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We present a model family called Morfessor for the unsupediiinduction of a simple morphology from raw
text data. The model is formulated in a probabilistic maxima posteriori framework. Morfessor can handle
highly-inflecting and compounding languages, where woatsaonsist of lengthy sequences of morphemes. A
lexicon of word segments, so calletbrphs is induced from the data. The lexicon stores informatiooualboth

the usage and form of the morphs. Several instances of thelracel evaluated quantitatively in a morpheme
segmentation task on different sized sets of Finnish asagdiinglish data. Morfessor is shown to perform very
well compared to a widely known benchmark algorithm, inipatar on Finnish data.
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1. INTRODUCTION

When constructing a system that is capable of understaradidgproducing language, a
fundamental task is the determination of the basic languags and their relationships.
Many practical natural language processing (NLP) problarasest solved using lexical
resources, in their simplest form an application-speciditabulary. For example, in infor-
mation retrieval the analysis entails collecting a list ofds and detecting their association
with topics of discussion. Moreover, a vocabulary is esaéftr obtaining good results in
speech recognition.

Words are often thought of as basic units of representatldowever, especially in
inflecting and compounding languages this view is hardlynoat For instance, if one
treats the following English words (‘hand, hands, left-thath’) as separate entities, one
neglects the close relationships between these words, lagasvthe relationship of the
plural ‘s’ to other plural word forms (e.g., ‘heads, arms,géns’). Overlooking these
regularities accentuates data sparsity, which is a sepooislem in statistical language
modeling.
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According to linguistic theory, morphemes are the smalhstning-bearing units of
language as well as the smallest units of syntax [Matthev@d [L9Every word consists
of one or several morphemes; consider for instance the gnglords ‘hand, hand+s,
left+hand+ed, finger+s, un+avail+able’. There exist lisja methods and automatic tools
for retrieving morphological analyses for words, e.g.,daasn the two-level morphology
formalism [Koskenniemi 1983]. However, these systems rhadilored separately for
each language, which demands a large amount of manual warkg®rts. Moreover, spe-
cific tasks often require specialized vocabularies, whiclstnkeep pace with the rapidly
evolving terminologies.

If it is possible to discover a morphology automaticallyrfranannotated text, language
and task independence are easier to achieve. As we will demada in this work, by
observing the language data alone it is possible to come tipavinodel that captures
regularities within the set of observed word forms. If a humeere to learn a language in
an analogous way, this would correspond to being exposedtteam of large amounts of
language without observing or interacting with the worldendnthis language is produced.
This is clearly not a realistic assumption about languagenieg in humans. However,
Saffran et al. [1996] show that adults are capable of distogevord units rapidly in a
stream of a nonsense language without any connection toingeaihis suggests that
humans do use distributional cues, such as transition pilities between sounds, in lan-
guage learning. And these kinds of statistical patternangliage data can be successfully
exploited by appropriately designed algorithms.

Based on a comprehensive review of contemporary studieswfchildren start to ac-
quire language, also Kit [2003] concludes that childrertaiely make use of statistical
cues. Kit further proposes the least-effort principle as@gpble underlying approach
that is supported by both empirical evidence and theotetimasiderations. The least-
effort principle corresponds to Occam’s razor, which séwgd among equally performing
models one should prefer the smallest one. This can be fateduimathematically using
the Minimum Description Length (MDL) principle [RissaneB89] or in a probabilistic
framework as a maximum a posteriori (MAP) model.

Generally, a system using language benefits from represeasi large a vocabulary as
possible. However, both humans and artificial systems nede &able to store language
economically using limited memaory capacity. This is parfély true about small portable
devices. For example, if one has 500000 word forms in a Statisn-gram language
model, or essentially the same information using only 208@0phemes, considerable
improvements in efficiency can be obtained.

In language understanding and generation one must not ephgsent possible word
forms but also their rules of generation in the context oéothords. An important consid-
eration is the ability to generate and to recognize unseed feoms and expressions. For
example, we would expect a system to be able to handle the'sftwdwiping’ when some
other related word forms have been observed (e.g., ‘shpedii If a word-based system
has not observed a word, it cannot recognize or generatedbritrast, a morpheme-based
system can generate and recognize a much larger numbeferedif word forms than it
has observed.

In this work we describe a general probabilistic model fgrfol morphology induction.
The model family that we calMorfessorconsists of independent components that can be
combined in different configurations. We utilize the maxima posteriori framework for
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expressing the model optimization criteria.

Morfessor segments the input words into units calieatphs A lexicon of morphs is
constructed, where information about both the distrimalmature (“usage”) and “form”
of each morph is stored. Usage relates to the distributinaalre of the occurrence of
morphs in words. Form corresponds to the string of lettegabrph consists of. We ex-
perimentally evaluate different instances of the Morfessodel and compare them against
a benchmark morphology-learning algorithm [Goldsmith 2ZQfD05].

1.1 Structure of the article

Related work on both morphology learning and word segmiemtas$ discussed in Sec-
tion 2. Moreover, the point of view of applying different rhamatical modeling frame-
works is also considered.

The Morfessor model family is outlined in Section 3. The camgnts of the model as
well as their interpretations in terms of usage and form @eugsed in detail. A summary
of our previous morphology discovery methods as instantdsogeneral framework is
presented in Section 4.

Section 5 exhibits thorough experimental results compatfie different instances of
the model with data sets of different sizes, ranging fronutamds to millions of words.
The results are intended to provide an understanding on lasticplar components of
the general model affect morphology learning. We use aruatiah task that measures
segmentation accuracy and coverage of the proposed segiopatagainst gold standard
segmentations for Finnish and English.

Section 6 discusses issues beyond the discovery of morpheuaredaries as well as
considers aspects that are not handled by the current maahetivork. Conclusions are
presented in Section 7.

2. RELATED WORK

Unsupervised morphology induction is closely connecteti thie field of automatic word
segmentation, i.e., the segmentation of text without tdanto words (or sometimes mor-
phemes). For example, consider the Chinese and Japangaadgs, where text is written
without delimiters between words. A first necessary taskhepgrocessing of these lan-
guages is to determine probable locations of boundariesdeet words.

In the following, we will discuss a few aspects related to pimiogy learning and word
segmentation. The existing algorithms in these fields ohelexamples from both the su-
pervised and unsupervised machine learning paradigms. M®ous on unsupervised
and minimally supervised methods. For a broader overvigvighvincludes work on su-
pervised algorithms, the reader is referred to, e.g., [&ulth 2001; Kit et al. 2002].

2.1 Challenges for highly-inflecting and compounding languages

It is common that algorithms designed for morphology leagmot only produce a seg-
mentation of words into morphemes, but additionally attetagliscover relationships be-
tween words, such as knowledge of which word forms belondghéosame inflectional
paradigm. These higher-reaching goals are achieved bytragrisg the model space
severely: prior assumptions regarding the inner struaifiveords (morphotactics) are ex-
pressed as strict constraints. Typically, words are kstiito consist of one stem followed
by one, possibly empty, suffix as in, e.g., [Déjean 1998; 8nawnd Brent 2001]. Gold-
smith [2001] induces paradigms that he calls signaturedgoing that he also proposes a
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Fig. 1. Morpheme segmentation of the Finnish eléma| n | tapa | muutoks| i | lla
word ‘eldméntapamuutoksilla’  (“with  [the] life | of | style | change | -s | with
changes of life style”).

recursive structure in which stems can consist of a sub-ateha suffix. Also prefixes are
possible in Goldsmith’s model.

In word segmentation such constraints are inapplicablealse the number of words
per sentence can vary greatly and is rarely known in adva@manmonly, algorithms
designed for word segmentation utilize very little priorokviedge or assumptions about
the syntax of the language. Instead, prior knowledge alygital word length may be
applied, and small seed lexicons are sometimes used fostbamping. The segmentation
algorithms try to identify character sequences that aehlikvords without consideration
of the context in which the words occur (e.g., [Ando and Le®8®@0vu 2000; Peng and
Schuurmans 2001]).

For highly-inflecting and compounding languages such asisfinboth the outlined ap-
proaches are problematic. Typically word segmentatioarétyns perform on an insuffi-
cient level, apparently due to the lack of any notion of matpltics. On the other hand,
typical morphology learning algorithms have problems lbseghe ingrained assumptions
they make about word structure are generally wrong (thabdsstrict) for Finnish, or for
other highly-inflecting or compounding languages. In shibity cannot handle the possi-
bly high number of morphemes per word. A Finnish word can be$lengthy sequences
of alternating stems and suffixes, as in the example in Fiju@ur attempts at finding a
solution to this problem are described in the current pafabsets of these results have
previously been presented in the articles [Creutz and La§Q8; Creutz 2003; Creutz and
Lagus 2004; 2005a]. However, the generalized structureleedission on its components
are presented here for the first time.

2.2 General modeling methodologies

There exist some central mathematical frameworks, or nmglelethodologies, that can
be used for formulating models for morphology learning amddssegmentation.

In maximum likelihood (ML) modeling, only the accuracy okthepresentation of the
data is considered when choosing a model. That is, model lexityp(i.e., size of the
model) is not taken into account. ML is known to lead to ovamhéng, unless some restric-
tive model search heuristics or model smoothing is appliEtere exist word segmenta-
tion and morphology learning algorithms where the comexi the model is controlled
heuristically, e.g., [Ge et al. 1999; Peng and Schuurmafd ;2RBneissler and Klakow
2001; Creutz and Lagus 2004].

