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Abstract

Models based on Chomskian grammar are not as pervasive in certain NLP appli-
cations as might be expected from their status in linguistics, comparing to, e.g.,
statistical n-gram models or vector space models. In this paper, we look at gram-
mar inference from a viewpoint of constructionist theories of language, which are
in contrast to the Chomskian tradition, and avoid the separation of morphology,
syntax, semantics and pragmatics. We consider the utility of constructionist the-
ories in NLP applications, present a computational framework for learning con-
structions, and discuss related experimental work.

1 Introduction

The ability to recognise and produce new, meaningful sentences can currently be considered a largely
unsolved problem both in natural language processing (NLP) and in the study of human cognition.
A grammar can be described as a model of sentence-level phenomena in language. The question of
what is the grammar that is able to capture these phenomena accurately and in a manner that prac-
tical NLP applications can utilize is a research problem that interests language engineers, linguists,
psycholinguists and brain researchers of the cognition of language, alike.

In linguistics and computational linguistics, the most pervasive computational tradition for dealing
with grammar is the Chomskian generative theory of grammar. Grammar inference most commonly
refers to the problem of learning a grammar from a certain class of grammars in the Chomsky hierar-
chy. The classes of grammars are typically Context-Free Grammars [1, 2, 3, 4] or Regular Grammars
[5]. Grammar inference may also refer to learning other kinds of grammatical representations, such
as Dependency Grammar [3, 4, 6]. In NLP applications, models based on generative grammar are
not as pervasive as might be expected from their status in linguistics. In many applications, such as
automatic speech recognition (ASR), statistical machine translation (SMT) and information retrieval
(IR), much simpler models are commonly used. For example, ASR and SMT systems apply n-gram
models that just predict word sequences, and IR systems may discard everything related to gram-
mar and apply vector space models for representing the meaning of words and documents. While
some of the recent approaches seem promising regarding solving the problems of learnability [7],
the question remains how fruitful the Chomskian assumption regarding the separation of grammar
and meaning turns out to be.

We look at grammar inference from a viewpoint that takes seriously certain recent linguistic theories
about grammar that are in stark contrast with the Chomskian tradition, namely the constructionist
theories of language [8]. While these theories seem to be supported by much recent evidence from
psycholinguistic and brain imaging studies, at this point there seems to be a lack of a clear compu-
tational formulation of the grammar inference problem from a constructionist standpoint.

In this article we attempt to provide such a problem formulation, and discuss some recent work by us
and others regarding how to solve this problem. The article is structured as follows: Section 2 intro-
duces the constructionist approaches to language and motivates why they should be useful in NLP.
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Section 3 presents a computational framework for learning of constructions. Section 4 describes
some experimental work that exemplifies the framework. Section 5 discusses some implications of
the central ideas and Section 6 concludes the article.

2 Constructionist theories of grammar

Constructionist theories of grammar share with Chomskian generative grammar the objectives to
describe how to combine known grammatical structures to produce novel utterances. However, the
theories disagree strongly on many key points. Here we give a short treatment of constructionist
theories of grammar, covering the parts relevant to the arguments in this paper. For a thorough
overview, see [8]. Constructionist theories mostly share the following points:

1. There exist no different levels of language, such as morphology, syntax, semantics or prag-
matics. Rather, all phenomena are described using form-meaning pairs, and these are called
constructions. The form component can be, for example, a morpheme (anti-, -ing), a word,
an idiom (“kick the bucket”) an idiom with an abstract category “pull X’s leg”, or a basic
sentence construction (SUBJ V OBJ). The meaning component includes both semantic and
discourse function. The theories state that every regularity in language is expressed using
a single framework, namely constructions. Consequently, there is no special emphasis on
syntax. Moreover, because syntax is described using form-meaning pairs, syntax is not
represented independently of semantics, in contrast to what is postulated in the Chomskian
generative grammar.

2. No special cognitive modules for grammar are posited, but constructions are considered to
be learned using general cognitive mechanisms.

3. All knowledge a speaker possesses of a language is encoded in her construction lexicon.
The construction lexicon is a network of constructions, describing both the form and mean-
ing poles of each construction, and the relationships between the constructions.

What then is a construction, and what is not? Goldberg writes in [8]:

Any linguistic pattern is recognized as a construction as long as some aspect of its
form or function is not strictly predictable from its component parts or from other
constructions recognized to exist.

