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Abstract

A viable alternative to the traditional text-mining methods is the WEBSOM, a
software system based on the Self-Organizing Map (SOM) principle. Prior to the
searching or browsing operations, this method orders a collection of textual items,
say, documents according to their contents, and maps them onto a regular two-
dimensional array of map units. Documents that are similar on the basis of their
whole contents will be mapped to the same or neighboring map units, and at each
unit there exist links to the document database. Thus, while the searching can be
started by locating those documents that match best with the search expression,
further relevant search results can be found on the basis of the pointers stored at
the same or neighboring map units, even if they did not match the search criterion
exactly. This work contains an overview to the WEBSOM method and its perfor-
mance, and as a special application, the WEBSOM map of the texts of Encyclopaedia
Britannica is described.

Key words: Information retrieval, Self-Organizing Map (SOM), text mining,
WEBSOM

1 Introduction

1.1 General

Consider a very large collection of textual items, such as an encyclopaedia or
a digital library. It would be of great help for browsing it, if the items could
be preordered according to their contents. For the ordering one needs a simi-
larity measure for the pairs of items. One might wish to have a measure that
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compares the meanings of the contents linguistically. When the text corpus is
really large, such linguistic analyses become soon computationally overwhelm-
ing. It has transpired, however, that rather descriptive and useful similarity
relations between text items are already reflected in the use of the words in
them.

The word histograms, weighted by some information measure, have tradition-
ally been used in text retrieval. For masses of natural texts, however, even the
word histograms, regarded as real vectors, have too high a dimensionality to
be feasible as such for the comparison of texts. A conventional method for the
reduction of the dimensionality, with minimum loss of information, has been to
compute a small number of eigenvectors for each histogram vector, and to use
the principal components of the histogram vectors as reduced representations.
Even then, the ordering problem must be solved somehow.

In the multidimensional scaling (MDS) methods one represents each item as
a point on a two-dimensional plane. If d(i, j) is any computable distance (in-
versely proportional to similarity) between the items indexed by i and j, re-
spectively, and e(i, j) is the Euclidean distance on the two-dimensional plane
between the corresponding points that represent these items, then the prob-
lem is to determine a mapping by which, for each pair (i,j), one would have
e(i, j) = d(i, j). This usually cannot hold exactly; nonetheless it is possible to
minimize some error function. In the Sammon projection (cf. e.g. [1]), which
creates rather well-ordered "maps" of items, this function is defined as

E =
∑

i6=j

[e(i, j) − d(i, j)]2

d(i, j)
. (1)

The main problem with the MDS methods is that one has to know all the items
before computation of the mapping. The computation is also a heavy and even
impossible task for any sizable collection of items. Therefore there might be
considerable interest in methods where an arbitrarily large set of items can be
represented by a much smaller set of models. The models themselves shall be
ordered and describe the distribution of the original items, and if a new item
is represented by its closest model, the quantization error, and eventually also
some topological error thereby made shall be minimized on the average. This
kind of mapping is defined by the self-organizing map (SOM) algorithm [1].

This article describes a version of the SOM algorithms called the WEBSOM.
The latter can be regarded as another nonlinear projection method. First of all
we shall show that the dimensionality of the weighted histogram vectors can
be reduced by a very simple and straightforward random projection method,
which normally produces as good results as the eigenvalue methods; then these
reduced item vectors are mapped in an orderly fashion onto a two-dimensional
grid by the SOM algorithm. Thus, prior to any searching or browsing oper-
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ations, the representations of the textual items on this grid will be ordered
according to all possible partial similarity relations between their text seg-
ments. After that, when one has been able to locate any interesting items on
the "map" to start with, further relevant items, the search arguments of which
were not defined, will be found from the same or neighboring map units of the
WEBSOM.

1.2 The Batch Map version of the SOM

The essence of the Self-Organizing Map algorithm, and a simple explanation
of the "order" can be illustrated by the following setting that describes the
batch-type SOM [2]. This version has been used in the present work.

