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1. INTRODUCTION

When constructing a system that is capable of understandingand producing language, a
fundamental task is the determination of the basic languageunits and their relationships.
Many practical natural language processing (NLP) problemsare best solved using lexical
resources, in their simplest form an application-specific vocabulary. For example, in infor-
mation retrieval the analysis entails collecting a list of words and detecting their association
with topics of discussion. Moreover, a vocabulary is essential for obtaining good results in
speech recognition.

Words are often thought of as basic units of representation.However, especially in
inflecting and compounding languages this view is hardly optimal. For instance, if one
treats the following English words (‘hand, hands, left-handed’) as separate entities, one
neglects the close relationships between these words, as well as the relationship of the
plural ‘s’ to other plural word forms (e.g., ‘heads, arms, fingers’). Overlooking these
regularities accentuates data sparsity, which is a seriousproblem in statistical language
modeling.
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According to linguistic theory, morphemes are the smallestmeaning-bearing units of
language as well as the smallest units of syntax [Matthews 1991]. Every word consists
of one or several morphemes; consider for instance the English words ‘hand, hand+s,
left+hand+ed, finger+s, un+avail+able’. There exist linguistic methods and automatic tools
for retrieving morphological analyses for words, e.g., based on the two-level morphology
formalism [Koskenniemi 1983]. However, these systems mustbe tailored separately for
each language, which demands a large amount of manual work byexperts. Moreover, spe-
cific tasks often require specialized vocabularies, which must keep pace with the rapidly
evolving terminologies.

If it is possible to discover a morphology automatically from unannotated text, language
and task independence are easier to achieve. As we will demonstrate in this work, by
observing the language data alone it is possible to come up with a model that captures
regularities within the set of observed word forms. If a human were to learn a language in
an analogous way, this would correspond to being exposed to astream of large amounts of
language without observing or interacting with the world where this language is produced.
This is clearly not a realistic assumption about language learning in humans. However,
Saffran et al. [1996] show that adults are capable of discovering word units rapidly in a
stream of a nonsense language without any connection to meaning. This suggests that
humans do use distributional cues, such as transition probabilities between sounds, in lan-
guage learning. And these kinds of statistical patterns in language data can be successfully
exploited by appropriately designed algorithms.

Based on a comprehensive review of contemporary studies of how children start to ac-
quire language, also Kit [2003] concludes that children certainly make use of statistical
cues. Kit further proposes the least-effort principle as a probable underlying approach
that is supported by both empirical evidence and theoretical considerations. The least-
effort principle corresponds to Occam’s razor, which says that among equally performing
models one should prefer the smallest one. This can be formulated mathematically using
the Minimum Description Length (MDL) principle [Rissanen 1989] or in a probabilistic
framework as a maximum a posteriori (MAP) model.

Generally, a system using language benefits from representing as large a vocabulary as
possible. However, both humans and artificial systems need to be able to store language
economically using limited memory capacity. This is particularly true about small portable
devices. For example, if one has 500 000 word forms in a statistical n-gram language
model, or essentially the same information using only 20 000morphemes, considerable
improvements in efficiency can be obtained.

In language understanding and generation one must not only represent possible word
forms but also their rules of generation in the context of other words. An important consid-
eration is the ability to generate and to recognize unseen word forms and expressions. For
example, we would expect a system to be able to handle the word‘shoewiping’ when some
other related word forms have been observed (e.g., ‘shoe, wiped’). If a word-based system
has not observed a word, it cannot recognize or generate it. In contrast, a morpheme-based
system can generate and recognize a much larger number of different word forms than it
has observed.

In this work we describe a general probabilistic model family for morphology induction.
The model family that we callMorfessorconsists of independent components that can be
combined in different configurations. We utilize the maximum a posteriori framework for

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.



Unsupervised Models for Morpheme Segmentation and Morphology Learning · 3

expressing the model optimization criteria.
Morfessor segments the input words into units calledmorphs. A lexicon of morphs is

constructed, where information about both the distributional nature (“usage”) and “form”
of each morph is stored. Usage relates to the distributionalnature of the occurrence of
morphs in words. Form corresponds to the string of letters the morph consists of. We ex-
perimentally evaluate different instances of the Morfessor model and compare them against
a benchmark morphology-learning algorithm [Goldsmith 2001; 2005].

1.1 Structure of the article

Related work on both morphology learning and word segmentation is discussed in Sec-
tion 2. Moreover, the point of view of applying different mathematical modeling frame-
works is also considered.

The Morfessor model family is outlined in Section 3. The components of the model as
well as their interpretations in terms of usage and form are discussed in detail. A summary
of our previous morphology discovery methods as instances of this general framework is
presented in Section 4.

Section 5 exhibits thorough experimental results comparing the different instances of
the model with data sets of different sizes, ranging from thousands to millions of words.
The results are intended to provide an understanding on how particular components of
the general model affect morphology learning. We use an evaluation task that measures
segmentation accuracy and coverage of the proposed segmentations against gold standard
segmentations for Finnish and English.

Section 6 discusses issues beyond the discovery of morphemeboundaries as well as
considers aspects that are not handled by the current model framework. Conclusions are
presented in Section 7.

2. RELATED WORK

Unsupervised morphology induction is closely connected with the field of automatic word
segmentation, i.e., the segmentation of text without blanks into words (or sometimes mor-
phemes). For example, consider the Chinese and Japanese languages, where text is written
without delimiters between words. A first necessary task in the processing of these lan-
guages is to determine probable locations of boundaries between words.

In the following, we will discuss a few aspects related to morphology learning and word
segmentation. The existing algorithms in these fields include examples from both the su-
pervised and unsupervised machine learning paradigms. We will focus on unsupervised
and minimally supervised methods. For a broader overview, which includes work on su-
pervised algorithms, the reader is referred to, e.g., [Goldsmith 2001; Kit et al. 2002].

2.1 Challenges for highly-inflecting and compounding languages

It is common that algorithms designed for morphology learning not only produce a seg-
mentation of words into morphemes, but additionally attempt to discover relationships be-
tween words, such as knowledge of which word forms belong to the same inflectional
paradigm. These higher-reaching goals are achieved by constraining the model space
severely: prior assumptions regarding the inner structureof words (morphotactics) are ex-
pressed as strict constraints. Typically, words are restricted to consist of one stem followed
by one, possibly empty, suffix as in, e.g., [Déjean 1998; Snover and Brent 2001]. Gold-
smith [2001] induces paradigms that he calls signatures. Indoing that he also proposes a
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Fig. 1. Morpheme segmentation of the Finnish
word ‘elämäntapamuutoksilla’ (“with [the]
changes of life style”).

elämä n tapa muutoks i lla
life of style change -s with

recursive structure in which stems can consist of a sub-stemand a suffix. Also prefixes are
possible in Goldsmith’s model.

In word segmentation such constraints are inapplicable, because the number of words
per sentence can vary greatly and is rarely known in advance.Commonly, algorithms
designed for word segmentation utilize very little prior knowledge or assumptions about
the syntax of the language. Instead, prior knowledge about typical word length may be
applied, and small seed lexicons are sometimes used for bootstrapping. The segmentation
algorithms try to identify character sequences that are likely words without consideration
of the context in which the words occur (e.g., [Ando and Lee 2000; Yu 2000; Peng and
Schuurmans 2001]).

For highly-inflecting and compounding languages such as Finnish both the outlined ap-
proaches are problematic. Typically word segmentation algorithms perform on an insuffi-
cient level, apparently due to the lack of any notion of morphotactics. On the other hand,
typical morphology learning algorithms have problems because the ingrained assumptions
they make about word structure are generally wrong (that is,too strict) for Finnish, or for
other highly-inflecting or compounding languages. In short, they cannot handle the possi-
bly high number of morphemes per word. A Finnish word can consist of lengthy sequences
of alternating stems and suffixes, as in the example in Figure1. Our attempts at finding a
solution to this problem are described in the current paper.Subsets of these results have
previously been presented in the articles [Creutz and Lagus2002; Creutz 2003; Creutz and
Lagus 2004; 2005a]. However, the generalized structure anddiscussion on its components
are presented here for the first time.

2.2 General modeling methodologies

There exist some central mathematical frameworks, or modeling methodologies, that can
be used for formulating models for morphology learning and word segmentation.

In maximum likelihood (ML) modeling, only the accuracy of the representation of the
data is considered when choosing a model. That is, model complexity (i.e., size of the
model) is not taken into account. ML is known to lead to overlearning, unless some restric-
tive model search heuristics or model smoothing is applied.There exist word segmenta-
tion and morphology learning algorithms where the complexity of the model is controlled
heuristically, e.g., [Ge et al. 1999; Peng and Schuurmans 2001; Kneissler and Klakow
2001; Creutz and Lagus 2004].

Probabilistic maximum a posteriori (MAP) models and equivalently models based on
the Minimum Description Length (MDL) principle choose the best model by simultane-
ously considering model accuracy and model complexity; simpler models are favored over
complex ones. This generally improves generalization capacity by inhibiting overlearn-
ing. A number of word segmentation and morphology learning algorithms have been for-
mulated either using MDL or MAP, e.g., [de Marcken 1996; Deligne and Bimbot 1997;
Kazakov 1997; Brent 1999; Kit and Wilks 1999; Yu 2000; Goldsmith 2001; Snover and
Brent 2001; Creutz and Lagus 2002; Creutz 2003]. In these works, the goal is to find the
most likely lexicon (model) as well as a likely segmentationof the data. A more elaborate,
and a much more computationally intensive way of performingthe task would be to use
Bayesian model averaging. There instead of choosing one particular model, every possible
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model among some parameterized set is chosen with a weight that is proportional to the
probability of the particular model. However, we are unaware of attempts to use such an
approach in this task.

Finite-state automata (FSA) can be used to describe the possible word forms of a lan-
guage, e.g., in the two-level morphology framework [Koskenniemi 1983]. There exist
algorithms that try to learn FSA:s that compactly model the word forms observed in the
training data [Johnson and Martin 2003; Goldsmith and Hu 2004]. Also Altun and Johnson
[2001] induce a stochastic finite-state automaton describing Turkish morphology, but their
method works only in a supervised learning task, that is, they require a segmented, labeled
corpus to begin with.

Parallels from the automaton approach can be drawn to methods, inspired by the works
of Zellig S. Harris [1955; 1967], where a word or morpheme boundary is suggested at
locations where the predictability of the next letter in a letter sequence is low, e.g., [Déjean
1998; Ando and Lee 2000; Adda-Decker 2003; Feng et al. 2004].If the letter sequences
(words or sentences) are sorted into a suffix tree, these “low-predictability locations” cor-
respond to nodes with a high branching factor. The suffix treecould be compressed by
merging nodes that have identical continuations, thereby producing a more compact data
structure, which is an FSA.

2.3 Learning morphological structure

The model presented in this work provides a good means for thesegmentationof words
into morphemes. Alternatively, the model can be applied to word formgeneration. The
rather few restrictions incorporated in the current model makes it a very permissive model
of morphology. Such a model predicts a large number of words outside of the observed
training corpus. This is desirable behavior, since a successful learning algorithm should
be able to generalize to unseen data. However, a permissive model also makes many mis-
takes. Many alternative approaches to morphology learningfocus on the acquisition of
more restrictive morphologies, where much fewer words outside of the training corpus are
recognized.

