
Lightweight State Capturing for Automated
Testing of Multithreaded Programs

Kari Kähkönen and Keijo Heljanko

Helsinki Institute for Information Technology HIIT
Department of Computer Science and Engineering

School of Science, Aalto University
{kari.kahkonen, keijo.heljanko}@aalto.fi

Abstract. We present a lightweight approach to capture abstract state
information that can be used to avoid testing redundant interleavings of
multithreaded programs. Our approach is based on modeling states that
are observed during the test executions as a Petri net. This model is then
used to determine if some execution paths lead to an already explored
state. In such cases exploring execution paths from the same state mul-
tiple times can be avoided. Our approach does not capture the complete
global states of programs but instead it relies on particular commuta-
tivity of transitions to determine if they lead to already known abstract
states. We have combined this lightweight state capture technique with a
dynamic symbolic execution based approach to systematically test multi-
threaded programs. Experiments show that even without complete state
information, the lightweight state capturing technique can sometimes
reduce the number of redundant test executions substantially.

1 Introduction

Testing multithreaded programs is challenging due to the large number of ex-
ecution paths caused by input values and interleavings of threads. One way to
avoid redundant test executions is to capture program states and stop a test ex-
ecution when an already explored state is encountered. However, capturing and
storing states of real world multithreaded programs can add a considerable time
and space overhead to a testing algorithm. Furthermore, matching states can be
nontrivial if the states are expressed symbolically as in some testing approaches
such as dynamic symbolic execution (DSE) [8]. For example, in a symbolic state
a variable x could have any value that satisfies a constraint x > 0. If another
execution path leads to an identical symbolic state except that the constraint
for x is x > 5, the first symbolic state subsumes the second one (i.e., the first
state represents all concrete states of the second symbolic state). To determine
if a symbolic state has been visited before, a subsumption check by a constraint
solver is needed. This can be computationally expensive if the constraints are
complex and therefore we will not use such an approach in this paper.

An alternative to capturing states is to use stateless algorithms that explore
execution paths through a program without explicitly storing state information.

2 Kari Kähkönen and Keijo Heljanko

A naive way to do such exploration is to consider all possible input values and
interleavings. Approaches like DSE and partial order reductions [7, 15] can be
used to avoid redundant test executions. DSE expresses symbolically the sets of
input values that cause the same execution path to be followed. Partial order
reduction algorithms avoid redundant tests based on the fact that it is not neces-
sary to explore different interleavings of independent state transitions. However,
even with such reduction techniques, stateless algorithms can explore the same
subset of the state space multiple times.

In this paper we present a lightweight approach to state capturing that can be
combined with DSE without the need for subsumption checks that use constraint
solvers or for storing complete global states. Our approach is based on the ob-
servation that sometimes it is easy to see that interleavings even with dependent
transitions commute and thus lead to the same state. As an example, consider
a program that has an array in shared memory and the access to this array is
synchronized with a lock. This means that if two threads want to read a value
from the array (or to update distinct indexes), both threads need to acquire the
same lock. The corresponding transitions are dependent and therefore both ways
to interleave the accesses to the array need to be explored even if using partial
order reductions. However, after both threads have acquired the lock, read a
value and released the lock, the program ends up in the same state regardless
of the execution order. In this case it is not necessary to know the exact global
states of the program to be able to determine that both interleavings result in
the same state. In this paper we detect such cases by constructing a Petri net
model of the program under test based on the information collected during test
executions. This model is constructed such that any modeled state transitions
lead to new abstract states unless it is easy to determine that a transition leads
to an already known state.

We also present a systematic testing algorithm that constructs the model
on-the-fly and uses it to perform state matching. The new algorithm can be seen
as extending our previous unfolding based testing approach [10] with lightweight
state matching. Naturally without complete state information, the cases where
state matching can be done are limited. Nevertheless, experiments show that in
cases where our approach can detect that a given state has been visited before,
the savings both in testing time and the number of test executions can be sub-
stantial. The main contributions of this paper are: (1) a lightweight approach to
match states without capturing complete global states or using symbolic sub-
sumption with a constraint solver, (2) a testing algorithm that combines net
unfoldings, dynamic symbolic execution and the lightweight state capturing to
reduce unnecessary test executions, and (3) an experimental evaluation of the
new approach.