Consider Figure 1 where a two-dimensionally ordered array of units, each one
having a model mi associated with it, is shown. Then consider a list of input
samples x(t), where t is an integer-valued index. The initial values of the mi

may be selected as random, but a more effective method is to start with, e.g.,
values selected irregularly along the principal plane of the x(t) [1]. Compare
each x(t) with all the mi and copy each x(t) into a sublist associated with
that map unit, the model vector of which is closest to x(t) relating to some
distance measure (e.g., Euclidean).

When all the x(t) have been distributed into the respective sublists in this
way, consider the neighborhood set Ni around the map unit corresponding
to model mi. Here Ni consists of all map units up to a certain radius in the
grid from unit i. In the union of all sublists in Ni, the mean of the x(t) is
computed, and this is done for every Ni. Let these means be denoted x̄

′
i.

The next step in the process is to replace each old value of mi by the respective
x̄i, and this replacement is done concurrently for all the mi.

In the same way as in the traditional SOM algorithms for vectorial variables,
one can also use weights in forming the means. Consider that i is the index of
the map unit around which Ni is centered, and let k be another map unit in
Ni. Then the weighting can be made by the factor hik that is similar to the
neighborhood function in the traditional SOM.

The above procedure shall be iterated always redistributing the x(t) into the
sublists and computing the new x̄

′
i. The convergence, however, has not been

proved for a general case; as a matter of fact, only one theoretical treatment
of the Batch Map exists so far [3]. A well-ordered set of the mi are then those
values that coincide with the means of the x(t) mapped onto the Ni.
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Fig. 1. Illustration of the batch process in which the input samples (vectorial rep-
resentations of documents) are distributed into sublists under the best-matching
models, and then the new models are determined as means of the sublists over the
neighborhoods Ni.

1.3 Maps of document collections

In this article we discuss the creation of document maps, that is, SOMs of very
large text document collections. Text mining systems are in general developed
to aid the users in satisfying their information needs, which may vary from
searching answers to well-specified questions to learning more of a scientific
discipline. The major tasks of web mining are searching, browsing, and vi-
sualization. Searching is best suited for answering the specific questions of a
well-informed user. Browsing and visualization, on the other hand, are bene-
ficial especially when the information need is more general, or the topic area
is new to the user [4]. Document maps provide a means to explore large col-
lections of texts by enabling an alternation between visualization, zooming in
on interesting information, browsing, and searching for a specific item.
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1.4 Structure of this article

In Section 2 we discuss how text documents can be efficiently encoded as
real-valued vectors. The efficient construction of very large document maps is
described in Section 3. Section 4 presents examples of very large document
maps created in the WEBSOM project, and describes how the maps can aid
in the different text mining tasks. In addition, the semantic and pragmatic
analysis of words using the maps is discussed.

2 Encoding documents statistically

2.1 Vector space method

In the basic vector space method [5] the stored documents are represented as
binary vectors where the components correspond to words of a vocabulary,
and the value of the component is 1 if the respective word is found in the
document; otherwise the value is 0. Instead of binary values, real values can be
used in which each component corresponds to some function of the frequency
of occurrence of a particular word in the document.

The main problem of the vector space method is the large vocabulary in any
sizable collection of free-text documents, which results in a vast dimensionality
of the document vectors.

2.2 Methods for dimensionality reduction

In the following, some methods for reducing the dimensionality will be dis-
cussed. These are applicable to all cases where the documents are encoded
using the vector space model, i.e. as a document-by-word matrix.

2.2.1 Latent Semantic Indexing

In a technique called Latent Semantic Indexing [6] the document-by-word ma-
trix is analyzed using singular value decomposition (SVD) and the least signif-
icant elements of the resulting latent representation are discarded. After this,
each document is represented as a linear combination of the low-dimensional
(typically between 100- and 200-dimensional) latent representations of the doc-
ument vectors. In addition to reducing dimensionality, the SVD also introduces
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similarities between the representations of words based on their co-occurrence
statistics in the documents.