Probabilistic maximum a posteriori (MAP) models and eglgmtly models based on
the Minimum Description Length (MDL) principle choose thesb model by simultane-
ously considering model accuracy and model complexitypsmmodels are favored over
complex ones. This generally improves generalization cigpdy inhibiting overlearn-
ing. A number of word segmentation and morphology learniggrithms have been for-
mulated either using MDL or MAP, e.g., [de Marcken 1996; Deé& and Bimbot 1997,
Kazakov 1997; Brent 1999; Kit and Wilks 1999; Yu 2000; Goldtsn2001; Snover and
Brent 2001; Creutz and Lagus 2002; Creutz 2003]. In thes&sytie goal is to find the
most likely lexicon (model) as well as a likely segmentatidthe data. A more elaborate,
and a much more computationally intensive way of perforntirggtask would be to use
Bayesian model averaging. There instead of choosing otieglar model, every possible
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model among some parameterized set is chosen with a weigthistproportional to the
probability of the particular model. However, we are unanvafr attempts to use such an
approach in this task.

Finite-state automata (FSA) can be used to describe thébpmssord forms of a lan-
guage, e.g., in the two-level morphology framework [Koskemi 1983]. There exist
algorithms that try to learn FSA:s that compactly model treedvforms observed in the
training data [Johnson and Martin 2003; Goldsmith and Hw208lso Altun and Johnson
[2001] induce a stochastic finite-state automaton desagiburkish morphology, but their
method works only in a supervised learning task, that ig; tequire a segmented, labeled
corpus to begin with.

Parallels from the automaton approach can be drawn to metiapired by the works
of Zellig S. Harris [1955; 1967], where a word or morpheme rmbary is suggested at
locations where the predictability of the next letter in@desequence is low, e.g., [Déjean
1998; Ando and Lee 2000; Adda-Decker 2003; Feng et al. 200#e letter sequences
(words or sentences) are sorted into a suffix tree, these giadictability locations” cor-
respond to nodes with a high branching factor. The suffix t@dd be compressed by
merging nodes that have identical continuations, therebglyring a more compact data
structure, which is an FSA.

2.3 Learning morphological structure

The model presented in this work provides a good means fosd¢gmentatiomf words
into morphemes. Alternatively, the model can be applied dodform generation The
rather few restrictions incorporated in the current modakes it a very permissive model
of morphology. Such a model predicts a large number of wordside of the observed
training corpus. This is desirable behavior, since a swfakkearning algorithm should
be able to generalize to unseen data. However, a permissilelralso makes many mis-
takes. Many alternative approaches to morphology learfings on the acquisition of
more restrictive morphologies, where much fewer wordsidatsf the training corpus are
recognized.

Some works discover pairs of related words or pairs of mauoltévcollocations.
Jacquemin [1997] discovers morphological variants of iwoltd collocations, e.g., ‘longi-
tudinal recorihg’ vs. ‘longitudinaly recorced. The collocations essentially have the same
semantics and can be identified through regular suffix pattex.g., {€, ing), (ly, ed)}. Ba-
roni et al. [2002] and Neuvel and Fulop [2002] propose athars that learn similarities in
the spelling of word pairs. The discovery of patterns is estricted to concatenation, but
also include, e.g., vowel change such as the German Umkanschlag’ vs. ‘Anschlage’.
Generation takes place by predicting missing word pairs.if&tance, the pair ‘receive’
vs. ‘reception’ yields the pair ‘deceive’ vs. ‘deceptiory Bnalogy (where it is assumed
that the word ‘deception’ was not in the training set).

Other works aim at forming larger groups of related word fer@aussier [1999] learns
derivational morphology from inflectional lexicons. Ortraphically similar words are
clustered into relational families. From the induced warhilies, derivational rules can
be acquired, such as the following French verb-to-noun exsions: ‘produire— ‘pro-
duction’, ‘produire’ — ‘producteur’. Schone and Jurafsky [2000; 2001] make use of a
Harris-like algorithm to separate suffixes and prefixes fwond stems. Whether two or-
thographically similar word forms are morphologicallyatdd is determined from their
context of neighboring words. A semantic representationafovord is obtained from
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the context using Latent Semantic Analysis (LSA). The sdin@moperties of a word are
assumed to emerge from a large context window, whereasctiapaoperties can be deter-
mined from a narrow window of the immediate word context. didition to orthographic,
semantic, and syntactic similarity, transitive closuratized as a forth component. That
is, if ‘conductive’ is related to ‘conduct’ and ‘conductiyi is related to ‘conductive’, then
‘conductivity’ is related to ‘conduct’.

Yarowsky and Wicentowski [2000] and Yarowsky et al. [200idcdbver shared root
forms for a group of inflected words. Verbs in numerous laggsare studied. Frequency
distributions are included as a clue to whether words aete@l For instance, the English
word ‘singed’ can be discarded as a past tense candidategihy’ because ‘singed’ is far
too rare. Furthermore, parallel corpora in multiple largpsaare utilized, and one language
can function as a “bridge” for another language. For exantpieFrench verb ‘croire’ can
be discovered as the root of ‘croyaient’, since these twmfoare linked to the English
verb ‘believe’ in a parallel text. A missing link from the erabling verb forms ‘croissant’
and ‘croitre’ tells us that these are not likely to be relatettroire’. Wicentowski [2004]
learns a set of string transductions from inflection-rodtgand uses these to transform
unseen inflections to their corresponding root forms. Thisleh, however, is trained in a
supervised manner.

A further step consists in inducing complete inflectionalgaigms, i.e., discovering
sets of stems that can be combined with a particular set éiksesf Goldsmith [2001]
formulates his well-known algorithm Linguistica in an MDtamework, whereas Snover
and Brent [2001] and Snover et al. [2002] present a similababilistically formulated,
model. These models do not predict any word forms outsideeofraining data. If the fol-
lowing English verb forms have been observed: ‘talk, talikking, walk, walked, walks’,
the verbs ‘talk’ and ‘walk’ will go into separate paradigmgalk’ with the suffix set {,

s, ing} and ‘walk’ with the suffix set §, ed, s}. More general paradigms can be obtained
by “collapsing them” together, i.e. clustering them basedontext similarity [Hu et al.
2005b]. This model can, in principle, predict the missingviarms ‘talked’ and ‘walk-
ing’.

As mentioned previously in Section 2.1, existing models entlile learning of higher-
level morphological structure computationally feasibjedssuming that a word consists
of maximally two, or three, morphemes. In recent work, Golilk and Hu [2004] and Hu
et al. [2005a] move towards morphologies with a larger nunolfenorphemes per word.
A heuristic is described that is capable of learning 3- arstlade FSA:s that model word
forming in Swabhili, a language with rich prefixation.

2.4 Composition of meaning and form

A central question regarding morpheme segmentation isdh@positionalityof meaning
and form. If the meaning of a word is transparent in the selnaeit is the “sum of the
meaning of the parts”, then the word can be split into thesparhich are the morphemes,
e.g., English ‘foot+print, joy+ful+ness, play+er+s’. Hewer, it is not uncommon that the
form does consist of several morphemes, which are the sshallements of syntax, but
the meaning is not entirely compositional, e.g., Engligtoti-man’ (male servant wearing
a uniform), ‘joy+stick’ (control device), ‘sky+scrap+dwrery tall building).

de Marcken [1996] proposes a model for unsupervised largaeguisition, in which
he defines two central conceptompositionandperturbation Composition means that
an entry in the lexicon is composed of other entries, e.gystick’ is composed of ‘joy’
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and ‘stick’. Perturbation means that changes are intradititat give the whole a unique
identity, e.g., the meaning of ‘joystick’ is not exactly thesult of the composition of the
parts. This framework is similar to the class hierarchy ohgnprogramming languages,
where classes can modify default behaviors that are irge:fiiom superclasses. The more
of its properties a lexical parameter inherits from its comgnts, the fewer need to be
specified via perturbations.

Among other things, de Marcken applies his model in a taskistipervised word seg-
mentation of a text, where the blanks have been removed. ésudtrhierarchical segmen-
tations are obtained, e.g., for the phrase ‘for the purp8sgfpor]][[t[he]l[[[p[ur]ll[[po]s]
e]][of]]]]. The problem here from a practical point of view that there is no way of deter-
mining which level of segmentation corresponds best to aemtional word segmentation.
On the coarsest level the phrase works as an independerd™@fmrthepurposeof’). On
the most detailed level the phrase is shattered into indalitbtters.

3. FORMULATION OF THE MORFESSOR MODEL STRUCTURE

The determination of a suitable model family, that is, madeicture, is of central impor-
tance, since it sets a hard constraint on what can be leanr@thiciple. A too restricting
model family may exclude all optimal and near-optimal medehaking learning a good
model impossible, regardless of how much data and computtitne is spent. In contrast,
a too flexible model family is very hard to learn as it requirepractical amounts of data
and computation.

We present Morfessor, a probabilistic model family for mtwlogy learning. The model
family consists of a number of distinct components whichlwaimterpreted to encode both
syntactic and semantic aspects of morphs, which are wordesei discovered from data.
Morfessor is a unifying framework that encompasses théqudat models introduced ear-
lier in [Creutz and Lagus 2002; Creutz 2003; Creutz and L&fi@t; 2005a], and also
has close connections to models proposed by other resesirdbach of these particular
works has brought additional understanding regardingagleproblems and how they can
be solved.

This section contains the mathematical formulation of thieegal model structure along
with a discussion of the interpretation of its components.Section 4 we outline how
our earlier models can be seen as particular instances,bsety of this model. For a
discussion on how to estimate any of the models (i.e., fod#tails of the model search
algorithms), the interested reader is referred to ourexgpliblications.

