 is not derived from C∗

2 (i.e. C∗
2 cannot be deduced from C ′

2),
and meanwhile C ′

2 �= C∗
2 , then it can be convinced that C ′

2 is mutated from C∗
2 by A. In addition, the first λ1 − λ bits of C∗

1
can be used to verify the validity of C ′

2 as well.
We present our formal security proof as follows.

Theorem 2. Suppose the decisional 3-wBDHI assumption holds, the underlying OTS scheme is strongly existential unforgeable (sUF)
and PRF is a pseudorandom function family, our BiMH-IBCPRE scheme is IND-sCon-sID-CCA secure in the standard model.

Please refer to Appendix A for the proof of Theorem 2.
By Theorem 1 and Theorem 2, we have the following corollary.

Corollary 1. Suppose our BiMH-IBCPRE scheme is IND-sCon-sID-CCA secure in the standard model, it also achieves collusion resistance
in the standard model.

6 Here the trivial oracle queries are those forbidden queries defined in Definition 2.
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Remarks. In the IND-sCon-sID-CCA game defined in Definition 2, we can see that the adversary A can achieve a re-
encryption key from a challenge identity ID∗

i to a corrupted identity ID′ under w , where w is not the challenge condition.
Despite A can retrieve the partial re-encryption key prkw,i∗ = (β1, β2, β3, β4, β5, β6) from the above re-encryption key with
knowledge of skID′ , it is still unable to recover the entire private key of identity ID∗

i as the random exponents ρ1,ρ2 are
unknown.

6. An efficient extension

In this section we extend our basic BiMH-IBCPRE scheme to support multiple conditions. In the multiple conditions
setting, the proxy is allowed to transform a ciphertext under IDA tagged with W = {wz | 1 ≤ z ≤ n, wz ∈ Z

∗
q} to another

ciphertext under IDB labeled with the same condition set, if and only if it is given a re-encryption key from IDA to IDB

under W . The extension of our basic scheme is as follows.

1. Setup(1λ,n). Same as that of the basic scheme except that choose a TCR hash function H0 : {0,1}∗ → Z
∗
q , choose

h4, ...,hn+2 ∈R G
n−1
1 , and add H0, h4, ...,hn+2 to mpk.

2. KeyGen(msk, ID). Given the master secret key msk and an identity ID (i.e. an identity I = (ID)), choose r ∈R Z
∗
q , and

output

skID = (
gα

2 · (hID
1 · g3

)r
, gr,hr

2,hr
3, ...,hr

n+2

) ∈G
n+3
1 .

Given skID = (a0,a1,b2,b3, ...,bn+2), I = (ID, w1), choose a t ∈R Z
∗
q , the private key sk(ID,w1) can be derived from skID as

sk(ID,w1) = (
a0 · bw1

2 · (hID
1 · hw1

2 · g3
)t

,a1 · gt ,b3 · ht
3, ...,bn+2 · ht

n+2

)
= (

gα
2 · (hID

1 · hw1
2 · g3

)r′
, gr′

,hr′
3 , ...,hr′

n+2

)
,

where r′ = r + t .
3. Enc(IDi, W ,m). Same as that of the basic scheme except that C4 = (hIDi

1 ·hw1
2 · · ·hwn

n+1 ·hK v
n+2 · g3)

s and C5 = ( f H0(W )
1 · f2)

s ,
and output the ciphertext C(IDi ,W ) = ((IDi, W ), C0, C1, C2, C3, C4, C5, C6).

4. Re-Encryption Key Generation Protocol.
(a) PReKeyGen(skID j , W ). ID j first generates sk(ID j ,W ) = (a0 j,a1 j,bn+2 j) (under I = (ID j, W )), chooses ρ1,ρ2 ∈R Z

∗
q , com-

putes β1 = a0 j
−1 · ( f H0(W )

1 · f2)
ρ1 , β2 = gρ1 , β3 = a1 j

−1 · gρ2 , β4 = b−1
n+2 j · hρ2

n+2, β5 = (hw1
2 · · ·hwn

n+1 · g3)
ρ2 , β6 = hρ2

1 ,
and sends the partial re-encryption key prk(W , j) = (β1, β2, β3, β4, β5, β6) to IDi .

(b) ReKeyGen(skIDi ,prk(W , j), W ). IDi first generates sk(IDi ,W ) = (a0i,a1i,bn+2i) (under I = (IDi, W )), chooses ρ3,ρ4 ∈R Z
∗
q ,

computes rk1 = a0i · β1 · ( f H0(W )
1 · f2)

ρ3 , rk2 = gρ3 · β2, rk3 = a1i · β3 · gρ4 , rk4 = bn+2i · β4 · hρ4
n+2, rk5 = (hw1

2 · · ·hwn
n+1 ·

g3)
ρ4 · β5, rk6 = hρ4

1 · β6 and outputs rki→ j|W = (rk1, rk2, rk3, rk4, rk5, rk6).
(c) The proxy can derive a new re-encryption key rk j→i|W from rki→ j|W by running rk j→i|W ← ReKeyBiGen(rki→ j|W ).

5. ReEnc(rki→ j|W , C(IDi ,W )). Same as that of the basic scheme except that Eq. (1) is modified as:

Verify
(
C0, C6, (C1, C3, C4, C5)

) ?= 1, e
(
C3, f H0(W )

1 · f2
) ?= e(g, C5),

e
(
C3,hIDi

1 · hw1
2 · · ·hwn

n+1 · hK v
n+2 · g3

) ?= e(g, C4) (2)

After re-encryption, the proxy outputs C(ID j ,W ) = ((IDi, W ), C0, C1, C (l)
2 , C3, C4, C5, C6) as the re-encrypted ciphertext.