2.2.2 Random Projection

A low-dimensional representation for documents can be obtained as a random
projection of the high-dimensional representation vector onto a much lower-
dimensional space [7]. The benefit compared with alternative methods such as
the latent semantic indexing is extremely fast computation. The accuracy of
the results is still comparable.

The random projection is formed by multiplying the document vectors by a
random matrix, in which the output dimensionality is smaller than the input
dimensionality. This technique introduces small spurious randomly distributed
similarity errors between words. However, it has been shown both theoretically
and experimentally that if the output dimensionality is large enough, the
random effects have only a minimal effect on the computation of similarities
between documents [7–11].

The random projection of documents can be computed extremely fast. With-
out much deteriorating the randomness of the projection the projection ma-
trix can be taken as sparse, whereby the computation can be done even more
efficiently [10]. Assume that each column contains a fixed number of (say,
five) randomly distributed ones and the rest of the elements are zeros. When
constructing a reduced-dimensional document vector, for each word in the
document only the components corresponding to the five non-zero elements
in the matrix need be updated. Hence, pointers from each word to the correct
locations can be constructed beforehand, and the computational complexity
of the dimensionality reduction is only O(w) where w is the average number
of words in a document.

2.2.3 Word clustering

Clustering methods can be used for reducing the number of data by group-
ing similar items together [12]. If similar words can be clustered together,
documents can be represented as histograms of word clusters rather than of
individual words. Various early approaches for categorizing words have been
described in [13]. In languages with rigid word order, such as English, the dis-
tribution of words in the immediate context of a word contains considerable
amounts of information regarding the syntactic and semantic properties of the
word [14–16]. The self-organizing map has been used to cluster words based
on the distributions of words in their immediate contexts [14,15,17,18]. The
subsequent categories have been used for the encoding of documents, e.g., in
[19,20]. Sample word categories found by the SOM are shown in Figure 2.
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think
hope
thought
guess
assume
wonder
imagine
notice
discovered

usa
japan
australia
china
australian
israel
intel

trained
learned
selected
simulated
improved
effective
constructed

machine
unsupervised
reinforcement
supervised
on−line
competitive
hebbian
incremental
nestor
inductive

Fig. 2. A word category map calculated based on texts from a Usenet discussion
group called comp.ai.neural-nets. Four sample categories are shown in the insets.

2.3 Weighting of words

With all of the previously described encodings better results are obtained if
the words can be provided with weights that somehow reflect the importance
of each word. The importance may correspond to, e.g., their ability to dis-
criminate between topics. Various weighting methods for words are discussed,
e.g., in [21].

2.3.1 IDF-based weights

For the weighting of a word one can use one of the well-known “inverse doc-
ument frequency” (IDF) -based weighting schemes. An example of such a
scheme applied to calculating the weight for word i in document j is given by

IDF (i) = log
N

dfi

, (2)

where N is the number of documents in the collection, and dfi is the number
of documents that contain the term i. This weight is then multiplied by tfi,j ,
i.e., the frequency of the term i in document j. Alternatively one may use
1 + log tf or

√
tf .

2.3.2 Entropy over topical document classes

If, however, the documents have some relevant topical classification, the words
can also be weighted according to their Shannon entropy over the set of doc-
ument classes (for details, see [10]).
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3 Fast computation of very large document maps

The computational complexity of the baseline version of the SOM is only linear
in the number of data samples. However, the complexity depends quadratically
on the number of map units.

For document maps intended for browsing the document collection, the reso-
lution (number of map units per number of documents) should be good, since
browsing is easier if there are representations of only a few, say, ten documents
in a map unit on the average. Hence, for such a resolution, the number of map
units has to be proportional to the number of documents. For very large doc-
ument collections such as the almost 7 million patents discussed in Section 4.1
the resulting computational complexity might become problematic.

We have earlier [10,22] introduced methods that reduce the computational
complexity of the SOM significantly. First, a large SOM can be initialized
by estimating its model vectors from a smaller map that has been computed
accurately ahead of time. Second, in the rest of the computation the large
SOM can then be assumed to be close to its final asymptotic state, and the
speed-up methods take advantage of that.