2 Background

To keep the presentation simple we assume that in programs to be tested the
number of shared variables is fixed and the only nondeterminism in threads is

Lightweight State Capturing for Automated Testing 3

caused by concurrent access of shared memory or by input data from the environ-
ment. We also assume that operations accessing shared memory are sequentially
consistent. The state of a multithreaded program consists of the local states of
threads and the shared state consisting of the shared variables. The operations
on shared memory that are considered in this work are read and write of shared
variables and acquire and release of locks. We assume that a read operation reads
a value from a shared variable and assigns it to a variable in the local state of the
thread performing the operation. Write assigns either a constant or a value from
a local variable to a shared variable. Local operations, such as if-statements,
are evaluated solely on the values in the local state and therefore cannot access
shared variables directly. In real programs the statements can be modified auto-
matically to satisfy these assumptions by using local temporary variables. The
algorithms discussed in this work are based on analyzing sequences of operations
observed during test executions and therefore language constructs such as loops,
goto-statements and function calls are also supported.

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) [8, 14], which is also known as concolic test-
ing, is a systematic test generation approach in which a program is executed
both concretely and symbolically at the same time. The concrete execution cor-
responds to the execution of the actual program and symbolic execution com-
putes constraints on values of the variables in the program by using symbolic
values that are expressed in terms of input values. At each branch point in the
program’s execution, the symbolic constraints specify the input values that cause
the program to take a specific branch. As an example, executing a program x =

x + 1; if (x > 0)...; generates constraints input1+1 > 0 and input1+1 ≤ 0
at the if-statement assuming that the symbolic value input1 is assigned initially
to x. A path constraint is a conjunction of the symbolic constraints correspond-
ing to each branch point in a given execution path. All input values that satisfy
a path constraint will explore the same execution path for sequential programs.
If a test execution goes through multiple branch points that depend on the in-
put values, a path constraint can be constructed for each of the branches that
were left unexplored along the execution path. These constraints are typically
solved using SMT-solvers in order to obtain concrete values for the input sym-
bols. This allows all the feasible execution paths through the program under test
to be explored systematically.

2.2 Petri nets and Unfoldings

In the following we describe Petri nets and their unfoldings that are used in our
testing algorithm to model and explore the states of the program under test.

Definition 1. A net is a triple (P, T, F), where P and T are disjoint sets of
places and transitions, respectively, and F ⊆ (P ×T)∪(T ×P) is a flow relation.
Places and transitions are called nodes and elements of F are called arcs. The

4 Kari Kähkönen and Keijo Heljanko

preset of a node x, denoted by •x, is the set {y ∈ P ∪T | (y, x) ∈ F}. The postset
of a node x, denoted by x•, is the set {y ∈ P∪T | (x, y) ∈ F}. A marking of a net
is a mapping P 7→ N. A marking M is identified with the multiset which contains
M(p) copies of p. A Petri net is a tuple Σ = (P, T, F,M0), where (P, T, F) is a
net and M0 is an initial marking of (P, T, F).

Graphically markings are represented by putting tokens on circles that rep-
resent the places of a net. A transition t is enabled in a marking that puts tokens
on the places in the preset of t.

Definition 2. The causality relation < in a net is the transitive closure of F .
The reflexive and transitive closure of F is denoted by ≤.

Definition 3. Two nodes x and y are in conflict if there are distinct transitions
t1 and t2 such that •t1 ∩ •t2 6= ∅ and t1 < x and t2 < y.

Similarly as a directed graph can be unwinded into a tree that represents all
paths through the graph, a Petri net can be unfolded into an acyclic net called
occurrence net. For acyclic Petri nets the causality relation is a partial order.

Definition 4. An occurrence net O is an acyclic net (B,E,G), where B and
E are sets of conditions (places) and events (transitions) and G is the flow
relation. Occurrence net O also satisfies the following conditions: for every b in
B, |•b| ≤ 1; for every x ∈ B ∪ E there is a finite number of nodes y ∈ B ∪ E
such that y < x; and no node is in conflict with itself.

To avoid confusion when talking about Petri nets and their occurrence nets,
the nodes B and E are called conditions and events, respectively. If an occurrence
net is obtained by unfolding a Petri net, the events and conditions in it can also
be labeled with the corresponding transitions and places.

Definition 5 (Adapted from [11]). A labeled occurrence net is a tuple (O, l) =
(B,E,G, l) where l : B∪E 7→ P ∪T is a labeling function such that: (i) l(B) ∈ P
and l(E) ∈ T ; (ii) for all e ∈ E, the restriction of l to •e is a bijection between
•e and •l(e); (iii) the restriction of l to Min(O) is a bijection between Min(O)
and M0, where Min(O) denotes the set of minimal elements with respect to the
causal relation; and (iv) for all e, f ∈ E, if •e = •f and l(e) = l(f) then e = f .