6. Dec(skIDi , C(IDi ,W )). With knowledge of skIDi (under I = (IDi)), user IDi can generate the private key sk(IDi ,W ) =
(a0i,a1i,bn+2i) (under I = (IDi, W )), and then recover the plaintext as follows.
(a) Verify Eq. (2). If the equation does not hold, output ⊥. Otherwise, proceed.

(b) Compute σ = C (l)
2 · e(a1i ,C4)

e(a0i ·bC0
n+2i ,C3)

, and verify [PRFσ (C3)]λ1−λ ?= [C1]λ1−λ . If the equation holds, output m = [C1]λ ⊕
[PRFσ (C3)]λ . Otherwise, output ⊥.

From the above extension, it is interesting to see that the size of ciphertext and the number of bilinear pairings used
in decryption is independent of the number of conditions. Thus, our extension does not incur a great deal of cost with
respect to computation and communication. Similar to the basic scheme, the IND-sCon-sID-CCA security of the extended
scheme can be proved in the standard model under the decisional (n +2)-wBDHI assumption. The proof of the basic scheme
presented in Appendix A can be easily adapted to that of the extension, we hence omit the details.

7. Comparison

In this section we compare our basic scheme with [7,9,14,27] in terms of properties and efficiency. Table 2 shows the
comparison of computation cost, and Table 3 shows the comparison of communication complexity.
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Table 2
Computation cost comparison.

Sch. Computation cost

Enc ReEnc Dec (1st level) Dec (2nd level) ReKey

[7] 5te + tp + ts te + tv + 4tp te + tv + 5tp te + tv + 5tp –
[14] 2te + tp tp tp 2tp 2te + tp

[9] 4te + tp + ts 2te + tv 2te + 3tp + tv 2te + 10tp + 2tv 4te + tp + ts

[27] 21te + tp + ts + tSKE 29te + 18tp + ts + tv + tSKE 8te + 17tp + tv + tSKE 18te + 34tp + 3tv + 3tSKE 38te + tp + ts + tSKE

Ours 8te + tp + ts + tPRF 6te + 7tp + tv 5te + 6tp + tv + tPRF 5te + 6tp + tv + tPRF 16te

Table 3
Communication complexity comparison.

Sch. Ciphertext and re-encryption key length

Original ciphertext Re-encrypted ciphertext ReKey

[7] 3|G1| + |GT | + |svk| + |σ | 3|G1| + |GT | + |svk| + |σ | |Zq |
[14] |G1| + |GT | 2|G1| + 2|GT | 2|G1| + |GT |
[9] 3|G1| + |GT | + |svk| + |σ | 9|G1| + 2|GT | + 2|svk| + 2|σ | 5|G1| + |GT | + |svk| + |σ |
[27] 11|G1| + |GT | + 3|Zq | + |svk| + |σ | + |SKE| 22|G1| + 3|GT | + 6|Zq | + 3|svk| + 3|σ | + 3|SKE| 21|G1| + |GT | + 5|Zq | + |svk| + |σ | + |SKE|
Ours 3|G1| + |GT | + |svk| + |σ | + λ1 3|G1| + |GT | + |svk| + |σ | + λ1 6|G1|

We first define the notations and parameters used in the tables. Let |G1| and |GT | denote the bit-length of an element
in groups G1 and GT , |svk| and |σ | denote the bit-length of the verification key and signature of OTS, |SKE| denote the
bit-length of the ciphertext of a one-time symmetric key encryption, λ1 denote the security parameter, tp, te, tv , ts, tPRF, tSKE

denote the computation cost of a bilinear pairing, an exponentiation, one verification and one signature of an OTS scheme,
a pseudorandom function and a one-time symmetric key encryption, respectively.

We now analyze the property comparison shown in Table 1. Generally, our scheme with constant-size ciphertext is
CCA secure in the standard model under the decisional 3-wBDHI assumption; meanwhile, it is the only scheme supporting
conditional re-encryption. In addition, only [27] and our scheme achieve collusion resistance. Specifically, when compared
with [14] (the scheme built in the random oracle model) which is only CPA secure under the decisional bilinear Diffie–
Hellman (DBDH) assumption [33], our scheme achieves stronger security and enjoys more properties. [9] is RCCA secure
under the DBDH assumption but its ciphertext’s size grows linearly in the number of re-encryption hops; nonetheless, our
scheme is secure against CCA, and the size of ciphertext remains constant. Despite [7] (the scheme constructed in the
standard model) is proved CCA secure under the modified DBDH (mDBDH) assumption [26], it cannot support identity-
based re-encryption and conditional re-encryption properties. Compared to [27], our scheme enjoys additional properties,
including conditional re-encryption and constant size ciphertext without losing CCA security. Moreover, [27]7 requires that
the underlying HIBE scheme must be fully CPA (i.e. IND-aID-CPA) secure. Nevertheless, our scheme is not limited to such a
strong restriction but only requires the underlying HIBE scheme to be IND-sID-CPA secure. In conclusion, our scheme enables
system users to implement more fine-grained delegation, and meanwhile, lessens the cost of storage for cloud server as well
as the communication bandwidth without degrading security level. However, the problem of proposing a fully CCA-secure
MH-IBCPRE in the standard model achieving all the properties of our scheme remains open.

Without loss of fairness, we assume all the schemes listed in tables share the same number of re-encryption hops N , and
for simplicity, we further set N = 1; meanwhile, the identity associated with ciphertext can be seen as public information
in [9,27] and our scheme. Note that in our scheme (IDi, w) is regarded as a single identity I . From Table 2, we see that [14]
is the most efficient scheme, while [27] suffers from the largest number of pairings. Compared with [7,9], our scheme
increases 1tp and reduces 4tp in Dec (2nd level), respectively. Despite the overall performance of [14] is better than ours,
our scheme needs no pairings in ReKey. Note that only [7] and our scheme require no pairings in ReKey. As opposed to [27],
our scheme significantly reduces the number of pairings in ReEnc and Dec. Thus, despite the performance of our scheme is
not better than that of [14] which depends on random oracles, our scheme outperforms [27] which is the only MH-IBPRE
with CCA security in the standard model; meanwhile, the cost of pairings in the decryption of our scheme is less than that
of [9]. It is worth mentioning that the decryption cost of [9,14,27] is linear in N; on the contrary, ours remains constant.