Some works discover pairs of related words or pairs of multiword collocations.
Jacquemin [1997] discovers morphological variants of multiword collocations, e.g., ‘longi-
tudinal recording’ vs. ‘longitudinally recorded’. The collocations essentially have the same
semantics and can be identified through regular suffix patterns, e.g., {(ǫ, ing), (ly, ed)}. Ba-
roni et al. [2002] and Neuvel and Fulop [2002] propose algorithms that learn similarities in
the spelling of word pairs. The discovery of patterns is not restricted to concatenation, but
also include, e.g., vowel change such as the German Umlaut: ‘Anschlag’ vs. ‘Anschläge’.
Generation takes place by predicting missing word pairs. For instance, the pair ‘receive’
vs. ‘reception’ yields the pair ‘deceive’ vs. ‘deception’ by analogy (where it is assumed
that the word ‘deception’ was not in the training set).

Other works aim at forming larger groups of related word forms. Gaussier [1999] learns
derivational morphology from inflectional lexicons. Orthographically similar words are
clustered into relational families. From the induced word families, derivational rules can
be acquired, such as the following French verb-to-noun conversions: ‘produire’→ ‘pro-
duction’, ‘produire’→ ‘producteur’. Schone and Jurafsky [2000; 2001] make use of a
Harris-like algorithm to separate suffixes and prefixes fromword stems. Whether two or-
thographically similar word forms are morphologically related is determined from their
context of neighboring words. A semantic representation for a word is obtained from
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the context using Latent Semantic Analysis (LSA). The semantic properties of a word are
assumed to emerge from a large context window, whereas syntactic properties can be deter-
mined from a narrow window of the immediate word context. In addition to orthographic,
semantic, and syntactic similarity, transitive closure isutilized as a forth component. That
is, if ‘conductive’ is related to ‘conduct’ and ‘conductivity’ is related to ‘conductive’, then
‘conductivity’ is related to ‘conduct’.

Yarowsky and Wicentowski [2000] and Yarowsky et al. [2001] discover shared root
forms for a group of inflected words. Verbs in numerous languages are studied. Frequency
distributions are included as a clue to whether words are related. For instance, the English
word ‘singed’ can be discarded as a past tense candidate of ‘to sing’ because ‘singed’ is far
too rare. Furthermore, parallel corpora in multiple languages are utilized, and one language
can function as a “bridge” for another language. For example, the French verb ‘croire’ can
be discovered as the root of ‘croyaient’, since these two forms are linked to the English
verb ‘believe’ in a parallel text. A missing link from the resembling verb forms ‘croissant’
and ‘croître’ tells us that these are not likely to be relatedto ‘croire’. Wicentowski [2004]
learns a set of string transductions from inflection-root pairs and uses these to transform
unseen inflections to their corresponding root forms. This model, however, is trained in a
supervised manner.

A further step consists in inducing complete inflectional paradigms, i.e., discovering
sets of stems that can be combined with a particular set of suffixes. Goldsmith [2001]
formulates his well-known algorithm Linguistica in an MDL framework, whereas Snover
and Brent [2001] and Snover et al. [2002] present a similar, probabilistically formulated,
model. These models do not predict any word forms outside of the training data. If the fol-
lowing English verb forms have been observed: ‘talk, talks,talking, walk, walked, walks’,
the verbs ‘talk’ and ‘walk’ will go into separate paradigms:‘talk’ with the suffix set {ǫ,
s, ing} and ‘walk’ with the suffix set {ǫ, ed, s}. More general paradigms can be obtained
by “collapsing them” together, i.e. clustering them based on context similarity [Hu et al.
2005b]. This model can, in principle, predict the missing verb forms ‘talked’ and ‘walk-
ing’.

As mentioned previously in Section 2.1, existing models make the learning of higher-
level morphological structure computationally feasible by assuming that a word consists
of maximally two, or three, morphemes. In recent work, Goldsmith and Hu [2004] and Hu
et al. [2005a] move towards morphologies with a larger number of morphemes per word.
A heuristic is described that is capable of learning 3- and 4-state FSA:s that model word
forming in Swahili, a language with rich prefixation.

2.4 Composition of meaning and form

A central question regarding morpheme segmentation is thecompositionalityof meaning
and form. If the meaning of a word is transparent in the sense that it is the “sum of the
meaning of the parts”, then the word can be split into the parts, which are the morphemes,
e.g., English ‘foot+print, joy+ful+ness, play+er+s’. However, it is not uncommon that the
form does consist of several morphemes, which are the smallest elements of syntax, but
the meaning is not entirely compositional, e.g., English ‘foot+man’ (male servant wearing
a uniform), ‘joy+stick’ (control device), ‘sky+scrap+er’(very tall building).

de Marcken [1996] proposes a model for unsupervised language acquisition, in which
he defines two central concepts:compositionandperturbation. Composition means that
an entry in the lexicon is composed of other entries, e.g., ‘joystick’ is composed of ‘joy’

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.



Unsupervised Models for Morpheme Segmentation and Morphology Learning · 7

and ‘stick’. Perturbation means that changes are introduced that give the whole a unique
identity, e.g., the meaning of ‘joystick’ is not exactly theresult of the composition of the
parts. This framework is similar to the class hierarchy of many programming languages,
where classes can modify default behaviors that are inherited from superclasses. The more
of its properties a lexical parameter inherits from its components, the fewer need to be
specified via perturbations.

Among other things, de Marcken applies his model in a task of unsupervised word seg-
mentation of a text, where the blanks have been removed. As a result, hierarchical segmen-
tations are obtained, e.g., for the phrase ‘for the purpose of’: [[f[or]][[t[he]][[[p[ur]][[[po]s]
e]][of]]]]. The problem here from a practical point of view is that there is no way of deter-
mining which level of segmentation corresponds best to a conventional word segmentation.
On the coarsest level the phrase works as an independent “word” (‘forthepurposeof’). On
the most detailed level the phrase is shattered into individual letters.

3. FORMULATION OF THE MORFESSOR MODEL STRUCTURE

The determination of a suitable model family, that is, modelstructure, is of central impor-
tance, since it sets a hard constraint on what can be learned in principle. A too restricting
model family may exclude all optimal and near-optimal models, making learning a good
model impossible, regardless of how much data and computation time is spent. In contrast,
a too flexible model family is very hard to learn as it requiresimpractical amounts of data
and computation.

We present Morfessor, a probabilistic model family for morphology learning. The model
family consists of a number of distinct components which canbe interpreted to encode both
syntactic and semantic aspects of morphs, which are word segments discovered from data.
Morfessor is a unifying framework that encompasses the particular models introduced ear-
lier in [Creutz and Lagus 2002; Creutz 2003; Creutz and Lagus2004; 2005a], and also
has close connections to models proposed by other researchers. Each of these particular
works has brought additional understanding regarding relevant problems and how they can
be solved.

This section contains the mathematical formulation of the general model structure along
with a discussion of the interpretation of its components. In Section 4 we outline how
our earlier models can be seen as particular instances, or subsets, of this model. For a
discussion on how to estimate any of the models (i.e., for thedetails of the model search
algorithms), the interested reader is referred to our earlier publications.

3.1 Maximum a posteriori estimate of the overall probability

The task is to induce a model of language in an unsupervised manner from a corpus of
raw text. The model of language (M) consists of a morph vocabulary, or alexicon of
morphs, and agrammar. We aim at finding the optimal model of language for producing
a segmentation of the corpus, i.e., a set of morphs that is concise, and moreover gives a
concise representation for the corpus. Themaximum a posteriori(MAP) estimate for the
parameters, which is to be maximized, is:

arg max
M

P (M| corpus) = arg max
M

P (corpus|M) · P (M), where (1)

P (M) = P (lexicon, grammar). (2)
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As can be seen above (Eq. 1), the MAP estimate consists of two parts: the probability of
the model of languageP (M) and themaximum likelihood(ML) estimate of the corpus
conditioned on the given model of language, written asP (corpus|M). The probability
of the model of language (Eq. 2) is the joint probability of the probability of the induced
lexicon and grammar. It incorporates our assumptions of howsome features should affect
the morphology learning task. This is theBayesiannotion of probability, i.e., using prob-
abilities for expressing degrees of prior belief rather than counting relative frequency of
occurrence in some empirical test setting.

In the following, we will describe the components of the Morfessor model in greater
detail, by studying the representation of the lexicon, grammar and corpus, as well as the
components of these.

3.2 Lexicon

The lexicon contains one entry for each distinct morph (morph type) in the segmented
corpus. We use the term “lexicon” to refer to an inventory of whatever information one
might want to store regarding a set of morphs, including their interrelations.

Suppose that the lexicon consists ofM distinct morphs. The probability of coming up
with a particular set ofM morphsµ1 . . . µM making up the lexicon can be written as:

P (lexicon) = P (size(lexicon) = M) ·P (properties(µ1), . . . , properties(µM )) ·M !. (3)

The product contains three factors: (i) the prior probability that the lexicon contains exactly
M distinct morphs, (ii) the joint probability that a set ofM morphs, each with a particular
set of properties, is created, and (iii) the factorM !, which is explained by the fact that there
areM ! possible orderings of a set ofM items and the lexicon is the same regardless of the
order in which theM morphs emerged. (It is always possible to afterwards rearrange the
morphs into an unambiguously defined order, such as alphabetical order.)

The effect of the first factor,P (size(lexicon) = M), is negligible, since in the computa-
tion of a model involving thousands of morphs and their parameters, one single probability
value is of no practical significance. Thus, we have omitted to define a prior distribution
for P (size(lexicon)).1

The properties of a morph can be divided into information regarding (1) the “usage” and
(2) the “form” of the morph:

P (properties(µi)) = P (usage(µi), form(µi)). (4)

In Section 3.5 we present a set of properties, each of which corresponds to a component of
the model, and group them under the usage and form aspects. The purpose of this grouping
is to facilitate the understanding of the model: the model itself would be equivalent without
it.

3.3 Grammar

Grammar can be viewed to contain information about how language units can be combined.
In this work we model a simple morphotactics, that is, word-internal syntax. Instead of
estimating the structure of the grammar from data, we currently utilize a specific fixed

1If one were to define a proper prior, one possible choice wouldbe Rissanen’s universal prior for positive numbers
(see Eq. 14).
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structure. Therefore we do not have to calculate the probability of the grammar as a whole,
andP (M) in Equation 2 reduces toP (lexicon).

The fixed structure of the grammar is taken as the following: morphs are generated from
a small number of categories, which areprefix (PRE), stem(STM), suffix(SUF), andnon-
morpheme(NON) and will be described more thoroughly below. Between the categories
there are transition probabilities, which exhibit the first-order Markov property. Words can
consist of any number of morphs, which can be tagged with any categories, with a few
restrictions: Suffixes are not allowed in the beginning and prefixes at the end of words.
Furthermore, it is impossible to move directly from a prefix to a suffix without passing
through another morph.