Different labeled occurrence nets can be obtained by stopping the unfold-
ing process at different times. The maximal labeled occurrence net (possibly
infinite) is called the unfolding of a Petri net [3]. To simplify the discussion in
this paper, we use the term unfolding for all labeled occurrence nets and not
just the maximal one. To illustrate the concepts above, let us consider the Petri
net shown on the left in Fig. 1. Next to the Petri net are its computation tree
and unfolding that represent the computations (sequences of transitions) of the
Petri net in an acyclic manner. The nodes in the computation tree represent the
reachable markings of the Petri net (i.e., global states) and the edges represent
transitions that lead from one marking to another. In the unfolding each event

Lightweight State Capturing for Automated Testing 5

Fig. 1. A Petri net, its computation tree and unfolding

and condition are labeled with the corresponding transition or place of the Petri
net. For some Petri nets its unfolding can be exponentially more succinct than
the corresponding computation tree.

All the reachable markings of a Petri net can be explored by traversing its
computation tree. However, exploring the full computation tree is not always
necessary. In our example, the marking reached after firing t1 is {s2, s3}. Firing
transition sequence t1t2t4 leads to the same marking and therefore there is no
need to expand the computation tree further from the node that corresponds to
this transition sequence. In a similar way, it is also possible to compute a finite
prefix of the unfolding that captures all the reachable markings of a Petri net.
However, as an unfolding is a more succinct representation than the computation
tree, computing a finite prefix is not as straightforward. In the following we use
notation similar to [3].

Definition 6. The local configuration of an event e in an unfolding is the set
{e′ | e′ ≤ e}.

Definition 7. Let e be an event in the unfolding of Petri net N . St(e) denotes
the marking of N reached after firing the transitions corresponding to the events
in the local configuration of e.

Definition 8. Let ≺ be a partial order on the events of an unfolding. An event
e in a prefix of the unfolding is a terminal (also known as a cut-off event) if
there exists an event e′ such that e′ ≺ e and St(e’) = St(e).

A finite prefix of an unfolding can be constructed by leaving out any events
that are causally preceded by a terminal event. That is, if an event e′ has been
added to the unfolding before event e and St(e’) = St(e), the unfolding process
can be stopped at event e. To illustrate this, let us consider the unfolding in Fig. 1

6 Kari Kähkönen and Keijo Heljanko

again. The numbers on the events in the unfolding denote the order in which
they have been added to the unfolding and therefore follow the ≺ partial order.
Let us assume that en denotes the event labeled with n. The local configuration
of e4 consists of events e1, e2 and e4. The marking reached by firing these events
corresponds to the marking St(e4) = {s2, s3}. Note that event e1 has been added
to the unfolding before e4 and St(e1) = St(e4). This means that e4 is a terminal
and no events that are causally preceded by it need to be added to the unfolding.
Similarly the event e5 is also a terminal.

It is important to note that not all partial orders ≺ lead to complete pre-
fixes [3]. In other words, if the prefix is not complete, some reachable marking of
the Petri net is not represented in the prefix. It has been shown that if events are
added to the unfolding in so called adequate order, the prefixes are always com-
plete. In the implementation of our algorithm that is used in the experiments,
we use the ERV adequate order as described in [4]. For further details about
unfoldings, see [3].

3 Modeling Test Executions

Our lightweight state capturing technique is based on modeling behavior ob-
served during test executions as a Petri net. This model can then be used for
state matching in a testing algorithm. The initial state of the program is mod-
eled by having a place for each thread, shared variable and lock in the program
under test. Places for threads are abstract representations of their local states
and places for shared variables represent valuations of that shared variable. To
model execution paths through the program, transitions are added to the model
such that they correspond to operations that have been observed during test
executions. To model these operations we use the constructs shown in Fig. 2.
For clarity, the places corresponding to shared variables and locks have a darker
color than places for abstract local states.

The intuition behind the modeling constructs is as follows. When a thread
is in a local state such that the next operation to be executed is a write, the
operation always results in the same subsequent local state and the same value
to be written to the shared memory regardless of the current valuation of the
shared variable. This is represented in Fig. 2 such that if the write transition
marked with dashed lines is added to the model after the transition with solid
lines from the same local state, the transitions result in the same places for the
local state and the shared variable. For read operations the resulting local states
are always different if the shared variable places are different (i.e., in cases where
the values being read might be different). This is again illustrated by a second
read transition marked with dashed lines in Fig. 2. However, reading a value does
not change it and therefore a read operation can be modeled with a transition
that returns the token back to the original shared variable place. For each lock
there is always only one lock place and acquiring a lock takes a token from
this place and releasing the lock puts the token back to the same place. Local
operations of threads are not modeled explicitly as a thread executes them always

Lightweight State Capturing for Automated Testing 7

Fig. 2. Modeling constructs

in the same way until the next global operation is encountered. An exception to
this are branching operations that depend on input values. In our approach we
use symbolic execution to collect constraints that describe which input values
cause either the true or false branch to be followed at a given local state. These
constraints are added to the transitions for the true and false branches. As such
constraints restrict the possible values in a local state, branching transitions lead
to new abstract local states.

