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Abstract

The objective of the challenge for the
unsupervised segmentation of words into
morphemes, or shorter theMorpho Chal-
lenge, was to design a statistical machine
learning algorithm that segments words
into the smallest meaning-bearing units of
language, morphemes. Ideally, these are
basic vocabulary units suitable for differ-
ent tasks, such as speech and text un-
derstanding, machine translation, infor-
mation retrieval, and statistical language
modeling. The segmentations were eval-
uated in two complementary ways:Com-
petition 1: The proposed morpheme seg-
mentation were compared to a linguis-
tic morpheme segmentation gold standard.
Competition 2: Speech recognition ex-
periments were performed, where statis-
tical n-gram language models utilized the
proposed word segments instead of entire
words. Data sets were provided for three
languages: Finnish, English, and Turk-
ish. Participants were encouraged to ap-
ply their algorithm to all of these test lan-
guages.

1 Introduction

Segmentation is a common problem in the anal-
ysis of data from many modalities such as gene
sequences, image analysis, time series, and seg-
mentation of text into words. It is conceivable that
similar machine learning methods could work well
in different segmentation tasks.

The task proposed here was to design a sta-
tistical machine learning algorithm that segments
words into the smallest meaning-bearing units of

language, morphemes. The purpose is to obtain
a set of basic vocabulary units for different tasks,
such as speech and text understanding, machine
translation (Lee, 2004), information retrieval (Zie-
man and Bleich, 1997), and statistical language
modeling (Geutner, 1995; Hirsimäki et al., 2006).

In many European languages this task is both
difficult and necessary, due to the large number
of different word forms found in text. In highly-
inflecting languages, such as Finnish and Hun-
garian, there may be thousands of different word
forms of the same root, which makes the construc-
tion of a fixed lexicon for any reasonable coverage
hardly feasible. Also in compounding languages,
such as German, Swedish, Greek and Finnish,
complex concepts can be expressed in one single
word, which considerably increases the number of
possible word forms and calls for the use of sub-
word segments as vocabulary units.

The discovery of meaningful word segments
has already shown to be relevant for language
modeling for speech recognition in Finnish, Turk-
ish and Estonian (Hirsimäki et al., 2006; Kurimo
et al., 2006), where language models based on sta-
tistically discovered sub-word units have rivaled
language models that utilize words. However, any
of the research fields dealing with natural language
of any kind, as well as multimodal integration,
is expected to benefit from the discovery of gen-
eral meaning-bearing units. For example, a ma-
chine translator could have a vocabulary based
on minimal meaningful units and generate output
words and sentences using them (e.g., translation
from English to Finnish:fact+s about our
car+s / tieto+a auto+i+sta+mme). In in-
formation retrieval, some of the units (the word
roots or stems) might be utilized as key words
whereas others might be discarded (e.g.,tietoa
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autoistamme→ tieto auto; Engl. fact
car).

A good segmentation algorithm should be able
to find units that are meaningful (that is, usable
for representing text for many different tasks), that
cover as much of the naturally occurring language
as possible (including unseen words), and that can
be used to generate the totality of the language.
The field of linguistics has attempted to capture
these properties by the concept of “morpheme”,
the difference being that a morpheme may not cor-
respond directly to a particular word segment but
to an abstract class. However, in this challenge the
task was to uncover concrete word segments.

In obtaining such a segmentation, the use of lin-
guistic analysis and manual coding may be an op-
tion for some languages, but not all, due to being
very labor-intensive. Furthermore, statistical ma-
chine learning methods might eventually discover
models that rival even the most carefully linguisti-
cally designed morphologies.

In order to be a morphology-discovery method
the method should be very language-general, that
is, applicable to many different languages with-
out the manual coding of language dependent
rules, etc. An example of a general morphology-
discovery method is described in (Creutz and La-
gus, 2005a).

The main challenge in the task is the sparsity
of language data: A significant portion of the
words may occur only once even in the largest cor-
pora. Thus, the algorithm should learn meaning-
ful word segments (i.e., inner structures of words)
and be capable of generalizing to previously un-
seen words.

2 Task

The task was the unsupervised segmentation of
word forms into sub-word units (segments) given
a data set that consists of a long list of words and
their frequencies of occurrence in a corpus. The
number of unique segments was restricted to the
range 1000 - 300,000 (type count). Most of the
participants, however, failed to keep the number of
segments below 300,000, so it was decided to dis-
regard this limitations and accept all submissions.

Data sets were provided for three languages:
Finnish, English, and Turkish. Participants were
encouraged to apply their algorithm to all of these
test languages. Solutions, in which a large num-
ber of parameters must be ”tweaked” separately

for each test language were discouraged, since the
aim of the challenge was the unsupervised (or very
minimally supervised) segmentation of words into
morphemes. It was required that the participants
submitted clear descriptions of which steps of su-
pervision or parameter optimization were involved
in the algorithms.

The segmentations were evaluated in two com-
plementary ways: Competition 1: The pro-
posed morpheme segmentation were compared to
a linguistic morpheme segmentation gold stan-
dard (Creutz and Linden, 2004).Competition 2:
Speech recognition experiments were performed,
where statistical n-gram language models utilized
the proposed word segments instead of entire
words. Competition 1 included all three test lan-
guages. Winners were selected separately for
each language. As a performance measure, the
F-measure of accuracy of discovered morpheme
boundaries was utilized. Should two solutions
have produced the same F-measure, the one with
higher precision would win. Competition 2 in-
cluded speech recognition tasks in Finnish and
Turkish. The organizers trained a statistical lan-
guage model based on the segmentations and per-
formed the required speech recognition experi-
ments. As a performance measure, the phoneme
error rate in speech recognition was utilized.

3 Data sets

The data sets provided by the organizers consisted
of word lists. Each word in the list was preceded
by its frequency in the corpora used. The partic-
ipants’ task was to return exactly the same list(s)
of words, with spaces inserted at the locations of
proposed morpheme boundaries.

For instance, a subset of the supplied English
word list looked like this:
6755 sea
1 seabed
1 seabeds
2 seabird
34 seaboard
1 seaboards

Submission for this particular set of words
might have looked like this:
sea
sea bed
sea bed s
sea bird
sea board
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sea board s

The Finnish word list was extracted from news-
paper text and books stored at the Language
Bank of CSC1. Additionally, newswires from the
Finnish National News Agency were used.

The English word list was based on publications
and novels from the Gutenberg project, a sample
of the English Gigaword corpus, as well as the en-
tire Brown corpus.

The Turkish word list was based on prose and
publications collected from the web, newspaper
text, and sports news.

The desired segmentations, according to the
gold standard (Creutz and Linden, 2004), for a
small sample of words (500 – 700 words) in each
language were provided for download and inspec-
tion by the participants. For some words there
were multiple correct segmentations, e.g., En-
glish: pitch er s, pitcher s.

The Finnish gold standard is based on the two-
level morphology analyzer FINTWOL from Ling-
soft, Inc. The English gold standard is based on
the CELEX English data base and the Comprehen-
sive Grammar of the English Language by Quirk
et al. (1985) The Turkish linguistic segmentations
were obtained from a morphological parser de-
veloped at Bogazici University (Cetinoglu, 2000;
Dutagaci, 2002). The Turkish parser is based on
Oflazer’s finite-state machines, with a number of
changes.

4 Participants and their submissions

By the deadline of January 15, 2006, 12 research
groups had submitted the segmentation results ob-
tained by their algorithms. Totally 14 different al-
gorithms were submitted and 10 of them ran ex-
periments on all three test languages. It is note-
worthy that half of the algorithms were designed
by groups from the University of Leeds, where
participation to this challenge was part of a course
in computational linguistics. All the submitted al-
gorithms are listed in Table 1.

In general, the submission were all interesting
and relevant. Some of them failed to meet the
exact specifications given, but after clarifications
were requested, everyone succeeded to provide
data that could be properly evaluated. The stip-
ulated maximum count of different segments was
exceeded by most of the participants, but after it

1http://www.csc.fi/kielipankki/.

turned out that this did not impede the evaluation,
this restriction was removed.

In addition to the competitors’ 14 segmentation
algorithms, we evaluated a public baseline method
called Morfessor (Creutz and Lagus, 2002; Creutz
and Lagus, 2005b) organizers as well as its two
more recent versions “Categories-ML” (Creutz
and Lagus, 2004) and “Categories-MAP” (Creutz
and Lagus, 2005a). Mikko lisaa viitteen .bib-
tiedostoonsa. Together with one of the challenge
participants, Eric Atwell, the organizers also ex-
tended Atwell’s original committee classifier al-
gorithm “Cheat” to utilize the segmentations of
all the other submissions (“Cheat-all”) in addition
to only the segmentations from Leeds. Naturally,
these later extensions as well as the Morfessor ver-
sions competed outside the main competition and
the results were included only as reference.

5 Competition 1

5.1 Evaluation

In Competition 1, for each language, the mor-
pheme segmentations proposed by the partici-
pants’ algorithm were compared against a linguis-
tic gold standard. In the final evaluation, only a
subset of all words in the data were included. For
each language, a random subset consisting of 10 %
of all unique word forms were picked, and the seg-
mentations of these words were compared to the
reference segmentations in the gold standard. The
exact constitution of this subset was not revealed
to the participants. In the evaluation, word fre-
quency played no role. All words were equally
important, were they frequent or rare.

The evaluation program, written in Perl, was
provided beforehand in order to let the participants
evaluate their segmentations relative to the gold
standard samples provided in the Challenge. The
evaluation was based on the placement of mor-
pheme boundaries.

Example. Suppose that the proposed segmen-
tation of two English words are:
boule vard
cup bearer s’

The corresponding desired (gold standard) seg-
mentations are:
boulevard
cup bear er s ’

Taken together, the proposed segmentations
contain 2 hits (correctly placed boundaries be-
tweencup andbear, as well as betweener and
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Table 1: The submitted algorithms.

Name Authors Affiliation
A1 “Summaa” Choudri and Dang Univ. Leeds, UK
A2a Bernhard TIMC-IMAG, F
A2b Bernhard TIMC-IMAG, F
A3 “A.A.” Ahmad and Allendes Univ. Leeds, UK
A4a “Comb” Bordag Univ. Leipzig, D
A4b “Lsv” Bordag Univ. Leipzig, D
A5 Rehman and Hussain Univ. Leeds, UK
A6 “RePortS” Pitler and Keshava Univ. Yale, USA
A7 “Bonnier” Bonnier Univ. Leeds, UK
A8 Kitching and Malleson Univ. Leeds, UK
A9 “Pacman” Manley and Williamson Univ. Leeds, UK
A10 Johnsen Univ. Bergen, NO
A11 “Swordfish” Jordan, Healy and Keselj Univ. Dalhousie, CA
A12a “Cheat” Atwell and Roberts Univ. Leeds, UK
M1 “Baseline” Morfessor Helsinki Univ. Tech, FI
M2 “Categories-ML” Morfessor Helsinki Univ. Tech, FI
M3 “Categories-MAP” Morfessor Helsinki Univ. Tech, FI
A12b “Cheat-all” Atwell and the organizers Leeds and Helsinki
A12c “Cheat-top5” Atwell and the organizers Leeds and Helsinki

s). There is 1insertion (the incorrect boundary
betweenboule andvard) and 2deletions (the
missed boundaries betweenbear ander, and be-
tween the plurals and the apostrophe’ marking
the possessive).

Precision is the number of hitsH divided by the
sum of the number of hits and insertionsI:

Precision= H/(H + I) . (1)

Recall is the number of hits divided by the sum of
the number of hits and deletionsD:

Recall= H/(H + D) . (2)

F-Measure is the harmonic mean of precision and
recall, which equals:

F-Measure= 2H/(2H + I + D) . (3)

According to the rules, the participant achiev-
ing the highest F-measure was to be the winner
of Competition 1. In case of a tie, higher precision
wins. Winners are selected separately for each lan-
guage.

5.2 Results of Competition 1

The obtained F-measure percentages in the differ-
ent tasks of Competition 1 are shown in Table 2.

The corresponding precision and recall figures are
shown in Tables 3 and 4, respectively.

For the Finnish task the winner (measured by
F-measure) was the algorithm A2b from TIMC-
IMAG in France. Next came A2a also from
TIMC-IMAG and A1 from the University of
Leeds. The best overall score was obtained by
Morfessor M2.

A2b from TIMC-IMAG won also the Turkish
task by a clear marginal. Next came A4a from the
University of Leipzig and the committee classifier
A12a from Leeds. The best overall score was ob-
tained by Morfessor M3.

In the English task, the clear winner was the
algorithm A6, i.e., “RePortS” from the Univer-
sity of Yale, who did not participate in any other
language. Next came A2a and A2b from TIMC-
IMAG, of which A2a scored better in this task.
The A6 algorithm succeeded to beat also all Mor-
fessors.

For English, the committee classifiers A12a,
A12b, A12c from Leeds dominated all the other
participants that were utilized as committee mem-
bers. In Finnish only A12c and in Turkish A12a
and A12c managed to do the same. Thus, the best
score was always obtained by A12c, the commit-
tee of the top 5 of the other segmentation algo-
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Table 2: The obtained F-measure % on different
languages (Competition 1).

Name Finnish Turkish English
A1 61.3 55.4 49.8
A2a 63.3 55.3 66.6
A2b 64.7 65.3 62.4
A3 n.a. n.a. 32.0
A4a 48.3 57.0 61.7
A4b 3.8 5.2 58.5
A5 43.4 45.2 53.8
A6 n.a. n.a 76.8
A7 40.8 43.5 48.0
A8 n.a. n.a. 36.2
A9 28.2 40.0 28.5
A10 n.a. n.a. 43.7
A11 35.2 26.3 45.7
A12a 61.2 55.9 55.7
Winner A2b: 64.7 A2b: 65.3 A6: 76.8
M1 54.2 51.3 66.0
M2 67.0 69.2 69.0
M3 66.4 70.7 66.2
A12b 62.0 59.7 77.4
A12c 68.3 71.7 78.6

rithms.

5.3 Discussion

It is not that surprising that the same algorithm
(A2b) wins in both the Finnish and Turkish task
of Competition 1, whereas another algorithm (A6)
outperforms the others in the English task. Word
forming is different in Finnish and Turkish, on the
one hand, and in English, on the other hand. Since
English words consist of fewer morphemes, En-
glish data tends to be less sparse.

Unfortunately, the A6 algorithm, which per-
forms extremely well on English, has not been
evaluated “officially” on the two other languages.
However, in their paper in these proceedings, the
designers of A6 (Keshava and Pitler) report seg-
mentation accuracies for all three languages on the
small development sets provided in the challenge.
It turns out that their algorithm reaches only av-
erage performance on the agglutinative languages
Finnish and Turkish. Since the recall is not very
high, one might assume that their algorithm suf-
fers from the higher data sparseness of Finnish and
Turkish when attempting to “peel off” prefixes and
suffixes from word stems.

The committee classifier (A12a, A12b, and

Table 3: The obtained precision % on different
languages (Competition 1).

Name Finnish Turkish English
A1 66.2 58.8 44.7
A2a 73.6 77.9 67.7
A2b 63.0 65.4 55.2
A3 n.a. n.a. 24.1
A4a 74.8 79.9 62.6
A4b 52.4 70.3 61.2
A5 66.3 60.4 50.6
A6 n.a. n.a. 76.2
A7 49.3 55.6 47.1
A8 n.a. n.a. 32.5
A9 25.2 38.1 22.9
A10 n.a. n.a. 37.5
A11 70.2 59.4 57.1
A12a 67.2 61.0 57.6
Best A4a: 74.8 A4a: 79.9 A6: 76.2
M1 84.4 79.1 63.1
M2 70.1 73.7 64.1
M3 75.0 77.5 85.1
A12b 84.1 86.7 86.0
A12c 76.3 78.4 83.2

A12c) is an interesting approach, which generally
obtains very good results. The committee clas-
sifier compares the outputs of several other sys-
tems and selects for each word the segmentation
that the majority of the systems have proposed. If
the majority vote results in a tie, the segmentation
of the system with the highest F-measure is cho-
sen. Thus, in order for the committee classifier to
work, it seems necessary to have access to some
reliable gold standard, as the performance of the
other systems needs to be assessed. However, the
gold standard can be fairly small, as demonstrated
by the use of the segmentation samples (develop-
ment sets) provided in the challenge.

6 Competition 2

6.1 Evaluation

In Competition 2, the organizers utilized the seg-
mentations provided by the participants in order to
segment the words in large corpora of Finnish as
well as Turkish text. An n-gram language model
was trained for this segmentation and this lan-
guage model used in speech recognition experi-
ments.

The winner of Competition 2 is the participant
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Table 4: The obtained recall % on different lan-
guages (Competition 1).

Name Finnish Turkish English
A1 57.0 52.3 56.1
A2a 55.6 42.8 65.5
A2b 66.4 65.2 71.6
A3 n.a. n.a. 47.6
A4a 1.9 2.7 54.9
A4b 44.8 47.9 62.2
A5 32.2 36.1 57.3
A6 n.a. n.a. 77.4
A7 34.8 35.8 49.0
A8 n.a. n.a. 40.9
A9 32.0 42.0 37.9
A10 n.a. n.a. 52.3
A11 23.5 16.8 38.1
A12a 56.1 51.5 53.8
Best A2b: 66.4 A2b: 65.2 A6: 77.4
M1 39.9 37.9 69.2
M2 64.2 65.1 74.6
M3 59.7 65.0 54.2
A12b 49.1 45.6 70.4
A12c 61.9 66.1 74.6

that provides the segmentation that produces the
lowest letter error rate in speech recognition. The
letter error is calculated as the sum of the number
of substituted, inserted, and deleted letters divided
by the number of letters in the correct transcription
of the data.

6.2 Training morph-based statistical
language models

The language models were trained by using ex-
actly the same text corpus which was previously
used for extracting the original word list that each
competitor had processed as the competition entry.
This was not a coincidence, of course, because we
wanted to have segmentations for all the different
word forms to be able to use the whole corpus to
train the optimal sub-word language models. Nat-
urally, we could also have tried to split any words
outside the given word list using the given morph
lexicon and a Viterbi search for an optimal split,
as explained in (Hirsimäki et al., 2006). However,
this was not needed in this case.

Finnish. In the Finnish newspaper, book and
newswire training corpus there were totally 40 M
words and 1.6 M different word forms. After split-
ting the whole corpus into subwords and adding

the word break symbols to assist the language
model, n-gram language models were trained as
if the units were word sequences. The lan-
guage model used resembled the traditional n-
gram model as used in (Hirsimäki et al., 2006), but
instead of a fixed maximum value forn, then was
allowed to be optimized for each sequence context
using the growing n-gram algorithm (Siivola and
Pellom, 2005). The idea in this approach is to start
from unigrams and gradually add those n-grams
that maximize the training set likelihood with re-
spect to the increase of the model size. In addition
to controlling the memory consumption for train-
ing and recognition, restricting the model com-
plexity is important also to avoid over-learning,
because natural language corpora are always very
sparse, even if morph units are utilized.

Turkish. In Turkish training corpus, there are
totally 16.6 M words and 583 K different word
forms. For language modeling and perplexity
experiments, we used the SRI Language Model-
ing toolkit (Stolcke, 2002). We used interpolated
modified Kneser-Ney smoothing to assign prob-
abilities to zero probability strings. 4-gram lan-
guage models are generated for each model. En-
tropy based pruning (Stolcke, 1998) with a prun-
ing constant of10−8 is applied to each model to
reduce the model size.

Model size limitation. Despite the originally
given upper limit for the lexicon size 300,000, we
decided to accept submitted morph lexicons that
exceeded the limit. In fact, to achieve compara-
ble models, we only controlled the final size of the
language models. For practical reasons in training
and recognition, the size was set to approximately
10 million n-grams in Finnish and 50-70 Mbytes
in Turkish.

6.3 Using cross-entropy to measure modeling
accuracy

One way to directly evaluate the accuracy of a
language model is to compute the average prob-
ability of an independent test text. To obtain
a useful comparison measure, this probability is
normalized by the number of words in the text.
Typical comparison measures derived from this
normalized probability areperplexity and cross-
entropy. For this competition we chose cross-
entropy, which is the logarithmic version (log2) of
perplexity.

Given the held-out text dataT consisting ofWT
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words and a language modelM , thecross-entropy
HM (T ) was computed as:

HM(T ) = −
1

WT

log2 P (T |M) (4)

Here it is important that it is normalized by the
number ofwords, not morphs, because a different
morph lexicon was used for each model and, thus,
the number of morphs in the test text varied.

Table 5: The obtained LM performance for the
submitted segmentations in Finnish (Competi-
tion 2). CE is the average cross-entropy in the test
text. Note that the cross-entropy is the logarithm
of perplexity. As low a value as possible is desir-
able. OOV is the average out-of-vocabulary rate
in the test text. The additional references at the
bottom are explained in section 6.6.