It is possible for a morph to be assigned different categories in different contexts. The
tendency of a morphµi to be assigned a particular categoryCi, P (Ci |µi), (e.g., the prob-
ability that the English morph ‘ness’ functions as a suffix) is derived from the parameters
related to the usage of the morph:

P (Ci |µi) = P (Ci | usage(µi)). (5)

The inverse probability, i.e., the probability of a particular morph when the category is
known, is needed for expressing the probability of the segmentation of the corpus. This
emission probabilityP (µi |Ci) is obtained using Bayes’ formula:

P (µi |Ci) =
P (Ci |µi) · P (µi)

P (Ci)
=

P (Ci |µi) · P (µi)
∑

∀µi′
P (Ci |µi′) · P (µi′)

. (6)

The category-independent probabilitiesP (µi) are maximum likelihood estimates, i.e.,
they are computed as the frequency of the morphµi in the corpus divided by the total
number of morph tokens.

3.4 Corpus

Every word form in the corpus can be represented as a sequenceof some morphs that are
present in the lexicon. Usually, there are many possible segmentations of a word. In MAP
modeling, the one most probable segmentation is chosen. Theprobability of the corpus,
when a particular model of language (lexicon and grammar) and morph segmentation is
given, takes the form:

P (corpus|M) =

W
∏

j=1

[

P (Cj1 |Cj0)

nj
∏

k=1

[

P (µjk |Cjk) · P (Cj(k+1) |Cjk)
]

]

. (7)

As mentioned in the grammar section above, this is a Hidden Markov Model and it is
visualized in Figure 2. The product is taken over theW words in the corpus (token count),
which are each split intonj morphs. Thekth morph in thejth word, µjk, is assigned a
category,Cjk. The probability that the morph is emitted by the category iswritten as
P (µjk |Cjk). There are transition probabilitiesP (Cj(k+1) |Cjk) between the categories,
whereCjk denotes the category assigned to thekth morph in the word, andCj(k+1) denotes
the category assigned to the following, or(k + 1)th, morph. The transition probabilities
comprise transitions from a special word boundary category(#) to the first morph in the
word, as well as the transition from the last morph to a word boundary.
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Fig. 2. The HMM model of a word according to Equation 7. The word consists of a sequence of morphs which
are emitted from latent categories. For instance, a possible category sequence for the English word ‘unavailable’
would be ‘prefix + stem + suffix’ and the corresponding morphs would be ‘un + avail + able’.

3.5 Usage and form of morphs

In order to find general patterns of how a morph is used, information is collected about the
distributional natureof the occurrences of the morph in the segmented corpus. We refer to
this distribution as the “usage” of the morph. This includesboth properties of the morph
itself and properties of the context it typically appears in. The typical usage of the morph
can be parameterized and the parameters stored in the lexicon. Which parameter values are
likely is determined by probability density functions (pdf:s), which are prior pdf:s in the
Bayesian sense and favor solutions that are linguisticallymotivated. The features that have
been used for modeling usage in this work, as well as possibleextensions, are described in
Section 3.5.2.

By the “form” of a morph we understand the symbolic representation of the morph, i.e.,
the string of letters it consists of. Different strings havedifferent probabilities, which are
determined using a prior probability distribution.

Given this distinction between usage and form, we make the assumption that they are
statistically independent:

P (properties(µ1), . . . , properties(µM )) =

P (usage(µ1), . . . , usage(µM )) · P (form(µ1), . . . , form(µM )). (8)

3.5.1 Form of a morph.In the current model, we further make the simplifying assump-
tion that the forms of the morphs in the lexicon are independent of each other, thus:

P (form(µ1), . . . , form(µM )) =

M
∏

i=1

P (form(µi)). (9)

We draw inspiration from de Marcken [1996] in the sense that morphs in the lexicon
have hierarchical structure. A morph can either consist of astring of letters or of two
submorphs, which can recursively consist of submorphs. Theprobability of the form of
the morphµi depends on whether the morph is represented as a string of letters (Eq. 10a)
or as the concatenation of two submorphs (Eq. 10b):

P (form(µi)) =
{

(1 − P (sub)) ·
∏length(µi)

j=1 P (cij). (10a)
P (sub) · P (Ci1 | sub) · P (µi1 |Ci1) · P (Ci2 |Ci1) · P (µi2 |Ci2). (10b)

P (sub) is the probability that a morph has substructure, i.e., the morph consists of two
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submorphs.P (sub) is estimated from the lexicon by dividing the number of morphs having
substructure by the total number of morphs.

In (10a),P (cij) is the probability of thejth letter in theith morph in the lexicon. The
last letter of the morph is theend-of-morph character, which terminates the morph. The
probability distribution to use for the letters in the alphabet can be estimated from the
corpus (or the lexicon).

Equation 10b resembles Equation 7, where the probability ofthe corpus is given.
P (Ci1 | sub) is the probability that the first morph in the substructure isassigned the cate-
goryCi1. P (Ci2 |Ci1) is the transition probability between the categories of thefirst and
second submorphs.P (µi1 |Ci1) andP (µi2 |Ci2) are the probabilities of the submorphs
µi1 andµi2 conditioned on the categoriesCi1 andCi2. The transition and morph emis-
sion probabilities are the same as in the probability of the corpus (Eq. 7). An example of
concrete substructures are given later (Sec. 4.3, Fig. 4).

3.5.2 Features related to the usage of a morph.The set of features that could be used
for describing usage is very large: The typical set of morphsthat occur in the context
of the target morph could be stored. Typical syntactic relations of the morph with other
morphs could be included. The size of the context could vary from very limited to large
and complex. A complex context might reveal different aspects of the usage of the morph,
from fine-grained syntactic categories to broader semantic, pragmatic or topical distinc-
tions. One might even use information from multimodal contexts (e.g., images, sounds)
for grounding morphmeaningto perceptions of the world. This reasoning relies on the
philospohical view that the meaning of linguistic units (e.g., morphs) is reflected directly
in how they are used.

However, in this work only a very limited set of features is used, and only based on
information contained in word lists. As properties of the morph itself, we count thefre-
quencyof the morph in the segmented corpus and thelength in letters of the morph. As
“distilled” properties of the context the morph occurs in, we consider the intra-wordright
andleft perplexity2 of the morph.

Using the above features the probability of the usages of themorphs in the lexicon
becomes:

P (usage(µ1), . . . , usage(µM )) =

P (freq(µ1), . . . , freq(µM )) ·

M
∏

i=1

[

P (length(µi)) · P (right-ppl(µi)) · P (left-ppl(µi))
]

.

(11)

Due to practical considerations in the current implementation, we have assumed that the
length, right and left perplexity of a morph are independentof the corresponding values of
other morphs. In contrast, the frequencies of the morphs aregiven as a joint probability,
that is, there is one single probability for an entire morph frequency distribution. The
probability distributions have been chosen due to their generality and simplicity. In a
more sophisticated model formulation, one could attempt tomodel dependencies between
morphs and their features, such as the general tendency of frequent morphs to be rather
short.

Next, we describe the individual features and the prior probability distributions that are

2Perplexity, a function of entropy, describes how predictable the context is given this morph.
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used for the range of possible values of these features. We conclude the treatment of
morph usage by reporting how the usage of a morph translates into category membership
probabilities in the current grammar. We stress that this particular grammar, as well as the
set of features used, is only one possible solution among a large number of alternatives.

3.5.2.1 Frequency.Frequent and infrequent morphs generally have different seman-
tics. Frequent morphs can be function words and affixes as well as common concepts.
The meaning of frequent morphs is often ambiguous as opposedto rare morphs, which are
predominantly content words.

The knowledge of the frequency of a morph is required for calculating the value of
P (µi) in Equation 6. The probability that a particular frequency distribution emerges is
defined by the following prior probability:

P (freq(µ1), . . . , freq(µM )) = 1/

(

N − 1

M − 1

)

=
(M − 1)!(N − M)!

(N − 1)!
, (12)

whereN is the total number of morphtokensin the corpus, which equals the sum of the
frequencies of theM morphtypesthat make up the lexicon. Equation 12 is derived from
combinatorics: As there are

(

N−1
M−1

)

ways of choosingM positive integers that sum up to
N , the probability of one particular frequency distributionof M frequencies summing to
N is 1/

(

N−1
M−1

)

.

3.5.2.2 Length. We assume that the length of a morph affects the probability of whether
the morph is likely to be a stem or belong to another morph category. Stems often carry
semantic (as opposed to syntactic) information. As the set of stems is very large in a lan-
guage, stems are not likely to be very short morphs, because they need to be distinguishable
from each other.

The length of a morph can be deduced from its form if an end-of-morph character is used
(see Section 3.5.1). However, the consequence of such an approach is that the probability
of observing a morph of a particular length decreasesexponentiallywith the length of
the morph, which is clearly unrealistic. Instead of using anend-of-morph marker, one
can explicitly model morph length with more realistic priorprobability distributions. A
Poisson distributioncan be justified when modeling the length distributions of word and
morph tokens, e.g., [Nagata 1997], but for morph types (i.e., the set of morphs in the
lexicon) agamma distributionseems more appropriate [Creutz 2003].

P (length(µi)) in Equation 11 assumes values from a gamma distribution if such is used
as a prior for morph length. Otherwise, if morph length is modeled implicitly by using an
end-of-morph marker,P (length(µi)) is superfluous.

3.5.2.3 Intra-word right and left perplexity.The left and right perplexity give a very
condensed image of the immediate context a morph typically occurs in. Perplexity serves
as a measure for the predictability of the preceding or following morph.

Grammatical affixes mainly carry syntactic information. They are likely to be common
“general-purpose” morphs that can be used in connection with a large number of other
morphs. We assume that a morph is likely to be a prefix if it is difficult to predict what
the following morph is going to be. That is, there are many possible right contexts of the
morph and the right perplexity is high. Correspondingly, a morph is likely to be a suffix
if it is difficult to predict what the preceding morph can be and the left perplexity is high.
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The right perplexity of a target morphµi is calculated as:

right-ppl(µi) =
[

∏

νj ∈ right-of(µi)

P (νj |µi)
]− 1

fµi . (13)

There arefµi
occurrences of the target morphµi in the corpus. The morph tokensνj occur

to the right of, immediately following, the occurrences ofµi. The probability distribution
P (νj |µi) is calculated over all suchνj . Left perplexity can be computed analogously.3

As a reasonable probability distribution over the possiblevalues of right and left per-
plexity, we useRissanen’s universal priorfor positive numbers ([Rissanen 1989]):4

P (n) ≈ 2− log
2

c−log
2

n−log
2
log

2
n−log

2
log

2
log

2
n−..., (14)

where the sum includes all positive iterates, andc is a constant, about2.865. To obtain
P (right-ppl(µi)) andP (left-ppl(µi)), the variablen is substituted by the appropriate value,
right-ppl(µi) or left-ppl(µi)

3.5.3 Category membership probabilities.In the grammar, the tendency of a morph
to be assigned a particular category (PRE, STM, SUF, or NON) is determined by the usage
(distributional nature) of the morph (Equation 5). The exact relationship,

P (Ci | usage(µi)) = P (Ci | freq(µi), length(µi), right-ppl(µi), left-ppl(µi)), (15)

could probably be learned purely from the data, but currently we use a fixed scheme, in-
volving a few adjustable parameters.