To model a test execution, a marking that corresponds to the initial state
is first created. This marking is used to denote the current state of the test
execution. The operations enabled in the initial state are then modeled. The test
execution then executes one of these operations and the corresponding transition
is fired to update the current marking. In the resulting state all the enabled
operations are again modeled unless a corresponding transition already exists in
the model. This process is then continued until the whole test execution has been
processed. Note that as we model sequences of observed operations, loops in the
program are unrolled. Also as we do not track the full local states of threads, we
cannot determine if a thread can loop its execution back to an earlier abstract
local state. This means that any transition in the model can be fired at most
once in any given test execution. The only cycles in the Petri net model occur
with places for shared variables and locks. As a test execution can be infinite for
nonterminating programs, we limit the length of each test execution by a given
bound in order to guarantee termination.

Example 1. Let us consider the program shown in Fig. 3 and a test execution
that executes the statements on lines 1,2,3,4,5,6 in that order. Modeling this
execution starts with an initial marking {s1, s2, x1, y1, l1}. In the initial state
the lock acquire operations of both threads are enabled. These are modeled as
the transitions t1 and t2. The lock transition belonging to thread 1 is then fired

8 Kari Kähkönen and Keijo Heljanko

to obtain a marking {s3, s2, x1, y1}. In this new state the operation x = 1 is
the only one that is enabled. As the model does not contain a transition that
is enabled in the current marking, the transition t3 is added to the model and
fired. The rest of the test execution is processed in a similar manner to obtain
the net in Fig. 3. Note that if a second test execution is made such that thread 2
performs its operations first, no new transitions need to be added to the model.
Furthermore, both of these executions end up in the same marking indicating
that the resulting states are the same.

Global variables:

int x = 0;

int y = 0;

Thread 1:

1: acquire(lock);

2: x = 1;

3: release(lock);

Thread 2:

4: acquire(lock);

5: y = 1;

6: release(lock);

Fig. 3. Locking example

Example 2. Fig. 4 shows another example program where three threads write
concurrently to the same shared variable. The partial model on the top of the
figure is obtained by performing a test execution where thread 1 is executed
first, thread 2 second and thread 3 last. In the initial state the writes for all
threads are enabled and this is modeled by the transitions t1, t2 and t3. After
executing the write of thread 1, the enabled writes of thread 2 and thread 3
are modeled as transitions t4 and t5. The final write of the test execution is
modeled as transition t6. The model on the bottom shows the complete model
for the program. In this case there are six possible ways to interleave the write
operations. However, there are only three possible end states (markings) for
these interleavings and therefore if the program continues after the writes, it is
possible to cut the exploration of some of these interleavings.

3.1 Advantages and Limitations for State Matching

As discussed in the examples, test executions following different interleavings
can lead to the same marking. This can be used to avoid unnecessary tests

Lightweight State Capturing for Automated Testing 9

Global variables: Thread 1: Thread 2: Thread 3:

int x = 0; 1: x = 1; 2: x = 2; 3: x = 3;

Fig. 4. Concurrent writes example

in automated testing by storing the visited markings, for example, to a hash
table. Naturally the cases where our modeling approach can determine that a
test execution leads to an already visited state are limited as it does not do
any complex reasoning on the symbolic data values. Furthermore, as in the
model the loops in the program are unrolled, it cannot be used to detect cases
where a test execution loops back to a state that was already visited during
the same execution. However, the model can be in some cases used to detect
when different interleavings of the same operations lead to the same state. Cases
such as accessing different variables in a shared data structure that is protected
by a lock do occur and in such cases our approach has potential to scale much
better than stateless testing approaches, even if they reduce interleavings of
independent operations. Furthermore, the space requirement of storing markings
can be considerably smaller than storing full state information.

4 Systematic Model Construction

Modeling test executions as a Petri net is easy. However, to systematically test
a given program, we want to perform test executions that cover the complete
model. This can be done by starting with a random initial test execution, mod-
eling it and using the obtained information to compute inputs for subsequent
test executions. In this section we present two algorithms to do this.