This definition defines a minimal set of constructions a speaker must know in order to be able to
understand language. In this paper we refer to this set as minimal constructions. Goldberg continues
on predictability and frequency:

In addition, many constructionist approaches argue that patterns are stored even if
they are fully predictable as long as they occur with sufficient frequency.

It may seem peculiar to include constructions that are not strictly speaking needed. However, there
is evidence, that humans do that in some cases. In psycholinguistics, an active topic of research
concerns the question of what is stored in the “mental lexicon”. A particular form of this question is,
whether frequent, inflected word forms are stored as complete forms or in terms of their constituent
segments, or both [9].

2.1 Motivation for a constructionist approach to NLP

Due to associating directly to meaning, constructions can be considered from a cognitive linguistic
point of view as “basic elements of representation” that should directly benefit the subsequent pro-
cessing of the linguistic objects in an NLP application whose goal is to process meanings. Thus,
if we find out which are the basic features of representation, then all the semantic modeling work,
studied e.g. in vector-space modeling of meaning, such as LSA research [10] and other vector-space
modeling [11, 12, 13]. should be able to benefit directly from this feature extraction work.
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3 Computational framework for learning constructions

Let us start by defining some central terms that will be used in this section. For the most part, they
are taken from the linguistic theory, but the focus is on the problem of learning constructions with a
computational model.

• Construction lexicon is the set of all constructions stored by a human or a computational
model.

• Construction is a pattern of language that consist of form and meaning.
– The form of a construction describes how the construction appears in language data,

that is, in speech or text.
– The meaning of a construction describes the semantic and discourse functions of the

construction.
• Compound construction is a construction whose form can be expressed using two or more

other constructions. These constructions are the component parts of the compound con-
struction.

Examples: The term “white house” is a compound construction of two words, “white” and
“house”. Word “cars” is a compound construction of two morphemes, “car” and “s”.

• Minimal construction is a construction that is either not a compound construction, or its
meaning cannot be predicted from its component parts.

Examples: All morphemes of a language (“walk”, “car”, plural ending “s”, prefix “un”) are
minimal constructions that are not compound constructions. The collocation “The White
House” and the idiom “kick the bucket” are minimal constructions that are also compound
constructions.

• Redundant construction is a construction that is not a minimal construction.

Examples: Words “cars” and “walked”, as well as phrases “my house” and “red and
blue”are redundant constructions (if they exist in the construction lexicon).

3.1 Problem definition

Next, we consider learning of a construction lexicon given language data as input. We define two
types of construction lexicons for a data set:

• Minimal construction lexicon is the set of minimal constructions that can produce the data
set.

• Sufficient construction lexicon contains the minimal construction lexicon but can also in-
clude redundant constructions.

The learning problem that we are concentrating on is to find a sufficient construction lexicon for
the given data set. There are three reasons for selecting this task instead of finding of the minimal
lexicon: First, determining whether a construction is redundant or minimal is a hard problem and
requires information on the meanings of the constructions. Second, redundant constructions may
be useful for computationally efficient modeling of the data, even though they are not required for
representing the meaning that the data contains. Third, there is also evidence from psycholinguistic
that redundant constructions, such as inflected word forms, exist in the mental lexicon [9].

Next, we consider two different flavors for the problem of learning a construction lexicon: The full
learning problem is to find both the forms and meanings of the constructions in a sufficient construc-
tion lexicon. The form learning problem is to identify only the forms of a sufficient construction
lexicon.

It is generally considered that humans learn constructions using a combination of embodied mean-
ings active in the speech context and statistical regularities in the speech signal. There is some work
on learning constructions where both meaning and form are encoded in the input data and tried to
capture by the modeling [14]. Learning from untagged text, that is, without any coding form mean-
ing present in the data can be considered as solving only half of the problem, namely, which forms
have a representation in the lexicon.
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3.2 Evaluation approaches

There are at least three possible ways to evaluate the learned construction lexicons: (1) Comparison
to the studies of the meaning representations of humans. For example, one could evaluate whether
the forms of the constructions are the same that humans store. (2) Direct comparison to human-
tagged meanings in corpora. That is, one may assess whether the learned constructions correspond
to our intuitions regarding those meanings. (3) Indirect evaluation in NLP tasks, such as speech
recognition, machine translation and information retrieval.