We obtain a measure ofprefix-likenessby applying a graded threshold realized as a
sigmoid function to the right perplexity of a morph (see Figure 3a):

prefix-like(µi) =
(

1 + exp[−a · (right-ppl(µi) − b)]
)−1

. (16)

The parameterb is the perplexity threshold, which indicates the point where a morphµi

is as likely to be a prefix as a non-prefix. The parametera governs the steepness of the
sigmoid. The equation for suffix-likeness is identical except that left perplexity is applied
instead of right perplexity (Fig. 3b).

As for stems, we assume that thestem-likenessof a morph correlates positively with the
lengthin letters of the morph. A sigmoid function is employed as above, which yields:

stem-like(µi) =
(

1 + exp[−c · (length(µi) − d)]
)−1

. (17)

whered is the length threshold andc governs the steepness of the curve (Fig. 3c).
Prefix-, suffix- and stem-likeness assume values between zero and one, but they are not

probabilities, since they usually do not sum up to one. A proper probability distribution
is obtained by first introducing thenon-morphemecategory, which corresponds to cases
wherenoneof the proper morph classes is likely. Non-morphemes are typically short,

3In fact, the best results are obtained when only context morphsνj that are longer than three letters are included in
the perplexity calculation. This means that the right and left perplexity are mainly estimates of the predictability
of thestemsthat can occur in the context of a target morph. Including shorter morphs seems to make the estimates
less reliable, because of the existence of non-morphemes (noise morphs).
4Actually Rissanen defines his universal prior over allnon-negativenumbers and he would writeP (n − 1) on
the left side of the equation. Since the lowest possible perplexity is one, we do not include zero as a possible
value in our formula.
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Fig. 3. Sketch of sigmoids, which express our prior belief ofhow the right and left perplexity as well as the length
of a morph affects its tendency to function as a prefix, suffix,or stem.

like the affixes, but their right and left perplexity are low,which indicates that they do not
occur in a sufficient number of different contexts in order toqualify as a pre- or suffix. The
probability that a segment is a non-morpheme (NON) is:

P (NON |µi) = [1 − prefix-like(µi)] · [1 − suffix-like(µi)] · [1 − stem-like(µi)]. (18)

Then the remaining probability mass is distributed betweenprefix, stem and suffix, e.g.:

P (PRE|µi) =
prefix-like(µi)

q · [1 − P (NON |µi)]

prefix-like(µi)q + stem-like(µi)q + suffix-like(µi)q
. (19)

The exponentq affects the normalization. High values ofq produce spiky distributions
(“winner-take-all effect”), whereas low values produce flatter distributions. We have tested
the valuesq = 1 andq = 2.

As mentioned in Section 3.5.2.1, the frequency of a morph could possibly be used for
distinguishing between “semantic” morphs (stems) and “grammatical” morphs (affixes).
In the current scheme, the frequencyas suchis only used for computing the category-
independent probabilitiesP (µi) (Eq. 6). Nonetheless, right and left perplexity are indirect
measures of frequency, because a high frequency is a precondition for a high perplexity.

There is a similar idea of using the features frequency, mutual information and left and
right entropy in the induction of a Chinese dictionary from an untagged text corpus [Chang
et al. 1995]. There, the features are applied in classifyingcharacter sequences as either
words or non-words, which resembles our morpheme categories and the non-morpheme
category. In another work, [Feng et al. 2004], a somewhat simpler feature called acces-
sor variety was used in order to discover words in Chinese text. These features are not
new within the field of word segmentation. Already in the pioneering work of Harris
[1955] something very akin to “accessor variety” was introduced. Entropy was explored
in a Harrisian approach to the segmentation of English wordsby Hafer and Weiss [1974].
However, in Morfessor, perplexity is not utilized to discover potential morph boundaries,
but to assign potential grammatical categories to suggested morphs.

4. MODEL VARIANTS

Our earlier work can be seen as instances of the general Morfessor model, since each of
the previous models implements a subset of the components ofMorfessor. These models
and their central properties are summarized in Table I.

The widely known benchmark, John Goldsmith’s algorithm Linguistica [Goldsmith 2001;
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2005], is also included in the comparison even though it doesnot fit entirely into the Mor-
fessor model family.

4.1 Baseline and Baseline-Length

The Morfessor Baselinemodel was originally presented as the “Recursive MDL model”
in [Creutz and Lagus 2002]. The formulation followed from the Minimum Description
Length (MDL) principle in a mathematically simplified way. In the Baseline, no context
sensitivity is modeled, which corresponds to having only one morph category in the HMM
in the grammar. The only feature related to morph usage that is taken into account is
morph frequency. The form of the morph is flat, which means that a morph always consists
of a string of letters and never has substructure. The Baseline model can be trained on a
collection of eitherword tokensor word types. The former corresponds to acorpus, a piece
of text, where words can occur many times. The latter corresponds to acorpus vocabulary,
where only one occurrence of every distinct word form in the corpus has been listed. These
two different types of data lead to different morph segmentations.

The choice of the term “baseline” signals that this model is indeed very simple. In
essence, words are split into strings that occur frequentlywithin the words in the corpus,
without consideration of the intra-word context in which these segments occur. The more
elaborate category-based Morfessor models make use of the Baseline algorithm in order to
produce an initial segmentation, which is then refined.

Morfessor Baseline-Lengthis a slight modification of the model introduced in [Creutz
2003]. It is identical to the Baseline except that a gamma distribution is utilized for mod-
eling morph length. Compared to the Baseline, the Baseline-Length algorithm performs
better in a morpheme segmentation task, especially on smallamounts of data, but the dif-
ference diminishes when the amount of data is increased.

Software implementing the Morfessor Baseline model variants is publicly available5 un-
der the GNU General Public License. User’s instructions areprovided in a technical report
[Creutz and Lagus 2005b], which further describes the models and the search algorithm
used. In brief, the search takes place as follows: The word forms in the corpus are pro-
cessed, one at a time. First, the word as a whole is consideredas a morph to be added to
the lexicon. Then, every possible split of the word into two substrings is evaluated. The
split (or no split) yielding the highest probability is selected. In case of a split, splitting
of the two parts continues recursively and stops when no moregains can be obtained. All
words in the corpus are reprocessed until convergence of theoverall probability.

The advancement of the search algorithm can be characterized as follows: In order to
split a word into two parts, the algorithm must recognize at least one of the parts as a morph.
Initially, all entire word forms are considered potential morphs. Since many word stems
occur in isolation as entire words (e.g., English ‘match’),the algorithm begins to discover
suffixes and prefixes by splitting off the known stems from longer words (e.g., ‘match+es,
match+ing, mis+match’). The newly discovered morphs can inturn be found in words
where none of the parts occur in isolation (e.g., ‘invit+ing’). As a result of iterating this
top-down splitting, the words in the corpus are gradually split down into shorter morphs.6

5http://www.cis.hut.fi/projects/morpho/
6Other search strategies could be explored in the future, especially when dealing with languages where free
stems are rare, such as Latin (e.g., ‘absurd+us, absurd+a, absurd+um, absurd+ae, absurd+o’, etc.). However,
initial experiments on Latin suggest that also here the current search algorithm manages to get a grip on the
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Table I. Summary of some properties of the morphology learning algorithms. In the “Optim.” column the nature
of the optimization task is indicated. Context sensitivity(“Ctxt-sens.”) implies that the position in a word affects
the probability of a morph, i.e., some notion of morphotactics is included in the model. The “Usage” column lists
the features of morph usage that are accounted for in the formof explicit prior distributions in the probability of
the lexicon: frequency (“F”), gamma distribution for morphlength (“G”), right (“R”) and left (“L”) perplexity.
The structure of the form of morphs is given in the “Form” column. The “Train” column tells whether the model
is trained on a corpus (“tok”: word token collection) or corpus vocabulary (“typ”: word type collection). The
“Long seq.” column signals whether the model in question is suitable for morphologies where words can consist
of lengthy sequences of morphemes.

Model name Optim. Ctxt-sens. Usage Form Train Long seq.
Baseline MAP no F flat tok & typ yes
Baseline-Length MAP no FG flat tok & typ yes
Categories-ML ML yes FGRL flat typ yes
Categories-MAP MAP yes FGRL hierar. tok (& typ) yes
Linguistica MAP yes – signat. typ (& tok?) no

Both Baselines produce segmentations that are closer to a linguistic morpheme segmen-
tation when trained on a word type collection instead of a word token collection. The use
of word types means that all information about word frequency in the corpus is lost. If we
are interested in drawing parallels to language processingin humans, this is an undesir-
able property, because word frequency seems to play an important role in human language
processing. Baayen and Schreuder [2000] refer to numerous psycholinguistic studies that
report that high-frequency words are responded to more quickly and accurately than low-
frequency words in various experimental tasks. This effectis obtained regardless whether
the words have compositional structure or not (and both for regular derived and inflected
words). Note, however, that these findings may not apply to all linguistic tasks. When test
persons were exposed to word forms that were ungrammatical in context, high-frequency
regular word forms seemed to be processed as if they were compositional rather than un-
analyzed wholes [Allen et al. 2003].

4.2 Categories-ML

TheMorfessor Categories-MLmodel has been presented in [Creutz and Lagus 2004]. The
model is a maximum likelihood (ML) model that is applied for reanalyzing a segmenta-
tion produced by the Baseline-Length algorithm. The morphotactics of the full Morfessor
model is used in Categories-ML and all four usage features are included. However, the
computation of the category membership probabilities (Section 3.5.3) is only utilized for
initializing a category tagging of the morph segmentation obtained from Baseline-Length.
Emission probabilities (Equation 6) are then obtained as maximum likelihood estimates
from the tagging.

The size of the morph lexicon is not taken into account directly in the calculation of
the overall probability, but some heuristics are applied. If a morph in the lexicon con-
sists of other morphs that are present in the lexicon (e.g., ‘seemed = seem+ed’), the most
probable split (essentially according to Eq. 10b) is selected and the redundant morph is
removed. A split into non-morphemes is not allowed, however. If on the contrary, a word
has been shattered into many short fragments, these are removed by joining them with
their neighboring morphs, which hopefully creates a propermorph (e.g., ‘flu+s+ter+ed’

affixes and stems, as the result of a long “chain reaction”.
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becomes ‘fluster+ed’). This takes place by joining togethernon-morphemes with their
shortest neighbors, until the resulting morph can qualify as a stem, which is determined by
Equation 17. The Categories-ML algorithm operates on data consisting of word types.

4.3 Categories-MAP

The latest model,Categories-MAP, was introduced in [Creutz and Lagus 2005a]. It is the
most extensive model and its formulation is the complete structure presented in Section 3.