3.1 Maximum a posteriori estimate of the overall probability

The task is to induce a model of language in an unsupervisethendrom a corpus of
raw text. The model of languagé\{) consists of a morph vocabulary, orexicon of
morphs and agrammar We aim at finding the optimal model of language for producing
a segmentation of the corpus, i.e., a set of morphs that isig®mnand moreover gives a
concise representation for the corpus. Tineximum a posteriof(MAP) estimate for the
parameters, which is to be maximized, is:

argmax P(M|corpug = argmax P(corpus M) - P(M), where 1)
M M
P(M) = P(lexicon, grammay. (2)
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As can be seen above (Eq. 1), the MAP estimate consists of awe: gthe probability of
the model of languag® (M) and themaximum likelihoodML) estimate of the corpus
conditioned on the given model of language, writtenPdsorpus| M). The probability
of the model of language (Eqg. 2) is the joint probability o ghrobability of the induced
lexicon and grammar. It incorporates our assumptions of émwe features should affect
the morphology learning task. This is tBayesiamotion of probability, i.e., using prob-
abilities for expressing degrees of prior belief rathemtbaunting relative frequency of
occurrence in some empirical test setting.

In the following, we will describe the components of the Mmm$or model in greater
detail, by studying the representation of the lexicon, greanand corpus, as well as the
components of these.

3.2 Lexicon

The lexicon contains one entry for each distinct morph (rhaggpe) in the segmented
corpus. We use the term “lexicon” to refer to an inventory dfatever information one
might want to store regarding a set of morphs, includingrtimérrelations.

Suppose that the lexicon consistsidf distinct morphs. The probability of coming up
with a particular set o/ morphsy; . .. s making up the lexicon can be written as:

P(lexicon) = P(sizelexicon = M) - P(propertiegu1), . .., propertieuas)) - M. (3)

The product contains three factors: (i) the prior probapthat the lexicon contains exactly
M distinct morphs, (i) the joint probability that a set &f morphs, each with a particular
set of properties, is created, and (iii) the faciét, which is explained by the fact that there
areM! possible orderings of a set 8f items and the lexicon is the same regardless of the
order in which theM morphs emerged. (It is always possible to afterwards reger¢he
morphs into an unambiguously defined order, such as alplabetder.)

The effect of the first facto(sizlexicon) = M), is negligible, since in the computa-
tion of a model involving thousands of morphs and their pat@ns, one single probability
value is of no practical significance. Thus, we have omitteddfine a prior distribution
for P(sizdlexicon)).t

The properties of a morph can be divided into informatiorardang (1) the “usage” and
(2) the “form” of the morph:

P(propertiesy;)) = P(usagéy,), form(y,). (4)

In Section 3.5 we present a set of properties, each of whiglegponds to a component of
the model, and group them under the usage and form aspeetguifjpose of this grouping

is to facilitate the understanding of the model: the modelftwould be equivalent without

it.

3.3 Grammar

Grammar can be viewed to contain information about how laggwnits can be combined.
In this work we model a simple morphotactics, that is, wartkinal syntax. Instead of
estimating the structure of the grammar from data, we ctiyrenilize a specific fixed

LIf one were to define a proper prior, one possible choice woelRissanen’s universal prior for positive numbers
(see Eq. 14).
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structure. Therefore we do not have to calculate the prdibatf the grammar as a whole,
andP(M) in Equation 2 reduces tB(lexicon).

The fixed structure of the grammar is taken as the followingrphs are generated from
a small number of categories, which gnefix (PRE), stem(sTm), suffix(SUF), andnon-
morpheme&NoON) and will be described more thoroughly below. Between thegaries
there are transition probabilities, which exhibit the fostler Markov property. Words can
consist of any number of morphs, which can be tagged with atggories, with a few
restrictions: Suffixes are not allowed in the beginning arefiges at the end of words.
Furthermore, it is impossible to move directly from a prefixat suffix without passing
through another morph.

It is possible for a morph to be assigned different categadnalifferent contexts. The
tendency of a morph; to be assigned a particular categ6ty P(C; | u;), (e.g., the prob-
ability that the English morph ‘ness’ functions as a suffsxplerived from the parameters
related to the usage of the morph:

P(Ci|pi) = P(C; |usagép;)). (5)

The inverse probability, i.e., the probability of a partemumorph when the category is
known, is needed for expressing the probability of the sedati®on of the corpus. This
emission probability?(u; | C;) is obtained using Bayes’ formula:

P(Cy| pi) - P(pq) _ P(C; | i) - P(ps)

P(u;i | C;) = P(C;) B EVW P(Ci|pir) - P(pir)

(6)

The category-independent probabiliti$..;) are maximum likelihood estimates, i.e.,
they are computed as the frequency of the maeplin the corpus divided by the total
number of morph tokens.

3.4 Corpus

Every word form in the corpus can be represented as a seqoéeome morphs that are
present in the lexicon. Usually, there are many possiblmsegations of a word. In MAP

modeling, the one most probable segmentation is chosenpitirbility of the corpus,

when a particular model of language (lexicon and grammad)raarph segmentation is
given, takes the form:

j

w
P(corpus| M) = [ {P(le 1Cjo) [T [P(kjn | Cix) - P(Clgasny |Cjk)]] (1)
j=1 k=1

As mentioned in the grammar section above, this is a HidderkddaModel and it is
visualized in Figure 2. The product is taken over Wievords in the corpus (token count),
which are each split inta; morphs. Thek™ morph in the;" word, ik, 1S assigned a
category,Cj,. The probability that the morph is emitted by the categorwigten as
P(p 1 | Cjr). There are transition probabilitig3(C; 1) | C;jx) between the categories,
whereC;, denotes the category assigned toffemorph in the word, and’;;41) denotes
the category assigned to the following, @+ 1), morph. The transition probabilities
comprise transitions from a special word boundary cate@#yyo the first morph in the
word, as well as the transition from the last morph to a wondrutary.
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Transition probabilities between morph categories
P(Ci1|Cio) P(C3|Ci) P(C;s|Ci2) P(Cimj+y| Ciny)

Categories

Emission probabilities
Morphs Hj1 Hj2 Hin;

Fig. 2. The HMM model of a word according to Equation 7. The dvoonsists of a sequence of morphs which
are emitted from latent categories. For instance, a p@ssiitgory sequence for the English word ‘unavailable’
would be ‘prefix + stem + suffix’ and the corresponding morplasila be ‘un + avail + able’.

3.5 Usage and form of morphs

In order to find general patterns of how a morph is used, in&ion is collected about the
distributional natureof the occurrences of the morph in the segmented corpus. féletoe
this distribution as the “usage” of the morph. This inclubesh properties of the morph
itself and properties of the context it typically appearsThe typical usage of the morph
can be parameterized and the parameters stored in thedeXMuch parameter values are
likely is determined by probability density functions (m)f which are prior pdf:s in the
Bayesian sense and favor solutions that are linguisticadifivated. The features that have
been used for modeling usage in this work, as well as possibénsions, are described in
Section 3.5.2.

By the “form” of a morph we understand the symbolic repreatomn of the morph, i.e.,
the string of letters it consists of. Different strings halierent probabilities, which are
determined using a prior probability distribution.

Given this distinction between usage and form, we make teenagtion that they are
statistically independent:

P(propertiesuy), . . ., propertieguns)) =
P(usagéyn),...,usagéunr)) - P(form(uy), ... form(uns)).  (8)

3.5.1 Form of a morph.In the current model, we further make the simplifying assump
tion that the forms of the morphs in the lexicon are indepahdé&each other, thus:

M
P(form(py), ..., form(uar)) = [ [ P(form(p,)). (9)
=1
We draw inspiration from de Marcken [1996] in the sense thatphs in the lexicon
have hierarchical structure. A morph can either consist sfriag of letters or of two
submorphs, which can recursively consist of submorphs. probability of the form of
the morphu; depends on whether the morph is represented as a strindgessI€Eqg. 10a)
or as the concatenation of two submorphs (Eqg. 10b):

P(form(u;)) =
{ (1 — P(sub) - TT29") P(cyy). (10a)
P(sub - P(Cj1 [sub - P(pi | Cix) - P(Ciz | Cin) - P(piz | Ciz). (10b)

P(sub is the probability that a morph has substructure, i.e., tloepm consists of two
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submorphsP(sub) is estimated from the lexicon by dividing the number of marphving
substructure by the total number of morphs.

In (10a), P(c;;) is the probability of thej™ letter in thei!” morph in the lexicon. The
last letter of the morph is thend-of-morph charactemwhich terminates the morph. The
probability distribution to use for the letters in the alpbacan be estimated from the
corpus (or the lexicon).

Equation 10b resembles Equation 7, where the probabilitthef corpus is given.
P(C;1 | sub is the probability that the first morph in the substructurassigned the cate-
gory C;1. P(Ci2 | C;1) is the transition probability between the categories offitst and
second submorphs?(u;; | C;1) and P(u;o | Ci2) are the probabilities of the submorphs
;1 and ;o conditioned on the categori€g; andCj,. The transition and morph emis-
sion probabilities are the same as in the probability of thipes (Eqg. 7). An example of
concrete substructures are given later (Sec. 4.3, Fig. 4).

3.5.2 Features related to the usage of a morprhe set of features that could be used
for describing usage is very large: The typical set of monfitag occur in the context
of the target morph could be stored. Typical syntactic refest of the morph with other
morphs could be included. The size of the context could varnfvery limited to large
and complex. A complex context might reveal different aspetthe usage of the morph,
from fine-grained syntactic categories to broader semaptagmatic or topical distinc-
tions. One might even use information from multimodal catgde.g., images, sounds)
for grounding morphmeaningto perceptions of the world. This reasoning relies on the
philospohical view that the meaning of linguistic unitsg(e morphs) is reflected directly
in how they are used.