3.3 Methods for learning the forms of constructions

3.3.1 Controlling the complexity of the lexicon

If the purpose is to represent the construction lexicon that models the whole data set, and not just
identify some most interesting and surprising patterns in it, there are two aspects to be taken into
account. The first aspect is representation ability, the model should be able to represent all of the
data. The second is compactness.

A sufficient construction lexicon, which was identified as the goal, can represent all the data. In
practice, when one applies, e.g., a probabilistic model, the representation ability can be measured
by the likelihood of the data.

Regarding compactness one might say that given two sufficient construction lexicons the more com-
pact one is the better. The complexity of the lexicon can be selected beforehand, or optimised during
the learning process. For controlling the compactness of the model, there are several options, such
as Bayesian information criterion (BIC), sparsity priors, or non-parametric Bayesian methods.

We discuss one well-motivated method in more detail: The Minimum Description Length (MDL)
principle, that comes from the field of information theory [15]. The basic idea in MDL resembles
that of Occam’s razor, which states that when you have two equally accurate theories (models), you
should select the theory (model) that is less complex. When modeling data, controlling the model
complexity is essential in order to avoid overlearning, i.e., a situation where the properties of the
input data are learned so precisely that the model does not generalise well to new data.

There are different flavors of MDL. The earliest is called the two-part coding scheme. The more re-
cent versions of the MDL principle, such as Refined MDL [16], address the theoretical weaknesses
of the two-part coding (see, e.g., [17]). However, their application to practical tasks such as lan-
guage learning is not as straightforward. The intuitive idea behind the two-part MDL is as follows:
Modeling can be viewed as a problem of how to encode a data set efficiently in order to transmit
it to a listener with a minimal number of bits. In order to transmit a data set, one first transmits
the model, then the data set by referring to the model. Respectively, the cost function to minimise
consists of (1) the cost of encoding the model, and (2) the cost of representing the observed data in
terms of the model. The first part penalises models that are overly complex, whereas the second part
penalises models that are not accurate descriptions of the data. Thus, the two-part code expresses an
optimal balance between the specificity and the generalization ability of the model.

Note that if the costs of the representations are described as probabilities, the two-part coding is
equivalent to using a certain prior in a Bayesian Maximum a Posteriori estimation: The cost of the
model comes from the negative logarithm of the prior probability P (M), and the cost of the data
comes from the negative logarithm of the likelihood P (corpus|M).

3.3.2 Identifying the forms of constructions

Irrespective of the particular method one applies for the modeling of the construction lexicon and the
data, there are two opposite situations for the learning process: On one hand, the constructions can be
too specific, such as all the sentences in the data set. On the other hand, they can be too general, such
as all the letters in the data. In the former case, the forms of the minimal constructions are smaller
patterns of the data, and in the latter case, they are larger patterns. Both of the extremes might be
useful initializations for the learning task—e.g., when using a top-down or a bottom-up algorithm—
but it is necessary to be able to recognise too specific or too general forms of constructions.

4



First, we consider the problem of identifying the forms of minimal, non-compound constructions.
In principle, this can be very easy: If we can say that an item has a meaning of its own, and that it
cannot be a combination of some other constructions, then it has to be a construction. For example,
if something occurs as a word, it is very likely to have a meaning. And if there is no way to produce
it as a combination of known morphemes it is probably a morpheme itself and thus a minimal
construction.

It would be very hard to recognise any constructions larger than morphemes, if the only test would
be whether a form candidate is a combination of already found constructions or not. Even for mor-
phemes, that would lead to many false negatives: e.g. “fiber” could be analysed as a concatenation
of morphemes “fib” and “er”. Moreover, we would not be able to get any idioms, if their words were
already in the lexicon.

As we assume that the meanings contribute to the statistics of a text, a hypothesis that constructions
are more frequent than other observed combinations of forms, is a reasonable one. That is, a high
frequency of a form, compared to its component parts, indicates a construction. (However, it is
not necessarily a minimal construction.) Naturally, this simple observation has been applied for
many related tasks of NLP, such as finding collocations. Methods that can be used directly with
the frequencies are, e.g., hypothesis testing and measuring mutual information [18]. Due to the
Zipfian distributions in language data, the number of high-frequency forms is always restricted, and
the frequency information at least provides an easy way to exclude most of the theoretical form
candidates.

However, frequency information can be misleading as well. Especially bottom-up learning may
produce a situation where a high frequency of a compound item is due to some construction of a
higher abstraction level that produces the observed form. For example, if the frequency of the form
“work he” in an English corpus were larger than what could be predicted from the frequencies of
its parts, the phenomenon might have been produced from the noun phrase construction “NP (that)
VP” (e.g., “the work he did”).