The search for the most probable Categories-MAP segmentation takes place using a
greedy search algorithm. In an attempt to avoid local maximaof the overall probability
function, steps of resplitting and rejoining morphs are alternated; see [Creutz and Lagus
2005a] for details: (i) initialization of a segmentation using Baseline-Length, (ii) splitting
of morphs, (iii) joining of morphs using a bottom-up strategy, (iv) resplitting of morphs, (v)
resegmentation of the corpus using the Viterbi algorithm and re-estimation of probabilities
until convergence, (vi) repetition of Steps (iii)–(v) once.

Figure 4 shows hierarchical representations obtained by Categories-MAP for the Finnish
word ‘oppositiokansanedustaja’ (“member of parliament ofthe opposition”) and the En-
glish word ‘straightforwardness’. The Categories-MAP model utilizes information about
word frequency: The English word has been frequent enough inthe corpus to be included
in the lexicon as an entry of its own. The Finnish word has beenless common and is split
into ‘oppositio’ (“opposition”) and ‘kansanedustaja’ (“member of parliament”), which are
two separate entries in the lexicon induced from the Finnishcorpus. Frequent words and
word segments can thus be accessed directly, which is economical and fast. At the same
time, the inner structure of the words is retained in the lexicon, because the morphs are rep-
resented as the concatenation of other (sub)morphs, which are also present in the lexicon:
The Finnish word can be bracketed as [op positio][[[kansa n]edusta] ja] and the English
word as [[straight [for ward]] ness].

Additionally, every morph is tagged with a category, which is the most likely category
for that morph in that context. Not all morphs in the lexicon need to be “morpheme-like”
in the sense that they represent a meaning. Some morphs correspond more closely to syl-
lables and other short fragments of words. The existence of these non-morphemes (NON)
makes it possible to represent some longer morphs more economically, e.g., the Finnish
‘oppositio’ consists of ‘op’ and ‘positio’ (“position”), where ‘op’ has been tagged as a
non-morpheme and ‘positio’ as a stem. Sometimes this helps against the oversegmenta-
tion of rather rare words. When for instance, a new name must be memorized, it can be
constructed from shorter familiar fragments. This means that a fewer number of observa-
tions of this name in the corpus suffice for the name to be addedas a morph to the lexicon
compared to a situation, where the name would need to be memorized letter by letter. For
instance, in one of the English experiments the name ‘Zubovski’ occurred twice in the
corpus and was added to the morph lexicon as ‘zubov/STM+ ski/NON’. One might draw
a parallel from the non-morphemes in the Categories-MAP model to findings within psy-
cholinguistic research. McKinnon et al. [2003] suggest that morphological decomposition
and representation extend to non-productive morphemes, such as ‘-ceive, -mit’, and ‘-cede’
in English words, e.g., ‘conceive, permit, recede’.

4.3.1 Using Categories-MAP in a morpheme segmentation task.In the task of mor-
pheme segmentation, the described data structure is very useful. While de Marcken (Sec-
tion 2.4) had no means of knowing which level of segmentationis the desired one, we can
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oppositio/STM kansanedustaja/STM+

n/SUFkansa/STM

kansan/STM edusta/STM

ja/SUFkansanedusta/STMop/NON positio/STM

(a)

straightforwardness/STM

straight/STM forward/STM

straightforward/STM ness/SUF

ward/STMfor/NON
(b)

Fig. 4. The hierarchical segmentations of (a) the Finnish word ‘oppositiokansanedustaja’ (MP of the opposition)
and (b) the English word ‘straightforwardness’ (obtained by the Categories-MAP model for the largest data sets).
The finest resolution that does not contain non-morphemes has been identified with boldface.

expand the hierarchical representation to thefinest resolution that does not contain non-
morphemes. In Figure 4 this level has been indicated using a bold-face font. The Finnish
word is expanded to ‘oppositio + kansa + n + edusta + ja’ (literally “opposition+ people + of
+ represent + -ative”). The English word is expanded into ‘straight + forward + ness’. The
morph ‘forward’ is not expanded into ‘for + ward’, although this might be appropriate,
because ‘for’ is tagged as a non-morpheme in the current context.

4.4 Linguistica

The model of Linguistica is formulated in an MDL framework that is equivalent to a MAP
model. In the Linguistica algorithm, a morphotactics is implemented, where words are
assumed to consist of a stem, optionally preceded by a prefix and usually followed by
a suffix. The stem can recursively consist of a substem and a succeeding suffix. This
structure is less general than the one used in Morfessor, because Linguistica does not al-
low consecutive stems (as in, e.g., ‘coast+guard+s+man’).Thus, morphologies involving
compounding cannot be modeled satisfactorily.

Linguistica groups stems and suffixes into collections called signatures (“signat.” in the
“Form” column in Table I), which can be thought of as inflectional paradigms: a certain
set of stems goes together with a certain set of suffixes. Words will be left unsplit unless
the potential stem and suffix fit into a signature. Linguistica is trained on a word type
collection, but it seems that word token collections could be used as well.

5. EXPERIMENTS

Careful evaluation of any proposed method is essential. Depending on the goal, the evalua-
tion could be carried out directly in some NLP task, such as speech recognition. However,
as the performance in such a task depends on many issues and not only on the morphs, it
is also useful to evaluate the morph segmentation directly.

In the current paper, the discussed methods are evaluated ina linguistic morpheme seg-
mentation task. The goal is to find the locations of morpheme boundaries as accurately
as possible. Experiments are performed on Finnish and English corpora, and on data sets
of different sizes. As a gold standard for the desired locations of the morpheme bound-
aries,Hutmegsis used (see Section 5.2). Hutmegs consists of fairly accurate conventional
linguistic morpheme segmentations for a large number of word forms.
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Fig. 5. (a) Sizes of the test data subsets used in the evaluation. (b) Curves of the number of word types observed
for growing portions of the Finnish and English test sets.

5.1 Finnish and English data sets

The Finnish corpus consists of news texts from the CSC (The Finnish IT Center for Sci-
ence)7 and the Finnish News Agency (STT). The corpus contains 32 million words. It has
been divided into a development set and a test set, each containing 16 million words.

For experiments on English we use a collection of texts from the Gutenberg project
(mostly novels and scientific articles)8, and a sample from the Gigaword corpus and the
Brown corpus9. The English corpus contains 24 million words. It has been divided into a
development and a test set, each consisting of 12 million words. Thedevelopment setsare
utilized for optimizing the algorithms and for selecting parameter values. Thetest setsare
used solely in the final evaluation.

What is often overlooked is that a comparison of different algorithms on one single data
set size does not give a reliable picture of how the algorithms behave when the amount of
data changes. Therefore, we evaluate our algorithms with increasing amounts of test data.
The amounts in each subset of the test set are shown in Figure 5a, both as number of word
tokens (words of running text) and number of word types (distinct word forms). Figure 5b
further shows how the number of word types grows as a functionof the number of word
tokens for the Finnish and English test sets. As can be seen, for Finnish the number of
types grows fast when more text is added, i.e., many new word forms are encountered.
In contrast, with English text, a larger proportion of the words in the added text has been
observed before.

5.2 Morphological gold standard segmentation

The Helsinki University of Technology Morphological Evaluation Gold Standard (Hut-
megs) [Creutz and Lindén 2004] contains morpheme segmentationsfor 1.4 million Finnish
word forms and 120 000 English word forms. Hutmegs is based onthe two-level morpho-
logical analyzer FINTWOL for Finnish [Koskenniemi 1983] and the CELEX database for

7http://www.csc.fi/kielipankki/
8http://www.gutenberg.org/browse/languages/en
9The Gigaword sample and the Brown corpus are available at theLinguistic Data Consortium:http://www.
ldc.upenn.edu/.
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English [Baayen et al. 1995]. These existing resources provide a morphological analysis
of words, but no surface-level segmentation. For instance,the English word ‘bacteriolo-
gist’ yields the analysis ‘bacterium+ology+ist’. The mainadditional work related to the
creation of Hutmegs consists in the semi-automatic production of surface-level, or allo-
morph, segmentations (e.g., ‘bacteri+olog+ist’). Hereby, Hakulinen [1979] has been used
as an authoritative guideline for the Finnish morphology and Quirk et al. [1985] for the
English morphology. Both inflectional and derivational morphemes are marked in the gold
standard.

The Hutmegs package is publicly available on the Internet10. For full access to the
Finnish morpheme segmentations, an inexpensive license must additionally be purchased
from Lingsoft, Inc.11 Similarly, the English CELEX database is required for full access to
the English material12.

As there can sometimes be many plausible segmentations of a word, Hutmegs provides
several alternatives when appropriate, e.g., English ‘evening’ (time of day) vs. ‘even+ing’
(verb). There is also an option for so called “fuzzy” boundaries in the Hutmegs annota-
tions, which we have chosen to use. Fuzzy boundaries are applied in cases where it is
inconvenient to define one exact transition point between two morphemes. For instance,
in English, the stem-final ‘e’ is dropped in some forms. Here we allow two correct seg-
mentations, namely the traditional linguistic segmentation in ‘invite, invite+s, invit+ed’
and ‘invit+ing’, as well as the alternative interpretation, where the ‘e’ is considered part of
the suffix, as in: ‘invit+e, invit+es, invit+ed’ and ‘invit+ing’.13 In the former case, there
are two allomorphs (realization variants) of the stem (‘invite’ and ‘invit’), and one allo-
morph for the suffixes. In the latter case, there is only one allomorph of the stem (‘invit’),
whereas there are two allomorphs of the third person presenttense (‘-s’ and ‘-es’) and an
additional infinitive ending (‘-e’). Since there are a much greater number of different stems
than suffixes in the English language, the latter interpretation lends itself to more compact
concatenative models of morphology.

5.3 Evaluation measures

As evaluation measures, we useprecisionandrecall on discovered morpheme boundaries.
Precision is the proportion of correctly discovered boundaries among all discovered bound-
aries by the algorithm. Recall is the proportion of correctly discovered boundaries among
all correct boundaries. A high precision thus tells us that when a morpheme boundary is
suggested, it is probably correct, but it does not tell us theproportion of missed bound-
aries. A high recall tells us that most of the desired boundaries were indeed discovered,
but it does not tell us how many incorrect boundaries were suggested as well.

In order to get a comprehensive idea of the performance of a method, both measures
must be taken into account. A measure that combines precision and recall is theF-measure,

10http://www.cis.hut.fi/projects/morpho/
11http://www.lingsoft.fi
12The CELEX databases for English, Dutch and German are available at the Linguistic Data Consortium:http:
//www.ldc.upenn.edu/.
13Note that the possible segmentation ‘invite+d’ isnot considered correct, due to the fact that there is no indica-
tion that the regular past tense ending ‘-ed’ ever loses its ‘e’, whereas the preceding stem unquestionably does so,
e.g., in ‘inviting’.
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which is the harmonic mean of the two:

F-Measure= 1/[
1

2
(

1

Precision
+

1

Recall
)]. (20)

We compare performances using all three measures.
Furthermore, the evaluation measures can be computed either using word tokens or word

types. If the segmentation of word tokens is evaluated, frequent word forms will dominate
in the result, because every occurrence (of identical segmentations) of a word is included.
If, instead, the segmentation of word types is evaluated, every distinct word form, frequent
or rare, will have equal weight. When inducing the morphology of a language, we consider
all word forms to be as important regardless of their frequency. Therefore, in this paper,
precision and recall for word types is reported.