10 Kari Kähkönen and Keijo Heljanko

Require: A program P
1: model := empty Petri net
2: visited := ∅
3: extend model with a random test execution
4: explore(M0, ∅)
5: procedure explore(M,S)
6: if M /∈ visited then
7: visited := visited ∪ {M}
8: predictTransitionsFromModel(M)
9: if model is incomplete at M then

10: extendModel(P, S, k)

11: for all transitions t enabled in M do
12: M ′ := fire(t,M)
13: S′ := S appended with t
14: explore(M ′, S′)

Fig. 5. Naive testing algorithm

4.1 Naive Stateful Approach

A simple way to construct a complete model of a program under test is to initially
model a random test execution and start traversing the computation tree of the
model. If the model does not have enough information to determine how the
computation tree should be expanded at some state, a new test execution is
performed to update the model. An algorithm based on this idea is shown in
Fig. 5. It performs a depth-first search on the reachable markings of the model
by calling recursively the explore subroutine that takes the state (marking M
of the model) and a sequence S of transitions that lead to this state as input. At
each state the algorithm determines that a model is incomplete if it is not known
what operations the threads want to perform next or if there are no transitions
in the model for these operations. This requires keeping track of the end states
of threads observed during test executions (i.e., a thread does not perform any
operations after reaching such a state). If the model does not have the necessary
information, a test execution to explore the current state is performed. After this
the transitions enabled in the current state are known. The algorithm also stores
the visited states and backtracks if an already explored state is encountered.

In some cases it is easy to determine from the model which operation a
thread wants to perform next even if the corresponding transition in the model
is missing. As an example, let us consider the program and the partial model
in Fig. 4. Let us assume that we are exploring a marking m = {s1, s5, s3, x3}.
The model is incomplete at this marking because no transition for thread 1 is
enabled in this state. However, each transition from a place representing a local
state of a thread has the same type (i.e., from a given local state, the operation
the thread wants to perform is always the same). As there is a write transition
in the postset of s1, we know that thread 1 wants to perform a write opera-
tion. In cases like this, the missing transition (t7 in our example) can be added

Lightweight State Capturing for Automated Testing 11

to the model without performing a test execution. The subroutine predict-
TransitionsFromModel performs such analysis for each visited marking. To
be more precise, predictTransitionsFromModel checks the postsets of the
places for local thread states to determine the operations the threads want to
perform and adds any missing transitions to the model. For reads and writes
this is trivial. For lock operations it needs to be checked that the lock is free
in the current state (i.e., the marking contains the respective lock place). Us-
ing predictTransitionsFromModel can sometimes significantly reduce the
need for test executions. For example, the final model for program in Fig. 4 can
be constructed with information obtained from a single test execution.

The extendModel subroutine performs a test execution both concretely
and symbolically. The subroutine takes as input a sequence S of transitions that
leads to the state that is being explored. Bound k for the execution length is used
to guarantee termination. To get concrete input values for the test execution,
all the symbolic constraints associated with the branching transitions in S are
collected and their conjunction is solved using a constraint solver. The sequence
S is also given to a runtime scheduler that schedules the execution such that the
operations are performed in the same order as the corresponding transitions in
S. After reaching the target state, the scheduler is free to follow any schedule.

We call the algorithm in Fig. 5 naive because it explores interleavings of
global operations even if they are independent. This is unnecessary to find errors
such as assertion violations or reachability of control states. Naturally different
interleavings of independent operations lead to the same state and the algo-
rithm backtracks in such cases. To avoid exploring unnecessary interleavings, we
present next an algorithm based on unfolding the model. This approach is only
guaranteed to cover the reachable local states of threads and to detect all as-
sertion violations. Detecting all deadlocks is not guaranteed. Another approach
would be to use partial order reduction algorithms such as DPOR [6]. As using
state matching with DPOR requires special care to guarantee the completeness
of the algorithm [16], investigating such possibilities is left for future work.

4.2 Unfolding Based Approach

To explore an unfolding of the model instead of the computation tree, we make
a small modification to the modeling approach presented in Sect. 3: instead of
modeling a shared variable with a single place in each reachable marking, we
duplicate the place for each thread. In other words, each shared variable place
in the model is replaced with n places, where n is the number of threads in the
program. A write transition is made to access each of the n copies while a read
transition accesses only the local copy belonging to the thread performing the
read. This approach is known as place replication [5] and it has the effect that
two concurrent reads of the same shared variable become independent. If place
replication is not used, the unfolding process would explicitly explore different
interleavings of read transitions. The use of place replication is demonstrated in
the example at the end of this section.