Table 3 generally shows that [14] has the smallest number of groups of elements for the ciphertexts and [7] only requires
one group of element in ReKey, while [27] suffers from the largest number of groups of elements in each metric. Despite the
overall communication cost of [14] is less than ours, our scheme reduces two elements in GT . When compared with [7],
one additional group of elements is needed in our ciphertext; in ReKey, we need 6 elements in G1, while [7] only requires
one element in Zq . [9] enjoys less groups of elements in original ciphertext, but our scheme reduces 6 elements in G1 and
1 element in GT , svk, σ , respectively, in terms of re-encrypted ciphertext. Besides, our re-encryption key only includes one
group of elements when that of [9] requires 4. It is not difficult to see that our scheme outperforms [27], especially in ReKey.

7 In [27], Shao and Cao first proposed a generic construction for MH-IBPRE that requires an HIBE as primitive, and next presented a concrete scheme. In
Table 2, we compare our scheme with their concrete MH-IBPRE, which is secure against CCA under the decisional linear [34] and DBDH assumptions.
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In conclusion, our scheme has better overall performance in communication when compared with [9,27]; meanwhile, it
enjoys more properties than [7,14] without significantly increasing the communication cost. Note our scheme will achieve
better efficiency when N increases as our ciphertext size remains constant but [14,9,27] do not.

8. Applications of BiMH-IBCPRE

Groups data sharing. In a company, working groups of different departments might cooperate with each other so as to
accelerate the process of some business project. For example, a project P 1 is assigned to group A, group B and group C
simultaneously. Suppose the project data is stored in a cloud storage system. To enable each worker in the groups to share
the data of P 1 without suffering from large decryption and encryption complexity, we can employ a BiMH-IBCPRE in the
system.

The managers of Group A and group B can first generate a re-encryption key rkA→B|P 1 from A to B under a condition P 1.
Likewise, the managers of group B and group C can generate another re-encryption key rkB→C |P 1 from B to C under P 1. The
managers then upload the re-encryption keys to the cloud (i.e. the proxy). Due to the derivation property of re-encryption
key, the proxy can deduce new re-encryption keys rkB→A|P 1 and rkC→B|P 1 from the existing ones. With these re-encryption
keys the proxy can transform the ciphertexts of the data to each group. For instance, by using rkA→B|P 1 the proxy can
convert a ciphertext Enc(IDA, P 1,m1) of a data m1, stored in the cloud by group A, to Enc(IDB , P 1,m1), which can be only
decrypted by group B . Similarly, the ciphertexts encrypted under IDB and P 1 can be converted to the ones intended for
group A.

Even if one of the groups, say group C , might simultaneously deal with another project, say P 2, the fine-grained control
on re-encryption disallows group B (resp. A) to gain access to any data associated with a condition P 2. This is so because
the re-encryption key tagged with a condition P 1 only allows the proxy to convert the ciphertexts associated with the
same condition. Specifically, the re-encryption key rkB→C |P 1 and its derivation rkC→B|P 1 only allow the transformation of
ciphertexts between B and C under project P 1.

Furthermore, since BiMH-IBCPRE supports multiple conditions, the working groups can make a more fine-grained control
on data sharing. For example, group B and group C may choose to bidirectionally share their data tagged with a keyword set
W = (“P 1”, “stage 2”, “meeting in company”, “03/04/2012”). Here as long as the corresponding re-encryption key rkB→C |W
(resp. rkC→B|W ) is given to the proxy, the ciphertexts of the data matching the keyword set can be converted between B
and C .

Multi-devices data sharing. With popularization of cloud storage, many Internet users prefer to backup their data, which
are stored in some personal portable devices (e.g., Ipad and mp3), to the cloud. How to efficiently and securely share the
data among such devices becomes an interesting issue. Suppose an Internet user, say Alice, has three portable electronic
devices, a PDA A1, an Ipad A2 and a laptop A3. She might choose to share some data, e.g., a photo m tagged with a
description S , among her devices by using the technology of BiMH-IBCPRE as follows.

Without loss of confidentiality, Alice prefers to encrypt the photo as Enc(IDA1 , S,m) before uploading to the cloud
via A1 (i.e. Alice’s PDA). Obtaining the fully control on her devices, Alice can generate the re-encryption keys rkA1→A2|S
and rkA2→A3|S for the cloud server. The server, acting as a proxy, then re-encrypts the ciphertext of m under IDA1 and S
to Enc(IDA2 , S,m), which can be only decrypted in A2. Furthermore, the server can re-encrypt the resulting ciphertext to
Enc(IDA3 , S,m). When accessing the photo from A2, Alice first logs in the device, and next decrypts Enc(IDA2 , S,m) after
downloading from the cloud. Similarly, Alice can read the photo in A3.

In this data sharing mechanism, even if one of the devices (e.g., A1) is crashed down, the ciphertext of the photo stored
in the cloud can still be accessed via the remaining devices, A2 and A3. If the device A1 is lost or stolen by an adversary,
Alice can request the proxy to delete the corresponding re-encryption key related to A1, e.g., rkA1→A2|S and rkA2→A1|S , so
as to prevent the unauthorized adversary from accessing the data of the remaining devices via A1. Although it might be
possible for the adversary to obtain the re-encryption key rkA1→A2|S from the proxy by intrusion, the adversary cannot
compromise the entire private key of A2 due to the collusion resistance property. In addition, even in the worst case, that
is, the adversary obtains rkA1→A2|S and further converts the ciphertexts of A2 (stored in the cloud) to the ones which can
be decrypted in A1, the system still guarantees that only the data associated with S other than all the data of A2 will leak
to the adversary.