Finnish CE OOV Lexicon size
A1 13.65 0.36 297 981
A2a 13.54 0.03 73 178
A2b 13.63 0.04 65 557
A4a 13.55 2.70 609 458
A4b 12.93 0.99 1 559 199
A5 13.50 1.24 650 154
A7 13.81 0.85 530 543
A9 13.78 0.95 615 809
A11 13.59 0.58 690 601
A12a 13.66 0.40 317 870
M1 13.59 0.02 121 862
M2 13.53 0.08 155 065
M3 13.53 0.16 164 311
A12b 13.45 0.47 355 145
A12c 13.58 0.14 171 663

Some additional references
Finnish CE OOV Lexicon size
M1 26k 13.62 0.00 26 935
G1 13.62 0.03 69 929
G2 13.31 0.61 368 412
W1 13.95 0.00 394 266
W2 12.04 5.47 410 001

Table 5 shows the obtained cross-entropies on
a test text of 50,000 Finnish sentences that was
randomly selected from our text corpus and held-
out from the training. Although the unsuper-
vised morph lexicons were designed to process all
words, there was a small OOV (out-of-vocabulary
rate) in the test text. The OOV is shown in the
table, because the higher it is, the more it affects

Table 6: The obtained LM performance for the
submitted segmentations in Turkish (Competi-
tion 2). CE is the average cross-entropy in the test
text. The OOV rate was zero, because all OOVs
were split into letters. # subwords is the ratio of
the number of subwords in test text to the number
of words.

Turkish CE # subwords Lexicon size
A1 15.49 2.92 121 942
A2a 14.22 2.42 48 619
A2b 15.28 2.87 37 253
A4a 14.92 2.66 204 555
A4b 14.23 2.23 561 905
A5 15.29 3.03 195 487
A7 14.60 2.61 189 239
A9 16.05 2.89 218 320
A11 13.83 2.04 264 502
A12a 15.19 2.77 148 650
M1 13.99 2.30 51 542
M2 14.96 2.79 96 182
M3 14.73 2.70 88 429

the perplexity and cross-entropy by making it look
smaller than it actually would be, if the OOV was
zero.

Table 6 shows the performance on a Turkish test
text consisting of 553 newspaper sentences (6989
words). If the segmentation of a test word was
available in the segmentation list, we split that
word into the corresponding subwords. Other-
wise, the test word was left as a whole. In all of the
submissions, the lexicon contained the individual
letters of the Turkish alphabet as morphs. There-
fore, the OOV rates were zero.

6.4 Large-vocabulary continuous speech
recognition tests

The objective of Competition 2 was to evaluate the
word splits in an application that would be as real-
istic as possible. When we originally planned this
competition, we hesitated to choose speech recog-
nition, because we thought it would take too much
effort to build a set of state-of-art large-vocabulary
continuous speech recognizers just for this evalu-
ation. However, this was in line with our other re-
search objectives and we have recently built sev-
eral corresponding morph-based evaluation sys-
tems for Finnish, Estonian and Turkish (Hirsimäki
et al., 2006; Siivola and Pellom, 2005; Kurimo et
al., 2006).
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Finnish. The speech recognizer consists of
four main components: Acoustic phoneme mod-
els, language models, a lexicon and a decoder. For
the acoustic models we chose the same speaker
and context-dependent cross-word triphones with
explicit phone duration models as for the Finnish
models in (Kurimo et al., 2006) and also the same
decoder (Pylkkönen, 2005). The real time factors
were measured on 2.2 GHz CPU.

The lexicon and language models were created
from the word splits of each competition partic-
ipant and differed a little from the earlier morph
models. The Finnish speech data utilized for rec-
ognizer training and evaluation was exactly the
same book reading corpus as in (Hirsimäki et
al., 2006; Kurimo et al., 2006). The speaker-
dependent reading recognition is not the most dif-
ficult large-vocabulary recognition task as can be
seen from the rather low error rates obtained, but
it suits well to the scope of the Finnish language
model training data and has several interesting pre-
vious benchmark results.

In a complete speech recognizer there is an al-
most endless amount of parameter “tweaking” in
order to tune the performance, speed, memory
consumption, hypothesis pruning etc., not to men-
tion the various parameters tuned for training the
models. To save effort we adopted as much as pos-
sible the same parameters as in the previous works
(Hirsimäki et al., 2006; Siivola and Pellom, 2005;
Kurimo et al., 2006) even if they were perhaps not
exactly optimal for the new models. The only pa-
rameter that we optimized individually for each
competitor was the weighting factor between the
acoustic and language model to achieve the best
performance on a held-out development set.

Turkish. The Turkish language models were
evaluated by our Turkish large-vocabulary contin-
uous speech recognizer. The main difference to
the Finnish system were the speaker-independent
acoustic models, the HTK frontend (Young et al.,
2002) and that no explicit phone duration models
were applied. The acoustic training data contained
40 hours of speech from 550 different speak-
ers. The Turkish evaluation was performed us-
ing another decoder (Mohri and Riley, 2002) on
a 2.4GHz CPU. The recognition task consisted of
approximately one hour of newspaper sentences
read by one female speaker.

Table 7: The obtained speech recognition per-
formance the submitted segmentations in Finnish
(Competition 2). The main measure here is the let-
ter error rate LER. The additional references at the
bottom are explained in section 6.6.

Finnish LER % WER % RTF
A1 1.42 10.58 17.67
A2a 1.39 9.53 12.88
A2b 1.32 9.47 15.92
A4a 1.32 9.81 15.59
A4b 1.64 13.54 10.89
A5 1.88 13.10 13.55
A7 1.55 11.33 13.97
A9 1.59 11.71 16.31
A11 1.45 11.17 10.10
A12a 1.40 10.72 15.65
Winner A2b, A4a A2b: 9.47 A11: 10.10
M1 1.31 9.84 12.34
M2 1.32 10.18 14.38
M3 1.30 10.05 15.64
A12b 1.31 10.12 12.01
A12c 1.25 9.80 13.60

Some additional references
Finnish LER % WER % RTF
M1 26k 1.55 10.67 9.51
G1 1.33 9.60 10.58
G2 1.34 9.88 11.74
W1 1.37 10.83 11.84
W2 2.07 17.86 7.42

6.5 Results of Competition 2

The results of the speech recognition evaluation
are shown in Table 7 (Finnish) and Table 8 (Turk-
ish). The main performance measure is the letter
error rate (LER). The word error rate (WER) was
computed, too, because it is a more common mea-
sure although not so useful for the very variable-
length words in Finnish. Another interesting fig-
ure is the recognition speed measured by the real-
time factor (RTF).

In the Finnish task, the winners of Competi-
tion 2 were the models obtained from algorithm
A2b from TIMC-IMAG in France and A4a from
the University of Leipzig. The next competitors
were not far behind: A2a from TIMC-IMAG,
A12a and A1 from University of Leeds. The Mor-
fessors M1, M2 and M3 were all very close to the
winner. Among the top 5 models and the refer-
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Table 8: The obtained speech recognition perfor-
mance for the submitted segmentations in Turkish
(Competition 2). The main measure here is the let-
ter error rate LER.

Turkish LER % WER % RTF
A1 15.0 43.0 2.68
A2a 13.6 38.9 2.15
A2b 13.4 37.5 2.19
A4a 15.7 46.3 2.43
A4b 16.7 50.2 1.75
A5 13.5 38.9 2.46
A7 13.8 40.3 2.33
A9 16.9 47.7 3.03
A11 14.6 41.4 1.85
A12a 14.5 41.9 2.56
Winner A2b: 13.4 A2b: 37.5 A4b: 1.75
M1 13.7 39.4 1.98
M2 14.3 41.2 2.10
M3 13.2 37.2 1.89

ences, A2a and M1 differ from the others by being
somewhat faster to run. However, the sixth best
model A11 from the University of Dalhousie in
Canada is clearly faster to run than the top five.

A2b from TIMC-IMAG won also Competi-
tion 2 for Turkish, but A5 from Leeds and A2a
from TIMC-IMAG were very close. The Morfes-
sor M3 produced the lowest error rates.

Since the best speech recognition error rates
were not far apart, we performed the Wilcoxon’s
Signed-Rank test as in (Hirsimäki et al., 2006)
pairwise between every algorithm pairs to see
which differences are also statistically significant.
For the Finnish data the best Morfessor M3 was
significantly better than M1, A9, A5 and A4b.
The winners of the competition A2b and A4a were
both significantly better than A12a, A11, A9, A7,
A5, A4b and A1.

6.6 Comparisons to previous references

It is also interesting to compare the current re-
sults to our earlier benchmarks. In (Hirsimäki et
al., 2006) we compared pruned Morfessor base-
line M1 morphs (26k and 66k lexicon) to gram-
matical (gold-standard) morphs (79k) and a large
word-based lexicon (410k). The letter error rates
in the same evaluation data were then: 4.21, 4.35,
4.57 and 6.14. However, those experiments were
run in 2004 and since then we have improved the
whole recognition system in many ways.

Table 9: Some additional references. In “letters”
all OOVs are split to letters and in “skip” they are
just left out.

Name Info OOV
M1 26k A small lexicon Morfessor letters
G1 Gold-standard morphs letters
G2 Gold-standard morphs skip
W1 Large word lexicon letters
W2 Large word lexicon skip

In (Kurimo et al., 2006) the results of the pruned
Morfessor baseline M1 morphs (26k) and the large
word-based lexicon (400k) in almost the same
setup as in Table 7 were LER: 0.95 and 1.20; and
WER: 7.0 and 8.5. The main difference was that
the language models were trained such that any
OOVs were modeled letter-by-letter, the training
data was significantly extended (150 M words in-
stead 40 M) and the language models were much
larger (50 M n-grams instead of 10 M).

Inspired by the comparison to earlier results,
we computed five additional language models for
the current setup: Two from grammatical (gold-
standard) morphs (79k lexicon), one pruned Mor-
fessor baseline M1 (26k), and two large word-
based lexicon (400k), see Table 9. These were
all squeezed into the standard size (about 10 M
n-grams) and trained with the same older (40 M)
training text corpus. The results are in Table 5 and
Table 7. The gold-standard morphs (G1) and the
word lexicon (W1) seem to be very close in per-
formance to the M1, but the pruned M1 (26k) has
a slightly higher error rate. However, if the OOVs
(the words that cannot be segmented by the lex-
icon) are skipped as we did for other algorithms
in the Finnish part of the Competition 2, the error
rates grow and cross-entropies shrink, especially
for the word lexicon (W2) because of the much
higher OOV rate than for any other model.

7 Conclusions

The objective of the Challenge was to design a sta-
tistical machine learning algorithm that segments
words into the smallest meaning-bearing units of
language, morphemes. Ideally, these are basic vo-
cabulary units suitable for different tasks, such as
speech and text understanding, machine transla-
tion, information retrieval, and statistical language
modeling.
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The scientific goals of this Challenge were:

• To learn of the phenomena underlying word
construction in natural languages

• To discover approaches suitable for a wide
range of languages

• To advance machine learning methodology

14 different segmentation algorithms from 12
research groups were submitted and evaluated.
The evaluations included 3 different languages:
Finnish, Turkish and English. The algorithms and
results were presented in Challenge Workshop, ar-
ranged in connection with other PASCAL Chal-
lenges on machine learning, April 10-12, 2006.
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Abstract

In this work, Morfessor, a morpheme seg-
mentation model and algorithm developed
by the organizers of the Morpho Chal-
lenge, is outlined and references are made
to earlier work. Although Morfessor does
not take part in the official Challenge com-
petition, we report experimental results for
the morpheme segmentation of English,
Finnish and Turkish words. The obtained
results are very good. Morfessor outper-
forms the other algorithms in the Finnish
and Turkish tasks and comes second in the
English task. In the Finnish speech recog-
nition task, Morfessor achieves the lowest
letter error rate.

1 Introduction

This paper briefly describes three consecutive
steps in the development of a morpheme seg-
mentation and simple morphology induction al-
gorithm, calledMorfessor. Morfessor has been
developed by the organizers of the Morpho Chal-
lenge and was therefore excluded from the official
competition. However, we believe that the perfor-
mance of Morfessor in the Morpho Challenge task
will be of interest to a broader audience than the
current authors, especially since the obtained re-
sults are generally very good.

The readers should keep in mind that a compar-
ison of Morfessor to its competitors is not entirely
fair, since portions of the Finnish and English data
sets used in the competition have been utilized
during the development of the Morfessor model.
It is thus probable that the model implementation
to some degree reflects properties of these very
data sets. Nevertheless, the data set of the third
language, Turkish, is as new to the organizers as
to the participants. No modifications to the tested
versions of the Morfessor model have been made
after the acquisition of the Turkish data.

In the following sections, some characteristics
of the Morfessor model will be outlined and ex-
perimental results obtained in the morpheme seg-
mentation as well as Finnish speech recognition
task will be reported and discussed.

2 Characterization of the Morfessor
model

Morfessor is an unsupervised method for the seg-
mentation of words into morpheme-like units. The
general idea behind the Morfessor model is to
discover as compact a description of the data as
possible. Substrings occurring frequently enough
in several different word forms are proposed as
morphs and the words are then represented as
a concatenation of morphs, e.g., “hand, hand+s,
left+hand+ed, hand+ful”.

An optimal balance is sought between compact-
ness of themorph lexiconversus the compactness
of the representation of thecorpus. The morph
lexicon is a list of all distinct morphs (e.g., “hand,
s, left, ed, ful”) together with some stored prop-
erties of these morphs. The representation of the
corpus can be seen as a sequence of pointers to
entries in the morph lexicon; e.g. the word “left-
handed” is represented as three pointers to morphs
in the lexicon.

A very compact lexicon could consist of the in-
dividual letters of the language. However, this
would result in a very expensive representation
of the corpus, since every word would be broken
down into as many morphs as the number of let-
ters it contains. The opposite situation consists of
having a short representation of the corpus (e.g.,
no words would be split into parts), but then the
lexicon would necessarily be very large, since it
would have to contain all distinct words that occur
in the corpus. Thus, the optimal solution is usually
a compromise between these two extremes.

Among others, de Marcken (1996),
Brent (1999), Goldsmith (2001), and Creutz
and Lagus (2002; 2003; 2004; 2005a; 2006) have
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shown that the above type of model produces
segmentations that resemble linguistic morpheme
segmentations, when formulated mathematically
in a probabilistic framework or equivalently
using the Minimum Description Length (MDL)
principle (Rissanen, 1989).

An alternative popular approach to the segmen-
tation of words and phrases is based on the works
by Zellig S. Harris (1955; 1967). For instance,
Schone and Jurafsky (2000; 2001) make use of
a Harrisian approach to suggest word stems and
suffixes. In this approach, word or morpheme
boundaries are proposed at locations where the
predictability of the next letter in a letter sequence
is low. Such a model does not use compactness
of representation as an explicit optimization crite-
rion. Other related work is described more thor-
oughly in our previous publications.

Next, the three tested versions of the Morfessor
model will be described briefly. These versions are
calledMorfessor Baseline, Morfessor Categories-
ML, andMorfessor Categories-MAP. The versions
correspond to chronological development steps,
starting with the simplest model and ending with
the most complex one. For a discussion on how
the early versions can be seen as special cases of
the latest model, the reader is encouraged to con-
sult (Creutz and Lagus, 2006). Note that the cur-
rent paper merely presents the underlying ideas
and characteristics of the Morfessor model; in or-
der to find an exact mathematical formulation it is
necessary to read our previous works.

2.1 Morfessor Baseline

The Morfessor Baseline algorithm was originally
introduced in (Creutz and Lagus, 2002), where it
was called the “Recursive MDL” method. Ad-
ditionally, the Baseline algorithm is described in
(Creutz and Lagus, 2005b; Hirsimäki et al., 2006).
The implementing computer program is publicly
available for download athttp://www.cis.
hut.fi/projects/morpho/.

The Baseline method is acontext-independent
splitting algorithm. It is used as a baseline, or ini-
tialization, for the latercontext-dependentmodel
versions (Categories-ML and Categories-MAP).
In slightly simplified form, the optimization crite-
rion utilized in Morfessor Baseline corresponds to
the maximization of the following posterior prob-
ability:

P (lexiconj corpus) /P (lexicon)P (corpusj lexicon) =Y
letters�P (�) � Y

morphs�P (�): (1)

The lexicon consists of all distinct morphs spelled
out; this forms a long string of letters�. The prob-
ability of the lexicon is the product of the proba-
bility of each letter in this string. Analogously,
the corpus is represented as a sequence of morphs,
which corresponds to a particular segmentation of
the words in the corpus. The probability of this
segmentation equals the product of the probability
of each morph token�. Letter and morph proba-
bilities are maximum likelihood estimates.

When segmentations produced by the Base-
line method are compared to linguistic morpheme
segmentations, the algorithm suffers from three
types of fairly common errors:undersegmenta-
tion of frequent strings,oversegmentationof rare
strings, andmorphotactic violations. This fol-
lows from the fact that the most concise repre-
sentation is obtained when any frequent string is
stored as a whole in the lexicon (e.g., English
“having, soldiers, states, seemed”), whereas in-
frequent strings are better coded in parts (e.g.,
“or+p+han, s+ed+it+ious, vol+can+o”). Morpho-
tactic violations are a consequence of the context-
independent nature of the model: For instance, the
morphs “-s” and “-ed” are frequently occurring
suffixesin the English language, but the algorithm
occasionally suggests them in word-initial posi-
tion asprefixes(“s+wing, ed+ward, s+urge+on”).

2.2 Morfessor Categories-ML

Morfessor Categories-ML (Creutz and Lagus,
2004) introduces morph categories. The segmen-
tation of the corpus is modeled using a Hidden
Markov Model (HMM) with transition probabil-
ities between categories and emission probabili-
ties of morphs from categories (see Fig. 1). Three
categories are used:prefix, stem, and suffix and
an additionalnon-morpheme(or noise) category.
Some distributional properties of the morphs in
a proposed segmentation of the corpus are used
for determining category-to-morph emission prob-
abilities. A morph that is observed to precede a
large number of different morphs is a likely prefix
(e.g., English “re-, un-, mis-”); this is measured
by right perplexity(Fig. 2a). Correspondingly, a
morph that is observed to follow a large set of
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morphs is likely to be a suffix (e.g., “-s, -ed, -ing”);
this is measured byleft-perplexity (Fig. 2b). A
morph that is not very short is likely to be a stem
(e.g., “friend, hannibal, poison”); see Fig. 2c. A
morph that is not an obvious prefix, stem, or suf-
fix in the position it occurs may be an indication
of an erroneous segmentation. Such morphs are
tagged as noise (e.g., all morphs in the segmenta-
tion “vol+can+o”).

The identification of “noise’ and likely erro-
neous segmentations makes it possible to apply
some heuristics in order to partly remedy the
shortcomings of Morfessor Baseline. Underseg-
mentation is reduced by forcing splits of redun-
dant morphs in the lexicon. These morphs consist
of other morphs that are also present in the lexicon
(e.g., “seemed = seem+ed”). Some restrictions ap-
ply, such that splitting into noise morphs is prohib-
ited. The opposite problem, oversegmentation, is
alleviated by joining morphs tagged as noise with
their neighbors (e.g, “vol+can+o” becomes “vol-
cano”). Morphotactic violations are less likely to
occur due to the context-sensitivity of the HMM
model.

2.3 Morfessor Categories-MAP

The Categories-MAP model version (Creutz and
Lagus, 2005a) emerged in an attempt to reformu-
late Categories-ML in a more elegant fashion. In
Categories-ML, the optimal segmentation of the
corpus is sought through Maximum Likelihood
(ML) re-estimation, whereas the complexity of the
lexicon is controlled heuristically. In a Maximum
a Posteriori (MAP) model, an explicit probabil-
ity is calculated for both the lexicon and the rep-
resentation of the corpus conditioned on the lex-

icon. Categories-MAP and the Baseline method
are MAP models.

The most important new feature of the
Categories-MAP model is that the lexicon may
contain hierarchical entries. That is, a morph can
either consist of a string of letters (as in the previ-
ous models) or of two submorphs, which can re-
cursively consist of submorphs.

As was the case in the Baseline model, frequent
strings typically end up as entries of their own
in the lexicon (e.g, the English word “straight-
forwardness”). However, unlike in the Baseline
model, these frequent strings now have a hierar-
chical representation; see Figure 3. In a mor-
pheme segmentation task, the existence of this
inner structure makes it possible to “expand”
morphs into their submorphs, thereby avoiding
undersegmentation. Since every morph at ev-
ery level is tagged with its most likely category,
it is possible to avoidoversegmentation as well,
since one can refrain from expanding nodes in
the tree if the next level containsnon-morphemes,
i.e. “noise morphs”. For instance, in Figure 3,
the word “straightforwardness” is expanded into
“straight+forward+ness”. The morph “forward” is
not expanded into its constituents “for+ward” (al-
though this may have been appropriate), because
“for” is tagged as a non-morpheme in the current
context.