However, in this work only a very limited set of features i®dsand only based on
information contained in word lists. As properties of therptoitself, we count thére-
guencyof the morph in the segmented corpus andlémgthin letters of the morph. As
“distilled” properties of the context the morph occurs ire eonsider the intra-wondght
andleft perplexity of the morph.

Using the above features the probability of the usages ofrthgohs in the lexicon
becomes:

P(usagésu), . .., usagéun)) =
M

P(freq(m), ... freq(uar)) - [ ] [P(length(u:)) - P(right-ppl(u;)) - P(left-pplu;))].
i=1 (11)

Due to practical considerations in the current implemématve have assumed that the
length, right and left perplexity of a morph are independgihe corresponding values of
other morphs. In contrast, the frequencies of the morphgigen as a joint probability,
that is, there is one single probability for an entire morgggtiency distribution. The
probability distributions have been chosen due to theiregaity and simplicity. In a
more sophisticated model formulation, one could attemptadel dependencies between
morphs and their features, such as the general tendencgafdnt morphs to be rather
short.

Next, we describe the individual features and the prior phbility distributions that are

2Perplexity, a function of entropy, describes how predietabe context is given this morph.
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used for the range of possible values of these features. \Welude the treatment of
morph usage by reporting how the usage of a morph transhiesategory membership
probabilities in the current grammar. We stress that thisqdar grammar, as well as the
set of features used, is only one possible solution amongya teumber of alternatives.

3.5.2.1 Frequency.Frequent and infrequent morphs generally have differemiase
tics. Frequent morphs can be function words and affixes asagsetommon concepts.
The meaning of frequent morphs is often ambiguous as opgosade morphs, which are
predominantly content words.

The knowledge of the frequency of a morph is required for wating the value of
P(u;) in Equation 6. The probability that a particular frequenéstribution emerges is
defined by the following prior probability:

—1)_ (M- M

Pteglu).....rec(uar)) = 1/ (37 -

whereN is the total number of morptokensin the corpus, which equals the sum of the
frequencies of thé/ morphtypesthat make up the lexicon. Equation 12 is derived from
combinatorics: As there ar((ﬁ:ll) ways of choosingV/ positive integers that sum up to
N, the probability of one particular frequency distributioh)M/ frequencies summing to
Nis1/(35)-

3.5.2.2 Length. We assume that the length of a morph affects the probabihtfether
the morph is likely to be a stem or belong to another morphgeate Stems often carry
semantic (as opposed to syntactic) information. As the fsgtiemns is very large in a lan-
guage, stems are not likely to be very short morphs, bechagated to be distinguishable
from each other.

The length of a morph can be deduced from its form if an endiofph character is used
(see Section 3.5.1). However, the consequence of such aoambys that the probability
of observing a morph of a particular length decreasgsonentiallywith the length of
the morph, which is clearly unrealistic. Instead of usingead-of-morph marker, one
can explicitly model morph length with more realistic prigmobability distributions. A
Poisson distributiorcan be justified when modeling the length distributions ofdvand
morph tokens, e.g., [Nagata 1997], but for morph types, (itee set of morphs in the
lexicon) agamma distributiorseems more appropriate [Creutz 2003].

P(length(1;)) in Equation 11 assumes values from a gamma distributiorch siused
as a prior for morph length. Otherwise, if morph length is mled implicitly by using an
end-of-morph marke®(length(y;)) is superfluous.

3.5.2.3 Intra-word right and left perplexity.The left and right perplexity give a very
condensed image of the immediate context a morph typicaltyis in. Perplexity serves
as a measure for the predictability of the preceding or ¥atg morph.

Grammatical affixes mainly carry syntactic information.eytare likely to be common
“general-purpose” morphs that can be used in connectiolm aviarge number of other
morphs. We assume that a morph is likely to be a prefix if it fiadilt to predict what
the following morph is going to be. That is, there are manysjiis right contexts of the
morph and the right perplexity is high. Correspondingly, @ ph is likely to be a suffix
if it is difficult to predict what the preceding morph can balahe left perplexity is high.
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The right perplexity of a target morph is calculated as:

ightppi) = | T] Ply )] ™. (13)

v; € right-of(u;)

There aref,,, occurrences of the target morphin the corpus. The morph tokensoccur
to the right of, immediately following, the occurrencesgf The probability distribution
P(v; | 15 is calculated over all suchy;. Left perplexity can be computed analogously.
As a reasonable probability distribution over the possiglies of right and left per-
plexity, we useRissanen’s universal pridior positive numbers ([Rissanen 1989)):

: (14)

P(n) ~ 92 log, c—log, n—log, log, n—log, log, logy n—...

where the sum includes all positive iterates, arid a constant, abo®.865. To obtain
P(right-ppl(x;)) andP(left-ppl(u;)), the variable: is substituted by the appropriate value,
right-ppl(x;) or left-ppl(x;)

3.5.3 Category membership probabilitiesn the grammar, the tendency of a morph
to be assigned a particular categoPRE, STM, SUF, or NON) is determined by the usage
(distributional nature) of the morph (Equation 5). The exatationship,

P(C;|usagéu:)) = P(C; | freq(u:), length(y; ), right-ppl(u; ), left-ppl(p:)),  (15)

could probably be learned purely from the data, but curyem# use a fixed scheme, in-
volving a few adjustable parameters.

We obtain a measure girefix-likenesdy applying a graded threshold realized as a
sigmoid function to the right perplexity of a morph (see Fiy8a):

prefix-like(p;) = (1 + exp[—a - (right-ppl(u;) — b)])_l. (16)

The parameteb is the perplexity threshold, which indicates the point vehemorphu;
is as likely to be a prefix as a non-prefix. The parametgoverns the steepness of the
sigmoid. The equation for suffix-likeness is identical eptdbat left perplexity is applied
instead of right perplexity (Fig. 3b).

As for stems, we assume that tftem-likenesef a morph correlates positively with the
lengthin letters of the morph. A sigmoid function is employed asvahavhich yields:

stem-likézi;) = (1 + exp[—c- (length(;) — d)]) .

whered is the length threshold andgoverns the steepness of the curve (Fig. 3c).
Prefix-, suffix- and stem-likeness assume values betweerarngl one, but they are not

probabilities, since they usually do not sum up to one. A prgpobability distribution

is obtained by first introducing theon-morphemeategory, which corresponds to cases

wherenoneof the proper morph classes is likely. Non-morphemes ariajlp short,

(17)

31n fact, the best results are obtained when only context h=rpthat are longer than three letters are included in
the perplexity calculation. This means that the right afidderplexity are mainly estimates of the predictability
of thestemghat can occur in the context of a target morph. Includingteanorphs seems to make the estimates
less reliable, because of the existence of non-morphenoése(morphs).

4Actually Rissanen defines his universal prior ovemalh-negativenumbers and he would writ®(n — 1) on

the left side of the equation. Since the lowest possibleleritp is one, we do not include zero as a possible
value in our formula.
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Fig. 3. Sketch of sigmoids, which express our prior belidfi@iv the right and left perplexity as well as the length
of a morph affects its tendency to function as a prefix, suffixstem.

like the affixes, but their right and left perplexity are lamhich indicates that they do not
occur in a sufficient number of different contexts in ordeqt@lify as a pre- or suffix. The
probability that a segment is a non-morphemex) is:

P(NON| ;) = [1 — prefix-likg{ ;)] - [1 — suffix-likew;)] - [1 — stem-likéy;)].  (18)
Then the remaining probability mass is distributed betwaerix, stem and suffix, e.g.:

prefix-like(p;)2 - [L — P(NON | 14;)]
prefix-like(p; )9 + stem-likép,; )7 + suffix-like ;)4

The exponent affects the normalization. High values @fproduce spiky distributions
(“winner-take-all effect”), whereas low values producééadistributions. We have tested
the valueg; = 1 andq = 2.

As mentioned in Section 3.5.2.1, the frequency of a morphdcpassibly be used for
distinguishing between “semantic” morphs (stems) andrfgnatical” morphs (affixes).
In the current scheme, the frequerey suchis only used for computing the category-
independent probabilitieB(w;) (Eqg. 6). Nonetheless, right and left perplexity are indirec
measures of frequency, because a high frequency is a prigoorfdr a high perplexity.

There is a similar idea of using the features frequency, alumformation and left and
right entropy in the induction of a Chinese dictionary fromumtagged text corpus [Chang
et al. 1995]. There, the features are applied in classifgimgracter sequences as either
words or non-words, which resembles our morpheme categarid the non-morpheme
category. In another work, [Feng et al. 2004], a somewhaplginfeature called acces-
sor variety was used in order to discover words in Chinese t€kese features are not
new within the field of word segmentation. Already in the mering work of Harris
[1955] something very akin to “accessor variety” was introeld. Entropy was explored
in a Harrisian approach to the segmentation of English wbyddafer and Weiss [1974].
However, in Morfessor, perplexity is not utilized to diseoypotential morph boundaries,
but to assign potential grammatical categories to sugdestephs.

(19)

P(PRE| ) =

4. MODEL VARIANTS

Our earlier work can be seen as instances of the general bsorfenodel, since each of
the previous models implements a subset of the componeMsdéssor. These models
and their central properties are summarized in Table I.

The widely known benchmark, John Goldsmith’s algorithmduirstica [Goldsmith 2001;
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2005], is also included in the comparison even though it cedit entirely into the Mor-
fessor model family.