9. Conclusion

In this paper we proposed the first BiMH-IBPRE scheme that achieves conditional re-encryption with constant-size ci-
phertext. Moreover, we proved our scheme to be IND-sCon-sID-CCA secure and collusion resistant in the standard model.
When compared with the existing MH-IBPRE schemes, our scheme achieves better performance in terms of communication
complexity, and is able to provide fine-grained decryption rights delegation for system users.

This paper also motivates some interesting open problems, for example, how to construct a CCA-secure BiMH-IBCPRE
system in the adaptive condition and adaptive identity model, i.e. achieving IND-aCon-aID-CCA security.
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Appendix A. Proof of Theorem 2

Proof. Suppose an adversary A can break the IND-sCon-sID-CCA security of our scheme. We then construct a reduction
algorithm C1 to solve the decisional 3-wBDHI∗ problem using A. Before proceeding, we first consider the sUF of the under-
lying one-time signature scheme. Suppose the challenge ciphertext is ((ID∗, w∗), C∗

0, C∗
1, C∗

2, C∗
3, C∗

4, C∗
5, C∗

6). Let event1 be the

case that A issues a decryption query ((ID∗, w∗), C∗
0, C ′

1, C ′(l)
2 , C ′

3, C ′
4, C ′

5, C ′
6), where Verify(C∗

0, C ′
6, (C ′

1, C ′
3, C ′

4, C ′
5)) = 1. Let

event2 be the case that A issues a re-encryption query ((ID∗, w∗), C∗
0, C ′

1, C ′(l)
2 , C ′

3, C ′
4, C ′

5, C ′
6), where Verify(C∗

0, C ′
6, (C ′

1, C ′
3,

C ′
4, C ′

5)) = 1. If one of the above cases occurs, we can construct an algorithm C2 to break the sUF of the underlying one-
time signature scheme. In the simulation C1 will output a random bit and abort the simulation when either event1 or event2
occurs.

1. Init. A outputs the challenge identity ID∗ and the challenge condition w∗ (i.e. I∗ = (I∗1, I∗2) = (ID∗, w∗)) to C1.
2. Setup. C1 takes in (q, g,G1,GT , e) ← BSetup(1λ) and a problem instance (g,h, y1, y2, y3, T ) that is either sampled

from P3-wBDHI∗ (where T = e(g,h)α
4
) or from R3-wBDHI∗ (where T ∈R GT ), where y1 = gα , y2 = gα2

and y3 = gα3
. To

generate mpk, C1 prepares a pseudorandom function PRF : GT × G1 → {0,1}λ1 , runs (K ∗
v , K ∗

s ) ← Sign.KeyGen(1λ), and
then sets the 3-level identity I∗ = (I∗1, I∗2, I∗3) = (ID∗, w∗, K ∗

v ) as a challenge identity for a 3-level HIBE game. C further

chooses γ , γ1, γ2, γ3, γ4, γ5, ξ ∈R Z
∗
q and sets f1 = gγ4 , f2 = gγ5 , g1 = y1 = gα , g2 = y3 · gγ = gγ +α3

, h1 = gγ1

y3
,

h2 = gγ2

y2
, h3 = gγ3

y1
and g3 = gξ · ∏3

i=1 y
I∗i
4−i . Finally, C1 outputs mpk = (q, g,G1,GT , e, f1, f2, g1, g2, g3,h1,h2,h3,PRF,

(Sign.KeyGen, Sign,Verify)). The distribution of mpk is identical to that of the real scheme in A’s view. Note that msk is
gα

2 = gα·(α3+γ ) = y4 · yγ
1 which cannot be computed by C1, where y4 = gα4

. Besides, C1 maintains the following lists
which are initially empty.
(a) DCT: records the tuples (w, K v , IDroot, ..., IDi, ..., tag1, tag2),8 which are the re-encryption chains under w and K v

starting from IDroot and including IDi , where tag1, tag2 denote that the chain is either uncorrupted or corrupted.
C1 uses it to record the transformation.

(b) SKT: records the tuples (IDi, w, K v ,a0i,a1i,b2i,b3i, tag), which are the private keys’ information of uncorrupted or
corrupted users, where skIDi = (a0i,a1i,b2i,b3i), tag denotes whether it can be achieved by A or not.

(c) RKT: records the tuples (IDi, ID j, w, rki→ j|w ,prk(w, j), tag1, tag2, tag3), which are the results of the queries to
Ork(IDi, ID j, w), where tag1, tag2, tag3 denote that rki→ j|w is randomly chosen, generated in Ore or in Ork .

(d) RET: records the tuples (IDi, ID j, w, C(ID j ,w), tag1, tag2, tag3), which are the results of the queries to Ore(IDi, ID j, w,

C(IDi ,w)), where tag1, tag2, tag3 denote that the ciphertext is re-encrypted using a real re-encryption key, a random
re-encryption key or is generated without any re-encryption key.

3. Phase 1. A issues a series of queries to which C1 responds as follows.
(a) Osk(ID): if ID = ID∗ or, ID is in an uncorrupted delegation chain including ID∗ ,9 C1 outputs a random bit in {0,1}

and aborts. Otherwise,
• If (ID,⊥,⊥,a0i,a1i,b2i,b3i,1) ∈ SKT: C1 outputs skID .