12 Kari Kähkönen and Keijo Heljanko

Require: A program P
1: model := empty Petri net, unf := initial unfolding
2: visited := ∅
3: extend model with a random test execution
4: extensions := events enabled in the initial state
5: while extensions 6= ∅ do
6: choose ≺-minimal event e from extensions
7: M := St(e)
8: predictTransitionsFromModel(M)
9: if model is incomplete at M then

10: extendModel(P, e, k)
11: else
12: add e to unf
13: extensions := extensions \ {e}
14: if M /∈ visited then // e is not a terminal

15: visited := visited ∪ {M}
16: extensions := extensions ∪ PossibleExtensions(e, unf)

Fig. 6. Unfolding algorithm

The unfolding based testing algorithm is shown in Fig. 6 and the idea behind
it is similar as with the naive algorithm. Initially a random test execution is per-
formed to start the model construction. The algorithm maintains a set of events
that can be used to extend the unfolding. Initially such events are those that are
enabled in the initial state. The algorithm then starts adding these extensions
to the unfolding in the order specified by the partial order ≺ (lines 5-6). As
discussed in Sect. 2, we use the ERV adequate order to guarantee completeness.

To be able to avoid exploring states multiple times, the algorithm computes
St(e) for each event e added to the unfolding. This can be seen as the state that is
reached by following the shortest execution path to the event e. For the obtained
marking (state), the algorithm performs the same analysis for missing transitions
as the naive algorithm does (line 8). If after adding the predicted transitions the
model is incomplete at the obtained marking, a new test execution is performed
to update the model. Otherwise the algorithm adds the selected event to the
unfolding and determines if it is a terminal. This is done by checking if an event
with the same marking St(e) has already been added to the unfolding (line 14). If
the event is not a terminal, the algorithm computes a set of new events that can
be added to the unfolding and adds these events to the set of possible extensions.
To be more precise, a possible extension is an event that has not yet been added
to the unfolding but could be fired in some reachable marking.

Computing Possible Extensions. There exists several algorithms for computing
possible extensions. Most of these algorithms, however, have been designed for
arbitrary Petri nets and are computationally the most expensive part of building
unfoldings. Such algorithms can be used in our testing approach but this could
adversely affect the performance. Fortunately, the Petri net models constructed

Lightweight State Capturing for Automated Testing 13

in our approach have a restricted structure that makes computing possible ex-
tensions more efficient than in the general case. We have recently described an
efficient possible extensions algorithm in [10] that works with unfoldings that
are constructed in a similar way as in our new testing algorithm. We use this
efficient algorithm in the implementation of the algorithm in Fig 6.

Computing Inputs For Test Executions. Extending a model with a test execution
can be done similarly as in the naive algorithm. The difference is that with
unfoldings we do not have directly a sequence of transitions that leads to the
state (i.e., marking M) we want to explore. However, obtaining such a sequence
is easy. The state is reached by firing the transitions corresponding to the local
configuration of e. If the events in the unfolding have labels that describe the
order in which they were added to the unfolding (e.g., the numbers on events
in Fig. 1), an event with a larger label cannot causally precede an event with a
smaller label. This means that the transitions can be fired in the order given by
the labeling of their corresponding events to reach the marking M .

Example 3. To illustrate the unfolding based algorithm, let us consider the Petri
net model and its unfolding in Fig. 7. The model represents a program with two
threads that acquire a lock and read a shared variable x. The first thread also
branches its execution based on input values at the end. Note that the places for
x have been replicated for each thread (i.e., x1 has been replicated to x11 and x21).
This makes the read transitions independent as explained earlier. To construct
the net in Fig. 7, the algorithm first performs a random test execution. In this
example, any execution provides enough information to model all the transitions
shown in the Petri net model. However, depending which branch the first thread
follows at the end, the model remains incomplete at place s9 or s10 as the
corresponding local state is not explored. From the initial state it is possible to
fire transitions t1 and t2. The events 1 and 2 correspond to these transitions and
are added to the set of possible extensions. The algorithm selects event 1 to be
added to the unfolding and this results in a new reachable marking where it is
possible to fire event 3. The found event is added to the set of possible extensions
and the same process is continued until the algorithm selects the event 12 to be
added to the unfolding. The marking computed at line 7 is the same for this
event as well as for event 11. Therefore event 12 is a terminal (marked with a
cross) and possible extensions for it are not computed. Let us assume that the
initial test execution did not explore the state corresponding to place s9. To add
event 13 to the unfolding, the algorithm needs first to perform a test execution
to explore s9 so that it has enough information to compute possible extensions
for event 13. This is achieved by a test execution that follows the transitions
corresponding to the events 1, 3, 5 and 13. Let us assume that the symbolic
constraint associated with t7 is input1 > 5. Solving this constraint gives the test
execution a concrete input value (e.g., the value 6). After performing the test
execution, the algorithm knows that s9 corresponds to an end state and can
continue the unfolding process by adding event 13 and finally event 14.