4.1 Baseline and Baseline-Length

The Morfessor Baselinenodel was originally presented as the “Recursive MDL model”
in [Creutz and Lagus 2002]. The formulation followed frone tMinimum Description
Length (MDL) principle in a mathematically simplified wayn the Baseline, no context
sensitivity is modeled, which corresponds to having onlg ororph category in the HMM
in the grammar. The only feature related to morph usage shakien into account is
morph frequency. The form of the morph is flat, which meansahmorph always consists
of a string of letters and never has substructure. The Beseatiodel can be trained on a
collection of eithemword token®r word types The former corresponds tacarpus a piece
of text, where words can occur many times. The latter comedpto ecorpus vocabulary
where only one occurrence of every distinct word form in theas has been listed. These
two different types of data lead to different morph segmigna.

The choice of the term “baseline” signals that this modehideed very simple. In
essence, words are split into strings that occur frequevitlyin the words in the corpus,
without consideration of the intra-word context in whiclkese segments occur. The more
elaborate category-based Morfessor models make use otediBe algorithm in order to
produce an initial segmentation, which is then refined.

Morfessor Baseline-Length a slight modification of the model introduced in [Creutz
2003]. Itis identical to the Baseline except that a gammaidigion is utilized for mod-
eling morph length. Compared to the Baseline, the Basélareggth algorithm performs
better in a morpheme segmentation task, especially on smmallints of data, but the dif-
ference diminishes when the amount of data is increased.

Software implementing the Morfessor Baseline model vasiapublicly availableun-
der the GNU General Public License. User’s instructiongpangided in a technical report
[Creutz and Lagus 2005b], which further describes the nsodetl the search algorithm
used. In brief, the search takes place as follows: The wamidan the corpus are pro-
cessed, one at a time. First, the word as a whole is considsradnorph to be added to
the lexicon. Then, every possible split of the word into twbstrings is evaluated. The
split (or no split) yielding the highest probability is sefed. In case of a split, splitting
of the two parts continues recursively and stops when no igaires can be obtained. All
words in the corpus are reprocessed until convergence aivirall probability.

The advancement of the search algorithm can be charaade&z®llows: In order to
splita word into two parts, the algorithm must recognizeast one of the parts as a morph.
Initially, all entire word forms are considered potentiabmphs. Since many word stems
occur in isolation as entire words (e.g., English ‘matcthig algorithm begins to discover
suffixes and prefixes by splitting off the known stems fronglenwords (e.g., ‘match+es,
match+ing, mis+match’). The newly discovered morphs catuin be found in words
where none of the parts occur in isolation (e.g., ‘invit¥)ngAs a result of iterating this
top-down splitting, the words in the corpus are graduallit sjpwn into shorter morph8.

Shttp://wamw. cis. hut.fi/projects/norpho/

60ther search strategies could be explored in the futuregcily when dealing with languages where free
stems are rare, such as Latin (e.g., ‘absurd+us, absurtésardadum, absurd+ae, absurd+o’, etc.). However,
initial experiments on Latin suggest that also here theetiirsearch algorithm manages to get a grip on the
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Tablel. Summary of some properties of the morphology legraigorithms. In the “Optim.” column the nature
of the optimization task is indicated. Context sensitiit@txt-sens.”) implies that the position in a word affects
the probability of a morph, i.e., some notion of morphotzets included in the model. The “Usage” column lists
the features of morph usage that are accounted for in thedbexplicit prior distributions in the probability of
the lexicon: frequency (“F"), gamma distribution for morfgmgth (“G”), right (“R”) and left (“L") perplexity.
The structure of the form of morphs is given in the “Form” e¢alu The “Train” column tells whether the model
is trained on a corpus (“tok™ word token collection) or caspvocabulary (“typ”: word type collection). The
“Long seq.” column signals whether the model in questioruitable for morphologies where words can consist
of lengthy sequences of morphemes.

Model name Optim.  Cixt-sens. Usage Form Train Long seq.
Baseline MAP no F flat tok & typ yes
Baseline-Length  MAP no FG flat tok & typ yes
Categories-ML ML yes FGRL flat typ yes
Categories-MAP  MAP yes FGRL hierar. tok (&typ) yes
Linguistica MAP yes - signat. typ (&tok?) no

Both Baselines produce segmentations that are closerrigaigtic morpheme segmen-
tation when trained on a word type collection instead of aditoken collection. The use
of word types means that all information about word freqyendhe corpus is lost. If we
are interested in drawing parallels to language processihgimans, this is an undesir-
able property, because word frequency seems to play an ferjgaole in human language
processing. Baayen and Schreuder [2000] refer to numesyahplinguistic studies that
report that high-frequency words are responded to morektyudmd accurately than low-
frequency words in various experimental tasks. This effeobtained regardless whether
the words have compositional structure or not (and bothdgular derived and inflected
words). Note, however, that these findings may not applyltingluistic tasks. When test
persons were exposed to word forms that were ungrammaticalitext, high-frequency
regular word forms seemed to be processed as if they wereasitigmal rather than un-
analyzed wholes [Allen et al. 2003].

4.2 Categories-ML

TheMorfessor Categories-Mimodel has been presented in [Creutz and Lagus 2004]. The
model is a maximum likelihood (ML) model that is applied feanalyzing a segmenta-
tion produced by the Baseline-Length algorithm. The motatiics of the full Morfessor
model is used in Categories-ML and all four usage featuresreduded. However, the
computation of the category membership probabilities {{§e&.5.3) is only utilized for
initializing a category tagging of the morph segmentatibtamed from Baseline-Length.
Emission probabilities (Equation 6) are then obtained asimam likelihood estimates
from the tagging.

The size of the morph lexicon is not taken into account diydat the calculation of
the overall probability, but some heuristics are applietla morph in the lexicon con-
sists of other morphs that are present in the lexicon (esgerhed = seem+ed’), the most
probable split (essentially according to Eqg. 10b) is sel@é@nd the redundant morph is
removed. A split into non-morphemes is not allowed, howelfen the contrary, a word
has been shattered into many short fragments, these are/edrby joining them with
their neighboring morphs, which hopefully creates a praperph (e.g., ‘flu+s+ter+ed’

affixes and stems, as the result of a long “chain reaction”.
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becomes ‘fluster+ed’). This takes place by joining togetin@n-morphemes with their
shortest neighbors, until the resulting morph can quabfg atem, which is determined by
Equation 17. The Categories-ML algorithm operates on dataisting of word types.

4.3 Categories-MAP

The latest modelCategories-MAPwas introduced in [Creutz and Lagus 2005a]. It is the
most extensive model and its formulation is the completecsitire presented in Section 3.

The search for the most probable Categories-MAP segmenttdkes place using a
greedy search algorithm. In an attempt to avoid local maydifidne overall probability
function, steps of resplitting and rejoining morphs areralated; see [Creutz and Lagus
2005a] for details: (i) initialization of a segmentatioringsBaseline-Length, (i) splitting
of morphs, (iii) joining of morphs using a bottom-up strate@v) resplitting of morphs, (v)
resegmentation of the corpus using the Viterbi algorithchr@restimation of probabilities
until convergence, (vi) repetition of Steps (iii)—(v) once

Figure 4 shows hierarchical representations obtained bsgodaes-MAP for the Finnish
word ‘oppositiokansanedustaja’ (“member of parliamenthef opposition”) and the En-
glish word ‘straightforwardness’. The Categories-MAP ralogtilizes information about
word frequency: The English word has been frequent enougteirorpus to be included
in the lexicon as an entry of its own. The Finnish word has Bbesscommon and is split
into ‘oppositio’ (“opposition”) and ‘kansanedustaja’ (dmber of parliament”), which are
two separate entries in the lexicon induced from the Finoggipus. Frequent words and
word segments can thus be accessed directly, which is edoaloamd fast. At the same
time, the inner structure of the words is retained in thedemj because the morphs are rep-
resented as the concatenation of other (sub)morphs, whechiso present in the lexicon:
The Finnish word can be bracketed as [op positio][[[kansadhista] ja] and the English
word as [[straight [for ward]] ness].

Additionally, every morph is tagged with a category, whisthe most likely category
for that morph in that context. Not all morphs in the lexicared to be “morpheme-like”
in the sense that they represent a meaning. Some morphsponcmore closely to syl-
lables and other short fragments of words. The existendeesit non-morphemes@n)
makes it possible to represent some longer morphs more etoalty, e.g., the Finnish
‘oppositio’ consists of ‘op’ and ‘positio’ (“position”), Wwere ‘op’ has been tagged as a
non-morpheme and ‘positio’ as a stem. Sometimes this hgjamst the oversegmenta-
tion of rather rare words. When for instance, a new name maisaémorized, it can be
constructed from shorter familiar fragments. This means éhfewer number of observa-
tions of this name in the corpus suffice for the name to be addedmorph to the lexicon
compared to a situation, where the name would need to be nesddetter by letter. For
instance, in one of the English experiments the name ‘Zubbescurred twice in the
corpus and was added to the morph lexicon as ‘zubmwA ski/NON'. One might draw
a parallel from the non-morphemes in the Categories-MAPehtmdfindings within psy-
cholinguistic research. McKinnon et al. [2003] suggest tharphological decomposition
and representation extend to non-productive morphemels ag.-ceive, -mit’, and ‘-cede’
in English words, e.g., ‘conceive, permit, recede’.