3.1 Rapid initialization by increasing the map size

Several suggestions for increasing the number of the SOM units during the
construction of the map (cf., e.g. [23]) have been made. Perhaps the simplest
but also a less accurate way would be to multiply the map size by inserting
new units in between the old ones, and setting their model vectors to the
means of the neighboring original model vectors.

We have used a method that is almost as simple and fast, but incorporates
additional knowledge about the “border effects” of the SOM. It is well known
(cf., e.g., [1], Fig. 3.5) that there is a characteristic “shrink” of the density of
the model vectors at the borders of the SOM grid. The border effect depends
on the size of the SOM and its neighborhood function.

We first evaluate the “shrink effect” for a small and a large SOM, respectively,
using a very simple hypothetical density function for the inputs. As the same
relative border effects can also be seen in SOMs with more complex density
functions, they are estimated on the basis of interpolation/extrapolation co-
efficients computed from the simpler case [1].
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3.2 Faster computation of the final state of the SOM

3.2.1 Addressing old winners

Assume that we are somewhere in the middle of the training process, where-
upon the SOM is already smoothly ordered although not yet asymptotically
stable. Assume that the model vectors are not changed much during one it-
eration of training. When the same training input is used again some time
later, it may be clear that the new winner is found at or in the vicinity of the
old one. When the training vectors are then expressed as a linear table, with
a pointer to the corresponding old winner location stored with each training
vector, the map unit corresponding to the associated pointer is searched for
first, and then a local search for the new winner in the neighborhood around
the located unit will suffice (Figure 3). After the new winner location has been
identified, the associated pointer in the input table is replaced by the pointer
to the new winner location. This will be a significantly faster operation than
an exhaustive winner search over the whole SOM. The search can first be
made in the immediate surrounding of the said location, and only if the best
match is found at its edge, searching is continued in the surrounding of the
preliminary best match, until the winner is one of the middle units in the
search domain.

In order to ensure that the matches are globally best, a full search for the
winner over the whole SOM can be performed intermittently.

new winner

old

Training
vectors Pointers

SOM

winner

Fig. 3. Finding the new winner in the vicinity of the old one, whereby the old winner
is directly located by a pointer. The pointer is then updated.

Koikkalainen [24,25] has suggested a similar speedup method for a search-tree
structure.
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3.2.2 Initial best matching units

Even searching for the winners once, which has to be done in order to initialize
the pointers from the data to the respective winners, is very time-consuming
for very large maps. Fortunately there exists a computational shortcut for this
stage as well.

When we were increasing the map size as described in Section 3.1, we assumed
that each model vector m

(l)
i of the large map is a linear combination of the

three closest model vectors m
(s)
1 , m

(s)
2 , and m

(s)
3 of the small map:

m
(l)
i = αim

(s)
1 + βim

(s)
2 + (1 − αi − βi)m

(s)
3 . (3)

The interpolation/extrapolation coefficients αi, and βi are computed for each
map unit i.

As the winner in the larger map is defined by the maximal inner product be-
tween the document vector x and the model vectors, then, according to equa-
tion 3 it is expressible as x

T
m

(l)
i = αix

T
m

(s)
1 +βix

T
m

(s)
2 +(1−αi−βi)x

T
m

(s)
3 .

Note that the inner products x
T
m

(s)
i are already known for the smaller map;

they can be stored during its computation. Hence only a cumulative sum of
three products is needed for each distance computation, irrespective of the
dimensionality of the input.

If necessary, the winner search can still be speeded up by restricting the search
to the area of the dense map that corresponds to the neighborhood of the
winner on the sparse map.

3.3 Additional computational shortcuts

3.3.1 Parallelized Batch Map algorithm

The Batch Map algorithm facilitates a very efficient parallel implementation.
The sublists of samples under the best matching models (see Figure 1) can
be implemented as pointers, and even pointers from the data vectors to the
best matching units will do. The data set can be divided in a shared memory
computer to a set of parallel processors. Each processor computes the pointers
for its data vectors, using the speedup method discussed in Section 3.2.1.