• Else, C1 chooses a rID ∈R Z
∗
q , sets skID = (a0,a1,b2,b3) = (yγ

1 · (gξ · gID·γ1 )rID · (yξ
1 · yID·γ1

1 · y
K ∗

v
2 · yw∗

3 )
1

ID−ID∗ · (y
K ∗

v
1 ·

yw∗
2 · y(ID∗−ID)

3 )rID , grID · y
1

ID−ID∗
1 ,hrID

2 · ( y
γ2
1

y3
)

1
ID−ID∗ ,hrID

3 · ( y
γ3
1

y2
)

1
ID−ID∗ ). Let r = rID + α

ID−ID∗ , one can verify

a0 = yγ
1 · (gξ · gID·γ1

)rID · (yξ
1 · yID·γ1

1 · y
K ∗

v
2 · yw∗

3

) 1
ID−ID∗ · (y

K ∗
v

1 · yw∗
2 · y(ID∗−ID)

3

)rID

= yγ
1 · (gξ+ID·γ1

)r · y
K ∗

v ·r
1 · yw∗·r

2 · yrID·(ID∗−ID)
3

= (
y4 · yγ

1

) · (gξ+ID·γ1 · y
K ∗

v
1 · yw∗

2

)r · (yrID·(ID∗−ID)
3 /y4

)
= (

y4 · yγ
1

) · (gξ+ID·γ1 · y
K ∗

v
1 · yw∗

2

)r · yr·(ID∗−ID)
3

= gα
2 · (gξ · y

K ∗
v

1 · yw∗
2 · yID∗

3 · gID·γ1 · y−ID
3

)r

= gα
2 · (hID

1 · g3
)r

,

and grID · y
1

ID−ID∗
1 = grID · g

α
ID−ID∗ = gr , hrID

2 ·( y
γ2
1

y3
)

1
ID−ID∗ = hrID

2 ·( gγ2

y2
)

α
ID−ID∗ = hr

2, hrID
3 ·( y

γ3
1

y2
)

1
ID−ID∗ = hrID

3 ·( gγ3

y1
)

α
ID−ID∗ = hr

3.
C1 then returns skID to A and adds (ID,⊥,⊥,a0i,a1i,b2i,b3i,1) ∈ SKT .

8 (w, K v , IDroot,⊥,∗,∗) indicates that there is an original ciphertext generated under IDroot and w , K v .
9 It has three cases: (w∗,∗, ID, ...,1,0), (w∗,∗,∗, ..., ID, ...,1,0), or (w∗,∗,∗, ...., ID,1,0). If the identity is in a corrupted delegation chain, we have

(w∗,∗, ID, ...,0,1), (w∗,∗,∗, ..., ID, ...,0,1), or (w∗,∗,∗, ...., ID,0,1) in DCT , where ∗ is the wildcard. Hereafter, by saying an identity is in a delegation
chain we mean that there is one of the above cases in DCT .
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(b) Ork(IDi, ID j, w): If A issues a query (IDi, ID j, w) to Ork to receive a re-encryption key rki→ j|w , then it
can achieve a new re-encryption key rk j→i|w via algorithm ReKeyBiGen. Similarly, when rki→ j|w is gener-
ated by C , C can answer the query (ID j, IDi, w) via algorithm ReKeyBiGen. In this simulation, set k ∈ {i, j}. If
(IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),∗,0,1) ∈ RKT , C1 returns rki+ j−k→k|w to A. Otherwise,
• If ID∗ will be in a corrupted delegation chain under w∗ after generating the re-encryption key, then C1 aborts.

Specifically, the following queries are forbidden to issue:
i. w∗ = w , ID∗ = IDi+ j−k , and IDk is either a corrupted identity, i.e. (IDk,⊥,⊥,a0k,a1k,b2k,b3k,1) ∈ SKT , or in a

corrupted delegation chain under w .
ii. w∗ = w , IDi+ j−k is in an uncorrupted delegation chain, and IDk is either a corrupted identity, or in a corrupted

delegation chain under w .
• If w∗ = w , ID∗ = IDi+ j−k , and IDk is either an uncorrupted identity or in an uncorrupted delegation chain un-

der w , C1 checks whether (IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),1,1,0) ∈ RKT . If yes, C1 returns rki+ j−k→k|w
and resets tag2 = 0, tag3 = 1. Else, C1 checks whether skIDk (i.e. the tuple (IDk,⊥,⊥,a0k,a1k,b2k,b3k,∗)) is

in SKT . If not, C1 constructs skIDk = (a0k,a1k,b2k,b3k) = (gα
2 · (hIDk

1 · g3)
r, gr,hr

2,hr
3) as step (a), and adds the

corresponding tuple to SKT . Else, C1 derives sk(IDk,w∗) from skIDk as sk(IDk,w∗) = (a0k · bw∗
2k · (hIDk

1 · hw∗
2 · g3)

t ,

a1k · gt ,b3k · ht
3) = (gα

2 · (hIDk
1 · hw∗

2 · g3)
r′
, gr′

,hr′
3 ) = (a′

0k,a′
1k,b′

3k), where t ∈R Z
∗
q , r′ = r + t . C1 further checks

whether (ID∗, w∗,⊥,a0∗,a1∗,⊥,b3∗,0) ∈ SKT . If not, C1 chooses a0∗ , a1∗ , b3∗ ∈R G1 and adds the corresponding
tuple to SKT . Otherwise, C1 constructs prk(w∗,k) as: β1 = a′−1

0k · ( f w∗
1 · f2)

ρ1 , β2 = gρ1 , β3 = a′−1
1k · gρ2 , β4 = b′−1

3k ·hρ2
3 ,

β5 = (hw∗
2 · g3)