4.3.1 Using Categories-MAP in a morpheme segmentation taskhe task of mor-
pheme segmentation, the described data structure is vefylusVhile de Marcken (Sec-
tion 2.4) had no means of knowing which level of segmentatidhe desired one, we can
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oppositio/STM + kansanedustaja/STM straightforwardness/STM
op/NON positio/STM kansanedusta/STM ja/SUF straightforward/STM  ness/SUF
/\ /\
kansan/STM  edusta/STM straight/STM  forward/STM
/\ /\
kansa/STM  n/SUF for/NON ward/STM

(@) (b)

Fig. 4. The hierarchical segmentations of (a) the Finnistivi@ppositiokansanedustaja’ (MP of the opposition)
and (b) the English word ‘straightforwardness’ (obtaingdhe Categories-MAP model for the largest data sets).
The finest resolution that does not contain non-morphemeddéen identified with boldface.

expand the hierarchical representation tofihest resolution that does not contain non-
morphemesin Figure 4 this level has been indicated using a bold-faocé fThe Finnish
word is expanded to ‘oppositio + kansa + n + edusta + ja’ @itgr‘opposition + people + of
+represent +-ative”). The English word is expanded inteight + forward + ness’. The
morph ‘forward’ is not expanded into ‘for+ward’, althoughis might be appropriate,
because ‘for’ is tagged as a non-morpheme in the currenegbnt

4.4 Linguistica

The model of Linguistica is formulated in an MDL frameworlathis equivalent to a MAP
model. In the Linguistica algorithm, a morphotactics is iempented, where words are
assumed to consist of a stem, optionally preceded by a prefixugually followed by
a suffix. The stem can recursively consist of a substem anad@esding suffix. This
structure is less general than the one used in MorfessaauBed.inguistica does not al-
low consecutive stems (as in, e.g., ‘coast+guard+s+madihiis, morphologies involving
compounding cannot be modeled satisfactorily.

Linguistica groups stems and suffixes into collectionsechdlignatures (“signat.” in the
“Form” column in Table 1), which can be thought of as inflecté paradigms: a certain
set of stems goes together with a certain set of suffixes. $ugillibe left unsplit unless
the potential stem and suffix fit into a signature. Lingugstis trained on a word type
collection, but it seems that word token collections cowddibed as well.

5. EXPERIMENTS

Careful evaluation of any proposed method is essentialeBéipg on the goal, the evalua-
tion could be carried out directly in some NLP task, such agsp recognition. However,
as the performance in such a task depends on many issues tamulynon the morphs, it
is also useful to evaluate the morph segmentation directly.

In the current paper, the discussed methods are evaluatdihguistic morpheme seg-
mentation task The goal is to find the locations of morpheme boundaries agrately
as possible. Experiments are performed on Finnish and &fngtirpora, and on data sets
of different sizes. As a gold standard for the desired locetiof the morpheme bound-
aries,Hutmegss used (see Section 5.2). Hutmegs consists of fairly atee@nventional
linguistic morpheme segmentations for a large number othMams.
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Word tokens vs. word types
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Fig. 5. (a) Sizes of the test data subsets used in the evalugh) Curves of the number of word types observed
for growing portions of the Finnish and English test sets.

5.1 Finnish and English data sets

The Finnish corpus consists of news texts from the CSC (Theish IT Center for Sci-
ence) and the Finnish News Agency (STT). The corpus contains 3omilvords. It has
been divided into a development set and a test set, eachmiogta6 million words.

For experiments on English we use a collection of texts fram Gutenberg project
(mostly novels and scientific articlés)and a sample from the Gigaword corpus and the
Brown corpu8. The English corpus contains 24 million words. It has beeiddd into a
development and a test set, each consisting of 12 milliordsioFhedevelopment setzre
utilized for optimizing the algorithms and for selectingameter values. Thiest setare
used solely in the final evaluation.

What is often overlooked is that a comparison of differegbathms on one single data
set size does not give a reliable picture of how the algortbehave when the amount of
data changes. Therefore, we evaluate our algorithms witle@sing amounts of test data.
The amounts in each subset of the test set are shown in Figubeth as number of word
tokens (words of running text) and number of word types i@istvord forms). Figure 5b
further shows how the number of word types grows as a functfahe number of word
tokens for the Finnish and English test sets. As can be seefkirinish the number of
types grows fast when more text is added, i.e., many new wandd are encountered.
In contrast, with English text, a larger proportion of therd®in the added text has been
observed before.

5.2 Morphological gold standard segmentation

The Helsinki University of Technology Morphological Evation Gold StandardHut-
meg$ [Creutz and Lindén 2004] contains morpheme segmentafiioris4 million Finnish
word forms and 120 000 English word forms. Hutmegs is baseti®@two-level morpho-
logical analyzer FINTWOL for Finnish [Koskenniemi 1983]cathe CELEX database for

"http://waw. csc. fi/kielipankki/

8htt p: / / www. gut enber g. or g/ br owse/ | anguages/ en

9The Gigaword sample and the Brown corpus are available atitfgiistic Data Consortiumbt t p: / / W,
| dc. upenn. edu/ .
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English [Baayen et al. 1995]. These existing resourcesigecw morphological analysis
of words, but no surface-level segmentation. For instatimeEnglish word ‘bacteriolo-
gist’ yields the analysis ‘bacterium+ology+ist’. The madditional work related to the
creation of Hutmegs consists in the semi-automatic praducif surface-level, or allo-
morph, segmentations (e.g., ‘bacteri+olog+ist’). Heretgkulinen [1979] has been used
as an authoritative guideline for the Finnish morphologgt uirk et al. [1985] for the
English morphology. Both inflectional and derivational ipleemes are marked in the gold
standard.

The Hutmegs package is publicly available on the IntéPneFor full access to the
Finnish morpheme segmentations, an inexpensive licenseadditionally be purchased
from Lingsoft, Inct? Similarly, the English CELEX database is required for fudtass to
the English materia?.

As there can sometimes be many plausible segmentations ofdg iHutmegs provides
several alternatives when appropriate, e.g., Englishmiexg (time of day) vs. ‘even+ing’
(verb). There is also an option for so called “fuzzy” bounesiin the Hutmegs annota-
tions, which we have chosen to use. Fuzzy boundaries arédgplcases where it is
inconvenient to define one exact transition point betweenrvorphemes. For instance,
in English, the stem-final ‘e’ is dropped in some forms. Hermallow two correct seg-
mentations, namely the traditional linguistic segmentain ‘invite, invite+s, invit+ed’
and ‘invit+ing’, as well as the alternative interpretatiarhere the ‘e’ is considered part of
the suffix, as in: ‘invit+e, invit+es, invit+ed’ and ‘inviimg’.1® In the former case, there
are two allomorphs (realization variants) of the stem (tisivand ‘invit’), and one allo-
morph for the suffixes. In the latter case, there is only otwvarph of the stem (‘invit’),
whereas there are two allomorphs of the third person présesé (‘-s’ and ‘-es’) and an
additional infinitive ending (‘-e’). Since there are a muchater number of different stems
than suffixes in the English language, the latter interpisidends itself to more compact
concatenative models of morphology.

5.3 Evaluation measures

As evaluation measures, we ysecisionandrecall on discovered morpheme boundaries.
Precision is the proportion of correctly discovered bouietsamong all discovered bound-
aries by the algorithm. Recall is the proportion of cornediscovered boundaries among
all correct boundaries. A high precision thus tells us thaémwa morpheme boundary is
suggested, it is probably correct, but it does not tell uspttoportion of missed bound-
aries. A high recall tells us that most of the desired bouedarere indeed discovered,
but it does not tell us how many incorrect boundaries wergesigd as well.

In order to get a comprehensive idea of the performance ofthadeboth measures
must be taken into account. A measure that combines pracsidrecall is th&-measure

Ohttp: //www. ci s. hut. fi/projects/morpho/

Hhttp://ww.lingsoft.fi

12The CELEX databases for English, Dutch and German are bl@# the Linguistic Data Consortiurht t p:

[/ ww. | dc. upenn. edu/ .

13Note that the possible segmentation ‘invite+dhist considered correct, due to the fact that there is no indica-
tion that the regular past tense ending ‘-ed’ ever losegifshereas the preceding stem unquestionably does so,
e.g., in ‘inviting’.
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which is the harmonic mean of the two:

1 1 1

F-Measure= 1/[2(Precision Recall>]'

(20)

We compare performances using all three measures.

Furthermore, the evaluation measures can be computed eding word tokens or word
types. If the segmentation of word tokens is evaluated ueatjword forms will dominate
in the result, because every occurrence (of identical satatiens) of a word is included.
If, instead, the segmentation of word types is evaluateshyadistinct word form, frequent
or rare, will have equal weight. When inducing the morphglofja language, we consider
all word forms to be as important regardless of their freqyeiTherefore, in this paper,
precision and recall for word types is reported.

For each of the data sizes 10000, 50 000, and 250 000 wordsigbethms are run on
five separate subsets of the test data, and the averagesraiteported. Furthermore,
statistical significance of the differences in performanaee been assessed using T-tests.
The largest data sets, 16 million words (Finnish) and 12iomilivords (English) are ex-
ceptions, since they contain all available test data, whbdaistrains the number of runs to
one.

5.4 Methods to be evaluated

We report experiments on the following methods from the Mssbr family: Baseline-
Length, Categories-ML and Categories-MAP (see Table | foorecise description). The
Baseline-Length model was trained on a collection of wopiky Parameter values re-
lated to the priors of the category models{, ¢, d, andq in Equations 16, 17 and 19)
were determined from the development set. The model evaluaias performed using
independent test sets.

In addition, we benchmark against ‘Linguistica’ [Goldsm&001; 2005}*. In the Lin-
guistica algorithm, we used the commands ‘Find suffix systemd ‘Find prefixes of suf-
fixal stems’. We interpreted the results in two ways: (i) towla word to be segmented
into a maximum of three segments: an optional prefix, follduwg a stem, followed by
an optional suffix; (ii) to decompose stems that consist aflastem and a suffix, which
makes it possible for a word to be segmented into more thae ttegments. The former
solution (i) surprisingly produced better results, andstthese results are reported in this
work.