3 Morpheme Segmentation Experiments

In the following, some differences between the
tested versions of Morfessor as well as the three
tested languages are illustrated in the light of ex-
perimental results. The experiments were run
on the datasets provided in the Challenge. The
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Figure 2: Sketch of sigmoid functions (used in the Categories models), which express how the right and
left perplexity as well as the length of a morph affect its tendency to function as a prefix, suffix, or stem.
The parametersa; b; 
; d determine the shape of the sigmoids. A probability distribution is obtained by
first computing the probability that a morph� belongs tononeof the three categories. The probability
of this so-called non-morpheme, or noise, category given the morph� equals:(1� prefix-like(�)) � (1�
suffix-like(�)) � (1 � stem-like(�)). Then the remaining probability mass is distributed between prefix,
stem and suffix proportionally to the prefix-, stem- and suffix-likeness values.

straightforwardness/STM

straight/STM forward/STM

straightforward/STM ness/SUF

ward/STMfor/NON

Figure 3: Hierarchical representation of the En-
glish word “straightforwardness” in the lexicon in-
duced by Morfessor Categories-MAP. Each morph
has been tagged with a category: stem (STM), suf-
fix (SUF), or non-morpheme (NON). (No morph
was tagged as a prefix in this example.) The finest
resolution that does not contain non-morphemes is
rendered using a bold-face font. This corresponds
to the proposed morpheme segmentation.

Morfessor Baseline algorithm is entirely unsuper-
vised and does not require that any parameters be
set. The Categories algorithms have one parame-
ter (the perplexity thresholdb in Fig. 2) that needs
to be set to an appropriate value for optimal perfor-
mance. This parameter value was optimized sepa-
rately for each language on the small development
sets (model segmentations) provided.1

1A fixed (dataset-independent) scheme works fine for the
other parameters in Fig. 2:a = 10=b; 
 = 2; d = 3:5. This
is good, since the amount of necessary supervision should be
kept to a minimum.
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Figure 4: F-measures computed for the placement
of morpheme boundaries in relation to linguistic
morpheme segmentations, obtained by the three
different versions of Morfessor on the three test
languages.

3.1 Results

The morpheme segmentation task of the competi-
tion is won by the participant achieving the highest
F-measureof correctly placed morpheme bound-
aries. Figure 4 shows the F-measures of the three
Morfessor methods on the three tested languages.
The F-measure is the harmonic mean ofprecision
andrecall. The precisions and recalls obtained by
Morfessor are displayed in Figures 5 and 6, re-
spectively.

The results show that there are different tenden-
cies for the English data, on the one hand, and the
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Figure 5: Precision of the three Morfessor meth-
ods on the three languages tested.

Finnish and Turkish data, on the other hand. For
Finnish and Turkish, the context-dependent Cat-
egories models produce clear improvements over
the context-independent Baseline splitting algo-
rithm (with F-measures 10 – 20 points higher;
Fig 4). For English, the improvement is minor, but
on the other hand the Baseline here attains a con-
siderably higher level than for Finnish and Turk-
ish. The best F-measure obtained by Morfessor
for all three languages is at the same level, around
70 %.

The precision and recall plots in Figures 5 and
6 provide more detailed information. For English,
even though the F-measures of all three algorithms
are approximately equal, the produced segmenta-
tions are very different. Categories-MAP has a
significantly higher precision than the other model
versions (and correspondingly a lower recall). For
Finnish and Turkish, the Categories models dis-
play a great improvement of recall in relation to
the Baseline method. This comes at the expense
of lower precision, which is observed for Finnish
and to a lesser degree on the Turkish data.

In order to better understand the differences ob-
served in the results for the different languages,
the output at various stages of the segmentation
process has been studied for each of the Morfes-
sor model variants. No obvious explanation has
been found other than the difference in the mor-
phological structures of the languages. Finnish
and Turkish are predominantly agglutinative lan-
guages, in which words are formed through the
concatenation of morphemes. The type/token ra-
tio is high, i.e., the number of different word forms

English Finnish Turkish
0

20

40

60

80

100

R
ec

al
l [

%
]

B
as

el
in

e
C

at
eg

or
ie

s−
M

L
C

at
eg

.−
M

A
P

B
as

el
in

e
C

at
eg

or
ie

s−
M

L
C

at
eg

.−
M

A
P

B
as

el
in

e
C

at
eg

or
ie

s−
M

L
C

at
eg

.−
M

A
P

Figure 6: Recall of the three Morfessor methods
on the three languages tested.

encountered in a piece of running text is relatively
high. By contrast, word forming in English in-
volves fewer morphemes. The type/token ratio is
lower, and the proportion of frequently occurring
word forms is higher.

In the Finnish and Turkish segmentation task,
Morfessor outperforms all algorithms proposed by
the participants of the Morpho Challenge; com-
pare the following F-measures for Finnish: 67.0 %
(Morfessor Categories-ML) vs. 64.7 % (best par-
ticipant), and for Turkish: 70.7 % (Morfessor
Categories-MAP) vs. 65.3 % (best participant). In
the English segmentation task, Morfessor comes
second: 69.0 % (Morfessor Categories-ML) vs.
76.8 % (best participant).

4 Finnish Speech Recognition
Experiments

N-gram language models have been estimated
from the segmentations produced by the three
Morfessor models on the Finnish data. The lan-
guage models have been used in speech recog-
nition experiments, and results are shown in Ta-
ble 1. The evaluation of the language models alone
(cross-entropy on a held-out data set) suggests that
the Categories models are better than Morfessor
Baseline, since their cross-entropy is lower. The
cross-entropies do not, however, correlate with
the actual speech recognition results. Categories-
MAP obtains the lowest letter error rate (LER) –
1.30 % of the recognized letters are incorrect in
comparison with the reference transcript – which
is also lower than the letter error rate achieved
by any participant of the Challenge (best result:
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Table 1: Results from the Finnish speech recog-
nition experiments: cross-entropy (log-perplexity)
of the language models (H), letter error rate (LER)
and word error rate (WER).

Method H [bits] LER [%] WER [%]
Baseline 13.59 1.31 9.84
Categ.-ML 13.53 1.32 10.18
Categ.-MAP 13.53 1.30 10.05

1.32 %). Nevertheless, the word error rate (WER)
of Categories-MAP is higher than that of Mor-
fessor Baseline and the WER:s of three partici-
pants. This suggests that the letter errors made
by Categories-MAP are spread over a larger num-
ber of words, which increases WER, whereas the
other methods have a concentration of errors on a
smaller set of words.

5 Conclusions

In the morpheme segmentation task, the current
versions of Morfessor attain an F-measure value
of about 70 % for all three tested languages. For
English, a language with “poorer” morphology
and less morpheme boundaries to discover, the
simple Baseline method seems to almost reach to
this level. The characteristically agglutinative lan-
guages Finnish and Turkish, which have “richer”
morphology and a larger number of morpheme
boundaries to be detected, require more complex
models (the context-sensitive Categories model) to
perform on the same level. It is particularly en-
couraging to see that Morfessor performs so well
in the Turkish segmentation task, since Turkish
data was never used in the development of the
model.
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Abstract

Word segments are relevant cues for the au-
tomatic acquisition of semantic relationships
from morphologically related words. Indeed,
morphemes are the smallest meaning-bearing
units. We present an unsupervised method for
the segmentation of words into sub-units de-
vised for this objective. The system relies on
segment predictability to discover a set of pre-
fixes and suffixes and performs word segments
alignment to detect morpheme boundaries.

1 Introduction

Morphemes are defined as the minimal meaning bear-
ing units. Knowledge of morphologically related terms
is thus worthy for many applications. This is es-
pecially true for morphologically complex languages
like German or Finnish or scientific and technical vo-
cabulary like biomedical language. Some research
has for instance been devoted to the use of morpho-
logical decomposition for text indexing and retrieval
in the biomedical domain (Schulz et al., 2002) or
the acquisition of semantic relationships from mor-
phologically related words (Zweigenbaum and Grabar,
2000; Namer and Zweigenbaum, 2004; Claveau and
L’Homme, 2005). Work on the system presented in
this paper has been undertaken with the objective of re-
trieving semantic relationships from morphologically
related words (i.e. words sharing the same stem) in
technical and scientific domains. Contrary to Schulz
et al. (2002) or Namer and Zweigenbaum (2004) we
have not built a morphological analyser relying on a
dictionary of affixes and stems. Rather, morphological
structure is discovered from a raw list of words and the
method is not dependent on a given language, nor on
a given domain. Related work on morphology induc-
tion is discussed in section 2. Our method is detailed
in section 3. Finally in section 4 we present the results
obtained.

2 Related work

2.1 Methods relying on segment predictability

Segment predictability is one possible cue for word
segmentation. Harris (1955) proposes to use the num-
ber of different phonemes following a given phoneme
sequence: morpheme boundaries are identified when
this number reaches a peak. This method has been ex-
tended to written texts by Hafer and Weiss (1974) and
Déjean (1998). Similarly, Saffran et al. (1996) sug-
gest that learners use drops in the transitional proba-
bilities between syllables to identify word boundaries.
Like Déjean (1998) we use segment predictability to
identify prefixes and suffixes. However, rather than
determining segment boundaries by counting the num-
ber of letters following a given substring, as suggested
in (Harris, 1955), we have developed a variant of this
method based on transitional probabilities, following
the proposition made by Saffran et al. (1996) (see Sec-
tion 3.1).

2.2 Strategies based on word comparison

Other methods for the identification of morphologi-
cally related words are based on word comparison to
identify similar and dissimilar parts in words. Neu-
vel and Fulop (2002) perform alignments starting ei-
ther on the left or right edge of words to discover sim-
ilarities and differences between the words compared.
These similarities and differences correspond to word-
formation strategies which can be used to generate new
words without resorting to the notion of morpheme.
Similarly, Schone and Jurafsky (2001) insert words in
a trie either in good or reverse order to easily discover
places where words differ from one another. Substrings
which repeatedly differentiate words are considered as
potential affixes. These methods based on the identi-
fication of initial or final common substrings are fine
for prefix of suffix discovery but insufficient for words
formed by compounding. In order to overcome these
shortcomings our system performs word comparisons
which are not anchored on word boundaries but rather
on a shared stem which can be found at any position in
the word (see Section 3.3).



19

2.3 Methods based on optimisation

Paradigmatic series of morphemes are extracted by
Goldsmith (2001) in the form of “signatures” which
are sets of suffixes which appear with the same stem.
The method makes use of minimum description length
(MDL) analysis to measure how effectively the mor-
phology encodes the corpus. MDL is used by Creutz
and Lagus (2002) as well to split words for highly-
inflecting and morphologically complex languages.
Our method is not directly related to MDL-based meth-
ods though it heavily relies on word segment length and
frequency. Zipf (1968, page 173) had already noticed
that, as well as words, “the length of a morpheme tends
to bear an inverse ratio to its relative frequency of oc-
currence”. If we draw a parallel between words and
morphemes, stems, which bear more meaning than af-
fixes, are long and not so frequent while affixes are fre-
quent and short1. Length is also used in the probabilis-
tic framework proposed by Creutz and Lagus (2004)
where the stem-likeness of a segment is function of
its length. We use these general properties in a dif-
ferential framework, drawing upon Saussure’s theory
that syntagmatically related elements (like morphemes
contained in a word) are defined by the differences
amongst them. So rather than focusing on absolute
values, we rely on differences in length and frequency
(1) to distinguish between stems and affixes: a stem
is identified as the longest and less frequent segment
and (2) to impose constraints on the segments identi-
fied within a word: affixes have to be shorter and more
frequent than stems.

3 Description of the method

The aim of the method described is to segment words
into labelled segments. We only consider concatena-
tive morphology and assign the following categories to
morphological segments: stem, prefix, suffix and link-
ing element. The latter category is not used by meth-
ods described in the previous section, but we think it is
linguistically motivated in the sense that classical syn-
tagmatic definitions of prefixes and suffixes fail to en-
compass linking elements. Indeed, prefixes are found
before stems, at the beginning of words and suffixes
are found after stems, at the end of words; linking el-
ements can never be found at word boundaries and are
always preceded and followed either by a stem or by
another affix. For instance, “-o-” in “hormonotherapy”
is a linking element.

Moreover, similarly to Creutz and Lagus (2004) we
use the syntagmatic definition of morphological cate-
gories to impose constraints on possible sequences of
word segments. In the next sections, we detail the pro-
cedure used to learn word segments.

1See also (Vergne, 2005) for a method to distinguish func-
tion and content words based on differences in length and fre-
quency.

3.1 Extraction of prefixes and suffixes
The input of the system is a plain wordlist L. The
method does not make use of word frequency. The first
step of the segmentation procedure is the extraction of
a preliminary set of prefixes P and suffixes S. These are
acquired using a method based on transitional proba-
bilities between substrings. Moreover, only the longest
words are segmented, following the intuition that these
are the words most likely to be affixed. Words are
sorted in reverse length order and are segmented us-
ing the variations of the transition probability between
all the substrings coalescing at any given position k in
the word.

Let w be a word whose boundaries are explicitly
marked by the # symbol; n is the length of w (bound-
ary markers included); si,j is a substring of w starting
at position i and ending at position j. For each posi-
tion in the word k with k in [1, ..., n-1] we compute the
following function, which corresponds to the mean of
the maximum transition probabilities for all substrings
ending and beginning at position k:

f(k) =

k−1∑
i=0

n∑
j=k+1

max[p(si,k|sk,j), p(sk,j |si,k)]

k × (n− k)

Where the transitional probabilities p(si,k|sk,j) and
p(sk,j |si,k) are estimated by:

p(si,k|sk,j) =
f(si,j)
f(sk,j)

and p(sk,j |si,k) =
f(si,j)
f(si,k)

The frequency of a substring is equal to the number of
times it occurs in L.

This yields a profile of the variations of the transi-
tion probabilities for w. Local minima indicate poten-
tial segment boundaries. A local minimum is validated
if its difference both with the preceding and following
maximum is at least equal to a standard deviation of the
values. Figure 1 depicts this profile for the word “ul-
tracentrifugation”. Valid boundaries are indicated by a
bold vertical line, which corresponds to the following
word segmentation: ultra + centrifug + ation.

Once a word has been segmented, the longest and
less frequent segment is identified as stem if it also ap-
pears at least twice in the lexicon and once at the begin-
ning of a word. The substrings which directly precede
and follow this stem in the wordlist are added to the
lists P and S if they are shorter and more frequent than
the stem. Moreover, we discard prefixes of length 1
since we have noticed that these lead to erroneous seg-
mentations in further stages of the process.

It is not necessary to apply this process of affix ac-
quisition to all words. Indeed, the number of new af-
fixes acquired decreases as the number of segmented
words augments. This procedure ends when for N run-
ning words less than half of the affixes learned do not
already belong to the lists P and S. Table 1 lists the
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Figure 1: Profile for the variation of transitional proba-
bilities for the word “ultracentrifugation”

most frequent prefixes and suffixes extracted from the
MorphoChallenge English wordlist for N=5.

Prefixes Suffixes
in- pre- -s -ly
un- natur- -e -ble
inter- counter- -ed -tion
dis- over- -al -es
mis- psycho- -ally -ately
re- ultra- -ing -ity
ex- hyper- -ation -l
pseudo- con- -ness -ism

Table 1: Most frequent prefixes and suffixes extracted
from the MorphoChallenge English wordlist for N=5.

3.2 Acquisition of stems
Stems are obtained by stripping off from each word in
the list L all the possible combinations of the affixes
previously acquired and the empty string. Of course
this list is rather noisy. The following constraints are
therefore applied on each extracted stem s:

1. it must have a minimum length of 3.

2. it can be followed by at least 2 different letters
(including the word boundary marker); otherwise,
this would mean that the stem is included in an-
other stem.

3. it cannot contain a hyphen, since hyphens are
boundary markers.

4. at least one word must begin with s.

3.3 Segmentation of words
Word segmentation is performed by comparing words
containing the same stem b in order to find limits be-
tween shared and different segments (see Figure 2).

Segments thus obtained are assigned one of the three
affix types (prefix, suffix, linking element) according

Figure 2: Example word segments alignment for the
stem “therap”.

to their position within the word, relatively to the stem.
For instance, segments ‘ist’, ‘s’ and ‘y’ in Figure 2 are
labelled as suffixes. In order to deal with compound-
ing, we make use of a temporary category for segments
which contain another stem. These segments are la-
belled as ’potential stems’. This is the case for the seg-
ments ‘organo’ and ‘physio’ in Figure 2.

As a result of the alignment new affixes which do
not belong to the lists P and S may be discovered and
these have to be validated. The validation procedure is
somewhat similar to the validation of new morphemes
in (Déjean, 1998) and is performed as follows: amongst
aligned words which share the same stem we form sub-
groups of words beginning with the same segment. Ta-
ble 2 lists word-final segments for the sub-group of the
words containing the stem “hous” and starting with the
empty string prefix.

Words Suffixes Potential New
from stems suffixes
list S

housekeeping -ekeeping
housing -ing
household -ehold
house’s -e’s
house -e
housed -ed

Table 2: Word final segments for words containing the
stem “hous” and starting with the empty string prefix.

Let |A1| be the number of suffixes from list S, |A2|
the number of potential stem segments and |A3| the
number of new suffixes. For the examples in Table 2
|A1|=3, |A2|= 2 and |A3|=1. New suffixes and poten-
tial stem segments are validated only if the following
conditions are met:

|A1|+ |A2|
|A1|+ |A2|+ |A3|

≥ a and
|A1|

|A1|+ |A2|
≥ b

The same procedure is applied for the validation of
word-initial segments.

Valid segmentations for each word are stored: we
thus keep trace of all the segments proposed for a word,
since a word may contain more than one stem and may
therefore be aligned and segmented more than once.
When all stems have been analysed for segmentation,
we examine the segments stored for each word and
remove potential stem segments. Potential stem seg-
ments are either replaced by other segments (as a whole
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or only partially) or assigned a final category (prefix,
suffix or linking element) if no replacement is possi-
ble. Finally, we compute a frequency of occurrence for
each segment. Frequency of occurrence is equal to the
number of different words whose analysis includes the
segment considered.

3.4 Selection of the best segments

For each word, we have stored the labelled segments
resulting from its successive segmentations (one seg-
mentation per stem). In order to choose the best pos-
sible segments, we perform a best-first search privileg-
ing the most frequent segment, given a choice. The
final segmentation must also obey constraints related
to word structure (at least one stem amongst the seg-
ments, a prefix cannot be directly followed by a suffix,
only one running linking element between two prefixes
or suffixes) and to the frequency of the segments rela-
tively to one another (stems must be less frequent than
the other types of segments). At the end of this stage,
each word in the list L is segmented. Another output
of this stage is the list of selected segments associated
with their category (prefix, stem, suffix, linking ele-
ment) and the number of times they have been selected
(this corresponds to segment frequency). This list of
segments can be used to segment any word in the same
language, as explained in the next section.

3.5 Using the list of learned segments

Given the list of the best segments selected in the pre-
vious stage of the method, it is possible to segment any
list of words. This stage is therefore optional and is
proposed as a solution for the segmentation of words
which do not belong to the list of words from which
segments have been learned. The A* algorithm is used
to find the best segmentation for each word. The global
cost for a segmentation is the sum of the costs associ-
ated with each segment si. We have used two different
segment cost functions for MorphoChallenge resulting
in two different submissions:

cost1(si) = −log
f(si)∑
i f(si)

cost2(si) = −log
f(si)

maxi[f(si)]

Moreover, the same constraints on possible succes-
sions of word segments as those described in section
3.4 are used.

4 Results

There are two main ways of directly assessing the qual-
ity of the results, either by evaluating the conflation
sets built out of morphologically related words sharing
an identical stem or by evaluating the position of the
boundaries within a word. The latter is used by Mor-
phoChallenge 2005.

4.1 Conflation-based evaluation

We have performed an evaluation of the results of the
method on a list of words extracted from an English
corpus on breast cancer. This corpus has been auto-
matically built from the Internet and contains about
86,000 different word forms. We have manually built
morphological word families for the top 5,000 key-
words in the corpus. Keywords have been identified
by comparison with a corpus on volcanology, using the
method described in (Rayson and Garside, 2000). For
instance, one of the manually built morphological fam-
ilies contains the words “brachytherapy”, “chemora-
diotherapy”, “chemotherapeutic”, “therapies”, “thera-
pist”, etc. We have used conflation-based evaluation,
since we wish to assess the ability of the method to
retrieve words linked both by form and by meaning,
which is closer to our objective of retrieving seman-
tic relationships between words thanks to morphology.
Evaluation consists in counting the number of correct,
incorrect and missing pairs of morphologically related
words. Words are considered as morphologically re-
lated if they contain the same stem according to the
method. For instance, the words “chemoradiotherapy”
and “therapist” form a correct pair of words. Precision
is defined as the number of correct word pairs divided
by the number of suggested word pairs. Recall is de-
fined as the number of correct word pairs divided by the
number of word pairs in the list of manually built mor-
phological families. For this evaluation, we used the
segmentations provided directly after selection of the
best segments (see Section 3.4) with N=5, a=0.8 and
b=0.1. Results are given in Table 3. Precision suffers
from the fact that most words ending with -logy, -logic
or -logical share the same stem “log” according to the
system. Results also evidence that recall should be im-
proved. For instance, “artery” is segmented as arter + y
while “arterial” is segmented as arteri + al. Both words
are therefore not conflated in the same set.

Number Example
Correct 3,936 lymphedematous
word pairs lymphoedema
Incorrect 2,359 additive
word pairs addresses
Missing 5,210 therapeutics
word pairs therapy

Precision Recall F-measure
62.5 43.0 51.0

Table 3: Results of conflation-based evaluation.