After the pointers have been computed, the previous values of the model
vectors are not needed any longer, and the new values can be computed in-
place. The mean over the sublists within the neighborhoods Ni of Figure 1
can be computed in two phases. First, the mean of data in the sublist of each
map unit i is computed with a recursive expression. Each processor computes
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the mean for a subset of map units.

Second, the mean over the neighborhood is computed as the average over the
unit-wise means within the neighborhood. This computation can be imple-
mented in parallel as well.

3.3.2 Saving memory by reducing representation accuracy

If the dimensionality of the data vectors is large, which is certainly true for text
documents, then a reduced representation accuracy is sufficient for distance
computations [1,26]. We have used a common adaptive scale for all of the
components of a model vector, representing each component with eight bits
only. This reduces the memory requirements significantly. Sufficient accuracy
can be maintained during the computation if a suitable amount of noise is
added to each new value of a model vector before quantizing it [1].

3.3.3 Utilizing the sparsity of the vectors

It is generally known that even long documents have plenty of zeros in their
word histograms as approximated by Zipf’s law, and for short documents, such
as scientific abstracts, only a small proportion of the dimensions are non-zero.
When the dimensionality is reduced by the pointer method of random projec-
tion (Sec. 2.2.2), the zeros are still predominant in the projected document
vectors.

When searching for the best matching model by inner products, the zero-
valued components do not contribute to distances. It is then possible to tabu-
late the indices of the non-zero components of each input vector, and thereafter
consider only those components when computing the distances.

3.4 Performance evaluation of the new methods

3.4.1 Numerical comparison with the traditional SOM algorithm

In order to verify that the shortcut methods do not compromise the quality,
we compared traditional sequential SOMs with SOMs computed using all the
above speedup methods.

The SOMs were computed for a medium-sized document collection (see [10]),
and the quality of the results was measured with two performance indices: the
average quantization error (distance of the inputs from their closest models),
and classification accuracy (separability of the 21 subsections of the patent
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classification system on the SOM). The parameters of SOM computation were
chosen based on preliminary experiments.

As can be seen from Table 1, the quality of the resulting maps is comparable,
but the time needed for the shortcut methods (in this rather small-size ex-
ample) is only about one tenth of that of the traditional algorithm. The time
has been measured with a SGI O2000 computer without parallelization of any
programs.

Table 1
Comparison of the new shortcut methods with the traditional SOM algorithm on a
smaller collection of 13,742 documents. The figures are averages from five test runs
with different random matrices used in the encoding of the documents, and the error
margins are standard deviations.

Classification accuracy (%) Quantization error Time (s)

Traditional SOM 58.2 ± 0.2 0.799 ± 0.001 2550 ± 40

Shortcut methods 58.0 ± 0.2 0.798 ± 0.002 241 ± 3.5

3.4.2 Comparison of the computational complexity

For very large maps the difference in the computation times is even more
marked than in Table 1, but can only be deduced from the computational
complexities given in Table 2 (for details see [10]); in our largest experiments
so far the theoretical speed-up was about O(d), that is, about 50,000-fold. In
practice the speed-up is even larger since most of the methods reported in this
section only reduce the (unknown) coefficients of the terms of Table 2.

Table 2
Computational complexity of the methods. Here N denotes the number of data
samples, M the number of map units in the small map, and d the dimensionality
of the input vectors. It has been assumed that the number of map units in the final
SOM is chosen to be proportional to the number of data samples.

Computational complexity

Traditional SOM O(dN
2)

Shortcut methods O(dM
2) + O(dN) + O(N2)

4 Text mining with document maps

In the early experiments and public demonstrations on the WEBSOM we uti-
lized collections of articles obtained from Usenet discussion groups [19,20,27–
30]. The material was selected because it was easily available, and considered
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to be challenging due to its colloquial nature which tends to make the vocab-
ularies larger.