For each of the data sizes 10 000, 50 000, and 250 000 words, thealgorithms are run on
five separate subsets of the test data, and the average results are reported. Furthermore,
statistical significance of the differences in performancehave been assessed using T-tests.
The largest data sets, 16 million words (Finnish) and 12 million words (English) are ex-
ceptions, since they contain all available test data, whichconstrains the number of runs to
one.

5.4 Methods to be evaluated

We report experiments on the following methods from the Morfessor family: Baseline-
Length, Categories-ML and Categories-MAP (see Table I for aconcise description). The
Baseline-Length model was trained on a collection of word types. Parameter values re-
lated to the priors of the category models (a, b, c, d, andq in Equations 16, 17 and 19)
were determined from the development set. The model evaluation was performed using
independent test sets.

In addition, we benchmark against ‘Linguistica’ [Goldsmith 2001; 2005]14. In the Lin-
guistica algorithm, we used the commands ‘Find suffix system’ and ‘Find prefixes of suf-
fixal stems’. We interpreted the results in two ways: (i) to allow a word to be segmented
into a maximum of three segments: an optional prefix, followed by a stem, followed by
an optional suffix; (ii) to decompose stems that consist of a substem and a suffix, which
makes it possible for a word to be segmented into more than three segments. The former
solution (i) surprisingly produced better results, and thus these results are reported in this
work.

5.5 Results

Figures 6–8 depict the morph splitting performance of the evaluated methods in the Finnish
and English morph segmentation tasks. The F-measures shownin Figure 6 allow for a
direct comparison of the methods, whereas the precisions inFigure 7 and the recalls in
Figures 8 shed more light on the particular strengths and weaknesses. Furthermore, some
examples of the segmentations produced are listed in TablesII and III.

We will now briefly comment on the performance of each method in relation to the other
methods.

14We have used the December 2003 version of the Linguistica program that is publicly available on the Internet
http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/.
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Fig. 6. Morpheme segmentation performance (F-measure of discovered morpheme boundaries) of the algorithms
on (a) Finnish and (b) English test data. Each data point is anaverage of 5 runs on separate test sets, with the
exception of the 16 million words for Finnish and the 12 million words for English (1 test set). In these cases the
lack of test data constrained the number of runs. The standard deviations of the averages are shown as intervals
around the data points. There is no data point for Linguistica on the largest Finnish test set, because the program
is unsuited for very large amounts of data due to its considerable memory consumption.

5.5.1 Baseline-Length.When evaluated against a linguistic morpheme segmentation,
the Baseline methods suffer because they undersegment frequent strings (e.g., English
‘having, soldiers, states, seemed’), especially when trained on word token collections
(where several word forms occur a high number of times). Withmore data, the under-
segmentation problem becomes more severe also when trainedon word type collections
(where each unique word form is encountered only once). Thisis due to the fact that the
addition of more examples of frequent word segments justifytheir inclusion as morphs of
their own in the lexicon. This shows as a decrease in overall performance on the largest
data sizes in Figure 6 and in recall in Figure 8.

The opposite problem consists in the oversegmentationof infrequent strings (e.g., ‘flu+s+
ter+ed’). Moreover, the method makes segmentation errors that ensue from considering the
goodness of each morph without looking at its context in the word, causing errors such as
in Table II ‘ja+n+ille’ where ‘ja’ is incorrectly identifiedas a morph because it is frequently
used as a suffix in the Finnish language. These kinds of segmentation errors are particu-
larly common with English, which explains the generally lowprecision of the method in
Figure 7b.

5.5.2 Categories-ML.Out of the compared methods Categories-ML shows the highest
results in Figure 6 for both Finnish and English consistently with all data sizes. When com-
pared to Baseline-Length in Figures 7a and 8a it appears thatthe considerable improvement
is due to the fact that many previously undersegmented wordshave been split into smaller
parts by Categories-ML: Many of the new proposed boundariesare correct (higher recall),
but some are incorrect (lower precision). Apparently the simple morphotactics helps cor-
rect many mistakes caused by the lack of specific contextual information. However, the
morphotactics is fairly primitive, and consequently new errors emerge when incorrect al-
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Fig. 7. Precision of discovered morpheme boundaries obtained by the algorithms on (a) Finnish and (b) English
data. Standard deviations are shown as intervals around thedata points.
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Fig. 8. Recall of discovered morpheme boundaries obtained by the algorithms on (a) Finnish and (b) English
data. Standard deviations are shown as intervals around thedata points. Whereas precision (Fig. 7) measures the
accuracy of the proposed splitting points, recall describes the coverage of the splits.
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ternations of stems and suffixes are proposed, e.g., Finnish: ‘epä+este+et+t+isi+ksi’ (plural
translative of ‘epäesteettinen’, “unaesthetic”), ‘työ+tapa+a+mine+n’ (‘työ+tapaa+minen’,
“job meeting”). The drop in precision for Categories-ML with the largest English data set
(Fig. 7b) is apparently caused by the multitude of word forms(many foreign words and
names), which give rise to the discovery of “suffixes” that are not considered correct in
contemporary English, e.g., ‘plex+us, styl+us’.

5.5.3 Categories-MAP.Figure 6a shows that Categories-MAP challenges Categories-
ML as the best-performing algorithm for Finnish. For two data sizes (10 000 and 250 000
words) the difference between the two is not even statistically significant (T-test level 0.05).
Also for English (Figure 6b), where the difference between all the algorithms is overall
smaller than for Finnish, Categories-MAP places itself below the best-forming Categories-
ML and above the Baseline-Length method, except on the largest data set, where it falls
slightly below Baseline-Length. Note, however, that the difference in performance is sta-
tistically significant only between Categories-ML and the lowest-scoring algorithm at each
data size (Linguistica at 10 000 words; Baseline-Length at 50 000 and 250 000 words).

When looking at the detailed measures in Figures 7 and 8 one can see that Catego-
ries-MAP performs very well for Finnish, with both precision and recall rising as new
data is added. However, for English there is a fall-back in recall on the largest data set
(Fig. 8b) , which is also reflected in decreased F-measure. This seems to be due to the fact
that only the most frequent English prefixes and suffixes are detected reliably. In general,
Categories-MAP is a more conservative splitter than Categories-ML.

5.5.4 Linguistica. Linguistica is a conservative word splitter for small amounts of
data, which explains the low recall, but high precision for small data sets. As the amount
of data increases, recall goes up, and precision goes down, because more and more signa-
tures (paradigms) are suggested, some of them correct and some incorrect. At some point,
the new signatures proposed are mainly incorrect, which means that both precision and
recall decrease. This can be observed as peculiar suffixes ofwords, e.g., ‘disappoi+nt, lon-
gitu+de, presentlyfou+nd, sorr+ow’. The recall of Linguistica can never rise very high, be-
cause the algorithm only separates prefixes and suffixes fromthe stem and thereby misses
many boundaries in compound words: e.g, ‘longfellow+’s, masterpiece+s, thanksgiv+ing’.

Linguistica cannot compete with the other algorithms on theFinnish data, but for En-
glish it works at the level of Categories-ML for the data setscontaining 50 000 and 250 000
words. (Note that Linguistica was not run on larger data setsfor Finnish than 250 000
words, because the program is unsuited for very large amounts of data due to its consider-
able memory consumption.)

5.5.5 Behavior with different amounts of data.In the experiments on Finnish, Catego-
ries-ML and Categories-MAP both improve their performancewith the addition of more
data. The rising curves may be due to the fact that these models have more parameters
to be estimated than the other models, due to the HMM model forcategories. The larger
number of free parameters require more data in order to obtain good estimates. However,
on the largest English set, all algorithms have difficulties, which seems to be due to the
many foreign words contained in this set: Patterns are discovered that do not belong to
contemporary English morphology.

Linguistica does not benefit from increasing amounts of data. The best results were
obtained with medium-sized data sets, around 50 000 words for Finnish and 250 000 words
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for English. Similarly, Baseline-Length does not seem to benefit from ever-increasing data
sizes, as it reaches its best performance with the data sets of 250 000 words.

5.6 Computational requirements

The Categories-MAP algorithm was implemented as a number ofPerl scripts and make-
files. The largest Finnish data set took 34 hours and the largest English set2 1

2 hours to
run on an AMD Opteron 248, 2200 MHz processor. The memory consumption never ex-
ceeded 1 GB. The other algorithms were considerably faster (by an order of magnitude),
but Linguistica was very memory-consuming.

6. DISCUSSION

Only the accuracy of the placement of morph boundaries has been evaluated quantitatively
in the current paper. It is worth remembering that the gold standard splitting used in these
evaluations is based on a traditional morphology. If the segmentations were evaluated
using a real-world application, perhaps somewhat different segmentations would be most
useful. For example, the tendency to keep common words together, seen in the Baseline
and Categories-MAP models, might not be bad, e.g., in speechrecognition or machine
translation applications. In fact, quite the opposite, excessive splitting might be a problem
in both applications.

The algorithms produce different amounts of information: the Baseline and Baseline-
Length methods only produce a segmentation of the words, whereas the other algorithms
(Categories-ML, Categories-MAP and Linguistica) also indicate whether a segment func-
tions as a prefix, stem, or suffix. Additionally, by expandingthe entries in the lexicon
learned by Categories-MAP, a hierarchical representationis obtained, which can be visu-
alized using a tree structure or nested brackets.

We will use the example segmentations obtained for a number of Finnish and English
words (in Tables II and III) to briefly illustrate some aspectsbeyondthe discovery of an ac-
curate morphemesegmentationof words. In Table II, the gold standard segmentations for
the Finnish words are given as a reference, whereas examplesfor Linguistica are lacking,
because the algorithm could not be run on the largest Finnishtest set. English results are
available for Linguistica in Table III, but here the corresponding gold standard segmenta-
tions are not included, due to limited space and to the fact that all readers are familiar with
the English language. Readers interested in the analyses offurther word forms can try our
demonstration program on the Internet15.

6.1 Tagging of categories

As has been shown, the introduction of a simple morphotactics, or word-internal syntax,
in the Categories models reduced the occurrences of under- and oversegmented words
as well as misalignments due to the insensitivity of context, which were observed in the
Baseline models. Examples of such cases in Tables II and III comprise the Finnish words
‘aarre+kammio+i+ssa’ (“in treasure chambers”), ‘jani+lle’ (“for Jani”), ‘sano+tta+ko+on’
(“may it be said”); and the English words ‘photo+graph+er+s’ and ‘fluster+ed’.

Additionally, the simple morphotactics can sometimes resolve semantic ambiguities,
when the same morph is tagged differently in different contexts, e.g., ‘pää’ is a prefix
in ‘pääaiheesta’ and ‘pääaiheista’ (“about [the]main topic(s)”), whereas ‘pää’ is a stem

15http://www.cis.hut.fi/projects/morpho/
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Table II. Examples of Finnish morpheme segmentations learned by versions of Morfessor from the 16 million
word Finnish test set. Additionally, the corresponding gold standard segmentations are supplied. Proposed
prefixes are underlined, stems are rendered inbold-face, and suffixes areslanted. Square brackets [ ] indicate
higher-level stems and parentheses () higher-level suffixes in the hierarchical lexicon.