4.2 MorphoChallenge 2005 results

The MorphoChallenge 2005 datasets were consider-
ably bigger than the dataset used for the previous as-
sessment. Word segments learning has been performed
on the whole English dataset. However, for Finnish and
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F-measure
Sample evaluation Final evaluation

Language N a b method 1 method 2 method 1 method 2
English 5 0.85 0.1 64.29 61.05 66.6 62.4
Finnish 5 0.8 0.1 63.18 64.44 63.3 64.7
Turkish 5 0.7 0.1 55.93 66.06 55.3 65.3

Table 4: Parameter values used and results obtained for the submissions to MorphoChallenge 2005.

Turkish learning has been performed only on a subset
of the datasets (the 300,000 most frequent words), due
primarily to heavy memory consumption. Three dif-
ferent parameter values have to be set: N (see Section
3.1), a and b (see Section 3.3). Parameter values used
for each language were roughly the same, only we took
those values which yielded the best results on the eval-
uation datasets. Yet keeping default values N=5, a=0.8
and b=0.1 does not bring a change of more than about 1
or 2% in F-measures. Table 4 details parameter values
used and the results obtained. Method 1 corresponds to
results obtained by using cost1 and method 2 to results
obtained by using cost2 (see Section 3.5).

Results for method 2, using cost2, indicate better re-
call but lower precision on all datasets. This is espe-
cially noticeable on the Turkish dataset. Recall for the
Turkish dataset was indeed an issue which led to the
use of cost2. This might be due to the fact that seg-
ments in the Turkish gold standard sample are shorter
on the average than Finnish and English gold standard
sample segments.

5 Conclusions
Thanks to MorphoChallenge 2005 the method has been
tested on new languages (Finnish and Turkish), bigger
wordlists and for different objectives (speech recogni-
tion). Results show that the method performs well even
on Finnish and Turkish. Planned improvements in-
clude better implementation to deal with large datasets
and incorporation of equivalence matching between
stems to capture orthographic variants like “cancer”
and “cancér”. In work in progress, we are investigat-
ing the usefulness of morphological segmentation for
the automatic acquisition of semantic relationships.

References
Vincent Claveau and Marie-Claude L’Homme. 2005. Struc-

turing Terminology by Analogy-Based Machine Learning.
In Proceedings of the 7th International Conference on Ter-
minology and Knowledge Engineering, TKE’05.

Mathias Creutz and Krista Lagus. 2002. Unsupervised Dis-
covery of Morphemes. In Proceedings of the Workshop
on Morphological and Phonological Learning of ACL-02,
pages 21–30.

Mathias Creutz and Krista Lagus. 2004. Induction of a Sim-
ple Morphology for Highly-Inflecting Languages. In Pro-
ceedings of the 7th Meeting of the ACL Special Interest
Group in Computational Phonology (SIGPHON), pages
43–51, Barcelona.

Hervé Déjean. 1998. Morphemes as Necessary Concept for
Structures Discovery from Untagged Corpora. In D. Pow-
ers, editor, Proceedings of the CoNLL98 Workshop on
Paradigms and Grounding in Language Learning, pages
295–298.

John Goldsmith. 2001. Unsupervised Learning of the Mor-
phology of a Natural Language. Computational Linguis-
tics, 27(2):153–198.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word seg-
mentation by letter successor varieties. Information Stor-
age and Retrieval, 10:371–385.

Zellig Harris. 1955. From phoneme to morpheme. Lan-
guage, 31(2):190–222.

Fiammetta Namer and Pierre Zweigenbaum. 2004. Acquir-
ing meaning for French medical terminology: contribution
of morphosemantics. In Proceedings of Medinfo. 2004,
volume 11, pages 535–539, San Francisco CA.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsupervised
Learning of Morphology Without Morphemes. In Pro-
ceedings of the ACL Workshop on Morphological and
Phonological Learning 2002, pages 31–40.

Paul Rayson and Roger Garside. 2000. Comparing corpora
using frequency profiling. In Proceedings of the workshop
on Comparing Corpora, held in conjunction with the 38th
annual meeting of the Association for Computational Lin-
guistics (ACL 2000), pages 1–6, Hong Kong, 1-8 October
2000.

Jenny R. Saffran, Elissa L. Newport, and Richard N. Aslin.
1996. Word Segmentation: The Role of Distributional
Cues. Journal of Memory and Language, 35(4):606–621.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-Free
Induction of Inflectional Morphologies. In Proceedings of
the Second meeting of the North American Chapter of the
Association for Computational Linguistics, pages 1–9.

Stefan Schulz, Martin Honeck, and Udo Hahn. 2002.
Biomedical Text Retrieval in Languages with a Complex
Morphology. In Proceedings of the ACL Workshop on
Natural Language Processing in the Biomedical Domain,
pages 61–68, Philadelphia, July.

Jacques Vergne. 2005. Une méthode indépendante des
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Abstract

This paper describes two steps of a morpheme
boundary segmentation algorithm. The task is
solely to find boundaries between morphemes
bar any further analysis such as phoneme dele-
tions, insertions or alternations that may occur
between or within morphemes. The algorithm
presented here was designed under the premise
that it is not supposed to utilize any knowledge
about the language it should analyse. Neither
is it supposed to rely on any kind of human
supervision. The first step is to use a high-
precision, low-recall algorithm to find a rela-
tively small number of mostly correct segmen-
tations, see (Bordag, 2005). In the second step,
these segmentations are used to train a classifi-
cator, which is then applied to all words to find
morpheme boundaries within them.

1 Related Work

The first step of the algorithm presented in this paper is
a revised version of theletter successor variety(LSV)
based algorithm (Harris, 1955; Hafer and Weiss, 1974)
(see also (Feng et al., 2004) for an application of that
idea to word splitting in Chinese) described and imple-
mented previously by Bordag (2005). This part of the
algorithm makes use of contextual information such as
cooccurrences of words (the term ‘word’ will be used
synonymously to ‘word forms’ throughout this paper)
within sentences or next to each other. That makes
this algorithm comparable to but not identical with an-
other existing algorithm, which also takes a semantic
approach (Schone and Jurafsky, 2001).

As it became clear in (Bordag, 2005), the LSV algo-
rithm does not achieve sufficient levels of recall while
having a high precision score. Consequently, another
algorithm is necessary that can generalize the knowl-
edge produced by the LSV algorithm and apply it to
each word in order to increase recall while trying to
keep precision high. This second step of the algo-
rithm is based on an implementation of the PATRICIA
tree (Morrison, 1968) as a classificator (Witschel and
Biemann, 2005), although any other machine learning
method could be applied. It is a variant of the trie mem-
ory (Fredkin, 1960) that is especially well suited for

natural language tasks due to its low memory usage.
Each boundary found by the first step is used as a train-
ing instance for a PATRICIA tree based classificator.
The classificator then, applied to an unanalysed word,
marks the most probable prefix or suffix of that word.
Given a few simple constraints, the combination of the
two algorithms yields a slight precision drop, (proba-
bly due to overlearning) versus a strong recall increase
compared to the first LSV algorithm alone. Addition-
ally, the classificator is applied recursively to the found
affix and the remaining part of the word in order to find
morpheme boundaries even within very long words -
thus alleviating another problem of the LSV algorithm.

2 The algorithm in two steps

2.1 The First Step: Letter Successor Variety

The letter successor variety has been introduced as
word-splittingthatoccurs if the number of distinct let-
tersafter a given substring rises significantly or above
a certain threshold, given a list of words to compare
with (Harris, 1955). However, the exact set of words to
compare against when measuring the amount of var-
ious letters encountered after substrings remains un-
clear. Especially since there is evidence (Hafer and
Weiss, 1974) that the results can be quite noisy, if
simply the entire word list is used. In fact, using the
plain global LSV method (plain stands for not using
any weights introduced later on, global stands for com-
paring the morphology of any word against all other
words) with for example the cut-off strategy yields only
a maximal F-measure of41% on the word list used in
the experiments below (see Figure 1). Furthermore, it
is rather plausible that although for example the word
clearlyhas some similarity in letters (measurable by the
edit distance) to the word formearly, there is no doubt
that this similarity does not help at all to explain the
morphological structure ofclearly because both words
are unrelated otherwise. Thus, a method is needed that
can provide a list of words both similar by edit distance
and by contexts in which they appear - i.e. either se-
mantically or syntactically related.

One possibility to obtain semantically and/or syn-
tactically related words for a given input wordw,
is to compute sentence or neighbour cooccurrences
(Quasthoff and Wolff, 2002). For example, the word
clearly cooccurs withbeen, said, now, .... This infor-
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mation in the form of a high-dimensional vector space
can be used to compute a list of (at most150 in this
work) similar words using any similarity measure such
as cosine or 2-norm. Finally, the most similar words
for a given input word, ranked both by edit distance
and contextual similarity, are used to compute an indi-
vidual LSV-score for each position within the word. In
the English corpus used, the list of most similar words
for clearly containsclosely, greatly, legally, linearly,
really, weakly, .... The final LSV-score is computed
for each position in the input wordw by mutliplying
theoriginal LSV-scorewith two normalization factors,
a weighted average of parts-frequenciesand thein-
verse bigram ranking weight.

The original LSV-score: The LSV-score for each
position between two letters of the input word is com-
puted directly by counting the number of different let-
ters that follow after or before a substring of the word.
Table 1 shows that before the substring-ly 4 differ-
ent letters were encountered within the150 most sim-
ilar words toearly. On the other hand, Table 2 shows
that forclearly16 different letters were seen before-ly.
Thus, according to the original LSV idea it is possible
to conclude that in the wordearly the syllable-ly is not
a suffix, whereas in the wordclearly it is.

The weighted average of substring frequency:
However, there are a few quirks with the plain LSV ap-
proach. One is that the frequency of the respective sub-
strings within the similarity list plays an important role:
For early only 6 words out of19 ending with-y ended
with -ly, compared to76 out of90 words forclearly. As
an improvement over the original LSV method this ra-
tio is used to obtain a confidence weight for how ‘trust-
worthy’ the computed LSV at that particular position
is. For ear-ly it would be 6/19 = 0.3 compared to
76/90 = 0.8 for clear-ly, further widening the differ-
ence between the two types of-ly.

Another quirk is that some phonemes are represented
by more than one letter such asth in English. This re-
sults in wrong splittings, because the frequency weight
denominator is ‘carried away’. But it can be safely
assumed that these letter combinations are of a much
higher frequency compared to other common combina-
tions of letters. The assumption is safe because single
letters have a higher frequency spectrum compared to
letter combinations. But if some letter combinations
are essentially single phonemes represented by several
letters, then they also belong to the higher frequency
spectrum of single letters. The corrected frequency
weight is computed as a weighted average of frequency
weights using a bi- and tri-gram weight computed glob-
ally over the entire wordlist. The weights are distrib-
uted uniformly along the continumm between0.0 and
1.0 according to their corresponding frequencies for
eachn of n-grams individually. Thus, the most fre-
quent bigram receives a weight of1.0 and the least fre-
quent bigram0.0.

For the wordthing, for example, there is a LSV-

value of4 for th-. The frequency ofth- in the150 most
similar words is12 as opposed tot- with 23. The bi-
gram weight of0.3 allows to down-weight the resulting
12/23 = 0.5 to (1.0 ∗ 12/23 + 0.3 ∗ 12/150)/(1.0 +
0.3) = 0.4. Since for example in German even three
letters can represent a single phoneme, the same can be
applied to 3-grams and in each case the larger n-gram
weight is chosen.

The inverse bigram weight: Taking the inverse bi-
gram weight of the position for which a score is com-
puted can help to weight down such positions that are
very improbable to represent a morpheme boundary. In
the example ofearly, the bigramrl is very rare, thus the
weight is0.0 and the inverse weight is1.0− 0.0 = 1.0.
This means that it is quite probable for a boundary to
be at that position.

The combination of LSV-score and weights:The
final score for each position is computed as the sum of
the scores for LSV from left and from right, multiplied
with the two weights, the corrected frequency weight
and the inverse bigram probability. The resulting score
for the exampleear-ly is the origibal LSV-score for that
position, 4, multiplied by the weighted average and
the inverse bigram ranking:4 ∗ (1.0 ∗ 12/23 + 0.3 ∗
12/150)/(1.0 + 0.3) ∗ (1.0− 0.0) = 1.2 as opposed to
clear-lywith 16 ∗ (1.0 ∗ 76/90 + 0.3 ∗ 76/150)/(1.0 +
0.3) ∗ (1.0 − 0.0) = 13.4, as can be seen in Tables 1
and 2.

It is possible to label an algorithm aslocal (contrary
to global LSV), if it is based on computing the LSV-
scores for each word using its similar words instead of
simply all words. As can be seen in Figure 1, when us-
ing the introduced weights the local variant reaches a
maximum peak at approximately the same64% as the
global variant. However, it has a much higher preci-
sion at that peak of71% compared to59% of the global
variant while having a much lower recall value of56%
compared to70% of the global variant.

For any of the proposed methods using an arbitrar-
ily chosen threshold such as5, it is possible to decide,
whether a given score is a morpheme boundary, or not.
This threshold should theoretically depend only on the
number of different letters in a given language. It may
be a mere coincidence, but as can be seen from Figure
1, the optimum choice of the treshold seems to roughly
correspond to the natural logarithm of the number of
possible letters except for the case of the plain global
LSV-algorithm. However, the lack of cooccurrence ob-
servations if the corpus is not large enough, can ef-
fectively prevent the discovery of a valid morpheme
boundary with an otherwise correctly set threshold.

In fact, the size of the corpus is a rather essential
problem for this algorithm. From Zipfs law (Zipf,
1949) follows that in any corpus most words will have
a frequency of less thenx for some lowx such as10,
for example. But if a given word occurs only a dozen of
times, then only a few words will be significant neigh-
bour cooccurrences and almost no words can be com-
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input word: # e a r l y #
LSV left: 40 5 1 1 2 1
LSV right: 1 2 1 4 6 19
freq. left: 150 9 2 2 2 1
freq. right: 1 2 2 6 19 150
bigram left: 0.2 0.2 0.5 0.0
trigram left: 0.0 0.1 0.0
bigram right: 0.5 0.0 0.1 0.3
trigram right: 0.0 0.0 0.2
bigram weight: 0.2 0.5 0.0 0.1
score left: 0.0 0.0 0.5 1.7
score right: 1.0 0.0 0.7 0.2
final score : 1.0 0.1 1.2 2.0

Table 1: Sample computation of the local LSV algorithm forearly. Weights were rounded and the given scores
and weights refer to the position to the left of the respective letter.

input word: # c l e a r l y #
LSV left: 28 5 3 1 1 1 1 1
LSV right: 1 1 2 1 3 16 10 14
freq. left: 150 11 4 1 1 1 1 1
freq. right: 1 1 2 2 5 76 90 150
bigram left: 0.4 0.1 0.5 0.2 0.5 0.0
trigram left: 0.1 0.1 0.1 0.1 0.0
bigram right: 0.5 0.2 0.5 0.0 0.1 0.3
trigram right: 0.1 0.1 0.0 0.0 0.2
bigram weight: 0.1 0.5 0.2 0.5 0.0 0.1
score left: 0.1 0.3 0.0 0.4 1.0 0.9
score right: 0.3 0.9 0.1 0.0 12.4 3.7
final score : 0.4 1.2 0.1 0.4 13.4 4.6

Table 2: Sample computation of the local LSV algorithm forclearly. Weights were rounded and the given scores
and weights refer to the position to the left of the respective letter.

puted as similar to the input word. Thus, in a small
corpus even common words might be represented in-
sufficiently for this algorithm. Furthermore, for lan-
guages such as Finnish this problem is intensified - due
to the large amount of various word forms, each one
occurs substantially less frequently in a similar sized
corpus and thus it is less probable to obtain a sensible
set of semantically similar words for any given input
word unless the corpus size is significantly increased.

2.2 The Second Step: A Generalisation using a
Trie-Based Classificator

One possibility to circumvent the representativity prob-
lems of the local LSV-based algorithm is to use its re-
sult in an attempt to generalize them by other means.
For this it is feasible to use affix trees such as a trie
(Fredkin, 1960) or a PATRICIA compact tree (PCT)
(Morrison, 1968). Variations of this data structure have
already been widely used for many applications and
also for classifications of word strings and their affixes
(Cucerzan and Yarowsky, 2003; Sjoeberg and Kann,
2004). The particular implementation used here is the
same as in (Witschel and Biemann, 2005).

A PCT can be trained to classify affixes in the fol-
lowing manner: An input consists of the string to be
classified, i.e.clearly, and the classification class, such
asly or 2. This either means that the suffix-ly has to be
cut, or more simply that the boundary is the second po-
sition from the right side of the word. However, the lat-
ter variant is more susceptible for overlearning, thus the
whole substrings instead of just substring lengths were
used as classes. From the examples used in the previ-
ous section one valid training instance can be acquired:
clearly ly. The corresponding reversed uncompressed
tree structure would have one node,y with one possi-
ble decisionly=1 (with the frequency of1). This node
would have a child nodel with the same information.

In order to use such a tree for classification, first the
deepest possible node in the tree structure has to be re-
trieved. For the exampledaily it would be the second
nodel, because the next child node is a mismatch be-
tween i of daily anda stored in the tree. The proba-
bility for any class of the found node is the frequency
of that class divided by the sum of all frequencies of
all classes of that node. A threshold (in the experi-
ments conducted here it was set to0.51) can be used to
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discern too unclear decisions from clear cases and ef-
fectively prevent too much overlearning. In the exam-
ple daily, the probability is1.0 since there are no other
classes stored in the found node. It is noteworthy that
such classificator trees have strong generalization abil-
ities while retaining all exceptions. Such a suffix tree,
trained on three itemsclearly ly, strongly lyandearly
NULL is able to correctly annotate hundreds of words
ending with-ly while remembering the single excep-
tion of early. However, it will only be able to produce
this single exception, so overlearning is still possible.
Pruning, a common technique to cut seemingly redun-
dant branches of the trie for higher efficiency, has not
been used here.

For the current special case of affix classification it
is important to decide whether the class to be trained
is a prefix or a suffix. This is because it does not help
much to know that a word begins withmo in order to
guess whether its trailings is a suffix or not. Therefore,
a simple strategy is used to train two distinct classifi-
cators: Given an input string withn boundaries, the
outermost is selected recursively as a class and cut off
for the next training item. If it is more to the right side,
then the suffix classificator is trained with that and oth-
erwise the prefix classificator is trained. For example
the worddis-similar-ly results in the one training item
for the suffix classificatordissimilarly ly, and one for
the prefix classificatordis similar.

After training both classificators in the described
way, they can be used as a morpheme boundary detec-
tion algorithm. For any input word both classificators
are used to retrieve their most probable classification.
In rare cases this can produce unfitting classifications,
such as-ly for the input wordMay. This can happen
if the lowest common node isy and the strongest class
at that node isly - such cases are discarded. Then the
longer of the two classes (from forward or backward
classificator) is taken and a morpheme boundary is in-
troduced according to that classification. Thus, for the
exampleundertakenthe affix under- will be favored
over the affix-en. A length threshold of3 is used to de-
termine a valid classification, which means that either
the new affix or the remaining word must be longer or
equal in length to this threshold in order to avoid degen-
erated analyses such ass-t-i-l-l. After that, this classi-
fication algorithm is recursively applied to both parts
again. This results in long words such ashydro-chem-
ist-ry to be analysed completely, where the initial local
LSV-based algorithm failed altogether.

3 Quality assessment

A first assessment of the quality of the results can be
made by utilizing information available from CELEX
(Baayen et al., 1995). However, without any modifi-
cations such as introduced to the gold-standard of the
MorphoChallenge 2005, analyses such aslur-ed will
be marked as wrong using this method.

The languages used for this evaluation were Ger-

man and English. The corpora used were available
from the ’Projekt Deutscher Wortschatz’ (Quasthoff,
1998). The German corpus contains about 24 million
sentences and the English corpus contained 13 million
sentences. For the MorphoChallenge 2005 additionally
two smaller corpora of 4 million Finnish sentences and
1 million Turkish sentences were used.

Analogically to the evaluation of the MorphoChal-
lenge 2005, in this evaluation the overlap between the
manually tagged morpheme boundaries in CELEX and
the computed ones is measured. Precision is the num-
ber of found correct boundaries divided by the total
number of found boundaries. Recall is the number of
found correct boundaries divided by the total number
of boundaries present in the gold standard, restricted to
the words that were in the corresponding corpus.

There are two categories to be measured: the perfor-
mance of the first part of the algorithm, labeledLSV
(local LSV in Figure 1) in the tables, and both algo-
rithms combined, labeledcombined (local LSV+trie
in Figure 1). Precision, Recall and the F-measure for
the threshold5 are depicted in Table 3. Additionally
Figure 1 shows the performance of the plain global
LSV algorithm as well as the global LSV with the in-
troduced weights.

Several observations can be pointed out. The algo-
rithms perform better on the German data than on Eng-
lish. This might be explained by the small size of the
English corpus. But another explanation is more plau-
sible: English is morphologically poorer than German.
Thus a systematic error either by the algorithm or in the
evaluation data would have severe effects on the mea-
sured performance. One such systematic mistake is the
analysis of the-edaffix which in cases such aslur-ed is
marked as wrong. In a manual error analysis this single
error amounts to almost50% of all reported mistakes
for theLSV part, followed by other supposedly wrong
cases such asplopp-edor arrang-e-s. The prelimi-
nary results available from the MorphoChallenge 2005
indicate that these considerations were at least partly
true since the results reported there had an F-value of
61.7%. The remaining11% difference to the German
results can be more easily explained by the differences
in corpus sizes as well as random variation.