In further experiments, various other kinds of text materials were organized,
including scientific abstracts [31,32], Finnish news articles [33] and patent
abstracts (a small experiment in [33] and a very large one in [10,34]).

In an information retrieval experiment on a small reference collection (CISI)
statistically significant improvement in retrieval accuracy was observed when
compared to the basic vector space model [35].

4.1 Largest experiment: nearly 7 million patent abstracts

The largest WEBSOM map so far consisted of 1,002,240 models (map units).
It was computed of a data base of 6,840,568 patent abstracts available in elec-
tronic form and written in English. The vector space model with entropy-based
word weighting was used for encoding the documents, and the dimensional-
ity was reduced by random projection with pointers. During computation the
SOM was enlargened three times, and all the speedup methods described in
Section 3 were utilized.

A sample view of the resulting map is shown in Figure 4. For more details
see [10].

4.2 Experiment on the Britannica collection

The collection consisted of about 68,000 articles from the Encyclopaedia Bri-
tannica, and additionally summaries, updates, and other miscellaneous mate-
rial of about 43,000 items. Some of the articles were very long, and were split
into several sections. In total, about 115,000 text items were obtained, and
each was regarded as a document to be organized by the WEBSOM.

4.2.1 Preprocessing and document encoding

The text items were preprocessed to remove any HTML markup, links, and
images. Numbers were converted into special dummy symbols. Inflected word
forms were converted to their base forms using a morphological analyzer [36].
After the preprocessing the average length of the text items was 490 words.

The total vocabulary consisted of 325,275 different words (i.e., base forms and
word forms that were not recognized by the morphological analyzer). After
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Analyzer of speech in noise prone environments
Speech decoding apparatus and method of decoding
Speech recognizer having a speech coder for an
Method of and system for determining the pitch in human speech
A method of coding a speech signal
Low bit rate speech coding system and compression

Method for testing speech recognisers and speaker
Speech recognition device
Speech analysis method and apparatus
Speaker adapted speech recognition system
Speech input device in a system of computer recogn
Single picture camera with image and speech encod
Speech adaptation system and speech recognizer

Descriptive words:
speech, signal, code, noise

(a)

speech, input, recognition, pattern
(b)Descriptive words: 

speech recognition
Keyword search:

Fig. 4. A map of 7 milllion patent abstracts. A search for the words ’speech
recognition’ was performed on the map of nearly 7 million patent abstracts. The
best-matching map units are marked with circles on the map display. A detailed
view of an area appears upon clicking the map display. The results of the search are
located in several clusters of the map, two of which are looked at here more closely.
Some of the titles of patents on each cluster are shown in the insets. The lists of ’de-
scriptive words’ as well as the labels on the map display are produced automatically
using the labeling method [32]. Note that in the inset (a) the emphasis is on the
signal aspect of speech, whereas in (b) there are patents concerning speech input
devices as well as recognition methods.

removing a list of 107 stopwords and the words occurring less than 30 times
in the corpus, the remaining vocabulary consisted of 39,058 words.

The documents were encoded as random projections of the word histograms
(cf. Sec. 2.2.2). The end dimension of the projection was 1000 and the number
of ones in each column of the sparse random projection matrix was three. The
IDF method was used for weighting the words (cf. Sec.2.3.1).
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4.2.2 Construction of the map

The map of the size of 72x168 units was created by two-stage magnification,
first from 6x14 to 24x56 and then to the final size. The batch map algorithm
and speeded winner search were utilized for fast convergence of the map, and
the model vectors were represented using reduced accuracy to decrease the
memory requirements.

4.2.3 Obtaining descriptive labels for text clusters and map regions

Since the document maps can be very large it is extremely helpful for the user
if the contents of a map region or an individual map unit can be characterized
concisely. The characterizations can, for example, be used to label regions
of a document map display. The method introduced in [32] produces such
characterizations; here we will describe it briefly.