ρ2 , β6 = hρ2
1 , and rki+ j−k→k|w∗ as: rk1 = a0∗ · β1 · ( f w∗

1 · f2)
ρ3 , rk2 = gρ3 · β2, rk3 = a1∗ · gρ4 · β3,

rk4 = b3∗ ·β4 ·hρ4
3 , rk5 = (hw∗

2 · g3)
ρ4 ·β5, rk6 = hρ4

1 ·β6, where ρ1,ρ2,ρ3,ρ4 ∈R Z
∗
q . Finally, C1 returns rki+ j−k→k|w∗ ,

updates DCT and adds (IDi+ j−k, IDk, w∗, rki+ j−k→k|w∗ ,prk(w∗,k),1,0,1) to RKT .
• If w∗ �= w and ID∗ = IDi+ j−k , C1 checks whether (ID∗, w,⊥,a0∗,a1∗,⊥,b3∗,0) ∈ SKT . If not, C1 chooses

rID∗ ∈R Z
∗
q , constructs sk(ID∗,w) = (a0∗,a1∗,b3∗) = (yγ

1 · (gξ+∑2
i=1 Ii ·γi · y

K ∗
v

1 )rID∗ · (y
ξ+∑2

i=1 Ii ·γi
2 · y

K ∗
v

3 )
1

w−w∗ · yrID∗ ·(w∗−w)

2 ,

grw · y
1

w−w∗
2 ,hrw

3 · ( y
γ3
2

y3
)

1
w−w∗ ), and adds the corresponding tuple to SKT , where I = (I1, I2) = (ID∗, w). C1 then de-

rives sk(IDk,w) from skIDk ,10 generates rki+ j−k→k|w by using sk(ID∗,w) and sk(IDk,w) as in the real scheme, finally
updates DCT and adds (IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),0,0,1) to RKT .

• Else, C1 first checks whether (IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),0,1,0) ∈ RKT . If yes, C1 returns rki+ j−k→k|w
and resets tag2 = 0, tag3 = 1. Else, C1 checks whether skIDi+ j−k and skIDk are in SKT . If not, C1 constructs two
private keys as step (a), and adds skIDi+ j−k , skIDk to SKT . Else, C1 derives sk(IDi+ j−k,w) and sk(IDk,w) from skIDi+ j−k

and skIDk , respectively. C1 further generates rki+ j−k→k|w and prk(w,k) from sk(IDi+ j−k,w) and sk(IDk,w) as in the
real scheme, and returns rki+ j−k→k|w . Finally, C1 updates DCT , adds (IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),0,0,1)

to RKT .
(c) Ore(IDi, ID j, w, C(IDi ,w)): C1 verifies Eq. (1) and the validity of C (l)

2 .11 If the verification does not hold, C1 outputs ⊥.
Otherwise, set k ∈ {i, j} and proceed.
• If the first case of step (b) does not hold: C1 checks whether (IDi+ j−k, IDk, w, rki+ j−k→k|w ,prkw,k,∗,0,∗) ∈ RKT .

If yes, C1 re-encrypts C(IDi+ j−k,w) by using rki+ j−k→k|w , and adds (IDi+ j−k, IDk, w, C(IDk,w),∗,∗,0) to RET . Else,
C1 constructs the re-encryption key as step (b), re-encrypts the ciphertext as above, updates DCT and adds
(IDi+ j−k, IDk, w, rki+ j−k→k|w ,prk(w,k),∗,∗,0) and (IDi+ j−k, IDk, w, C(IDk,w),∗,∗,0) to RKT and RET , respectively.

• Else, C1 transforms the ciphertexts under ID∗ , w∗ and K v to the ones which can be decrypted by A. Note these
re-encryptions can be constructed as long as the ciphertexts taken as input are generated by A. Here K ∗

v �= K v as
K ∗

v is chosen by C1. C1 checks whether (IDk, w∗, K v ,a0k,a1k,⊥,⊥,∗) ∈ SKT . If not, C1 constructs skIDk as step (a),
derives sk(IDk,w∗,K v ) = (a0k,a1k) from skIDk and adds the corresponding tuple to SKT . Otherwise,
– If ID∗ = IDi+ j−k ,

i. if w∗ = w , IDroot = IDi+ j−k , and IDk is either a corrupted identity or in a corrupted delegation chain, C1
checks whether sk(ID∗,w∗,K v ) (i.e. the tuple (ID∗, w∗, K v ,a0∗,a1∗,⊥,⊥, 0)) is in SKT . If not, C1 constructs the

private key sk(ID∗,w∗,K v ) as a0∗ = yγ
1 · (gξ+∑3

i=1 Ii ·γi )rID∗ · (y
ξ+∑3

i=1 Ii ·γi
3 )

1
K v −K∗

v · y
rID∗ (K ∗

v −K v )

1 , a1∗ = y
1

K v −K∗
v

3 · grID∗ ,
and then adds the corresponding tuple to SKT , where rID∗ ∈R Z

∗
q , I = (I1, I2, I3) = (ID∗, w∗, K v). Let r =

rID∗ + α3

K v −K ∗
v

, one can verify

a0∗ = yγ
1 · (gξ+∑3

i=1 Ii ·γi
)rID∗ · (y

ξ+∑3
i=1 Ii ·γi

3

) 1
K v −K∗

v · y
rID∗ ·(K ∗

v −K v )

1

= yγ
1 · (gξ+∑3

i=1 Ii ·γi
)r · y

rID∗ ·(K ∗
v −K v )

1

10 If skIDk is not in SKT , it will be constructed as step (a).
11 It is not difficult to verify the integrity of C (l)

2 as C1 can construct any private key sk(ID,w,K v ) except for that with ID∗ = ID, w∗ = w and K ∗
v = K v . With

knowledge of the private keys C1 can decrypt the ciphertext (issued by A) to verify the integrity of C (l)
2 by checking [C1]λ1−λ ?= [PRFσ (C3)]λ1−λ .
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= gα
2 · (gξ+∑3

i=1 Ii ·γi · y
K ∗

v −K v
1

)r

= gα
2 · (gξ+∑3

i=1 Ii ·γi · (yw∗−w∗
2 · yID∗−ID∗

3

) · y
K ∗

v −K v
1

)r

= gα
2 · (hID∗

1 · hw∗
2 · hK v

3 · g3
)r

,

and a1∗ = grID∗ · y
1

K v −K∗
v

3 = grID∗ · g
α3

K v −K∗
v = gr . Else, C1 constructs C (2)