German English
LSV Precision 80,20 70,35
LSV Recall 34,52 10,86
LSV F-measure 48,27 18,82
combined Precision 68,77 52,87
combined Recall 72,11 52,56
combined F-measure 70,40 55,09

Table 3: Precision and recall of morpheme bound-
ary detection for both the LSV-based algorithm only
and the combination with the PATRICIA tree classifier,
based on an unmodified CELEX.

Another interesting point is that for the combined al-



27

gorithm in both languages there is a medium Precision
drop, traded for a large Recall gain: about38% Recall
for German, compared to a loss of12% in Precision.
Thus, the intended effect of increasing Recall without
hampering Precision too much by using the tree classi-
fiers has been partly achieved. Nevertheless the result-
ing precision of69% for German and merely53% for
English seem to be inhibitively low, albeit the effects of
false negatives as reported above are not yet quantified.

It is further interesting that when attempting to let
the trie-based classifier learn from the global LSV al-
gorithm the results were almost exactly the same. This
indicates that treating each word in its own context and
then letting a global algorithm (the trie-based classi-
ficator) learn from that indeed improves performance.
At the same time, using two global algorithms (global
LSV and then the trie) and letting the one learn from
the results of the other cannot help because in fact they
at best will do the same.

The corpora available to the author for the Finnish
and Turkish entries to the MorphoChallenge 2005 are
small - an order of magnitude smaller than for German
and English. Additionally both languages have almost
an order of magnitude more different word forms for
the same amount of text when compared to English.
Based on these considerations, the LSV threshold was
lowered to2.5 in both cases whereas it was kept at5 for
German and English as reported in (Bordag, 2005) to
be a good guess for high precision. Nevertheless, the
preliminary results from the MorphoChallenge 2005
indicate that especially for Finnish the corpus size was
simply insufficient.

Figure 1: Comparison of global LSV vs. local LSV
and after application of the trie-based classificator for
a variety of thresholds. Baseline is plain global LSV
without normalisations.

3.1 Conclusions

The described experiments show that the combination
of one algorithm learning from another is a viable way
to increase overall performance, although the results
are still far from perfect. Additionally it seems that any
single algorithm might work well only for certain (mor-
phological) types of languages and worse for other lan-
guages. For example, the local LSV algorithm works

quite well for the more flective German but worse for
the isolative English and even worse for agglutinative
languages such as Finnish or Turkish (at least when it
comes to Recall). Other algorithms (Creutz and Lagus,
2005) seem to be inherently better suited for these lan-
guages, but might perform worse for e.g. German. One
of the main reasons might be the treatment of irregu-
lar words: they are usually rather few, but have a high
frequency. At the same time their formation is irreg-
ular with respect to the majority of other words. That
means that comparing them to all other words tends to
result in wrong analyses, whereas comparing them to
their most similar words should have a greater chance
to capture their irregularity because even irregularities
tend to be regular in the correct context.

Since most algorithms can provide a confidence
score to each decision they make it would be interest-
ing to combine them into a voting system, effectively
improving results and broadening the applicability to a
wider range of languages.
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Abstract

We present a simple, psychologically
plausible algorithm to perform unsuper-
vised learning of morphemes. The algo-
rithm is most suited to Indo-European lan-
guages with a concatenative morphology,
and in particular English. We will describe
the two approaches that work together to
detect morphemes: 1) finding words that
appear as substrings of other words, and
2) detecting changes in transitional proba-
bilities. This algorithm yields particularly
good results given its simplicity and con-
ciseness: evaluated on a set of 532 human-
segmented English words, the 252-line
program achieved an F-score of 80.92%
(Precision: 82.84% Recall: 79.10%).

1 Introduction

This paper addresses the problem of segment-
ing natural language words into morphemes, the
smallest units of language that still contain mean-
ing. While one cannot extract meanings from lists
of words and their frequencies, we can neverthe-
less use statistical information to make useful pre-
dictions about likely morphemes.

There is a large body of literature on mor-
pheme induction, and while it is impossible to give
a complete survey, see (Goldsmith, 2001) for a
good summary of previous approaches. Goldsmith
divides these past attempts into four categories:
identification of morpheme boundaries using tran-
sitional probabilities; identification of morpheme-
internal bigrams or trigrams; discovery of relation-
ships between pairs of words; and an information-
theoretic approach to minimize the number of let-
ters in the morphemes of the language. Our work

combines ideas from several of these approaches
and does not fit neatly into any one of the cate-
gories.

The key idea in this paper is to use words that
appear as substrings of other words and transi-
tional probabilities together to detect morpheme
boundaries. The first approach derives from the
observation that the stem left over after removing
prefixes and suffixes is often a legitimate word.
Though, due to spelling changes, this is not always
the case and therefore this method should not be
used to actually segment a word. Given a large
enough corpus, however, the most common mor-
phemes can be found in this way. The other idea,
using transitional probabilities, was initially pre-
sented by (Harris, 1955). Given an utterance, Har-
ris proposed finding how many other utterances in
the corpus shared each starting fragment of that
utterance. He hypothesized that peaks in these
counts correspond to morpheme boundaries.

(Hafer and Weiss, 1974) further developed the
ideas presented in Harris’s paper. Using Har-
ris’s transitional probability technique as a start-
ing point, Hafer and Weiss created 15 different
algorithms that achieved various levels of preci-
sion and recall. One issue with their approach is
its heavy reliance on empirically determined para-
meters. For example, their best algorithm (with a
precision of 91.0% and a recall of 61.0%) posited
a morpheme boundary if the suffix is a word and
the predecessor count is at least 5, or if the prede-
cessor count is at least 17 and the successor count
is at least 2.

Our goal was to design a simple algorithm based
on our intuition that simpler algorithms are more
likely to approximate human processes. We con-
sciously limited both the number of language-
specific assumptions that our program makes and
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“magic numbers”—parameters arbitrarily tuned to
make the program work. We did not limit the
length of morphemes, the number of morphemes
per word, or the total number of morphemes.

2 Methodology

Our algorithm has four basic steps. We

1. build trees with probabilities based on the
corpus,

2. score word fragments using these trees to ob-
tain a large list of morphemes,

3. prune this list of morphemes, and

4. segment the test words using the morpheme
list and the lexicographic trees.

Each of these steps is described in further detail
below.

2.1 Building the Lexicographic Trees

At the beginning of the algorithm, we create two
trees of letters and their associated counts: the
“forward tree” and “backward tree”. We explain
here the construction of the “forward tree” (the
other construction is symmetric). Suppose the
alphabet of the language has b letters, and the
longest word in the corpus consists of d letters.
Then conceptually, we construct a complete b-way
tree with depth d. At each node, each of the b
branches represents one of the letters in the lan-
guage. Thus, any path from the root to some node
spells out the starting fragment of some word(s),
and the node itself contains the frequency of that
string. (Note that in practice, actually creating
such a tree would be prohibitive as well as waste-
ful since most letter combinations never occur;
thus we actually only store nodes with non-zero
counts.)

The forward and backward trees allow us to cal-
culate conditional probabilities in O(1) time given
a starting or ending substring of a word. For ex-
ample, we would use the forward tree to calculate
Prf (s|report) (by dividing the frequency of words
starting with “reports” by the frequency of words
starting with “report”). In the opposite direc-
tion, we would use the backward tree to calculate
Prb(e|ports) (by dividing the frequency of words
ending in “eports” by the frequency of words end-
ing in “ports”).

2.2 Scoring Potential Morphemes
Once we have finished constructing the trees as de-
scribed above, we begin finding morphemes. We
maintain two lists of morphemes: a prefix list and
a suffix list.1 To populate the suffix list, for each
word, we scan from the end of the word and con-
sider every possible suffix in order of increasing
length. Suppose we are considering the suffix Bβ
in the word αABβ. We hypothesize the proposed
suffix is correct if

1. αA is also a word in the corpus,

2. Prf (A|α) ≈ 1, and

3. Prf (B|αA) < 1.

Similarly, the criteria for determining if αA is a
prefix in the word αABβ is as follows

1. Bβ is also a word in the corpus,

2. Prb(B|β) ≈ 1, and

3. Prb(A|Bβ) < 1.

The first criterion corresponds to the observa-
tion that prefixes and suffixes are often added on to
root words. For example, after removing the suffix
“ed” from “corresponded”, the resulting fragment
“correspond” is still a word. The second and third
criteria are checked using the forward and back-
ward trees. They check that the stem has multiple
children (thus implying other prefixes or suffixes
can be joined to the stem) and that the stem’s par-
ent has only one child (thus identifying it as a true
stem). Using the same example as before, the al-
gorithm would check that Prf (d|correspon) ≈ 1,
and that Prf (e|correspond) < 1. If a given mor-
pheme passes all three tests, we increase its score
by 19 points; otherwise, we decrease its score by
1. After we have iterated through the entire cor-
pus, we consider all strings with positive scores
morphemes.

The rule of rewarding word fragments by 19 and
punishing by 1 may seem arbitrary, but the con-
stants were chosen so that a string has a positive fi-
nal score only if it passes our tests at least five per-
cent ( = 1

1+19 ) of the times it appears. Moreover,
the numbers 19 and 1 are not special; any posi-
tive numbers x and y such that y

x+y = .05 would

1We use the terms prefix and suffix loosely, to denote any
morpheme generally found at the beginning or end of words.
For example, “man” is not technically a suffix, but it is a mor-
pheme that often appears at the end of a word.
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produce identical results.2 The rewarding and
punishing scheme is more effective than check-
ing the percentage of tests passed because given
two morphemes with the same percentage, the
more common morpheme will have a higher score.
Thus, the punishing/rewarding scheme takes into
account both the reliability and the frequency of
the string appearing as a morpheme. Single letters
such as ‘t’, which sometimes deceivingly appear to
be prefixes, are punished far more often than they
are rewarded. Strings such as ‘psycho’, which do
not appear often but are almost always true mor-
phemes when they do appear, are rewarded more
often than they are punished. Suffixes like ‘s’
are punished occasionally but rewarded very fre-
quently, and are ranked at the top of the list.

2.3 Pruning

Clearly, this method is not perfect. In particular,
one problem that often arises is that the final list
of morphemes includes strings that are the con-
catenation of two other morphemes. For exam-
ple, the list might include all of ‘er’, ‘s’, and ‘ers’.
This is undesirable since the final step of segment-
ing words may process the word “throwers” as
throw+ers instead of as throw+er+s. Fortunately,
though, this problem has a relatively simple solu-
tion which we refer to as “pruning”. We scan each
list of morphemes, and if any morpheme is com-
posed of two others with better scores, then it is
thrown out.

2.4 Segmenting Words

Finally, we come to the actual segmenting of
words. Given the list of morphemes, one possi-
ble approach is to simply peel morphemes off the
ends of words as they are found. But words such
as “politeness” pose a problem: should it be seg-
mented as politenes+s or as polite+ness? Neither
the scores nor the lengths of morphemes can be re-
liably used to answer this question. In this case, ‘s’
would have a higher score, while ‘ness’ is a longer
morpheme. They key observation is that the same
probability criteria that was used earlier to detect
morphemes can be applied here to measure the ap-
propriateness of segmenting at a particular posi-

2Suppose that we rewarded and punished by x > 0 and
y > 0 respectively, satisfying y/(x + y) = 0.05. Then
y = 0.05 (x + y) ⇒ 0.05x = 0.95y ⇒ x = 19y. Thus,
if a string is rewarded r times and punished p times, it would
have a score of xr−yp = 19yr−yp = y(19r−p), which is
exactly y times our score. In particular, a string has a positive
score if and only if it had a positive score in our algorithm.

Table 1: Evaluation results of RePortS
Language Precision Recall F-Score
English 82.84 % 79.10 % 80.92 %

tion. In this example, we expect Prf (n|polite) to
be lower than Prf (s|politenes) which leads to the
correct segmentation.

Thus, our method for segmenting is as follows.
First, we scan each word from the end, and find all
morphemes Bβ from the suffix list such that our
word can be written as αBβ (for some α). The
morpheme with the lowest value of Prf (B|α) that
is also smaller than 1 is chosen. If such a mor-
pheme is found, it is removed and the processed
is repeated until no more morphemes can be re-
moved. We then repeat the same process, attempt-
ing to peel off morphemes in the prefix list from
the beginning of the word (using Prb instead of
Prf ).

3 Results

The algorithm described above was implemented
as a Perl program called RePortS3. The English
frequency-word list provided by the Neural Net-
works Research Centre at the Helsinki Univer-
sity of Technology was combined with a year’s
worth of articles from the Wall Street Journal and
a Linux dictionary file to obtain a corpus contain-
ing 185,696 words for training. To determine the
performance of the algorithm, we ran our program
on a “gold standard” of 532 words (again, pro-
vided by the Neural Networks Research Centre)
and evaluated our proposed segmentation against
the human-determined standard (see Table 1).

Our program identified a total of 1795 mor-
phemes (808 in the prefix list and 987 in the suffix
list). Table 2 contains the ten highest-scoring mor-
phemes from each list.

The program was tested on a dual 2.8 GHz
processor with 2 GB of memory. We monitored
the total running time, i.e. training and segmen-
tation time, and the maximum memory usage of
RePortS. They are reported in Table 3 for test data
of different sizes (note that the same training cor-
pus was used in both cases).

While our algorithm was designed with English
and other Indo-European languages in mind, we

3The earliest versions of the algorithm determined that the
most common prefix, stem and suffix are ‘re’, ‘port’ and ‘s’,
respectively; hence, the name RePortS.
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Table 2: Top English morphemes

Morpheme Score Morpheme Score
un 15858 s 24351
re 5312 ly 18847
dis 3783 ness 10430
non 2998 ing 8740
over 2717 ed 5669
mis 1812 al 2655
in 1689 ism 2169

sub 1632 less 1940
pre 1418 ist 1669

inter 1189 able 1613

Table 3: Resource usage for different test data

# Words Time Space
532 0m 27sec ∼ 139 MB

167,377 34m 37sec ∼ 139 MB

decided to test our program with other languages
as well. We used test data for Turkish and Finnish
provided by the Neural Networks Research Cen-
tre. Our results for these two languages are given
in Table 4.

4 Discussion

As mentioned earlier, our algorithm performs well
given its conciseness and simplicity: the Perl im-
plementation was a total of 252 lines including
comments and the algorithm itself can be fully de-
scribed in four basic steps. Examples of words
that our program segments correctly include “re-
payments” and “passionflowers”. The former con-
tains several affixes and RePortS correctly sug-
gests re+pay+ment+s as the segmentation. The
latter, on the other hand, is an uncommon com-
pound word segmented as passion+flower+s.

However, the algorithm is obviously not flaw-
less. Consider a word such as “widen” (with a
correct segmentation of wid+en). The letters ‘en’
often appear at the end of a word but not as a suffix
(e.g. even, ten, hen, etc.) Thus, the potential mor-
pheme ‘en’ is punished far more frequently than
it is rewarded, and does not appear in the final
list of morphemes. This omission causes us to in-
correctly segment words such as “widen” (which
our program leaves untouched). However, on the
whole, our program performs better with the ex-
clusion of ‘en’.

Table 4: Evaluation results of RePortS
Language Precision Recall F-Score
Turkish 72.68 % 43.01 % 54.04 %
Finnish 83.76 % 32.30 % 46.62 %

Furthermore, there is some evidence that our al-
gorithm is psychologically plausible. As shown in
(Saffran et al., 1996a) and (Saffran et al., 1996b),
adults as well as infants are able to identify words
from continuous speech where the only avail-
able cues are transitional probabilities between
phonemes. These results show that it is possible
for humans to keep track of transitional probabili-
ties and use it in segmentation tasks. However, as
(Yang, 2004) points out, transitional probabilities
by themselves are not sufficient for larger corpora,
and indeed, our algorithm depends on other infor-
mation as well.

5 Future Work

One notable feature of RePortS is that it uses only
a list of words and their frequencies. Clearly, con-
textual information is lost when English text is col-
lapsed into such a list. We feel that the perfor-
mance could only be improved by extending our
algorithm to take advantage of such information.
Along the same lines, the inclusion of phonologi-
cal information may also improve the performane
of our algorithm. (Saffran et al., 1996b) showed
that humans learned better when presented with
both transitional probabilities and prosidic cues
than with transitional probabilities alone. Thus,
this too is an avenue for improvement.

On a slightly different note, another possibility
for further research would be to modify our pro-
gram to even more closely mirror human learning.
More specifically, humans generally do not per-
form “batch learning”. Therefore, instead of feed-
ing hundreds of thousands of words to the program
at once, we could supply the words in smaller
chunks, and in the order in which infants would
likely hear them. It would be interesting to com-
pare our current results to those from this process.

6 Conclusion

We described an efficient algorithm that uses sta-
tistical relationships within and between words
to predict morpheme boundaries. Humans are
also sensitive to such patterns in natural language.
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Moreover, our heuristics make intuitive sense.
While we do not claim that humans use our al-
gorithm to segment words, we believe that further
research along this line has potential to reveal in-
sight into human language processing.

The program RePortS performs quite well
against a human-segmented gold standard for Eng-
lish; its precision and recall were both approxi-
mately 80%, with an F-Score of 80.92%. More-
over, even though the algorithm was designed
for Indo-European languages with a concatena-
tive morphology, it achieved surprisingly decent
results for Finnish and Turkish. We experimented
with other variants that achieved higher F-Scores,
but the algorithm presented here achieved the best
balance between performance and elegance.
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Abstract 

We develop a morphological learner that 
evaluates evidence supporting specific 
claims that a string of letters is a distribu-
tional meaningful unit. The distributional 
evidence is evaluated by selectional 
properties of morphs, while evidence 
towards meaning is modelled by looking 
at the relationship between stems and 
words. To assess a proposed affix, it gets 
a probability measure of meaning by 
comparing all the possible stems the affix 
occur with to the particular subset that 
also occur as words. Since for a stem to 
be a word counts as evidence towards its 
meaning, the ratio formed by taking 
stems that are words to the whole set of 
possible stems for an affix gives a predic-
tive probability measure for the affix that 
measures the chance that it has combined 
with a meaningful stem. This measure, 
taken in conjunction with the selectional 
statistics of stems and affixes, provides a 
basis for deciding on the best morpho-
logical structure for a given word. The 
results for English show a combined pre-
cision and recall of 45.  

1 Introduction 

A lexicon for a language will contain, among a 
lot of facts about the language, a list of words, 
the morphemes and rules for how to combine 
different morphemes like stems and affixes into 
words. It is assumed that the rules are those of 
concatenative morphology. Given a lexicon with 
the above properties, the following statement 1 

                                                 
1 Standard notation from predicate logic is used.  

captures the conditions on a word w that consists 
of a stem x plus suffix y. 

 

( , , )

( ) ( ) ( , )

morph w x y

stem x suff y sel x y∧ ∧
�  (1.1) 

The binary predicate sel encodes the selectional 
restriction between x and y. Joining two morphs 
together may not result in a well formed word, 
and sel encodes the pairs that can be combined 
together.  

Depending on the language, there will be a 
couple of rules like those in equation (1.1): one 
for prefix plus stem, stem plus suffix, stem plus 
infix, and stem plus stem. For the purpose of the 
morphochallenge task, here restricted to English, 
we do not consider infixes, nor reduplicative 
morphology or suprasegmental morphology. 

The definition in equation (1.1) splits a word 
only one time. In order to get a list of morphs 
from this definition it has to be applied recur-
sively. A predicate morphs serves this purpose, 
and can be defined as follows2, relating a word 
form w to the list of morphs constituting w, in 
this case a ‘+’ separated list: 

 

( , )

( , , )

( , )

morphs w morphlist

morph w stm suff

morphs stm stemlist

morphlist stemlist suff

∧

∧
= +

�

 (1.2) 

Our point of departure is that the characteriza-
tion of morphological analysis is the same 

                                                 
2 The defining expression translates into the Prolog 
programming language. 
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whether the lexicon is given or not. The differ-
ence between a learner of a lexicon and a knowl-
edgeable performer is viewed as a difference in 
the level of confidence.  

The problem of learning a lexicon from a 
word list is, according to this view, taken to be 
the problem of estimating the truth of the terms 
in equation (1.1). The truth is assessed via prob-
ability measures over a set of hypotheses. A sim-
plifying assumption is that each word has a 
unique split into stem and affix. 

Following (Goldsmith, 2001) the number of 
hypothesized suffixes considered for an English 
word w is limited to six including null morphs. 
The set of suffix hypotheses for a word like 
drinking is then  

 

{
( , , ),
( , , )
( , , )
( , , )
( , , )
( , , )

}

H

morph drinking drinking Ø

morph drinking drinkin g

morph drinking drinki ng

morph drinking drink ing

morph drinking drin king

morph drinking dri nking

=

 (1.3) 

The present approach explores ways for calcu-
lating the morphological structure using only the 
distributional properties of stems and suffixes 
considered as atoms. Their internal letter struc-
ture is not taken into account, but see e.g. 
(Goldsmith, 2001; Creutz & Lagus, 2005) for 
how one may go about using that kind of infor-
mation. The information contained in the inher-
ent substring ordering of the morphs is not util-
ized either.  