4 Related experimental work

Since there is very little work on discovering constructions by that name, we will here take a wider
outlook. Finding collocations [18, Ch. 5] may be considered as a very simple form of construc-
tion discovery where the whole data is not modeled—instead, only some interesting patterns are
identified. In contrast, a task where a text corpus is modeled as a whole, is unsupervised word
segmentation from text [19]. Word-internal constructions and sometimes also their connections are
discovered in unsupervised learning of morphology, which has recently been a target of a lot of active
research [20, 21, 22]. Algorithms for inferring morphology have very practical uses in the prepro-
cessing of morphologically rich languages for certain NLP applications [23, 24]. Also the modeling
of sentence-level patterns is a relevant problem for many NLP applications: For example, the current
statistical machine translation systems are often based on translation of phrase pairs extracted from
a sentence-aligned corpus [25]. The obtained phrase table can be viewed as a construction lexicon
that includes the forms in two languages.

Next we will describe in some detail the Morfessor algorithms [21] for morphology learning. In
addition, we briefly outline two algorithms for the discovery of complex sentence-level patterns
[26, 27].

4.1 Discovery of morphemes

Finding morphemes of a language can be regarded as a subproblem of learning the construction
lexicon, especially in inflective languages. As morphemes are the minimal constructions that are
needed to build up any lexical constructions (such as words and anything that consists of words), it
is an important starting point.

Unsupervised learning of morphology has been an active research topic at least for a decade, and the
results are encouraging for several languages. The algorithm have been evaluated, e.g., in the Mor-
pho Challenge competitions that have been organised from 2005 to 2009 [24]. Two very successful
algorithms have been Linguistica [20] and Morfessor [21], which both apply the MDL principle for
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finding a optimal morpheme lexicon. The first Morfessor algorithm, Morfessor Baseline, is concep-
tually very simple, and we use it as an example. The algorithm tries to find a segmentation for words
into morphemes from untagged text corpora. Thus, it is applicable to languages that have (mostly)
concatenative morphology, such as Finnish, Turkish and many Germanic and Romance languages.

In Morfessor Baseline, the model is a lexicon of word segments called morphs, and the data is
encoded as a sequence of pointers to the morph lexicon. The lexicon is encoded as a set of strings
which form the morphs. The two-part coding scheme gives the cost function that is to be optimised
by the method. A simple greedy algorithm is applied: Initially, the lexicon contains all the words in
the corpus. Words are picked in a random order, and for each word, a segmentation to two parts is
attempted. Furthermore, this step includes a recursive re-splitting attempt for each of the parts. As
a result, each word can consist of segments which in turn consist of other segments.

The output of the Morfessor Baseline shows somewhat different tendencies from linguistic mor-
pheme analysis: It tends to oversegment words that were seen very rarely, whereas it undersegments
very common words. While this is an undesired phenomenon with rescpect to a purely linguis-
tic morphology analysis, it seems to be in agreement with the “construction forming view” of the
language, that is, that frequent linguistic phenomena become gradually lexicalised (i.e., becoming
codes of their own), although initially they may have been productive (i.e., they have been merely
assembled from their parts). Furthermore, the morphemes discovered by Morfessor Baseline have
been found to perform as good as or better than linguistic morphemes or words as tokes for language
models utilised in speech recognition [23].

In the later Morfessor versions, the model is assumed to have a grammar that contains morpho-
tactic information about how the morphs may be combined [21]. Even though the new models,
such as Morfessor Categories-MAP, have increased the similarity of the results to a gold standard
segmentation, they do not outperform Morfessor Baseline in practical applications, such as speech
recognition, information retrieval and machine translation [24]. This underlines that finding only the
minimal constructions, such as morphemes, may not be so important for the applications.

An interesting feature in Morfessor Categories-MAP, as well as in de Marcken’s model for word
segmentation [19], is that they apply hierarchical lexicons, where the component parts of a form are
used to store the form itself. This is in contrast to Morfessor Baseline, where the decision to join
two morphs means that the original morphs are removed and no longer used to encode the data, and
agrees well with the idea of construction lexicon.