14 Kari Kähkönen and Keijo Heljanko

Fig. 7. A model and its unfolding

5 Experiments

We have performed a set of experiments with the new algorithms and compared
them with a combination of DSE and DPOR as described in [13] and the state-
less unfolding based testing algorithm described in [10]. The naive algorithm
described in this paper and DPOR have also been augmented with sleep sets [7]
to further reduce the number of test executions needed. The stateless unfold-
ing algorithm constructs similar unfoldings (without constructing the Petri net
model) as the new algorithm except that no terminal events are used. In this
sense our new approach can be seen as extending the testing approach in [10]
by taking some state information into account.

The following benchmarks are used in the experiments. Fib and Szymanski
are from the 1st International Competition on Software Verification except that
they have been simplified by limiting how many times some loops are executed.
Filesystem benchmark is from [6] where it was used to evaluate DPOR. Dining
implements a dining philosophers problem where each philosopher eats twice. In
Locking all accesses to shared memory are protected by a single lock. Updater
contains a set of threads where some threads update values in shared memory
and other threads perform work based on these values. Writes is similar to the
program in Fig. 4 except with more threads and more writes per thread. Finally,
synthetic benchmarks perform randomly generated sequences of operations on
input values and on global variables. Benchmarks with multiple variants are sim-
ilar with each other except that the number of threads increases or the program
otherwise increases in complexity.

The results of the experiments are shown in Table 1. For each algorithm the
table shows the number of test executions needed to fully cover the program
under test and the time required to do this. As the algorithms are partially ran-

Lightweight State Capturing for Automated Testing 15

Stateless unfolding Stateless DPOR Stateful naive Stateful unfolding

Benchmark tests time tests time tests time tests time

Fib 1 19605 0m 17s 21102 0m 21s 5746 0m 11s 4946 0m 15s
Fib 2 218243 4m 18s 232531 4m 2s 53478 3m 45s 46829 3m 15s

Filesystem 1 3 0m 0s 142 0m 4s - (> 30m) 3 0m 0s
Filesystem 2 3 0m 0s 2227 0m 46s - (> 30m) 3 0m 0s

Dining 1 798 0m 3s 1161 0m 3s 3 0m 0s 4 0m 0s
Dining 2 5746 0m 14s 10065 0m 22s 3 0m 1s 3 0m 1s
Dining 3 36095 1m 29s 81527 3m 29s 2 0m 7s 4 0m 1s
Dining 4 205161 12m 55s - (> 30m) - (> 30m) 2 0m 3s

Szymanski 65138 2m 3s 65138 0m 30s 50264 0m 43s 46679 2m 35s

Locking 1 2520 0m 8s 2520 0m 6s 20 0m 1s 18 0m 3s
Locking 2 22680 0m 56s 22680 0m 47s 29 0m 2s 26 0m 9s
Locking 3 - (> 30m) - (> 30m) 115 0m 21s 89 3m 32s

Updater 33269 2m 22s 33463 2m 6s 13586 1m 23s 12259 1m 52s

Writes - (> 30m) - (> 30m) 1 0m 0s 1 0m 0s

Synthetic 1 926 0m 3s 1661 0m 4s 68 0m 1s 62 0m 1s
Synthetic 2 8205 0m 41s 22462 1m 20s 123 0m 7s 97 0m 11s
Synthetic 3 11458 1m 12s 37915 2m 18s 326 1m 8s 298 0m 30s

Table 1. Comparison of different approaches

domized (e.g., the random initial execution), the experiments were repeated ten
times and the average results are reported. As a sanity check, it was checked
that both the naive and the stateful unfolding algorithms generated models of
the same size. From the results it can be seen that the stateful algorithms can
sometimes greatly outperform the stateless testing approaches. The naive algo-
rithm is more lightweight than the unfolding approach and therefore typically
faster for small programs. However, the naive algorithm scales poorly on some
benchmarks. The unfolding based algorithm is only guaranteed to cover the
reachable local states of threads and therefore it typically scales better. In some
cases, such as with Szymanski, our new approach does not provide a significant
reduction to the number of test executions. In such cases the stateful algorithms
can be slower than the stateless counterparts. With stateless unfolding the or-
der in which events are added does not matter and therefore unfolding with
terminals has the additional overhead of sorting the possible extensions. One
disadvantage of the stateful approaches is that they require more memory as the
model and the visited markings need to be stored.