2 The probability formulation 

Equation (1.1) contains the logical statement of 
the relationship between a stem and an affix con-
ditioned on the facts in the lexicon.  This is con-
verted into a probability equation conditioned on 
the wordlist W considered as a set of propositions 
of what counts as a word.  

 
( ( , , ) | )

( ( ), ( ), ( , ) | )
p morph w x y W

p stem x suff y sel x y W

=
 (1.4) 

The right hand side can be expanded to a 
product of the terms in (1.5) and (1.6) below. 

 ( ( ), ( ) | ( , ), )p stem x suff y sel x y W  (1.5) 

and 

 ( ( , ) | )p sel x y W  (1.6) 

When replacing the lexicon with the wordlist W 
as the conditioning facts in these equations, a 
couple of assumptions have to be revised. The 
use of sel as a conditioning term in equation (1.5) 
is assumed to be superfluous. The predicate sel is 
for a learner reinterpreted as continuous measure 
of selectional information, and as such really is a 
ternary predicate, relating two possible morphs 
to their selectional information. By doing this, 
sel contributes to the overall value solely through 
equation (1.6).  

This independence assumption turns (1.5) into 
(1.7) below 

 ( ( ), ( ) | )p stem x suff y W  (1.7) 

The probability formulation then leaves us to 
compute the equations (1.6) and (1.7).  

We will make one change to the objects in the 
equations. Instead of working with the morph 
tokens themselves, they are replaced with their 
respective distributions, indicated using a * on 
the morph variable. 

A stem x corresponds then to the class of pos-
sible suffixes it combines with. In the following 
equations a dot “.” is used to indicate concatena-
tion. 

 * { | . }x x z x z W= ∈�  (1.8) 

A suffix y corresponds to the class of stems it 
combines with 

 * { | . }y y z z y W= ∈�  (1.9) 

2.1 Selection 

The selectional properties are computed by com-
paring W with the possible combinations from 
w=x.y of stems from y* and suffixes from x*, 
denoted y*.x*.  This object is closely related to 
the paradigm in (Snover & Brent, 2002) and the 
signatures in (Goldsmith, 2001).  

The conditional probability of the two sets 
y*.x* and W is interpreted in a standard way as 
being the proportion of successes of their inter-
section, which is computed as the ratio of good 
words from y*.x* to all words in y*.x*.  

 
| *. * |

( ( , ) | )
| *. * |

y x W
p sel x y W

y x
∩=  (1.10)  

The implementation used in the morphochal-
lenge uses a beta(a,b) density for calculating this 
equation. The first argument, a, of this distribu-
tion is filled with the positive cases, the numera-
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tor of (1.10), and the second argument, b, con-
sists of the number of negative cases, the differ-
ence between denominator and numerator. The 
probability assigned to the selectional property is 
calculated from this density by taking its mean 
and subtracting one standard deviation. Subtract-
ing one standard deviation gives a more conser-
vative predictive probability than the taken from 
(1.10) directly, and will penalize those combina-
tions that contain few examples. 

For some stems and affixes, the total number 
of possible words got rather large, and so for the 
challenge, there was some experimentation with 
reducing the parameters for the beta density. Best 
results for both precision and recall was achieved 
by shrinking the parameters a and b by the 6th 
root. 

Future improvements for the computation of 
sel, rest on a Bayesian inversion of the formula 
(1.10), which can be used in updating a distribu-
tion d over stems and suffixes via maximum like-
lihood. A particular d is a distribution over the 
hypotheses for a word as shown in (1.3).  

The following equation lets d play a role in the 
computation of sel as well, and allows us to take 
into account various confidence levels as ex-
pressed by d in particular analyses.  

 

( | ( , ), )
( ( , ) | , ) ( | )

( ( , ) | )

p d sel x y W

p sel x y W d p d W
p sel x y W

=
⋅=

 (1.11) 

The denominator and normalizing constant of the 
right hand side of this equation corresponds to 
the left side of (1.10) and can by using (1.11) be 
computed by summing over the relevant distribu-
tions d  

 
( ( , ) | )

( ( , ) | , ) ( | )
d

p sel x y W

p sel x y W d p d W

=
=�

 

2.2 Stem and affix 

There is no source of meaning for stems and af-
fixes from the word list W beyond the assump-
tion that any word itself has a meaning. We ex-
ploit this fact in the evaluation of the term (1.7) 
which we will rewrite slightly. Instead of ex-
panding (1.7) into one term for computing the 
stem and one for the affix, we make the assump-
tion that any evidence that the possible stem is a 
stem, also counts as evidence that the putative 
affix is an affix, and vice versa. Accordingly, the 
two propositions are combined into one, so that 
(1.7) becomes 

 ( ( , ) | )p stemsuff x y W  (1.12) 

This term gets its value solely from the as-
sessment of meaning as follows. The stem x is in 
the word context xy so we ask what the probabil-
ity is that x has any meaning given this contex-
tual information. This is turned into an issue of 
predictive probability: what is the chance of find-
ing a meaningful string in front of y? For exam-
ple, in English, what is the probability for a to-
ken to have meaning in the context 

  
x.ing=[open.ing, str.ing, s.ing, r.ing, laugh.ing, 

talk.ing]?  
 
Three of the x’s have an independent distribution 
on their own, namely [open, laugh, talk], so out 
of these six, the chance is 50% for anything 
picked out in front of ing is a standalone word 
and carrying meaning using this measure. Note 
that the stem itself in stem affix combination is 
not evaluated directly. The independent distribu-
tion of stems is used in classifying the affix 
which in turn classifies the stem. 

A predictive probability measure formulated 
on the basis of the foregoing discussion is then 
the ratio of actual words in y* to y*.  

 

( ( , ) | )
| * |

| * |

p stemsuff x y W

y W
y

=
∩=

 (1.13) 

As for the case of selection, a beta density is 
used to localize this ratio. The actual probability 
assigned takes the standard deviation of this den-
sity into account in the same way as for the se-
lection. Affixes with low frequency is penalized 
by this way of calculating the probability. 

A crucial assumption for this approach to 
work is that the empty suffix is a witness for 
meaning through the word list. A mild supervi-
sion can be built into the learner by supplying 
other witness morphs that can be used as context 
for a possible stem. Using the word list as a wit-
ness set for meaning presupposes that a good 
portion of stems are actual words, enough so that 
different affixes can be distinguished on the basis 
of it.  

With access to a corpus a better model of 
meaning can be formulated, as shown in (Schone 
& Jurafsky, 2000). 

2.3 Combining the results 

The probabilities from each of these estimates 
are combined for each hypothesis resulting in a 
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total score, and ranking of all the hypotheses. 
The decision scheme adopted is to select the best 
hypothesis, i.e. the one with highest probability. 
An alternative method could be iterative: remove 
the worst and recalculate the probabilities, and 
repeat that process until only one hypothesis re-
mains.  

Selecting the highest ranked hypothesis results 
in an F-score of 45%, recall at 54%, and preci-
sion at 39% for the English word list, using the 
tools available for the competition. 

3 Conclusion and further work 

We have shown how one can use the concept of 
meaning in evaluating the different candidates 
for morphological analysis. The method should 
lend itself to all languages that permit a certain 
proportion of its stems to occur as words.  

The work reported here is in a state of flux and 
particularly equation (1.11) is explored. 

Acknowledgements  
I would like to thank Christer Johansson and 
Kolbjørn Slethei for discussions on the matters 
presented here, and three anonymous reviewers 
for their comments on an earlier draft. Part of 
this work was supported by a grant from the 
Norwegian research council over the KUNSTI 
program, project BREDT. 

References 
 

Creutz, M. & Lagus, K. (2005). Inducing the Morpho-
logical Lexicon of a Natural Language from Unan-
notated Text. In Proceedings of the International 
and Interdisciplinary Conference on Adaptive 
Knowledge Representation and Reasoning (pp. 
106-113). Espoo. 

Goldsmith, J. (2001). Unsupervised learning of the 
morphology of a natural language. Computational 
Linguistics, 27, 153-198. 

Schone, P. & Jurafsky, D. (2000). Knowledge-free 
induction of morphology using latent semantic 
analysis. In CoNLL-2000 and LLL-2000 Lisbon, 
Portugal. 

Snover, M. & Brent, M. (2002). A Probabilistic 
Model for Learning Concatenative Morphology. In 
Proceedings of NIPS 2002. 

 
 



37

Combinatory Hybrid Elementary Analysis of Text  

 
 

Eric Atwell 
School of Computing 
University of Leeds 

Leeds LS2 9JT, England 
eric@comp.leeds.ac.uk 

 
 
 
 

 

Andrew Roberts 
Pearson Longman 
Edinburgh Gate 

Harlow CM20 2JE, England 
andrew.roberts@pearson.com 

 
  

 

Abstract 

We propose the CHEAT approach to the 
MorphoChallenge contest: Combinatory 
Hybrid Elementary Analysis of Text. The 
idea is: acquire results from a number of 
other candidate systems; CHEAT will 
read in the output files of each of the 
other systems, and then line-by-line se-
lect the "majority vote" analysis - the 
analysis which most systems have gone 
for. If there is a tie, take the result pro-
duced by the system with the highest F-
measure; if the other systems’ output 
files are ordered best-first, then this is 
achieved by simply taking the first of he 
tied results. To justify our approach, we 
need to show that this really is unsuper-
vised learning, as defined on the Mor-
phoChallenge website; arguably the 
CHEAT approach involves super-sized 
unsupervised learning, as it combines 
three different layers of unsupervised 
learning. 

1 Our guiding principle: get others to 
do the work 

The reuse of existing components is an estab-
lished principle in Software Engineering; it is 
quicker, easier, and overall better to engineer a 
system using components built by others, than to 
develop a complex system ourselves. This prin-
ciple is behind our CHEAT approach to the 
MorphoChallenge task: to avoid doing work our-
selves, we got others to do most of the work, and 
then copied their results. However, straightfor-
ward copying of another entrant’s results might 
be considered unacceptable (perhaps even cheat-
ing), so we had to do something a bit smarter. 

Students generally know that blatant copying of 
another’s work is condemned as plagiarism, and 
can be detected by text analysis software, eg 
(Atwell et al 2003); but some students may try to 
get away with less blatant “smart” copying (Me-
dori et al 2002).  We procured results from sev-
eral candidate systems, and then developed a 
program to allow “voting” on the analysis of 
each word: for each word, examine the set of 
candidate analyses; where all systems were in 
agreement, the common analysis is copied; but 
where contributing systems disagree on the 
analysis, take the “majority vote”, the analysis 
given by most systems. If there is a tie, take the 
result produced by the system with the highest F-
measure; if the other systems’ output files are 
ordered best-first, then this is achieved by simply 
taking the first of he tied results. 
Procuring results from several candidate systems 
was a challenge by itself, given that entrants 
were to submit results direct to the MorphoChal-
lenge organizers. These results would not be “on 
show” until the Workshop, well after the dead-
line for us to submit our own entry. Our ideal 
solution was to develop a set of intelligent 
agents, each of which would learn to develop and 
submit an entry for the MorphoChallenge con-
test; we could then use the results of these intel-
ligent agents. However, we did not have suffi-
cient time or AI expertise to build software 
agents capable of this advanced learning.  Fortu-
nately, Eric Atwell had to teach an MSc course 
in the School of Computing at Leeds University, 
on Computational Modeling. For assessment, 
students had to undertake a computational mod-
eling exercise; as the course and the Morpho-
Challenge contest ran concurrently, this pre-
sented the opportunity to set the MorphoChal-
lenge as a student coursework exercise, and re-
quire the students to submit their entries to their 
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lecturer (for internal assessment) at the same 
time as submitting to the organizers. 

2 But is this really “unsupervised learn-
ing”? 

According to the MorphoChallenge website 
FAQ, “unsupervised learning” means that “…the 
program cannot be explicitly given a training file 
containing “example answers”, and nor can ex-
ample answers be hard-coded into the pro-
gram.” We must admit that we originally formu-
lated this definition (to suit our approach) and 
proposed this to the organizers, who accepted 
and published it. The presence or absence of 
“example answers” distinguishes supervised 
from unsupervised learning: in supervised learn-
ing, the system is shown the correct analysis or 
answer for at least some input words (but not all, 
otherwise this would not be Machine Learning 
but dictionary-lookup!) Our CHEAT program is 
not shown definitely correct answers for any 
word, as it is given not one but several files: al-
though each results file constitutes a set of can-
didate/possible answers, they may not be correct 
answers, and there is no way of knowing which 
is correct – the voting system is designed for dis-
agreements between candidates, who cannot all 
be correct. So, strictly speaking, our CHEAT 
system is an unsupervised learning system. 
In fact, there are three cascading layers of unsu-
pervised learning in the overall process, so we 
call this “Super-sized unsupervised learning”: 

2.1 Unsupervised learning by autonomous 
agents: students 

Of course, Leeds University MSc students are far 
more intelligent than any software agent; but 
they still needed to learn how to tackle the Mor-
phoChallenge task. The Computational Modeling 
class included students on Cognitive Systems, 
BioInformatics, GeoInformatics, and Health In-
formatics programmes, so the students had little 
or no previous knowledge of morphological 
analysis or machine learning systems develop-
ment. Their approach to learning was unsuper-
vised, or at least semi-supervised: Eric Atwell 
presented lectures on machine learning and lin-
guistic principles underlying morphological 
analysis, and formulated a coursework specifica-
tion www.comp.leeds.ac.uk/cmd/assessment.htm 
and marking scheme involving entry to the con-
test; but then the students were left to learn for 
themselves how to develop algorithms and sys-
tems.  They were not explicitly given “example 

answers” – in this case, example algorithm or 
code to perform unsupervised learning of mor-
phological analysis. And “example answers” 
were defnitely not hard-coded into the students – 
in this case, this would mean downloading algo-
rithm or code direct into their brains, something 
even Leeds University teaching methods can’t 
achieve. The students learning about morpho-
logical analysis and machine learning constituted 
the first phase in the CHEAT cascade: a set of 
autonomous unsupervised learning agents. 

 

2.2 Unsupervised learning by student pro-
grams 

The students worked in pairs, each pair de-
signing and implementing a program to perform 
unsupervised learning of morphological analysis. 
So, these programs constitute the second phase 
of the CHEAT cascade: a set of independent un-
supervised learning programs, each producing a 
candidate set of morphological analyses of the 
contest word-files. Detailed descriptions of the 
student programs are available in the reports 
submitted by the students alongside the results 
files. For our purposes, we treated each student 
program as a “black box” – all we needed were 
the results files. 

2.3 Unsupervised learning by cheat.py 

The third phase in the CHEAT cascade is a 
simple program to read in the candidate results 
file, choose the most popular analysis of each 
word, and output this as the CHEAT result. In 
the spirit of the CHEAT approach, to avoid do-
ing work by getting others to do it, Eric Atwell 
tried to avoid having to write this program him-
self, by asking Andy Roberts to do it – hence our 
collaboration on this entry. Eric Atwell wrote a 
basic Python version which worked in theory but 
not in practice; Andy Roberts supplied a much 
improved version which coped with the unex-
pected problems. 

3 cheat.py 

Python has straightforward yet elegant fea-
tures for reading, processing and writing text, 
and “mainstream” syntax similar to Java or C++, 
so seemed the obvious choice for implementation 
language. Eric Atwell’s first python program is 
so simple that it should be self-explanatory. The 
version below reads in 7 candidate results files 
for the English dataset, ordered by their F-
measure scores: hr.txt, cd.txt, b.txt, hz.txt, 
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km.txt. aa.txt. mw.txt. Letters hr, cd etc are ini-
tials of the student surnames; b.txt shows one 
student worked alone.  

 
# CHEAT: Combinatory Hybrid  
# Elementary Analysis of Text 
# Eric Atwell's first PYTHON  
# program, 15/01/2006 
# first open each result-file,  
# open a.txt to write CHEAT result 
aa=open('aa.txt','r') 
b=open('b.txt','r') 
cd=open('cd.txt','r') 
hr=open('hr.txt','r') 
hz=open('hz.txt','r') 
km=open('km.txt','r') 
mw=open('mw.txt','r') 
a=open('a.txt','w')    
# a.txt will be the result file 
n=6                  
# n+1: the no of files to combine 
# loop: read each result-file-line 
# in array Results[0..n] 
# ordered by F-measure score: hr  
# was the best, mw was the worst 
for Results in 
zip(hr,cd,b,hz,km,aa,mw): 
# setup array Votes[0..n]  
# all values initially 1 
  Votes=[1 for x in range(n+1)] 
# Votes=[1,1,1,1,1,1] might be  
# simpler, but less showoffy... 
  for r in range(1,n): 
   for t in range(r): 
     if Results[r]==Results[t]: 
       Votes[t]= Votes[t] + 1 
# set Votes[N] to number of copies 
 
# next find the top scoring result 
  topscore=1 
  topresult=1 
  for r in range(n): 
   if Votes[r] > topscore: 
     topresult=r 
 
# Finally output Results[topresult] 
  a.write(Results[topresult]) 
 
# after end of loop, close all  
# files to terminate cleanly 
aa.close() 
b.close() 
cd.close() 
hr.close() 
hz.close() 
km.close() 
mw.close() 
a.close() 

 
This appeared to work with test samples.  

However, it assumes the input files are all valid, 
correctly formatted and containing the analyzed 
words in the same sequence as the given input. 
Unexpectedly, this turned out not to be the case 
with all the student results files.  Some of the 

student programs tried to read in the entire word-
file, process and segment words in a program 
buffer, and then print out the buffer contents in 
alphabetically sorted order. Unfortunately, the 
details of sort-ordering are different in some 
packages or programming languages; in particu-
lar, Capital and lower-case letters can be sorted 
together or separately, and non-alphabetic char-
acters (common in Turkish and Finnish datasets, 
and found in some loanwords even in the English 
dataset) may also vary in rank-order. The result 
was that several student results files did not 
match the ordering of the input dataset; so the 
simple cheat.py above was not comparing seg-
mentations of the same words. 

4 cheat2.py 

Andrew Roberts came to the rescue with a 
much improved comparison algorithm, which 
read all the input files into memory, ensured 
comparisons of “like with like”, then wrote out 
the majority-vote analysis. Unfortunately the 
program is too long to include in this paper, but 
we can assure the reader that it is much more 
robust, elegant and exception-proof than the first 
version of cheat.py. 

5 Results 

We evaluated the final cheat2.py results files 
using the evaluation.perl program provided by 
the MorphoChallenge organizers, which com-
pared the results files against small Gold Stan-
dard samples of words which we were assured 
had “correct” segmentation. We then compared 
the evaluation.perl scores for CHEAT output 
against the scores for the contributing systems’ 
outputs: 7 systems for English, but only 4 sys-
tems managed to cope with the much larger 
Turkish and Finnish datasets. 

 
Evaluation of segmentation 
in English results file  
against gold standard  
segmentation in file 
"goldstdsample.eng": 
Number of words in gold 
standard: 532 (type count) 
Number of words in data set: 
167377 (type count) 
Morpheme boundary detections 
statistics: 
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System F-
measure 
% 

Precision 
% 

Recall 
% 

CHEAT 59.19 60.71 57.74 
hr 54.89 53.87 55.94 
cd 51.83 48.06 56.23 
B 49.10 46.90 51.52 
hz 38.62 37.55 39.75 
km 36.96 33.04 41.95 
aa 30.55 23.17 44.83 
mw 28.48 22.01 40.35 
 
Evaluation of segmentation 
in Turkish results file 
against gold standard  
segmentation in file 
"goldstdsample.tur": 
Number of words in gold 
standard: 774 (type count) 
Number of words in data set: 
582935 (type count) 
Morpheme boundary detections 
statistics: 

 
System F-

measure 
% 

Precision 
% 

Recall 
% 

CHEAT 56.63 62.05 52.08 
cd 55.94 59.39 52.87 
hr 44.38 59.46 35.39 
B 42.05 54.51 34.23 
mw 40.44 37.40 44.02 
 
 
Evaluation of segmentation 
in Finnish results file 
against gold standard  
segmentation in file 
"goldstdsample.fin": 
Number of words in gold 
standard: 660 (type count) 
Number of words in data set: 
1636336 (type count) 
Morpheme boundary detections 
statistics: 

   
System F-

measure 
% 

Precision 
% 

Recall 
% 

CHEAT 60.26 66.10 55.37 
cd 60.18 64.97 56.04 
hr 43.46 67.18 32.12 
B 38.69 56.95 32.90 
mw 28.30 24.18 34.12 

 
We also downloaded the Morfessor system 

developed by the MorphoChallenge organizers, 
as advertised on the website (!), and used it to 
analyse the English, Turkish and Finnish data-
sets. We then repeated the previous experiments, 
this time including the Morfessor output  as an 
additional candidate file.  We were very sur-
prised to find that the resulting F-measure, Preci-
sion and Recall for CHEAT remained unchanged 
from the values in the tables above – the Morfes-
sor output seemed to have no influence whatso-
ever on the votes!  We then realized that the ver-
sion of Morfessor freely available via the contest 
website had apparently been modified so that 
none of the words from the three Gold Standard 
samples are included in the evaluation. Thus 
Morfessor appeared to yield Precision and Recall 
scores of 0/0 or 100%, but this presumably did 
not mean other words in the output were all cor-
rect.   