2 = C (1)
2 ·e(a1∗·(a1k)

−1,C4)

e(a0∗·(a0k)−1,C3)
, returns C(IDk,w) =

((ID∗, w∗), C0, C1, C (2)
2 , C3, C4, C5, C6) and adds (ID∗, IDk, w∗, C(IDk,w∗),0,0,1) to RET and updates DCT as

(w∗, K v , IDi+ j−k, IDk,0,1).

ii. Else, C1 recovers (ID∗, w∗,⊥,a′
0∗,a′

1∗,⊥,b′
3∗,0) from SKT , constructs C (l)

2 = C (l−1)
2 ·e(a′

1∗·a−1
1k ,C4)

e(a′
0∗·b′

3∗
K v ·a−1

0k ,C3)
, returns C(IDk,w∗) ,

and eventually adds (ID∗, IDk, w∗, C(IDk,w∗),0,0,1) to RET and updates DCT as (w∗, K v ,∗, ..., IDi+ j−k, IDk,

0,1).
– Else,

i. If w∗ = w , IDroot = ID∗ , IDi+ j−k is in an uncorrupted delegation chain including ID∗ , and IDk is ei-
ther a corrupted identity or in a corrupted delegation chain, C1 recovers (ID∗, w∗,⊥,a0∗,a1∗,⊥,b3∗,0),
(ID∗, w∗, K v ,a′

0∗,a′
1∗,⊥,⊥, 0) and (IDi+ j−k, w∗,⊥,a0i+ j−k,a1i+ j−k,⊥,b3i+ j−k,0) from SKT . If (ID∗, w∗, K v ,

a′
0∗,a′

1∗,⊥,⊥, 0) ∧ (IDi+ j−k, w∗,⊥,a0i+ j−k,a1i+ j−k,⊥,b3i+ j−k,0) /∈ SKT , C1 chooses to construct sk(ID∗,w∗,K v )

and sk(IDi+ j−k,w∗) , and sets C (l)
2 = C (l−1)

2 ·e(a0∗·a−1
0i+ j−k ·b−K v

3i+ j−k·bK v
3∗ ,C3)

e(a1∗·a−1
1i+ j−k,C4)

· e(a′
1∗·(a1k)

−1,C4)

e(a′
0∗·(a0k)−1,C3)

, returns the re-encrypted ci-

phertext and adds (IDi+ j−k, IDk, w∗, C(IDk,w∗),0,0,1) to RET and updates DCT as (w∗, K v , ID∗, ..., IDi+ j−k, IDk,

0,1).
ii. Else, C1 checks whether (IDi+ j−k, w∗, K v ,a0i+ j−k,a1i+ j−k,⊥,⊥, 0) ∈ SKT . If not, C1 constructs the private key

skIDi+ j−k as step (a), derives sk(IDi+ j−k,w∗,K v ) = (a0i+ j−k,a1i+ j−k) from skIDi+ j−k and adds the corresponding

tuple to SKT . Else, C1 computes C (l)
2 = C (l−1)

2 ·e(a1i+ j−k ·a−1
1k ,C4)

e(a0i+ j−k ·a−1
0k ,C3)

, outputs the re-encrypted ciphertext and adds

(IDi+ j−k, IDk, w∗, C(IDk,w∗),0,0,1) to RET and updates DCT as (w∗, K v ,∗, ..., ID∗, ..., IDi+ j−k, IDk,0,1).
(d) Odec(IDi, w, C(IDi ,w)): C1 verifies Eq. (1). If Eq. (1) does not hold, C1 outputs ⊥. Otherwise,

• If w �= w∗:
i. If IDi �= ID∗ , C1 checks whether (IDi, w,⊥,a0i,a1i,⊥,b3i,∗) ∈ SKT . If yes, C1 recovers m by using sk(IDi ,w) . Else,
C1 first constructs skIDi as step (a), derives sk(IDi ,w) from skIDi , and then recovers m by using sk(IDi ,w) .

ii. Else, C1 checks whether (ID∗, w,⊥,a0∗,a1∗,⊥,b3∗,0) ∈ SKT . If yes, C recovers m by using sk(ID∗,w) . Else, C1
constructs sk(ID∗,w) , and further recovers m as above.

• If w = w∗:
– If ID∗ = IDroot:

i. If ID∗ �= IDi , C1 checks whether (ID∗, w∗, K v ,a′
0∗,a′

1∗,⊥,⊥, 0) ∈ SKT or not. If not, C1 constructs sk(ID∗,w∗,K v ) =
(a′

0∗,a′
1∗) and adds the corresponding tuple to SKT . Else, C1 recovers sk(IDi ,w∗) = (a0i,a1i,b3i) from SKT , com-

putes σ = C (l)
2 ·e(a−1

1∗ ·a1i ,C4)

e(a−1
0∗ ·b−K v

3∗ ·a0i ·bK v
3i ,C3)

· e(a′
1∗,C4)

e(a′
0∗,C3)

, and finally recovers m as in the real scheme.

ii. Else, C1 directly uses sk(ID∗,w∗,K v ) to recover m if (ID∗, w∗, K v ,a′
0∗,a′

1∗,⊥,⊥, 0) ∈ SKT . Else, C1 constructs the
private key, and then recovers m as above.

– If ID∗ �= IDroot:
i. If ID∗ �= IDi , C1 recovers m by using sk(IDi ,w∗) if (IDi, w∗,⊥,a0i,a1i,⊥,b3i,∗) ∈ SKT . Else, C1 constructs the

private key, and then recovers m as above.

ii. Else, C1 recovers sk(ID∗,w∗) (i.e. (ID∗, w∗,⊥,a0∗,a1∗,⊥,b3∗,0)) from SKT , computes σ = C (l)
2 ·e(a1∗,C4)

e(a0∗·bK v
3∗ ,C3)

, and

finally recover m by using σ . Note that the private key is randomly chosen by C1.
– If (ID j, IDi, w∗, C(IDi ,w∗),0,0,1) ∈ RET: C1 recovers m by using sk(IDi ,w∗) if (IDi, w∗,⊥,a0i,a1i,⊥,b3i,∗) ∈ SKT .