6 Related Work

Stateful approaches have been successful in model checking. However, when sys-
tematically testing real-world programs, storing explored states can require a
considerable amount of memory. Even though methods to alleviate this problem
have been developed (e.g, compression and hashing [9] and selective caching [2]),

16 Kari Kähkönen and Keijo Heljanko

many testing tools rely on stateless exploration. The problem with stateless test-
ing, even when combined with partial order reductions, is that part of the state
space may be explored multiple times. Our work can be seen as balancing be-
tween complete state capturing and stateless search.

Yang et al. [16] propose a related lightweight approach to capture states at
runtime that is based on tracking changes between successive local states without
storing full state information. In their approach the captured local states are
abstract but they capture the shared portion of the state concretely. Therefore,
unlike our approach, their approach cannot directly be combined with DSE. They
also describe a stateful DPOR algorithm based on their state capture approach.
To guarantee the soundness of their algorithm, additional computation needs
to be performed to make sure that any subset of the state space is not missed.
With unfoldings this is handled by adding events in an adequate order.

It is possible to take the valuations of variables into account in state matching.
With symbolic execution this leads to subsumption checking of symbolic states.
Anand et al. [1] propose a combination of subsumption checking and abstractions
for data structures such as lists and arrays. Such approaches are considerably
more heavyweight compared to our approach but can match states that our
approach cannot. An alternative way to reduce the number of states that need
to be explored when using symbolic execution is to use state merging [12], where
multiple execution paths are expressed symbolically instead of exploring them
separately. This, however, makes path constraints more demanding to solve.

7 Conclusions

We have presented a lightweight approach to capture abstract state information
of multithreaded programs. This approach is based on modeling programs under
test with Petri nets and using this model to avoid exploring reachable states
multiple times. We have presented a testing algorithm that combines the mod-
eling approach with DSE. Based on our experiments, lightweight state matching
can greatly improve the scalability of DSE based testing algorithms that target
multithreaded programs. Potential directions for future work are combining the
state capture approach with other partial order reduction algorithms and im-
plementing modeling constructs for common cases such as waits in while loops
that do not change the local state of the waiting thread. Another possibility is
to take variable valuations in different states into consideration. As discussed in
Sect. 1, capturing full state information can be expensive. However, as the Petri
net model contains places for shared variables, it is possible to use the same
shared variable place whenever the shared variable has the same concrete value
(i.e., the value does not depend on inputs). This could make the model more
compact.

Acknowledgments

This work was financially supported by Academy of Finland (project 139402).

Lightweight State Capturing for Automated Testing 17

References

1. Anand, S., Pasareanu, C.S., Visser, W.: Symbolic execution with abstract subsump-
tion checking. In: Valmari, A. (ed.) SPIN. Lecture Notes in Computer Science, vol.
3925, pp. 163–181. Springer (2006)

2. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Jr., W.A.H.,
Somenzi, F. (eds.) CAV. Lecture Notes in Computer Science, vol. 2725, pp. 433–
445. Springer (2003)

3. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science, Springer-Verlag (2008)

4. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

5. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.)
CAV. Lecture Notes in Computer Science, vol. 4144, pp. 315–328. Springer (2006)

6. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) POPL. pp. 110–121. ACM (2005)

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (1996)

8. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI 2005). pp. 213–223. ACM (2005)

9. Holzmann, G.J.: The model checker Spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

10. Kähkönen, K., Saarikivi, O., Heljanko, K.: Using unfoldings in automated testing
of multithreaded programs. In: Proceedings of the 27th IEEE/ACM International
Conference Automated Software Engineering (ASE 2012). pp. 150–159 (2012)

11. Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding Petri
nets. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR. Lecture Notes in Computer
Science, vol. 2154, pp. 366–380. Springer (2001)

12. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI. pp. 193–204. ACM
(2012)

13. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reduc-
tions for concolic testing. In: Proceedings of the 12th International Conference on
Application of Concurrency to System Design (ACSD 2012). pp. 132–141 (2012)

14. Sen, K.: Scalable automated methods for dynamic program analysis. Doctoral the-
sis, University of Illinois (2006)

15. Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets:
Advances in Petri Nets 1990. pp. 491–515. Springer-Verlag, London, UK (1991)

16. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic
partial order reduction. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN.
Lecture Notes in Computer Science, vol. 5156, pp. 288–305. Springer (2008)