 
Evaluation of segmentation 
in file "m.txt" against 
gold standard segmentation 
in file "goldstdsample.fin": 
Number of words in gold 
standard: 660 (type count) 
Number of words in data set: 
1636336 (type count) 
Number of words evaluated: 0 
(0.00% of all words in data 
set) 
Morpheme boundary detections 
statistics: 
F-measure:  100.00% 
Precision:  100.00% 
Recall:     100.00%  

6 Conclusions 

For all three languages (English, Turkish, Fin-
nish), our CHEAT system scored a higher F-
measure than any of the contributing systems. It 
also achieved better Precision and Recall scores, 
with a couple of exceptions: cd had a slightly 
higher Recall for Turkish and Finnish (but not 
English, and cd had a lower Precision and F-
measure for all three languages), and hr had a 
higher Precision for Finnish (but lower Precision 
and F-measure).  Combinatory Hybrid Elemen-
tary Analysis of Text is a valid approach to Un-
supervised Learning of morphological analysis. 

We thought we had dreamt up the CHEAT 
approach as a clever scam to avoid work, get stu-
dents to do the hard work while letting us come 
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up with a winning system. However, an anony-
mous reviewer of our draft paper pointed out that 
the CHEAT approached seemed similar to, or 
even a copy of, an approach already known in 
the Machine Learning literature: a committee of 
unsupervised learners.  It transpires that we have 
inadvertently adopted an unsupervised learning 
approach to machine learning research: we de-

veloped the CHEAT algorithm without use of 
training material such as  the background litera-
ture, eg (Banko and Brill 2001), adding a fourth 
layer to the super-sized unsupervised learning 
model. 

Yet another thing we learnt from searching in 
http://scholar.google.com for research papers on 
“committee of unsupervised learners” is that 
“unsupervised learning” is a recognized term in 
Education research, referring to student learning 
with minimal explicit direction from teachers, eg 
(Pursula 2004). It turns out that super-sized un-
supervised learning is not only a valid (and hope-
fully interesting) approach to Machine Learning 
for the MorphoChallenge task, but also a valid 
approach to Student Learning. Student feedback 
suggests that the MSc students relished the chal-
lenge of participating in an international research 
contest, and this inspired many of them to pro-
duce outstanding coursework … which made the 
CHEAT results even better!    
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Abstract

Morphological analysis refers to the art
of separating a word into its base units
of meaning, or morphemes. Many popu-
lar approaches to this, including Porter’s
algorithm, have been rule-based. These
rule-based algorithms however, generally
only perform stemming, the identification
of root morphemes, which is only a part of
morphological analysis. Such algorithms
can only reasonably be applied to lan-
guages with a limited number of possible
affixes for a given term. Rule based algo-
rithms require a great deal more complex-
ity in order to handle languages with many
affixes reliably. We propose Swordfish,
an ngram-based unsupervised approach to
morphological analysis, as an alternative.
An ngram is simply a substring of length
n which occurs within a corpus. We take
those ngrams with the highest probabili-
ties of occurring within our corpus to be
our candidate morphemes. We apply
a recursive algorithm, which repeatedly
splits a term using a probabilistic-based
criterion. The evaluation on the PAS-
CAL dataset shows somewhat better per-
formance on English and worse on Finnish
and Turkish word lists than the state-of-
the-art system Morfessor, with a signifi-
cantly lower cost in running time.

1 Introduction

Words in a language are typically a combination
of smaller base units of meaning, referred to as

∗http://www.chrisjordan.ca
†http://www.cs.dal.ca/∼ vlado/

morphemes. The act of separating a word into its
morphemes is called morphological analysis. For
example, the code block below illustrates the mor-
phemes in the word “pretested”:

pre + test + ed

Morphological analysis is an important task, as
it allows for the identification of the base units
of meaning in a word. Morphemes can be used
to identify terms which are semantically similar.
This is a common process in document retrieval
and has been shown to improve performance of
these systems (Kantrowitz et al., 2000). Mor-
phemes are also useful in speech recognition (Si-
ivola et al., 2003) since in many languages the
spelling and pronunciation of a word are directly
related.

Finding morphemes, unfortunately, is not al-
ways simple to do particularly in compounding
languages such as Finnish, German, Swedish or
Greek; and in highly inflective languages such as
Finnish and Hungarian (Hirsimäki et al., 2005).
Rule-based stemmers such as Porter’s Algorithm
(Baeza-Yates and Ribeiro-Neto, 1999) have had
some success in identifying and removing affixes
in the English language. However, English is not
a particularly complex language, at least in terms
of affixes. There are typically only one or two pre-
fixes or suffixes possible for most words. A rule-
based approach for compounding or highly inflec-
tive languages is not particularly effective, due to
the sheer number of possible word forms. Simi-
larly, to develop training data for a supervised ap-
proach would require an inordinate effort to gain
an appropriate level of coverage.

An unsupervised approach to morphological
analysis is attractive for highly inflective lan-
guages and languages with extensive use of com-
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pounding. Additionally, an unsupervised ap-
proach by definition requires no or minimal lin-
guistic knowledge, which makes it convenient for
less common languages and languages with sparse
linguistic resources. An ideal unsupervised ap-
proach, by definition, should require no training
data and very little user input in order to learn the
morphemes for a given language. Furthermore, an
ideal unsupervised approach should be language-
independent and, as such, should be able to extract
morphemes from any language, given enough ex-
posure to it. Swordfish is such an approach. The
Swordfish algorithm processes a corpus that lists
terms and their respective frequencies. A language
model is built, using ngram frequencies, and can-
didate morphemes are identified within words.

2 Previous Work

Morphological analysis and stemming are two
similar text processing tasks. Morphological anal-
ysis identifies all the morphemes in a word, while
stemming finds the root morpheme or stem for
a term. Since stems are morphemes themselves,
stemming is a subset of morphological analy-
sis. Porter’s algorithm (Baeza-Yates and Ribeiro-
Neto, 1999) is a popular rule-based approach to
stemming words in the English language. There
are other rule-based approaches (Kantrowitz et al.,
2000; Frakes and Fox, 2003) each differing in
the degree to which they will stem a term. The
stronger the stemmer, the more a word is altered
and the smaller the document index. Retrieval
recall also tends to increase with the strength of
the stemmer, while precision decreases. While
rule-based approaches do encounter some success
in the English language, they are less successful
when applied to compounding or highly inflective
languages (Hirsimäki et al., 2005).

There has been a limited amount of work done
in the area of unsupervised morphological anal-
ysis. One proposed approach is Morfessor (Hir-
simäki et al., 2005; Creutz and Lagus, 2005),
which recursively builds a morpheme lexicon. It
begins by initializing the set of candidate mor-
phemes, the morpheme lexicon, as the entire vo-
cabulary. Using the frequencies which these mor-
phemes occur in the corpus, Morfessor passes
through the entire vocabulary, splitting words into
the most likely morphemes. Each word is recur-
sively split into the two most likely substrings until
such a split is less probable than the substring be-

ing split. The morpheme lexicon is updated with
the resulting splits. Passes through the vocabu-
lary are made until the lexicon can no longer be
improved. Essentially, the Morfessor algorithm
looks for the most likely morphemes by split-
ting words in the most likely manner. The can-
didate morpheme lexicon which is produced tends
to have good precision though it suffers from low
recall. Recall and precision in morphological anal-
ysis are standard measures expressed in terms of
correctly and incorrectly identified “breakpoints”
within a word. These measures will be explained
in more details in later sections.

A significant component to the Swordfish algo-
rithm is a suffix array which is used to extract the
ngrams. The Yamamoto–Church algorithm (Ya-
mamoto and Church, 2001), modified slightly to
handle a list of term frequencies instead of reg-
ular text, was employed here due to its ease of
implementation and O(N log(N)) run time. In
the proposed Swordfish algorithm presented here,
ngrams used during the morphological analysis
must also be a longest common prefix (LCP) with
a length greater than or equal to 1. Hence only
those ngrams that occur in multiple terms will be
considered as candidate morphemes.

3 Swordfish

The Swordfish algorithm consists of two main
phases. The first phase computes the ngram fre-
quencies for our corpus via a modified Yamamoto-
Church algorithm (Yamamoto and Church, 2001)
that deals with word lists instead of regular text.
We include all n-grams, i.e., word substrings,
of lengths ranging from 1 to the maximal word
length. This phase of our algorithm takes up the
majority of run time and memory usage. The re-
sulting set of ngrams are treated as a lexicon of
possible morphemes. With this lexicon, it is possi-
ble to calculate a probability model for the ngrams
using maximum likelihood estimates (MLE) as
shown in Equation 1.

P (ngrami) =
freq(ngrami)∑
freq(ngramn)

(1)

where P (ngrami) is the probability of ngrami in
the corpus probability model. freq(ngrami) is the
frequency which ngrami occurs in the corpus and∑

freq(ngramn) is the total number of ngram oc-
currences in the corpus.

The second phase uses our ngram frequencies to
determine probable splits for dividing words into
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their base morphemes. There are several plau-
sible methods for dividing a word into its base
morphemes. We make the assumption that, since
words are built up from morphemes, we expect
to see the ngrams representing these morphemes
more frequently than we would a random string of
characters of equal length.

The steps Swordfish takes to split terms are as
follows:

Step 1: Calculate the probability of the current
term occurring in the ngram lexicon. This proba-
bility is calculated using the MLE. If the term does
not occur in the lexicon then it has a probability of
0 or only appears as a substring of a unique larger
ngram.

Step 2: Find the two ngrams with the highest
probability of forming the term. The probability
of two ngrams forming a particular term is consid-
ered to be the product of their probabilities in the
lexicon. In other words, given a term t we identify
the two subterms x′ and y′ as:

(x′, y′) = arg max
xy=t

P (x)P (y)

Step 3: If the probability of the current term is
less than the product of the two ngrams in Step
2 then the term is split into its two constituent
ngrams. These ngrams are then considered to be
terms themselves and Steps 1–3 are repeated.

Step 4: The final set of ngrams that result from
Step 3 are considered to be the morphemes for the
original term.

The Swordfish algorithm essentially considers
all ngrams to be possible morphemes. For a given
term, it recursively splits it into two substrings
based on the most likely combination of ngrams.
The set of ngrams resulting from this splitting pro-
cess are the suggested morphemes for the original
term. The Swordfish algorithm has two strong ad-
vantages. First, it is parameter-free and thus re-
quires no tuning on the part of a user; second, it
is a purely unsupervised approach, requiring no
training data to accomplish its task.

4 Evaluation

The development of Swordfish was prompted by
PASCAL’s 2005 challenge to facilitate the unsu-
pervised segmentation of words in to morphemes
(Morpho Challenge, 2005). For this reason, we
use both their corpus and their methodologies to
evaluate our algorithm. They use three corpora:

one in English; one in Finish; and one in Turk-
ish. The corpora were presented in term frequency
lists derived from real world corpora. Currently,
Swordfish requires this format in order to run, so
any text document would have to be preprocessed
into a term frequency list beforehand.

The algorithms for this challenge are evaluated
by sampling a gold standard data set that con-
tains a subset of the terms split into their appro-
priate morphemes. These splits are referred to
as surface-level segmentations, or segmentations
that contain exactly the same characters as the ini-
tial term. Thus where a more traditional mor-
phological analysis might separate ’unsupervised’
into ’un+supervise+ed’ our ideal separation will
be ’un+supervis+ed’.

This evaluation is not weighted by frequency of
terms. For example, an error on the term ’the’
would be equivalent to an error on the term ’ag-
glutinative’. The metrics used to evaluate perfor-
mance are precision, recall, and F-measure. In or-
der to compute these values one runs an algorithm
across a given term frequency list and divides the
terms into morphemes. A random subset of these
terms have been tagged and provided to partici-
pants as an evaluation set. Of these, a random sam-
ple has been selected to evaluate the performance
of the various algorithms.

5 Results

Table 1 compares the results for precision, recall
and F-measure scores from a baseline run, which
shows the results of placing a split between ev-
ery character, Morfessor, and the Swordfish al-
gorithm. From initial inspection based on the F-
measure, we can see that Swordfish outperforms
Morfessor on English while Morfessor produces
more accurate results on Finnish. The baseline
outperforms both approaches on Turkish.

At its heart, this problem can be thought of as a
classification problem, with the division between
each character in every term being classified as
either a morpheme boundary or not a morpheme
boundary. This reduces our precision/recall prob-
lem to the traditional problem of false positives
vs false negatives. A false positive refers to a
morpheme boundary being predicted at a location
where no morpheme boundary exists while a false
negative refers to a morpheme boundary uniden-
tified as such. From this point of view, it is evi-
dent that Morfessor has accepted a large number
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Language Algorithm Precision Recall F-measure
English Baseline 14.56 100.00 25.42

Morfessor 74.19 26.64 39.20
Swordfish 55.11 37.45 44.60

Finnish Baseline 19.71 100.00 32.92
Morfessor 83.66 29.51 43.63
Swordfish 70.39 23.58 35.33

Turkish Baseline 25.87 100.00 41.11
Morfessor 76.33 24.17 36.71
Swordfish 58.90 16.79 26.13

Table 1: Comparison of algorithms: precision, recall, F-measure

of false negatives, thus its low recall, in order to
minimize its false positives, and thus keep a high
level of precision.

Swordfish has similar performance to Morfes-
sor. Both algorithms have a precision that is much
higher than its recall, over all languages. Com-
paring Swordfish with Morfessor in the analy-
sis of English, Swordfish has higher recall and
lower precision. In the analysis of Finnish and
Turkish, Morfessor has a higher precision and re-
call. From these preliminary results, it appears
that morphemes in English can be more easily ex-
tracted using ngrams, while the recursive approach
to building a morpheme lexicon used in Morfes-
sor is more effective for Finnish. Neither approach
appear to be effective for Turkish though the high
precision scores do indicate promise for further re-
search on them.

Two factors not taken into consideration in this
evaluation are running times and memory usage of
the algorithms. In our initial experiments Morfes-
sor seems to be an order of magnitude slower than
Swordfish. Data sets that took a few hours with
Swordfish took closer to a day to run with Morfes-
sor.

On the other hand, Swordfish seems to use ap-
proximately an order of magnitude more memory
than Morfessor. In our experiments we’ve seen
Morfessor use 300MB of memory to process a
20MB file while Swordfish took 3GB to process
the same file. Swordfish is currently implemented
in Perl and uses some very inefficient hashes to
store its suffix arrays and LCP tables.

It should also be noted that these numbers are
just observations and more formal benchmarking
will be required before any concrete comparisons
of memory usage and running time can be made
between the two algorithms.

6 Conclusions

In this work, we present Swordfish, a recursive ap-
proach to morphological analysis using ngrams.
It is purely unsupervised and requires no param-
eter tuning or supervised training. It constructs
an ngram lexicon from which all candidate mor-
phemes are drawn. Morphemes are extracted from
terms based on the most probable combination of
ngrams.

A major component of the Swordfish algorithm
is a Perl module implementing the Yamamoto–
Church algorithm used to calculate our ngram fre-
quencies. Currently this algorithm is particularly
memory intensive due to heavy use of Perl hashes.
There is current development to make this module
more memory efficient, which should result in a
dramatic decrease in the memory necessary to run
the Swordfish algorithm.

Regardless, the Swordfish algorithm is a time-
efficient algorithm and results in moderately high
precision. Unfortunately, it suffers from low re-
call. We believe that using a ngram lexicon as the
foundation for performing morphological analysis
shows a lot potential. Further research should go
into how the probabilities of ngrams are compared
to the probabilities of terms. The method used
here, where the probability of the term is com-
pared to the product of the ngram probabilities is
rather simplistic. A better method for comparison
may lead to improved recall.

As well, further investigation should be con-
ducted into how the ngram lexicon is constructed.
Obviously, not all ngrams are morphemes for a
language. In our current approach though, all
ngrams are considered possible morphemes. The
lexicon might be improved by filtering out ngrams
that are determined to not be morphemes. This
process can be considered to be “removing noise”
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from the lexicon and may lead to greater precision.
Both algorithms here were evaluated against

randomly selected terms. Unfortunately, there was
no evidence to suggest conclusively that our re-
sults were not simply an aberration. In order to
properly evaluate our algorithm we would like to
repeatedly bootstrap our gold standard in order to
generate test sets. These test sets could be used to
create confidence intervals for our precision, recall
and F-measure.

In the results reported here, Swordfish outper-
forms Morfessor on English but Morfessor is bet-
ter on Finnish and Turkish. The use of an ngram
lexicon, as implemented in Swordfish, has poten-
tial as an unsupervised approach to morphological
analysis. There is still a great deal of work that
could be done to improve the algorithm, especially
with regards to the Turkish language. It remains to
be seen whether a language-independent approach
to morpheme extraction will succeed, or whether
the problem will require differing approaches for
different families of languages.
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Abstract

SUMAA is a hybrid algorithm based 
on letter successor varieties for an en­
tirely  unsupervised  morphological 
analysis. Using language pattern and 
structural recognition it works well on 
both  isolated  and  agglutinative  lan­
guages.  This  paper  gives  a  detailed 
analysis  of  how  we  developed 
SUMAA.  F-Measures  (MorphoChal­
lenge, 2005) achieved by SUMAA for 
the  English,  Finnish  and  Turkish 
datasets  were  51.83%,  60.18%  and 
55.94% respectively.

1 Introduction

Unsupervised automated word segmentation 
is required for morphological analysis to re­
place human intervention, with the primary 
goal to determine the location of breaks be­
tween morphemes within words. In this pa­
per we describe an algorithm that segments 
words  into  morphemes  on  an  unsupervised 
basis,  i.e.  with  no  prior  knowledge  (e.g.  a 
dictionary)  of  the  corpus  under  considera­
tion. The algorithm is applied to both agglu­
tinative  languages,  where  words  are 
composed  of  fused  morphemes  denoting 
their  syntactic  meanings, and isolating lan­
guages where a majority of morphemes are 
considered  to  be  full  fledged  words 
(Wikipedia, 2005). In the provided corpora, 
Turkish and Finnish represent the former and 
English  represents  the  latter  (Wikipedia, 
2005). A generic characteristic between the 
three  is  that  of  varying  forms  of  meta-

phonics,  vowel  harmony,  unlike  e.g. 
Cantonese,  which  we  think  avoids 
“overfitting”  (Mitchell,  1997).  The  corpora 
and  evaluation  script  are  available  on  the 
MorphoChallenge  2005  official  web  page 
(http://www.cis.hut.fi/morphochallenge2005/) 
which  compare  our  results  to  a  gold 
standard,  or  “desired”  result.  Evaluation 
measures used are Precision, Recall  and F-
Measure.  Precision  is  a  calculation  of  the 
number of correct cuts made against the total 
cuts  made,  Recall  is  the  total  number  of 
correct cuts made against  the total  possible 
boundaries and the F-Measure is a harmonic 
mean of the two (MorphoChallenge, 2005). 
The F-Measure’s we obtained for testing our 
algorithm on  English,  Finnish  and  Turkish 
were  51.83%,  60.18%and  55.94% 
respectively.  Section  2  explains  the  “letter 
successor  varieties”  approach  (Hafer  and 
Weiss,  1974)  on  which  our  algorithm  is 
based. Section 3 describes our most relevant 
experiments leading up to our algorithm. The 
morpheme boundary statistics are visualised 
for all our experiments on English in figure 3 
and  our  preferred  experiments  on  all  three 
languages in figure 5. Section 3.4 and 3.5 de­
scribe our final algorithm and data structure 
respectively. The pseudo code is in Table 1 
located at the end of section 3.

2 Letter Successor Varieties

Hafer and Weiss (1974) suggested a method 
called  “letter  successor  varieties”  for  seg­
menting lexical  text  into stems  and affixes 
based on Z.S Harris’s solution to the prob­
lem  of morpheme discovery for phonetic
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text.  The method uses statistical  properties, 
successor and predecessor variety counts, of 
a corpus to indicate where words should be 
divided (Hafer and Weiss, 1974).

2.1 Successor varieties and predecessor 
varieties

The  successor  frequency  (we  use  the  term 
frequency and variety interchangeably),  de­
fined as W [1...n], of the nth letter of a word 
is the total number of distinct letters occur­
ring at the n+1st position in the words of a 
corpus that match this set of letters from the 
selected word. Figure 1 illustrates this, and 
has  been  adapted  from  Hafer  and  Weiss’s 
paper. In the example, “READABLE” is the 
“test”  word  in  the  corpus  consisting  of  11 
words.  If  n=1  then  the  prefix  is  “R”  and 
comparing “R” to the rest of the words gives 
a total of 3 distinct letters “E”, “O” and “I” 
occurring at position n+1. Hence, the succes­
sor variety is 3. The same is repeated for W 
[1...2]  until  n reaches the end of the word. 
The results are shown. The predecessor vari­
ety is a similar concept but with the reverse 
of the test word, e.g. “ELBADEAR”, and the 
reverse  of  the  corpus  (Hafer  and  Weiss, 
1974). This is also shown in figure 1 under 
the heading of “Predecessor Variety”. 