5.5 Results

Figures 6—8 depict the morph splitting performance of tteueated methods in the Finnish
and English morph segmentation tasks. The F-measures shokigure 6 allow for a
direct comparison of the methods, whereas the precisioffgure 7 and the recalls in
Figures 8 shed more light on the particular strengths andkmesses. Furthermore, some
examples of the segmentations produced are listed in THlzed I11.

We will now briefly comment on the performance of each metimaglation to the other
methods.

14\We have used the December 2003 version of the Linguistiograno that is publicly available on the Internet
http://humani ti es. uchi cago. edu/ facul ty/ gol dsmi t h/ Li ngui sti ca2000/ .
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Fig. 6. Morpheme segmentation performance (F-measuresocbdéred morpheme boundaries) of the algorithms
on (a) Finnish and (b) English test data. Each data point @mvarage of 5 runs on separate test sets, with the
exception of the 16 million words for Finnish and the 12 roifliwords for English (1 test set). In these cases the
lack of test data constrained the number of runs. The stdrdlaiations of the averages are shown as intervals
around the data points. There is no data point for Linguistia the largest Finnish test set, because the program
is unsuited for very large amounts of data due to its conalllermemory consumption.

5.5.1 Baseline-LengthWhen evaluated against a linguistic morpheme segmentation
the Baseline methods suffer because they undersegmeniefregtrings (e.g., English
‘having, soldiers, states, seemed’), especially wheméchion word token collections
(where several word forms occur a high number of times). Withre data, the under-
segmentation problem becomes more severe also when trameard type collections
(where each unigue word form is encountered only once). iStdsie to the fact that the
addition of more examples of frequent word segments jugtiéyr inclusion as morphs of
their own in the lexicon. This shows as a decrease in oveesfbpmance on the largest
data sizes in Figure 6 and in recall in Figure 8.

The opposite problem consists in the oversegmentatiorireijnent strings (e.qg., ‘flu+s+
ter+ed’). Moreover, the method makes segmentation etmatensue from considering the
goodness of each morph without looking at its context in thedycausing errors such as
in Table Il ‘ja+n+ille’ where ‘ja’ is incorrectly identifieds a morph because it is frequently
used as a suffix in the Finnish language. These kinds of segti@nerrors are particu-
larly common with English, which explains the generally lpvecision of the method in
Figure 7b.

5.5.2 Categories-ML.Out of the compared methods Categories-ML shows the highest
results in Figure 6 for both Finnish and English consistentth all data sizes. When com-
pared to Baseline-Length in Figures 7a and 8a it appeartiiabnsiderable improvement
is due to the fact that many previously undersegmented waads been split into smaller
parts by Categories-ML: Many of the new proposed boundariesorrect (higher recall),
but some are incorrect (lower precision). Apparently timepdé morphotactics helps cor-
rect many mistakes caused by the lack of specific contextd@imation. However, the
morphotactics is fairly primitive, and consequently newoes emerge when incorrect al-
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Fig. 7. Precision of discovered morpheme boundaries cdddiry the algorithms on (a) Finnish and (b) English
data. Standard deviations are shown as intervals arourththepoints.
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Fig. 8. Recall of discovered morpheme boundaries obtairyethéd algorithms on (a) Finnish and (b) English
data. Standard deviations are shown as intervals arourdhthepoints. Whereas precision (Fig. 7) measures the
accuracy of the proposed splitting points, recall dessrihe coverage of the splits.

ACM Transactions on Speech and Language Processing, VWb.M\, Month 20YY.



24 . M. Creutz and K. Lagus

ternations of stems and suffixes are proposed, e.g., Finpjsi+este+et+t+isi+ksi’ (plural
translative of ‘epdesteettinen’, “unaesthetic”), ‘tyépa+a+mine+n’ (‘tyd+tapaa+minen’,
“job meeting”). The drop in precision for Categories-ML wihe largest English data set
(Fig. 7b) is apparently caused by the multitude of word fo(many foreign words and
names), which give rise to the discovery of “suffixes” that apt considered correct in

contemporary English, e.g., ‘plex+us, styl+us’.

5.5.3 Categories-MAP Figure 6a shows that Categories-MAP challenges Categories
ML as the best-performing algorithm for Finnish. For twoalaizes (10 000 and 250 000
words) the difference between the two is not even statibtismgnificant (T-test level 0.05).
Also for English (Figure 6b), where the difference betwebnhee algorithms is overall
smaller than for Finnish, Categories-MAP places itselblethe best-forming Categories-
ML and above the Baseline-Length method, except on the dadga set, where it falls
slightly below Baseline-Length. Note, however, that thifedénce in performance is sta-
tistically significant only between Categories-ML and theést-scoring algorithm at each
data size (Linguistica at 10 000 words; Baseline-Lengt0&i(® and 250 000 words).

When looking at the detailed measures in Figures 7 and 8 omesea that Catego-
ries-MAP performs very well for Finnish, with both precisi@nd recall rising as new
data is added. However, for English there is a fall-back galleon the largest data set
(Fig. 8b) , which is also reflected in decreased F-measurie.sBems to be due to the fact
that only the most frequent English prefixes and suffixes ateated reliably. In general,
Categories-MAP is a more conservative splitter than CategdvL.

5.5.4 Linguistica. Linguistica is a conservative word splitter for small amtsunf
data, which explains the low recall, but high precision fma#i data sets. As the amount
of data increases, recall goes up, and precision goes d@gaube more and more signa-
tures (paradigms) are suggested, some of them correct amglisoorrect. At some point,
the new signatures proposed are mainly incorrect, whichnséaat both precision and
recall decrease. This can be observed as peculiar suffixesrds, e.g., ‘disappoi+nt, lon-
gitu+de, presentlyfou+nd, sorr+ow’. The recall of Lingida can never rise very high, be-
cause the algorithm only separates prefixes and suffixestfrerstem and thereby misses
many boundaries in compound words: e.g, ‘longfellow+'sstagpiece+s, thanksgiv+ing'.

Linguistica cannot compete with the other algorithms onRhmnish data, but for En-
glish it works at the level of Categories-ML for the data setstaining 50 000 and 250 000
words. (Note that Linguistica was not run on larger data fmt$-innish than 250000
words, because the program is unsuited for very large araadimtata due to its consider-
able memory consumption.)

5.5.5 Behavior with different amounts of datén the experiments on Finnish, Catego-
ries-ML and Categories-MAP both improve their performandth the addition of more
data. The rising curves may be due to the fact that these sbdee more parameters
to be estimated than the other models, due to the HMM modeldtagories. The larger
number of free parameters require more data in order torogtaid estimates. However,
on the largest English set, all algorithms have difficultihich seems to be due to the
many foreign words contained in this set: Patterns are d&ed that do not belong to
contemporary English morphology.

Linguistica does not benefit from increasing amounts of.ddthe best results were
obtained with medium-sized data sets, around 50 000 wordSriaish and 250 000 words
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for English. Similarly, Baseline-Length does not seem todfi from ever-increasing data
sizes, as it reaches its best performance with the datafs25®®00 words.

5.6 Computational requirements

The Categories-MAP algorithm was implemented as a numbBedfscripts and make-
files. The largest Finnish data set took 34 hours and thedaggeglish setzé hours to
run on an AMD Opteron 248, 2200 MHz processor. The memoryuwopsion never ex-
ceeded 1 GB. The other algorithms were considerably fajeaif order of magnitude),
but Linguistica was very memory-consuming.

6. DISCUSSION

Only the accuracy of the placement of morph boundaries hexs dealuated quantitatively
in the current paper. It is worth remembering that the gaddard splitting used in these
evaluations is based on a traditional morphology. If thersagations were evaluated
using a real-world application, perhaps somewhat diffesegmentations would be most
useful. For example, the tendency to keep common wordshegeteen in the Baseline
and Categories-MAP models, might not be bad, e.g., in spesggnition or machine
translation applications. In fact, quite the opposite emsive splitting might be a problem
in both applications.

The algorithms produce different amounts of informatidme Baseline and Baseline-
Length methods only produce a segmentation of the wordsreslsehe other algorithms
(Categories-ML, Categories-MAP and Linguistica) alsadate whether a segment func-
tions as a prefix, stem, or suffix. Additionally, by expandthg entries in the lexicon
learned by Categories-MAP, a hierarchical representaiobtained, which can be visu-
alized using a tree structure or nested brackets.

We will use the example segmentations obtained for a numhbiinaish and English
words (in Tables Il and 111) to briefly illustrate some aspmamtyondhe discovery of an ac-
curate morphemsegmentationf words. In Table I, the gold standard segmentations for
the Finnish words are given as a reference, whereas exafoplesguistica are lacking,
because the algorithm could not be run on the largest Finaitset. English results are
available for Linguistica in Table Ill, but here the corresgding gold standard segmenta-
tions are notincluded, due to limited space and to the fattathreaders are familiar with
the English language. Readers interested in the analy$eghoér word forms can try our
demonstration program on the Intervet

6.1 Tagging of categories

As has been shown, the introduction of a simple morphoaticword-internal syntax,
in the Categories models reduced the occurrences of unddreeersegmented words
as well as misalignments due to the insensitivity of contektich were observed in the
Baseline models. Examples of such cases in Tables Il andipeise the Finnish words
‘aarre+kammio+i+ssa’ (“in treasure chambers”), ‘jangt{“for Jani”), ‘sano+tta+ko+on’
(“may it be said”); and the English words ‘photo+graph+éarsl ‘fluster+ed’.
Additionally, the simple morphotactics can sometimes Ik@&sgemantic ambiguities,
when the same morph is tagged differently in different ceistee.g., ‘pad’ is a prefix
in ‘pddaiheesta’ and ‘paadaiheista’ (“about [tedin topic(s)”), whereas ‘pad’ is a stem

Bhttp://www. cis. hut.fi/projects/ norpho/
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Table Il.  Examples of Finnish morpheme segmentations éehhy versions of Morfessor from the 16 million
word Finnish test set. Additionally, the correspondingdgstandard segmentations are supplied. Proposed
prefixes are underlinedtems are rendered bold-face and suffixes arelanted Square brackets [ ] indicate
higher-level stems and parentheses () higher-level saffixéhe hierarchical lexicon.