For a text cluster, characteristic words that describe it can be obtained using
the following measure of goodness G:

G(w, j) = Fj(w)
Fj(w)

∑
i Fi(w)

, (4)

where Fj(w) is the proportion of the occurrences of the word w of all words
in cluster j. The measure compares the relative number of occurrences to the
other clusters. However, often the cluster borders are not clearly defined, but
instead rather fuzzy, and then it would be desirable to compare to distant
clusters only. When the clusters are ordered, as is the case with the regions
of an ordered document map, this fuzziness can be taken into account in the
keyword selection. This is done by leaving out a so-called neutral zone between
the cluster to be labeled and the rest of the collection. A further advantage of
the ordering is that when labeling a large document collection, the granularity
of labeling (the size of the cluster being labeled) can be varied according to
the viewing depth (or degree of zooming) of the map display.

Table 3 lists some examples of sets of descriptive words obtained for individual
map units on the Britannica map picked up from different clusters.

4.2.4 Exploration of the map

Figure 5 shows an example on how the ordering of the map may be useful for
examining a topic. In this case the label that was found to be interesting when
viewing the whole map display was ’shark’, and clicking it led to a map region
with information on various species of fish as well as many other animals.

As with the patent abstract map, one can also locate interesting starting-points
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 guira 
 Hawaiian honeycreeper 
 siskin 
 kingbird 
 chickadee

 cacique 

      bird, yellow, species, black, kingbird,
      hawaiian, bill, inch, family, have 

Descriptive words:

Articles:

 chondrichthian : General features 
 leopard shark 
 soupfin shark 
 shark 

 fox shark 
Articles:

 glowworm
 bagworm moth 
 caddisfly : Natural history 
 damselfly 
 lacewing 
 neuropteran : Natural history 
 mantispid 
 strepsipteran 
 homopteran : Formation of galls 

      shark, fish, species, ray, many,
      water, feed, have, attack, use

Descriptive words:

      insect, adult, lay, other, water
      larva, egg, female, species, aphid,

Descriptive words:

Articles:

 bull shark 

 Cambyses I 
 chondrichthian : Natural history 
 blacktip shark 

 shark : Hazards to humans. 

 shark : Description and habits. 

 chondrichthian : Economic value
       of rays

Fig. 5. A close-up of the map of Encyclopaedia Britannica articles. The user has
clicked a map region with the label ’shark’, obtaining a view of a section of the
map with articles on sharks, various species of fish and eel (in the middle and left);
insects and larvae (lower right corner); various species of birds (upper right corner);
etc. Searches performed on the map confirm that also whales and dolphins can be
found nearby (not shown). A topic of interest is thus displayed in a context of related
topics. The three insets depict the contents of three map units, i.e., titles of articles
found in the unit. By clicking the title, one may read the article. The ’descriptive
words’ list was obtained with the labeling method (Sec. 4.2.3) and contains a concise
description of the contents of the map unit.
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Table 3
Sample sets of descriptive words for Britannica map units.

mountain alp range high foot valley air winter avalanche snow

africa soil vegetation basin african resource animal formation crop transport

century church utrecht town museum city hall st centre flemish

island turkish have greek cyprus corsica lesbos plain coast sector

century city roman town italy bc cathedral etruscan

al gulf kuwait emirate mile bahrain persian island km square

conservation resource national park use natural soil area water reserve

for exploration by performing a search on the map, as shown in Figure 6.
Three different aspects of a search on ’whale’ are found in three separate
clusters of hits. The cluster containing articles on different kinds of whales,
their properties and habitats lies near the ’shark’ region depicted in detail in
the Figure 5, which indeed seems proper.

4.3 Semantic and pragmatic analysis of words

4.3.1 Providing suggestions for domain-specific concepts

Often local regions of the organized document map can be seen to form topical
clusters of texts. On a sufficiently large or specific text collection such clusters
can be very specific, sometimes corresponding to domain-specific concepts.

In an ongoing collaborative project, where the purpose is to analyze a large
customer query data set, and to eventually forward customer queries auto-
matically to an appropriate customer servant, document maps have been used
for organizing the queries and the responses. Next, the lists of topic descriptor
words obtained automatically using the labeling method described in Section
4.2.3 are used as ’raw topical concepts’. The suggested raw concepts are exam-
ined by a computational linguist, who then decides on a set of central concepts
specific for the helpdesk application.