2.2 Experimental design
Hafer and Weiss (1974) proposed four basic 
segmentation strategies that use the statisti­
cal method mentioned, viz. cut-off, peak and 
plateau, complete word and entropy. Our al­
gorithm is based on the peak and plateau de­
sign. Take Sn to be the successor count S of 
the position n in a word W. A cut is made in 
W after a prefix denoted by  the successor

count Sn  forms a local peak or a plateau of 
the count vector.  The same is applied with 
predecessor count. In the example discussed 
in section 2.1, the predecessor count and the 
successor  count  both suggest  that  “READ” 
and “ABLE” are affixes. Figure 1’s 2nd and 
3rd columns show the “*” at “3” marking the 
“peak” of the counts found for both varieties.

3 Our  experiments  leading  up  to  our 
proposed algorithm

This section describes only a few of our ex­
periments that have lead to our final solution 
which is described in section 3.4. Their re­
sults are visualised in figure 3.

3.1 Successor frequency at peak/plateau 
(SF) 

By  applying  only  the  successor  variety 
counts the results obtained for English were 
F-Measure  37.95%,  Precision  43.00%  and 
Recall  33.97%.  This  method  appeared  to 
split words at the beginning as “peaks” tend 
to  occur  there  and  occasionally  ended  up 
with splits such as “cre dit ing” for “credit­
ing” and “cre wmen” for “crewmen”.

3.2 Predecessor frequency at 
peak/plateau (PF)

We then tried the “predecessor frequency at 
peak/plateau” a reverse of the above method. 
The  results  improved  to  an  F-Measure  of 
41.43%, Precision of 41.67% and Recall of 
41.20%  for  English.  This  is  because  the 
words  in  the  corpus  are  more  heavily  suf­
fixed than prefixed. In this case “crediting” 
was split as “credit ing”.

Figure 1. Letter successor varieties recreated from Hafer and Weiss (1974).
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3.3 Successor and predecessor frequen­
cy at peak/plateau

We realised that the words not segmented by 
method  3.1  were  segmented  correctly  by 
method 3.2. Thus we tried a combination of 
the two. First, we segmented the words using 
SF and then for the words that had not been 
segmented,  we  segmented  them  using  PF. 
The improved results for English were now 
44.36%, 42.81% and 46.04% for F-Measure, 
Precision  and  Recall  respectively.  We  ap­
plied this to Turkish and got an F-Measure of 
53.24%, Precision of 60.45% and Recall of 
47.57%. With Finnish we got an F-Measure 
of 58.03%, Precision of 63.88% and Recall 
of 53.16%. Trying a reverse of the combina­
tion, i.e. PF first and SF second, did not give 
good  results.  For  English  we  got  42.48%, 
40.27% and  44.94% for  F-Measure,  Preci­
sion and Recall respectively. 

3.4 Our proposed algorithm, SUMAA
So far  the first  combination  of  SF and PF 
(SFPF) has shown the best results. However 
in the result files, splits like “abandonedly” 
as “abandon edly” and “acceptances” as “ac­
cept ances” were noticed. Analysing the cor­
pora we saw that if one word was a substring 
of a word below it, it was often a morpheme 
of that word. We applied this concept to our 
algorithm.  This  procedure  resembles  the 
bubble sort algorithm except after the com­
parison the words are not sorted and remain 
in their original positions. This is illustrated 
in figure 2. Consider an extraction of the En­
glish  corpus  in  the  following  order:  aaa, 

abandon,  abandoned and abandonedly.  The 
steps are as below:

Figure 2. Bubble sort string boundary finder ex­
ample.

1. Read “aaa”. As it has no preceding word, 
apply SFPF & segment it .Print to file.

2. Read “abandon”. Check if it has the pre­
ceding  string  “aaa”.  It  doesn't,  so  seg­
ment it with SFPF and print to file.

3. Read “abandoned”. It contains its preced­
ing word, so first segment it into “aban­
don” and “ed” and then apply SFPF to 
the  left  side  split  (“abandon”).  Print  to 
file.

4. Read “abandonedly”. It contains its pre­
ceding word,  so segment  it  into  “aban­
doned” and “ly” and then apply SFPF to 
the left side split (“abandoned”). In this 
case,  “abandoned”  segmented  by  SFPF 
resulted in “abandon” and “ed”. Thus the 
word  is  finally  segmented  into 
“abandon”, “ed” and “ly”. Print to file.

The results were F-Measure 51.83%, Preci­
sion 48.06% and Recall 56.23% for English, 
F-Measure  55.94%,  Precision  59.39%  and 
Recall 52.87% for Turkish; and for Finnish 
they  were  F-Measure  60.18%,  Precision 
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64.97%  and  Recall  56.04%.  As  the  Mor­
phoChallenge  requires  a  high  F-Measure, 
this experiment is very fruitful (shown in fig­
ure  5).  This  new algorithm performed sur­
prisingly well on Turkish and Finnish. It per­
formed  better  for  Finnish  than  it  did  for 
Turkish  and  not  to  mention  for  English! 
Pseudo  code  for  SUMAA  is  in  table  1. 
SUMAA seems to have worked particularly 
well  on  Finnish  with  an  F-Measure  of 
60.18% and Precision of 64.97%.

3.5 Data Structure

Figure 4.  The trie  constructed from the words: 
BIG, BILL, GOOD, GOSH

For letter successor varieties, words of a cor­
pus have been represented as a data structure 
called a trie (please refer to (Huynh et al.) for 
more  details)  as  shown  in  figure  4.  Each 
node represents a letter and contains a suc­
cessor  count.  The  root  represents  a  null 
string  and  each  branch  represents  a  word. 
Consider  the  following  words:  “BIG”,” 
“BILL”, “GOOD”, “GOSH”. 

Let’s take “BIG” as the test word. To calcu­
late  the  successor  count  of  the  prefixes  of 
“BIG”, we traverse from the root and then 
retrieve  the  successor  counts  of  “B”,  “BI” 
and “BIG” which are 1, 2, and 0 respective­
ly. By organising all words and their reverse 
words in a corpus in this form, we can effi­
ciently retrieve the SFPF counts of any pre­
fixes or suffixes of a word. In our algorithm 
we implemented  2  tries,  one  for  retrieving 
successor counts and one for retrieving pre­
decessor counts. The trie for retrieving pre­
decessor  counts  was built  from the reverse 
words in the corpora. In doing this, it took 
less  than  3  minutes  to  segment  the  whole 
corpus of Finnish (MorphoChallenge, 2005) 
which  includes  1,636,336 word  types  on  a 
computer  using an AMD 2800+ CPU with 
512MB RAM.

4 Conclusion

This paper is a summary of our detailed re­
search  which  includes  experiments  with  a 
version of MDL using a codebook, and other 
versions of the letter successor varieties such 
as “cut-off”. We abandoned the idea of using 
the former as it took too much time due to 
recursive string comparisons and on a stan­
dard current day PC, it would have taken 4 
days to compute the Finnish corpus as op­
posed  to  this  algorithm that  takes  under  3 
minutes.  The “cut-off”  experiment  was not 
used, although it was efficient, as there was a 
fear that it would cause overfitting problems 
for Finnish as it used predefined values.
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Table 1. SUMAA pseudo-code.

It  performed  well  over  Turkish  but  not  as 
well as SUMAA.

SUMAA detected a majority of both true 
and incorrect boundaries for English with re­
spect to the other languages. This may be be­
cause  the  English  corpus  contained  multi-
language words such as “abbotabad” (where 
abad  means  population  in  Urdu),  a  city  in 
Pakistan.  Although  it  did  segment  “abbot” 

and  “abad”  correctly  there  were  problems 
with  other  such  noise  in  the  data,  which 
could have lead to the F-Measure and Preci­
sion  drop.  Modelled  on  English,  which  is 
considered  to  be  an  isolated  language, 
SUMAA  performs  better  on  agglutinative 
languages and hence our algorithm is robust 
against  overfitting.  Figure  5 shows a  com­
parison of  SFPF and SUMAA (section 3.3 
and 3.4) on all three languages as those ob­
tained  the  highest  results.  We  propose 
SUMAA as a very useful and efficient mor­
phological analysis system.
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Main()
{
     BuildTries(); // Build 2 tries, 
                          // one from the words as they are and    

          // one from them reversed.
     For each word in the corpus
     {
            If the word contains its preceding word
            {
                    Segment the word into 2 parts using the 
                    boundary of the shorter word;
                    SegmentUsingSuccessor(left part);
                    Print the right part to file at the end of the 

    current line;
            } Else
            {
                    SegmentUsingSuccessor(word); 
            }
     }
}
SegmentUsingSuccessor(word)
{
       For each substring S of the word
       {
             Calculate the successor count S

n
;

             If found a local peak/plateau
                    Save this position to an array of split 

    points;
       }
       If the array of split points empty  // No split point 

             // found
             //Try to segment the word                                      
                        
             //using Predecessor frequency                                
         
             SegmentUsingPredecessor(word);                     
       Else, 
            Use the array of split points to segment the 
            word and print to file;
}
SegmentUsingPredecessor(word)
{
       Reverse the word;
       For each substring S of the reverse word
       {
             Calculate the predecessor count P

n
;

             If found a local peak/plateau
                    Save this position to an array of split 

    points;
       }
       If the array of split points empty  // No split point 

            // found
             Print the whole word to file;
       Else,

           Use the array of split points to segment the word 
           and print to file;
}
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Abstract 

In this work, we describe the algorithm 
adopted to split the words into smallest 
possible meaningful units or morphemes. 
The algorithm is unsupervised and not 
dependent on any language. The model is 
developed using English language. How-
ever, the linguistic rules specific to Eng-
lish language are not implemented. The 
algorithm focuses on the identification of 
smallest units of words based on their 
frequency of occurrence in a given text 
corpus. The model works in two stages. 
In first stage the model learns from a 
given text corpus and makes a list of pos-
sible morphemes.  In the second stage the 
model divides the words into possible 
meaningful segments. There is no prede-
fined list of morphemes attached or hard-
coded in the model. 

1 Introduction 

Generally, words are considered as the most ba-
sic unit of any language. However, this assump-
tion is not true. In fact, words are the means to 
communicate in a language and their use vary 
with time and location. For example, there are 
words in English language that are spoken in UK 
but not in USA and vice versa. Similarly, the 
words in old English poetry are no more in use. 
Another interesting fact is that the numbers of 
words in any language are not fixed. According 
to Dr. Goodword's Separation hypothesis, “there 
are no such things as words” [1]. He claims that 
“what we take as words are in fact two distinct 
phenomena lexemes and morphemes. Lexemes 
are noun, verb, and adjective ……… Morphemes 
are everything else, including suffixes like -y, -

ness, -er, -ing, -ly and prefixes like re-, un-, 
anti”[1]. Lexemes refer to things in real world 
whereas the morphemes only refer to the gram-
matical categories. 
 
A morpheme is the smallest meaningful unit in 
the grammar of a language [1]. There are two 
basic types of morphemes: roots and affixes [2]. 
Roots make the main part of the word and repeat 
only once in a word. On the other hand, affixes 
are the subordinate parts that may or may not 
exist in a word. Affixes either precede or follow 
their root. 

2 Assumptions 

Following assumptions are made in order to re-
duce the complexity and improve the efficiency 
of algorithm.   
The special characters (like -, /, ‘ etc.) are treated 
as the word separators. 
The maximum length of a suffix is limited to 
three characters and maximum length of a root 
morpheme is limited to 13 characters. 
After separating affixes (prefix and suffix) re-
maining word will be considered as root mor-
pheme and its length must be no less than five 
characters for further division. As shown in ex-
ample below. 

 
EXAMPLE: 
Actual Word: uneducated 
Divided word:   un……educate……d 
Prefix – un 
Root morpheme – educate 
Suffix – d 

3 Model 

The learning model learns from the corpus and 
prepares a list of possible segments based on 
their frequency. After the learning is done the 
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words from the corpus are picked up one by one 
and segmented into possible morphemes. 

3.1 Learning Model 

This is implemented in Microsoft Access. It 
takes the most frequent words from the given 
corpus for identification of possible morphemes.  
At first, the model extracts the list of words from 
the corpus ignoring the words having frequency 
less than seven.  The model was also tested by 
adding lower frequency words.  However, it was 
not affecting the segmentation results but was 
making the segmentation process slower. There-
fore to reduce the complexity the lower limit of 
frequency was set to seven. 

 

 
Figure 1.  Learning Model 
 
Segments (affixes, root morphemes) are 

searched from within first and last thirteen char-
acters of a word.  The maximum length of affixes 
in English is mostly shorter than four characters 
however in our model maximum limit is set to 
thirteen characters. This helps in separating af-

fixes and root morphemes having a maximum 
length of thirteen characters.  The process of 
finding possible segments in a word works on 
two sets of thirteen characters (leading 13 char-
acters and trailing 13 characters). See Fig.1.  

Before executing the algorithm, the list is 
sorted using dictionary sorting. Now to under-
stand the algorithm execution let’s take an ex-
ample of six words to be segmented. 
• ab 
• abacus 
• about 
• abreast 
• again 
• bargain 
From the above list, model will pick the first 

character from first word (i.e. ‘a’) and will check 
its frequency in the remaining words. The fre-
quency of ‘a’ is five, now if ‘a’ also exists as a 
single word then it will be qualified as a valid 
segment. However, in the list there is no com-
plete word as ‘a’ therefore it will be ignored.  In 
the next step model will pick up ‘ab’ and then 
check its frequency in the list. The frequency of 
‘ab’ is four. Now as ‘ab’ exists in the list as a 
word therefore it will be qualified as a valid 
segment and will be added to the learned list. 
This process will continue till maximum thirteen 
characters of a word (if the length of word is thir-
teen characters or more). 

In order to find segment from trailing side of 
word, similar procedure will be followed starting 
from last character. 

If a similar segment is found in both processes 
mentioned above then their frequency will be 
added and the segment will be included in the 
learned list only once. See Fig.1. 

The last step calculates the weights of differ-
ent segments. In any corpus single characters 
have maximum frequencies.  Like in our learned 
list “t, c, g, r and n” occur more than 5000 times 
however these characters may not be valid seg-
ments. Therefore, in order to ignore these charac-
ters during segmentation process their weights 
are calculated by subtracting the standard devia-
tion from their respective frequencies.  For ex-
ample, “t” occurs 5408 times and the standard 
deviation of frequencies of all single character 
segments is 3614. This makes the weight of “t” 
1794. Similarly frequency of “h” is 2908 but its 
calculated weight is -705 (2908-3614=-705). As 
the weight is negative, therefore the segmenta-
tion model will not consider “h” as a valid seg-
ment. 
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3.2 Segmentation Model 

The segmentation portion of the model is de-
veloped in Visual Basic 6.0. The segmentation 
process pursues the following steps: 
• Separation of prefix from the word 
• Separation of suffix from the word 
• Segmentation of root morpheme (if the 

word length is more than five character) 
This model takes a word from corpus and 

compares it with the learned list of segments 
prepared during the execution of learning model.  

The segmentation model creates a model list 
of all words that have been segmented.  During 
the process of segmentation, this list is continu-
ously updated.   

As the segmentation model receives a word 
for segmentation it is broken into parts depend-
ing upon the existence of assumed, word separa-
tion characters (like -, / , ‘ etc).  Both the charac-
ter strings before and after separation character 
are treated as independent words. However in 
this case the word before the separation character 
is not evaluated for the suffix and the word after 
the separation character is not evaluated for pre-
fix.  

The segmentation is done in two phases. First 
phase checks each segment of characters starting 
from the first character till the last character. If 
any segment of character/s is found in the list 
and the remaining segment is also found in the 
list then the separated segment is treated as a 
possible prefix. At this stage if the segment is of 
two character length or less its weight is as-
sessed. If the weight is negative, the segment will 
be disregarded. This process continues until a 
valid prefix found.  

The remaining string (after removing prefix) is 
passed to the suffix separation module. This 
module starts from the first trailing character and 
goes till maximum segmentation of three trailing 
characters. It could result in more than one suf-
fix. The one with high weight will be considered 
as valid suffix.  

At this stage the remaining root segment is 
passed to the prefix separation module to sepa-
rate any possible root morphemes. For root mor-
pheme segmentation a remaining word must 
have at least five characters. As per the assump-
tion the words of five characters and less are 
treated as single root morpheme. This assump-
tion is made because till this stage valid prefix 
and suffix are already separated. 

If the prefix separation module fails to seg-
ment a word then the word will not be passed to 

the suffix separation module. It will be passed to 
the second phase of the model.  

The second phase separates first trailing char-
acter of the word and then passes the remaining 
segment to the prefix separation module. Now 
the prefix separation module repeats the process 
with one trailing character trimmed. The phase 
two continues to trim the trailing characters and 
keep on passing the remaining segment to the 
prefix separation module till the time the prefix 
separation module can find any valid segment. 
The purpose of this module is to pick those 
words, which cannot be separated by prefix sepa-
ration module during the first phase. The integra-
tion of second phase helps in segmenting the 
words where two valid segments do not exist in 
the learned list. For example if we take the word 
“controlled” the prefix separation module will 
start from the first character ‘c’ and the first valid 
morpheme boundary will be after ‘l’, which will 
make a valid segment “control”. However, there 
is a possibility that the learned list does not have 
the remaining segment “led”. Therefore, the pro-
gramme will not split the word “control led”.  
Similarly as the word ‘controll’ does not exist in 
the learned list therefore the other possible seg-
mentation “controll ed” will also not take place. 
Combination of two phases of model ensures that 
maximum possible morpheme boundaries are 
detected. 

 

 
Figure 2.  Segmentation Model 
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4 Evaluation 

The evaluation is done by using the Perl script 
given on the Morpho Challenge website [3]. The 
script compares the segmented lists with the gold 
standard lists given for each language. The 
evaluation is based on three possibilities men-
tioned below. 

• Hit. A valid cut that means word is 
cut at the right place. 

• Insertion A wrong cut that means 
word is cut at the wrong place. 

• Deletion A missed cut that means 
a valid cut is ignored. 

• Following three parameters are calcu-
lated based on these possible cuts. 

• Precision It is the number of hits 
divided by the sum of the number of hits 
and insertions. 

• Recall It is the number of hits divided 
by the sum of the number of hits and de-
letions. 

• F-measure It is the harmonic mean 
of precision and recall. As per the gold 
standard the results having higher value 
of F-Measure are considered as better 
segmentation results. 

The model was run using English, Turkish and Fin-
nish word lists. The results achieved are as follows:- 

 
Morpheme Boundary Detections Statistics 
 

 English Turkish Finnish 
F-measure 56.68% 44.38% 43.46% 
Precision 53.36% 59.46% 67.18% 
Recall 60.46% 35.39% 32.12% 

Table 1: Morpheme Boundary Detections Statis-
tics 
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Figure 3.  Segmentation Results 

• F-measure is maximum in English language.  
However, it is almost same in Turkish and 
Finnish. 

• Precision is least in English and it increases 
in Turkish and Finnish. 

• Recall is maximum in English and reduces 
considerably in Turkish and Finnish. 

If we plot the line graph of precision and recall 
then it shows reciprocal behaviors. 
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 Figure 4.  Comparison of Precision and Recall 
The proposed model detects the morpheme 

boundaries based on the frequency of various 
segments in a given corpus. The results show 
that possibility of ignoring a valid cut is more 
than putting a wrong cut in Turkish and Finnish 
language; however it is opposite in English.  As 
the model always compares both segments for 
validity, therefore at some occasions a valid 
morpheme boundary may be ignored. For exam-
ple if we consider the word ‘stopped’ for seg-
mentation it may not identify any valid segments. 
Like if ‘stop’ is identified as a valid segment 
then the remaining ‘ped’ may not be a valid 
segment. Similarly while the segmentation is 
done in reverse order ‘ed’ may be recognized as 
a valid segment, however ‘stopp’ may not be 
found in the learned list. Under such circum-
stances the second phase of the model helps to 
cut the trailing character/s till valid segments are 
found in the initial set of characters. In this case 
“stopped” will be segmented as “stop p ed” (here 
weight for p is 654). This approach helped in 
avoiding wrong cuts because of which the preci-
sion is high in Turkish and Finnish corpus.  

The high recall and low precision in English 
shows that there are less ignored cuts as com-
pared to wrong cuts. The wrong cuts are because 
our model finds more segments in longer words. 
Like if we take the example of word “uncon-
strainedly”. Our learner model has calculated the 
weight for ‘s’ and ‘t’ as ‘13999’ and ‘1794’ re-
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spectively. Therefore the segmentation of the 
word would be ‘un con s t rained ly’. This has 
resulted in more wrong cuts in longer words, es-
pecially in English language.  

The assumptions made at the beginning make 
the model a bit specific to English. The separa-
tion characters helped the model in identifying 
the morpheme boundaries. The limit on the 
length of word to be assessed for segmentation of 
root morpheme, which is set to five, is also based 
on English language knowledge. As the model is 
developed by learning from English language 
corpus, therefore it has resulted in better identifi-
cation of morpheme boundaries in English lan-
guage. 

The lower recall in Turkish and Finnish lan-
guage has adversely affected the value of F-
Measure in these languages. However, the value 
of F-measure for these languages is almost 
same. This shows that the effect of assumptions 
on both languages (Turkish and Finnish) is same. 
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