Baseline-Length Categories-ML Categories-MAP Gold standard
aarre kammioissa aarre kammio i ssa [ aarre kammio ] issa aarre kammio i ssa
aarre kammioon aarre kammio on [ aarre kammio ] on aarre kammio on
bahama laiset bahama laiset bahama laiset bahama laise t
bahama saari en bahama saari en bahama [ saari en ] bahama saari en
epä esteettis iksi epäesteet t isi ksi epä[ [ esteetti ] s ] iksi epäesteettis i ksi
epätasapaino inen epätasapaino in en [ epä[ [ tasapaino ] inen ] ] epätasapainoinen
haapa koskeen haap a koskeen [ haapa [ koskeen ] ] haapa koskeen
haapa koskella haap a koske lla [ haapa [ koske lla ] ] haapa koskella
ja n ille jani lle jani lle jani lle
jäädyttä ä kseen jäädy ttä ä kseen [ jäädy ttää ] kseen jäädy ttä ä kse en
ma clare n maclare n maclare n –
nais autoilija a naisauto ili ja a [ nais[ autoili ja ] ] a nais autoili ja a
pää aiheesta pääaihe e sta pää [ aihe esta] pää aiheesta
pää aiheista pääaihe i sta [ pää[ aihe ista] ] pää aihei sta
päähän pää hän [ päähän ] pää hän
sano t takoon sanotta ko on [ sano ttakoon] sanotta ko on
sano ttiin ko sanotti in ko [ sanottiin ] ko sanott i in ko
työ tapaaminen työtapa a mine n työ [ tapaa minen] työ tapaa minen
töhri misistä töhri mis i stä töhri (mis istä) töhri mis i stä
voi mmeko voim meko [ [ voi mme] ko ] voi mme ko
voisi mme kin voisi mme kin [ voisi mme] kin vo isi mme kin

Table III. Examples of English morpheme segmentations learned by the four algorithms from the 12 million
word English test set.

Baseline-Length Categories-ML Categories-MAP Linguistica
accomplish es accomplishes [ accomplishes] accompli shes
accomplish ment accomplishment [ accomplish ment] accomplishment
beautiful ly beauti ful ly [ beautiful ly ] beautiful ly
configu ration configu r ation [ configur ation ] con figura tion
dis appoint disappoint disappoint disappoint
expression istic expression ist ic expression istic expressionistic
express ive ness expressive ness [ expressiveness] expressiveness
flu s ter ed fluster ed [ fluster ed ] fluster ed
insur e insur e insure insur e
insur ed insur ed [ insur ed ] insur ed
insur es insur es [ insure s ] insure s
insur ing insur ing [ insur ing ] insur ing
long fellow ’s long fellow ’s [ [ long fellow ] ’s ] longfellow ’s
master piece s master pieces [ [ master piece] s ] masterpieces
micro organism s micro organ ism s [ micro [ organism s ] ] micro organism s
photograph ers photo graph ers [ [ [ photo graph ] er ] s ] photograph ers
present ly found present lyfound [ present ly ] found presentlyfou nd
re side d resided resided resided
re side s resides [ resides ] resides
re s id ing resid ing [ re siding ] resid ing
un expect ed ly unexpected ly [ [ un [ expected ] ] ly ] un expectedly
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in ‘päähän’ (“in [the]head”). (In this example the Categories-ML algorithm tagged the
occurrences of ‘pää’ correctly, whereas Categories-MAP made some mistakes.)

From the point of view of natural language processing, the identification and separation
of semantic segments (mainly stems) and syntactic segments(mainly affixes) can be bene-
ficial. The stems contained in a word form could be consideredas a canonic (or base) form
of the word, whereas the affixes could be considered as inflections. Such a canonic form
for words could be an alternative to the base forms retrievedby hand-made morphological
analyzers or stemming algorithms, which are used, e.g., in information retrieval.

6.2 Bracketing

The hierarchical representation produced by the Categories-MAP algorithm, shown using
nested brackets in Tables II and III, can be interpreted as the attachment hierarchy of the
morphemes. With the current model, the construction of the hierarchy is likely to take
place in the order of most frequently co-occurring word segments. Sometimes this is also
grammatically elegant, e.g., Finnish: ‘[ epä [ [ tasa paino ]inen ] ]’ (“imbalanced”, literaly
bracketed as “[ un [ [ even weight ] ed ] ]”), ‘[ nais [ autoili ja] ] a’ (partitive of “[ female
[ car-driv er ] ]”; English: ‘[ [ [ photo graph ] er ] s ], [ [ un [ expect ed ] ] ly ]’. But the prob-
ability of coming up with grammatically less elegant solutions is also high, e.g., English
‘[ micro [ organism s ] ]’. (Note that the gold standard segmentation for ‘epätasapainoinen’
is strange. Categories-MAP produces the correct segmentation.)

6.3 Overgeneralization

The algorithms can incorrectly “overgeneralize” and, for instance, suggest a suffix, where
there is none, e.g., ‘maclare+n’ (“MacLaren”). Furthermore, nonsensical sequences of suf-
fixes (which in other contexts are true suffixes) can be suggested, e.g., ‘epä+este+et+t+isi+
ksi’, which should be ‘epä+esteett+is+i+ksi’. A model withmore fine-grained categories
might reduce such shortcomings in that it could model morphotactics more accurately.

The use of signatures in Linguistica should conceivably prevent overgeneralization. In
general, to propose the segmentation ‘maclare+n’, other forms of the proposed stem would
be expected to occur in the data, such as ‘maclare’ or ‘maclare+ssa’. If none of these
exist, the segmentation should be discarded. However, especially with large amounts of
data Linguistica is oversensitive to common strings that occur at the end of words and
proposes segmentations, such as ‘allu+de, alongsi+de, longitu+de’; ‘anyh+ow, highbr+ow,
longfell+ow’.

Solutions to this problem could be found, e.g., in the approach advocated by Yarowsky
and Wicentowski [2000], who study how distributional patterns in a corpus can be utilized
to decide whether words are related or not. For instance, their method is able to determine
that the English word ‘singed’ is not an inflected form of ‘to sing’.

6.4 Allomorphy

Allomorphs are morphs representing the same morpheme, i.e., morphs having the same
meaning but used in complementary distributions. The current algorithms cannot in prin-
ciple discover which morphs are allomorphs, e.g., that in Finnish ‘on’ and ‘en’ mark the
same case, namely illative, in ‘aarre+kammio+on’ (“into [the] treasure chamber”) and
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‘Haapa+koske+en’ (“to Haapakoski”).16 To enable such discovery in principle, one would
probably need to look at contexts of nearby words, not just the word-internal context. Ad-
ditionally, one should allow the learning of a model with richer category structure.

Moreover, ‘on’ and ‘en’ do not always mark the illative case.In ‘bahama+saari+ en’
(“of the Bahama islands”) the genitive is marked as ‘en’, andin ‘sano+tta+ko+on’ (“may it
be said”) ‘on’ marks the third person singular. Similar examples can be found for English,
e.g., ‘ed’ and ‘d’ are allomorphs in ‘insur+ed’ vs. ‘re+side+d’, and so are ‘es’ and ‘s’ in
‘insur+es’ vs. ‘re+side+s’ (Categories-ML).

Many cases of allomorphy can be modeled using morpho-phonological rules. The so
called Item and Process (IP) model of morphology assumes that some canonic forms of
morphemes are appended to each other to form words, and when the morphemes meet,
sound changes may ensue typically at the morpheme boundaries. For instance, the final ‘e’
in ‘insure’ is dropped when followed by the suffix ‘ed’. In principle, such rules could be
learned in an unsupervised manner from unannotated data. Kontorovich et al. [2003] apply
machine learning in the acquisition of allomorphic rules, but their method requires aligned
training data.

Quite generally, much of the work in unsupervised morphology learning does not focus
on concatenative morphology, i.e., the discovery of consecutive word segments. Some
algorithms learn relationships between words by comparingthe orthographic and semantic
similarity of pairs of words, e.g., [Neuvel and Fulop 2002; Baroni et al. 2002]. These
approaches can handle non-concatenative morphological processes, such as the Unmlaut
sound change in German. However, none of these models as suchsuits highly-inflecting
languages as they assume only two or three constituents per word, analogous to possible
prefix, stem and suffix.

Moreover, there is some evidence that humans may simply memorize allomorphs as
such without applying morpho-phonological transformations on what they hear (or read)
[Järvikivi and Niemi 2002]. In this case, the morphology-learning models presented in this
work are perhaps closer to human language processing than the IP model of morphology.

7. CONCLUSION

We have attempted to provide the reader with a broad understanding of the morphology
learning problem. It is hoped that the presented general probabilistic model family, called
Morfessor, and the discussion of each component opens new and fruitful ways to think
about modeling morphology learning. The experimental comparison of different instances
of the general model in a morpheme segmentation task sheds light on the usefulness and
role of particular model components.

The development of good model search algorithms deserves additional consideration in
the future. The categorial labelings of the morphs producedby the later model variants
might be useful in other tasks, such as information retrieval. An interesting avenue for
future research is the consideration of how to extend the feature set applied in the modeling
of morph usage, possibly to the point where one is able to ground meanings of morphs
using multimodal information.

16Furthermore the algorithm cannot deduce that the illative is actually realized as a vowel lengthening + ‘n’:
‘kammioon’ vs. ‘koskeen’.

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.



Unsupervised Models for Morpheme Segmentation and Morphology Learning · 29

8. ACKNOWLEDGMENTS

We are grateful for inspirational discussions with Mikko Kurimo, Teemu Hirsimäki, Vesa
Siivola and Panu Somervuo from the Speech group of the NNRC. We thank Krister Lindén
for enthusiastic discussions and valuable comments on the manuscript and Timo Honkela
and Harri Valpola for inspirational support. Sami Virpiojadeserves our special gratitude
for the implementation and upgrades of the Internet demonstration of the method. We
also thank the editor and the anonymous reviewers for their thorough work and valuable
comments.

We would like to thank the Graduate School of Language Technology in Finland for
funding part of this work, and we express our gratitude to theFinnish IT Center for Science
and the Finnish National News Agency for providing text corpora.

REFERENCES

ADDA-DECKER, M. 2003. A corpus-based decompounding algorithm for German lexical modeling in LVCSR.
In Proc. 8th European Conference on Speech Communication and Technology (Eurospeech). Geneva, Switzer-
land, 257–260.

ALLEN , M., BADECKER, W., AND OSTERHOUT, L. 2003. Morphological analysis in sentence processing: An
ERP study.Language and Cognitive Processes 18,4, 405–430.

ALTUN , Y. AND JOHNSON, M. 2001. Inducing SFA withǫ-transitions using Minimum Description Length. In
Proc. Finite-State Methods in Natural Language Processing, ESSLLI Workshop. Helsinki.