Else, C1 constructs the private key, and recovers m as above.
4. Challenge. A outputs m0 and m1 to C1. C1 flips a random coin b ∈ {0,1}, chooses σ ∗ ∈R GT , and sets C∗

0 = K ∗
v ,

C∗
1 = [PRFσ ∗ (h)]λ1−λ‖[PRFσ ∗ (h)]λ ⊕ mb , C∗

2 = σ ∗ · T · e(y1,hγ ), C∗
3 = h, C∗

4 = hξ+∑3
i=1 I∗i ·γi , C∗

5 = hw·γ4+γ5 , C∗
6 =

Sign(K ∗
s , (C∗

1, C∗
3, C∗

4, C∗
5)). The challenge ciphertext is C∗

(ID∗,w∗)
= ((ID∗, w∗), C∗

0, C∗
1, C∗

2, C∗
3, C∗

4, C∗
5, C∗

6).

If T = e(g,h)α
4

(i.e. the input tuple is sampled from P3-wBDHI∗ ), then C∗
(ID∗,w∗)

is a valid ciphertext under I∗ =
(ID∗, w∗, K ∗

v ). Implicitly letting h = gc (for an unknown c ∈ Z
∗
q ), we have

C∗
1 = [

PRFσ ∗(h)
]λ1−λ∥∥[

PRFσ ∗(h)
]
λ
⊕ mb = [

PRFσ ∗
(
C∗

3

)]λ1−λ∥∥[
PRFσ ∗

(
C∗

3

)]
λ
⊕ mb,

C∗ = σ ∗ · T · e
(

y1,hγ
) = σ ∗ · e(g,h)α

4 · e
(

y1,hγ
) = σ ∗ · e

(
y1, y3 · gγ

)c = σ ∗ · e(g1, g2)
c,
2
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C∗
3 = gc, C∗

4 = hξ+∑3
i=1 I∗i ·γi =

(
3∏

i=1

(
gγi /y4−i

)I∗i · gξ ·
3∏

i=1

y
I∗i
4−i

)c

= (
hID∗

1 · hw∗
2 · h

K ∗
v

3 · g3
)c

,

C∗
5 = hw·γ4+γ5 = (

g w·γ4+γ5
)c = (

f w
1 · f2

)c
.

Otherwise, T ∈R GT (i.e. the input tuple is sampled from R3-wBDHI∗ ), the challenge ciphertext is independent of the bit
b in the view of A.

5. Phase 2. Same as Phase 1 with the restrictions shown in Definition 2.
6. Guess. A outputs a guess bit b′ ∈ {0,1}. If b′ = b, C1 outputs 1 (i.e. indicating T = e(g,h)α

4
); else, it outputs 0 (i.e.

indicating T ∈R G T ).

Remarks. In Phase 2, due to the capability of recovering C∗
2 (which is based on knowledge of C (l)

2 and the data stored in
DCT and RKT), C1 can detect whether a ciphertext C(ID′,w∗) is re-encrypted from C∗

(ID∗,w∗)
or not.12 This also allows C1 to

check if the ciphertext is mutated by A. Besides, C1 will reject any query that yields a tuple (w∗, K ∗
v , ID∗, ...,0,1) ∈ DCT .

Let Forge be the event that C2 breaks the security of sUF-CMA of the underlying one-time signature scheme. When the
input instance is sampled from P3-wBDHI∗ (i.e. T = e(g,h)α

4
), the view of A is identical to the real attacks, and A has

Pr[C1 → 1 | T = e(g,h)α
4 ] ≥ 1

2 + ε1 − Pr[Forge | T = e(g,h)α
4 ]. If T ∈R GT (i.e. the instance is sampled from R3-wBDHI∗ ), mb is

perfectly hidden. A has Pr[C1 → 0 | T ∈R GT ] ≥ 1
2 − Pr[Forge | T ∈R GT ]. In the simulation, either event1 or event2 yields the

occurrence of Forge. That is, Pr[Forge] = Pr[event1 ∨ event2] = AdvOTS
C2

(1λ). Thus, we have

2AdvD-3-wBDHI∗
C1

(
1λ

) = 2
∣∣Pr

[
C1 → 0 ∧ T = e(g,h)α

4] − Pr[C1 → 0 ∧ T ∈R GT ]∣∣
= 2

∣∣Pr
[
C1 → 0

∣∣ T = e(g,h)α
4]

Pr
[
T = e(g,h)α

4] − Pr[C1 → 0|T ∈R GT ]Pr[T ∈R GT ]∣∣
= ∣∣Pr

[
C1 → 0

∣∣ T = e(g,h)α
4] − Pr[C1 → 0 | T ∈R GT ]∣∣

= ∣∣1 − Pr
[
C1 → 1

∣∣ T = e(g,h)α
4] − Pr[C1 → 0 | T ∈R GT ]∣∣

≥
∣∣∣∣1 −

(
1

2
+ ε1 − Pr

[
Forge

∣∣ T = e(g,h)α
4]) −

(
1

2
− Pr[Forge | T ∈R GT ]

)∣∣∣∣
≥ ε1 − (

Pr
[
Forge

∣∣ T = e(g,h)α
4] + Pr[Forge | T ∈R GT ])

≥ ε1 − Pr[Forge] ≥ ε1 − AdvOTS
C2

(
1λ

)
.

Combining the above result and counting for the pseudorandomness of PRF , we have ε1 ≤ 2AdvD-3-wBDHI∗
C1

(1λ) +
AdvOTS

C2
(1λ) + AdvPRF

A (1λ).
This completes the proof of Theorem 2. �
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