Baseline-Length Categories-ML Categories-MAP Gold saadd
aarre kammioissa aarre kammio i ssa [aarre kammio] issa aarre kammio | ssa
aarre kammioon  aarre kammio on [ aarre kammio] on aarre kammio on
bahama laiset bahama laiset bahamalaiset bahamalaise t
bahama saarien bahama saari en bahama[ saari en] bahama saari en
epa esteettis iksi epesteet t isi ksi epd[[ esteetti ] s] iksi epéaesteetts i ksi
epatasapaino inen  epgsapaino in en  [epa[[tasapaino] inen]]  epatasapainoinen
haapa koskeen @p akoskeen [h_aapa[ koskeen]] haapa koskeen
haapa koskella haap a koske lla [ haapa[ koskella]] haapa koskella
janile jani lle jani lle jani lle
jaadytta & kseen  jaady ttd 4 kseen [jaady ttaa] kseen jaady ttd 8 kse en
ma clare n maclare n maclare n -
nais autoilija a _naiawto ili ja a [nais[ autoili ja]] a nais autoili ja a
paa aiheesta paihe e sta paa[ aihe estq paa aiheesta
paa aiheista _pée‘ﬁhei sta [paa[ aihe ista]] paa aihei sta
paahan paahan [paahan] paa han
sano t takoon sanotta ko on [ sano ttakoon] sanotta ko on
sano ttiin ko sanotti in ko [ sanottiin ] ko sanott i in ko
ty6 tapaaminen tytapa amine n tyd [ tapaa minen] tyd tapaa minen
tohri misista tohri mis i st téhri (mis ist§ téhri mis i sté
voi mmeko voim meko [[ voi mme] ko] voi mme ko
voisi mme kin voisi mme kin [ voisi mme] kin vo isi mme kin
Table Ill. Examples of English morpheme segmentationsighiby the four algorithms from the 12 million
word English test set.
Baseline-Length Categories-ML Categories-MAP Lingaisti
accomplish es accomplishes [ accomplishes] accompli shes
accomplish ment accomplishment [ accomplish ment] accomplishment
beautiful ly beauti ful ly [ beautiful ly ] beautiful ly
configu ration _corfigu r ation [ configur ation ] configura tion
dis appoint _disappoint disappoint disappoint
expression istic  expression ist ic expression istic expressioristic
express ive ness  expressive ness [ expressivenesg expressiveness
flu s ter ed fluster ed [fluster ed] fluster ed
insur e insur e insure insur e
insur ed insur ed [insur ed] insur ed
insur es insur es [insure s] insure s
insur ing insur ing [insur ing] insur ing
long fellow 's long fellow 's [[long fellow] s] longfellow s
master piece s master pieces [[ master piece] s] masterpieces

micro organism s micro organ ism s [ micro [ organism s]] micro organism s
photograph ers  photo graph ers [[[ photo graph] er] s]  photograph ers

present ly found present lyfound [ presently ] found presentlyfou nd
re sided resided resided resided

re side s _resides [reside s] reside s

re siding “resid ing [re siding] resid ing
unexpectedly  _umexpected ly [[un [expected]] ly] un expectedly
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in ‘paahan’ (“in [thelhead). (In this example the Categories-ML algorithm tagged the
occurrences of ‘pad’ correctly, whereas Categories-MAHasme mistakes.)

From the point of view of natural language processing, tkeatification and separation
of semantic segments (mainly stems) and syntactic segrfraaisly affixes) can be bene-
ficial. The stems contained in a word form could be considassa canonic (or base) form
of the word, whereas the affixes could be considered as iititect Such a canonic form
for words could be an alternative to the base forms retriéyddand-made morphological
analyzers or stemming algorithms, which are used, e.ghfammation retrieval.

6.2 Bracketing

The hierarchical representation produced by the CategMi&P algorithm, shown using
nested brackets in Tables Il and Ill, can be interpreted asttachment hierarchy of the
morphemes. With the current model, the construction of fleeahchy is likely to take
place in the order of most frequently co-occurring word segts. Sometimes this is also
grammatically elegant, e.g., Finnish: ‘[epa [[tasa paiimeh]] (“imbalanced”, literaly
bracketed as “[un [[even weight] ed]]"), ‘[ nais [autoili jha’ (partitive of “[ female
[car-driv er]]”; English: ‘[[[ photo graph] er] s], [[un [egected]] ly]. But the prob-
ability of coming up with grammatically less elegant sabuis is also high, e.g., English
‘[ micro [organism s]]'. (Note that the gold standard sega¢ion for ‘epétasapainoinen’
is strange. Categories-MAP produces the correct segnamijat

6.3 Overgeneralization

The algorithms can incorrectly “overgeneralize” and, fistance, suggest a suffix, where
there is none, e.g., ‘maclare+n’ (“MacLaren”). Furthermaronsensical sequences of suf-
fixes (which in other contexts are true suffixes) can be sugdes.g., ‘epatestetet+t+isi+
ksi’, which should be ‘epa+esteett+is+i+ksi’. A model witiore fine-grained categories
might reduce such shortcomings in that it could model motgttacs more accurately.

The use of signatures in Linguistica should conceivablyg@néovergeneralization. In
general, to propose the segmentation ‘maclare+n’, otherdof the proposed stem would
be expected to occur in the data, such as ‘maclare’ or ‘maetma’. If none of these
exist, the segmentation should be discarded. Howevercedlyewith large amounts of
data Linguistica is oversensitive to common strings thauoat the end of words and
proposes segmentations, such as ‘allu+de, alongsi+dgtlsie’; ‘anyh+ow, highbr+ow,
longfell+ow’.

Solutions to this problem could be found, e.g., in the apginadvocated by Yarowsky
and Wicentowski [2000], who study how distributional pattin a corpus can be utilized
to decide whether words are related or not. For instance,rtiethod is able to determine
that the English word ‘singed’ is not an inflected form of ‘ing.

6.4 Allomorphy

Allomorphs are morphs representing the same morphemeraphs having the same
meaning but used in complementary distributions. The atialgyorithms cannot in prin-
ciple discover which morphs are allomorphs, e.g., that mish ‘on’ and ‘en’ mark the

same case, namely illative, in ‘aarre+kammio+on’ (“intb€} treasure chamber”) and
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‘Haapa+koske+en’ (“to Haapakoski®§.To enable such discovery in principle, one would
probably need to look at contexts of nearby words, not justtbrd-internal context. Ad-
ditionally, one should allow the learning of a model withheée category structure.

Moreover, ‘on’ and ‘en’ do not always mark the illative cade.'bahama+saari+ en’
(“of the Bahama islands”) the genitive is marked as ‘en’, emidano+tta+ko+on’ (“may it
be said”) ‘on’ marks the third person singular. Similar exédes can be found for English,
e.g., ‘ed’ and ‘d’ are allomorphs in ‘insur+ed’ vs. ‘re+sig#l, and so are ‘es’ and ‘s’ in
‘insur+es’ vs. ‘re+side+s’ (Categories-ML).

Many cases of allomorphy can be modeled using morpho-pbgiuall rules. The so
called Item and Process (IP) model of morphology assumestme canonic forms of
morphemes are appended to each other to form words, and Wwhandrphemes meet,
sound changes may ensue typically at the morpheme bousdBdeinstance, the final ‘e’
in ‘insure’ is dropped when followed by the suffix ‘ed’. In pdiple, such rules could be
learned in an unsupervised manner from unannotated datdoiwich et al. [2003] apply
machine learning in the acquisition of allomorphic rulaeg, their method requires aligned
training data.

Quite generally, much of the work in unsupervised morphglegrning does not focus
on concatenative morphology, i.e., the discovery of com$ez word segments. Some
algorithms learn relationships between words by compahegrthographic and semantic
similarity of pairs of words, e.g., [Neuvel and Fulop 2002arBni et al. 2002]. These
approaches can handle non-concatenative morphologice¢gses, such as the Unmlaut
sound change in German. However, none of these models assitslnighly-inflecting
languages as they assume only two or three constituentsqrdr analogous to possible
prefix, stem and suffix.

Moreover, there is some evidence that humans may simply mzenallomorphs as
such without applying morpho-phonological transformasi@n what they hear (or read)
[Jarvikivi and Niemi 2002]. In this case, the morphologwieing models presented in this
work are perhaps closer to human language processing thdR thodel of morphology.

7. CONCLUSION

We have attempted to provide the reader with a broad undelisig of the morphology
learning problem. It is hoped that the presented generalghitistic model family, called
Morfessor, and the discussion of each component opens néviraitful ways to think
about modeling morphology learning. The experimental carispn of different instances
of the general model in a morpheme segmentation task shgdsoln the usefulness and
role of particular model components.

The development of good model search algorithms desenditiaahl consideration in
the future. The categorial labelings of the morphs produmethe later model variants
might be useful in other tasks, such as information rettie¥n interesting avenue for
future research is the consideration of how to extend therfeaet applied in the modeling
of morph usage, possibly to the point where one is able torgtaneanings of morphs
using multimodal information.

16Fyurthermore the algorithm cannot deduce that the illativadtually realized as a vowel lengthening + ‘n’:
‘kammioon’ vs. ‘koskeen’.
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