ANDO, R. K. AND LEE, L. 2000. Mostly-unsupervised statistical segmentation of Japanese: Applications to
Kanji. In Proc. 6th Applied Natural Language Processing Conference and 1st Meeting of the North American
Chapter of the Association for Computational Linguistics (ANLP-NAACL). 241–248.

BAAYEN , R. H., PIEPENBROCK, R., AND GULIKERS, L. 1995. The CELEX lexical database (CD-ROM).
Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA.http://wave.ldc.upenn.
edu/Catalog/CatalogEntry.jsp?catalogId=LDC96L14.

BAAYEN , R. H. AND SCHREUDER, R. 2000. Towards a psycholinguistic computational model for morphologi-
cal parsing.Philosophical Transactions of the Royal Society (Series A:Mathematical, Physical and Engineer-
ing Sciences 358), 1–13.

BARONI, M., MATIASEK , J.,AND TROST, H. 2002. Unsupervised learning of morphologically related words
based on orthographic and semantic similarity. InProc. Workshop on Morphological & Phonological Learning
of ACL’02. 48–57.

BRENT, M. R. 1999. An efficient, probabilistically sound algorithm for segmentation and word discovery.
Machine Learning 34, 71–105.

CHANG, J.-S., LIN , Y.-C.,AND SU, K.-Y. 1995. Automatic construction of a Chinese electronic dictionary. In
Proc. Third workshop on very large corpora. Somerset, New Jersey, 107–120.

CREUTZ, M. 2003. Unsupervised segmentation of words using prior distributions of morph length and fre-
quency. InProc. ACL’03. Sapporo, Japan, 280–287.

CREUTZ, M. AND LAGUS, K. 2002. Unsupervised discovery of morphemes. InProc. Workshop on Morpho-
logical and Phonological Learning of ACL’02. Philadelphia, Pennsylvania, USA, 21–30.

CREUTZ, M. AND LAGUS, K. 2004. Induction of a simple morphology for highly-inflecting languages. InProc.
7th Meeting of the ACL Special Interest Group in Computational Phonology (SIGPHON). Barcelona, 43–51.

CREUTZ, M. AND LAGUS, K. 2005a. Inducing the morphological lexicon of a natural language from unan-
notated text. InProceedings of the International and Interdisciplinary Conference on Adaptive Knowledge
Representation and Reasoning (AKRR’05). Espoo, Finland, 106–113.

CREUTZ, M. AND LAGUS, K. 2005b. Unsupervised morpheme segmentation and morphology induction from
text corpora using Morfessor 1.0. Tech. rep., Publicationsin Computer and Information Science, Helsinki
University of Technology, Report A81.

CREUTZ, M. AND L INDÉN, K. 2004. Morpheme segmentation gold standards for Finnishand English. Tech.
Rep. Publications in Computer and Information Science, Report A77, Helsinki University of Technology.

DE MARCKEN, C. G. 1996. Unsupervised language acquisition. Ph.D. thesis, MIT.

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.



30 · M. Creutz and K. Lagus

DÉJEAN, H. 1998. Morphemes as necessary concept for structures discovery from untagged corpora. InWork-
shop on Paradigms and Grounding in Natural Language Learning. Adelaide, 295–299.

DELIGNE, S. AND BIMBOT, F. 1997. Inference of variable-length linguistic and acoustic units by multigrams.
Speech Communication 23, 223–241.

FENG, H., CHEN, K., K IT, C., AND DENG, X. 2004. Unsupervised segmentation of Chinese corpus using
accessor variety. InProc. First International Joint Conference on Natural Language Processing (IJCNLP).
Sanya, Hainan, 255–261. (extended abstract).

GAUSSIER, E. 1999. Unsupervised learning of derivational morphology from inflectional lexicons. InPro-
ceedings of the ACL Workshop on Unsupervised Learning in Natural Language Processing. University of
Maryland, 24–30.

GE, X., PRATT, W., AND SMYTH , P. 1999. Discovering Chinese words from unsegmented text.In Proc. SIGIR.
271–272.

GOLDSMITH, J. 2001. Unsupervised learning of the morphology of a natural language.Computational Linguis-
tics 27,2, 153–198.

GOLDSMITH, J. 2005. An algorithm for the unsupervised learning of morphology. Tech. Rep. TR-2005-
06, Department of Computer Science, University of Chicago.http://humfs1.uchicago.edu/
~jagoldsm/Papers/Algorithm.pdf.

GOLDSMITH, J. AND HU, Y. 2004. From signatures to finite state automata. InMidwest Computational Lin-
guistics Colloquium. Bloomington IN.

HAFER, M. A. AND WEISS, S. F. 1974. Word segmentation by letter successor varieties. Information Storage
and Retrieval 10, 371–385.

HAKULINEN , L. 1979. Suomen kielen rakenne ja kehitys (The structure and development of the Finnish lan-
guage), 4 ed. Kustannus-Oy Otava.

HARRIS, Z. S. 1955. From phoneme to morpheme.Language 31,2, 190–222. Reprinted 1970 in Papers in
Structural and Transformational Linguistics, Reidel Publishing Company, Dordrecht, Holland.

HARRIS, Z. S. 1967. Morpheme boundaries within words: Report on a computer test.Transformations and
Discourse Analysis Papers 73. Reprinted 1970 in Papers in Structural and Transformational Linguistics,
Reidel Publishing Company, Dordrecht, Holland.

HU, Y., MATVEEVA , I., GOLDSMITH, J., AND SPRAGUE, C. 2005a. The SED heuristic for morpheme dis-
covery: a look at Swahili. InProc. 2nd Workshop of Psychocomputational Models of Human Language
Acquisition. Ann Arbor, Michigan, 28–35.

HU, Y., MATVEEVA , I., GOLDSMITH, J.,AND SPRAGUE, C. 2005b. Using morphology and syntax together in
unsupervised learning. InProc. 2nd Workshop of Psychocomputational Models of Human Language Acquisi-
tion. Ann Arbor, Michigan, 20–27.

JACQUEMIN, C. 1997. Guessing morphology from terms and corpora. InProceedings of the 20th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’97).
Philadelphia, Pennsylvania, USA, 156–165.

JÄRVIKIVI , J. AND NIEMI , J. 2002. Form-based representation in the mental lexicon:Priming (with) bound
stem allomorphs in Finnish.Brain and Language 81, 412–423.

JOHNSON, H. AND MARTIN , J. 2003. Unsupervised learning of morphology for English and Inuktitut. In
Human Language Technology and North American Chapter of theAssociation for Computational Linguistics
Conference (HLT-NAACL’03). Edmonton, Canada.

KAZAKOV, D. 1997. Unsupervised learning of naïve morphology with genetic algorithms. InWorkshop Notes
of the ECML/MLnet Workshop on Empirical Learning of NaturalLanguage Processing Tasks. Prague, Czech
Republic, 105–112.

K IT, C. 2003. How does lexical acquisition begin? A cognitive perspective.Cognitive Science1(1), 1–50.
K IT, C., PAN , H., AND CHEN, H. 2002. Learning case-based knowledge for disambiguating Chinese word

segmentation: A preliminary study. InProceedings of the COLING’02 workshop SIGHAN-1. Taipei, Taiwan,
33–39.

K IT, C. AND WILKS , Y. 1999. Unsupervised learning of word boundary with description length gain. InProc.
CoNLL99 ACL Workshop. Bergen.

KNEISSLER, J.AND KLAKOW, D. 2001. Speech recognition for huge vocabularies by usingoptimized sub-word
units. InProc. 7th European Conference on Speech Communication and Technology (Eurospeech). Aalborg,
Denmark, 69–72.

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.



Unsupervised Models for Morpheme Segmentation and Morphology Learning · 31

KONTOROVICH, L., RON, D., AND SINGER, Y. 2003. A Markov model for the acquisition of morphological
structure. Tech. Rep. CMU-CS-03-147, School of Computer Science, Carnegie Mellon University. June 3.

KOSKENNIEMI, K. 1983. Two-level morphology: A general computational model for word-form recognition
and production. Ph.D. thesis, University of Helsinki.

MATTHEWS, P. H. 1991.Morphology, 2nd ed. Cambridge Textbooks in Linguistics.
MCK INNON, R., ALLEN , M., AND OSTERHOUT, L. 2003. Morphological decomposition involving non-

productive morphemes: ERP evidence.Cognitive Neuroscience and Neuropsychology 14,6, 883–886.
NAGATA , M. 1997. A self-organizing Japanese word segmenter using heuristic word identification and re-

estimation. InProc. Fifth workshop on very large corpora. 203–215.
NEUVEL, S. AND FULOP, S. A. 2002. Unsupervised learning of morphology without morphemes. InProc.

Workshop on Morphological & Phonological Learning of ACL’02. 31–40.
PENG, F. AND SCHUURMANS, D. 2001. Self-supervised Chinese word segmentation. InProc. Fourth Interna-

tional Conference on Intelligent Data Analysis (IDA). Springer, 238–247.
QUIRK , R., GREENBAUM, S., LEECH, G.,AND SVARTVIK , J. 1985.A Comprehensive Grammar of the English

Language. Longman, Essex.
RISSANEN, J. 1989.Stochastic Complexity in Statistical Inquiry. Vol. 15. World Scientific Series in Computer

Science, Singapore.
SAFFRAN, J. R., NEWPORT, E. L., AND ASLIN, R. N. 1996. Word segmentation: The role of distributional

cues.Journal of Memory and Language 35, 606–621.
SCHONE, P. AND JURAFSKY, D. 2000. Knowledge-free induction of morphology using Latent Semantic Anal-

ysis. InProc. CoNLL-2000 & LLL-2000. 67–72.
SCHONE, P. AND JURAFSKY, D. 2001. Knowledge-free induction of inflectional morphologies. InProc.

NAACL-2001.
SNOVER, M. G. AND BRENT, M. R. 2001. A Bayesian model for morpheme and paradigm identification. In

Proc. 39th Annual Meeting of the ACL. 482–490.
SNOVER, M. G., JAROSZ, G. E.,AND BRENT, M. R. 2002. Unsupervised learning of morphology using a

novel directed search algorithm: Taking the first step. InProc. Workshop of Morphological & Phonological
Learning of ACL’02. 11–20.

WICENTOWSKI, R. 2004. Multilingual noise-robust supervised morphological analysis using the WordFrame
model. InProc. 7th Meeting of the ACL Special Interest Group in Computational Phonology (SIGPHON).
Barcelona, 70–77.

YAROWSKY, D., NGAI , G.,AND WICENTOWSKI, R. 2001. Inducing multilingual text analysis tools via robust
projection across aligned corpora. InProceedings of HLT 2001, First International Conference onHuman
Language Technology Research. 161–168.

YAROWSKY, D. AND WICENTOWSKI, R. 2000. Minimally supervised morphological analysis by multimodal
alignment. InProc. ACL-2000. 207–216.

YU, H. 2000. Unsupervised word induction using MDL criterion.In Proc. ISCSL. Beijing.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Speech and Language Processing, Vol. V,No. N, Month 20YY.