4.2 Discovery of sentence patterns

Recently, an MDL-based approach similar to Morfessor Baseline was applied to the problem of
finding a compact description of sentence-level utterances [26]. The basic form of the task is very
similar: instead of a lexicon of morphs that is used to encode words, we have a lexicon of construc-
tions that is used to encode utterances. The applied model structure allows only a very restricted
set of possible constructions, namely exact phrases (white house) and partially filled construc-
tions that have exactly one abstract category that can be filled by one word (example [X] house,
X ⇒ {white, red, green, brown, black, blue}). The results demonstrate that the
same principles that work on the morphological level can also work to some extent on the sentence-
level. However, currently the model has only been evaluated using manual inspection after training
it on a small corpus of children’s stories.

A more fully-developed system that tries to find patterns that are loosely similar to a grammar from
language is ADIOS [27]. It does not learn explicit grammar rules, but rather generalizations in
specific context. The model is flexible enough to represent complex and realistic patterns. ADIOS
outperforms standard n-gram models in a language prediction task for small spontaneous speech
corpora (ATIS, CHILDES), but has problems with grammatically complex texts [28].

5 Discussion

From psycholinguistic perspective, MDL and related “compression approaches” to modeling lan-
guage are sometimes criticised using the argument that this is not what humans do: humans have
language representations that are not compact but rather show redundancy and multiplicity. This
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criticism is in fact in accordance with our suggestion that the goal is not to find a minimal construc-
tion lexicon, but a sufficient one.

When would it be a reasonable goal for a communicative agent to represent just the minimal con-
struction lexicon? The answer is straightforward: only when the data is stationary, i.e. the language
properties do not change over time. However, it is well-known that languages in themselves are
not at all stationary: new words and terms appear all the time, the probabilities of the existing ones
change, and their contextual properties and complex constructions change even more.

Moreover, even if the language as a whole were in fact stationary, an individual agent is never in
a stationary situation with respect to the language data. Any change in the social group, a change
regarding the domains where the agent interacts, and so on, will lead to changes in the data en-
countered by the agent, and therefore a different solution to the question of the minimal lexicon.
In other words, being in a constant ’learning state’ regarding one’s language representations can be
considered useful for a language agent throughout its existence.

In a learning state in the distributional learning paradigm the agent must accrue evidence about
possible new constructions. A good hypothesis for a construction is provided by frequency: if an
item is frequent, it may, over time, accrue its own meaning, even if it currently can be deduced from
the meanings of its parts. This explains both why it is useful to represent redundant constructions,
and why frequent items are generally good candidates for storing new constructions in the lexicon.

6 Conclusions

In this article we have presented a starting-point for grammar inference that stems from construc-
tionist theories of language, and that provides an alternative to the currently pervasive Chomskian
tradition. Moreover, we have argued how such a constructionist approach for inferring grammatical
knowledge might be both applicable to various NLP problems and justified from a cognitive model-
ing point of view. Moreover, we have discussed some work in both morphology discovery and the
discovery of a construction inventory that can be considered as examples of this approach. While
the outlined problem itself appears to be fruitful, the development of efficient learning strategies and
evaluation methods on the sentence level is at this point only in its infancy.
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Varjokallio, Ebru Arisoy, Murat Saraçlar, and Andreas Stolcke. Morph-based speech recognition and
modeling of out-of-vocabulary words across languages. ACM Transactions on Speech and Language
Processing, 5(1), 2007.

[24] Mikko Kurimo, Sami Virpioja, Ville T. Turunen, Graeme W. Blackwood, and William Byrne. Overview
and results of Morpho Challenge 2009. In Working Notes for the CLEF 2009 Workshop, Corfu, Greece,
September 2009.

[25] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology, pages 48–54, 2003.

[26] Krista Lagus, Oskar Kohonen, and Sami Virpioja. Towards unsupervised learning of constructions from
text. In M. Sahlgren and O. Knutsson, editors, Proceedings of the Workshop on Extracting and Using
Constructions in NLP of 17th Nordic Conference on Computational Linguistics, NODALIDA, May 2009.
SICS Technical Report T2009:10.

[27] Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsupervised learning of natural lan-
guages. Proceedings of the National Academy of Sciences, 102(33):11639–11634, 2005.

[28] Jonathan Berant, Yaron Gross, Matan Mussel, Ben Sandbank, Eytan Ruppin, and Shimon Edelman.
Boosting unsupervised grammar induction by splitting complex sentences on function words. In Pro-
ceedings of the 31st annual Boston University Conference on Language Development, 2007.

8