4.3.2 Terminological analysis using a document map

By terminological analysis we mean the study of terms, i.e., words or ex-
pressions that have some precise meaning, often specific to a science, art, or
profession (definition from the Britannica dictionary). In particular, we are
interested in terms made up of two or more words. Examples of such terms
are ’color display’ and ’speech recognition’. In both cases the individual words
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"whale"
Search:

(b)

(a)

(c)

habitats

Whales from the perspective

whales, their properties, and
of biology, different kinds of  

Conservation of nature in
general, Whaling agreement,
Territorial limits and marine
resources

Modern whaling, primitive
whaling, harpoons,  eskimos

Fig. 6. The map of Encyclopaedia Britannica articles where the results of a search
for ’whale’ are depicted. Three different aspects regarding whales are indicated in
the insets.
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that make up the term are rather common and can be considered rather pol-
ysemous.

To study a term, one may perform a keyword search for the combination of
words on a document map. Visualization of the results on the map display
(see, e.g., Figure 4) often reveals sets of responses that are clustered together
on the display. Upon examining an individual response cluster it appears that
typically a cluster reveals either the use of the word combination as a precise
term, or the use of the two words in some of their other, individual meanings,
whereas more rarely a mixing of both cases.

To understand why this is so, consider that a polysemous word is typically
used in only one meaning per discourse and therefore per document. If, as
claimed, on a large collection the document map regions form coherent top-
ical or discourse-specific clusters, it should then follow that a specific region
contains examples of a specific meaning corresponding to a term or a word.
Different clusters of the term on the map, on the other hand, may correspond
to different meanings of the term.

4.4 Related work on ordered document maps

In an early study Lin formed a small map of scientific documents based on
the words that occurred in the titles [37,38] and later extended the method
to full-text documents [39]. Scholtes has utilized the SOM in constructing a
neural document filter and a neural interest map [40]. Merkl has organized
software library components [41–43] and studied hierarchical document map
formation [44–46]. Document maps have also been created by Zavrel [47].
A system rather similar in appearance to the WEBSOM has been used to
organize collections of scientific articles in the field of astronomy [48,49]. The
Arizona AI group has utilized the SOM for categorizing Internet documents
to aid in searching and exploration in a system called the ET-Map [50,51],
for adaptive visualization of search results [52,53], and as part of a specialized
application for medical data mining on the Internet [54]. Recently in [55] a
commercial system was described that applies the SOM for creating document
maps.

In the Themescape method an ordered document landscape is produced by
a fast clustering and projection method [56]. In a promising new approach
an ordered document maps is constructed by utilizing a probabilistic model
instead of the vector similarity-based representations and clustering methods
[57].

Self-organized document maps have also been applied for obtaining topically
focused statistical language models intended for large vocabulary speech recog-

19



nition [58]. The experiments were carried out on English patent abstracts and
Finnish news articles, and a considerable improvement was observed in a word
prediction task compared to an unfocused model, or a model focused using a
prior categorization.

5 Conclusions

In a number of studies on different text collections the WEBSOM method
has been shown to be robust for organizing large and varied collections onto
meaningfully ordered document maps. The developed computational speedups
enable the creation of very large maps. The topically ordered document maps
with a suitable user interface provide a tool usable for a combination of vi-
sualization, search, and exploration tasks. The combination offers a new way
of interacting with large and varied text repositories. In this article we have
described our most recent application of the method, namely the creation of
a document map of the Encyclopaedia Britannica articles.

In addition to practical text mining with the purpose of retrieving knowledge
about the world the document maps may provide a valuable tool for the the-
oretical analysis of language, in particular for the semantic and pragmatic
analysis of words and multi-word terms.

The visualized similarity graphs appear to be especially suitable for interactive
data mining or exploration tasks in which the user either does not know the
domain or the full-text database very well, or has only a vague or preliminary
idea of what “interesting information” would be like.
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