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Helsinki University of Technology

Laboratory of Computer and Information Science

Neural Networks Research Centre

P.O. Box 5400

FIN-02015 HUT, FINLAND

January 2005

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science
Report A75





Contents

Preface 1

1 Adaptive and Statistical Approaches to Conceptual Modeling 3

Timo Honkela, Krista Lagus and Jaakko Särelä . . . . . . . . . . . . . . . .
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Preface

This book is based on the seminar “Adaptive and Statistical Approaches to Conceptual
Modeling” that was organized by the Laboratory of Computer and Information Science at
Helsinki University of Technology during autumn 2003. The participants of the seminar
were senior and young researchers who all had previous experience on either the concep-
tual modeling aspect or the methodological aspect of the topic. One of the starting points
for the seminar was the long tradition on statistical machine learning research in the lab-
oratory. (Kohonen, Oja, etc.) Another important point of view was the special emphasis
on Peter Gärdenfors’ theory on conceptual spaces (Gärdenfors, 2000).

Figure 1: Participants of the second miniconference of the seminar on 16th of January
2004. Standing, from the left: Vibhor Kumar, Rong Yang Zhi, Mikko Määttä, Ville
Tuulos, Jukka Perkiö, Sakari Virkki, Mathias Creutz, Juha Raitio, Jaakko Särelä, Kevin
I. Hynnä, Ricardo Vigário, Jan-Hendrik Schleimer, Harri Sulkava and Mikko Berg. Sitting,
from the left: Krista Lagus, Peter Gärdenfors and Timo Honkela. Persons missing from
the photograph: Tarja Knuuttila and Aarno Lehtola. Photograph by Aarno Lehtola.
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Chapter 1

Adaptive and Statistical
Approaches to Conceptual
Modeling

Timo Honkela, Krista Lagus and Jaakko Särelä

Conceptual modeling is a task which has traditionally been conducted manually. In arti-
ficial intelligence, knowledge engineers have written descriptions of various domains using
formalisms based on predicate logic and other symbolic representations such as seman-
tic networks and rule-based systems. The development of expert systems in 1980s was
a notable example of such efforts. As modern, related attempts, the Semantic Web and
knowledge representation formalisms like extendable markup language (XML) can be men-
tioned.

It seems that the complexity and changing nature of most of the domains makes such
formalisms problematic in many real-world applications. Our basic aim is to provide the
means for a more or less automatic process of concept formation. This will facilitate
both cost-effective development of knowledge-intensive systems as well as serve as a good
basis for systems that can update themselves taking into account changes in the domain
of interest. We also attempt to tackle some traditional issues in philosophy of language
and epistemology. One of our initial contentions is that semantics cannot be adequately
handled within a “Language of Thought” framework by Fodor (1975) and others.

The traditional symbolic approach has concentrated on the linguistic domain. Therefore,
the models often lack the connection to the perceptual domain. A certain derivative of
Platonic idealism has been in use: it has been assumed that knowledge can be represented
as propositional structures that are based on static shared concepts. It has been common-
place to assume that there is a one-to-one correspondence between words and concepts
(early Wittgenstein). Moreover, it is assumed that a concept refers unambiguously to a
number of distinct objects or events in the reality. The individual differences are assumed
to be small and explained as errors. A similar notion in linguistics is the distinction into
competence and performance (Chomsky 1965). Due to the lacking link to the perceptual
domain it has been natural to use static models. Traditional model based on symbolic
representations lack, among other things, symbol grounding (cf, e.g., Harnad 1989).

A problem often neglected in symbolic knowledge representation tradition is subjectivity.
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For us, it seems more and more evident that major portions of individual conceptual
systems are learned. Due to the individual and cultural differences, e.g., in phoneme
categorization and color naming, it is hard to believe that concepts could be modeled with
static structures without making use of adaptive processes.

The ease with which humans classify and describe patterns often leads to the incorrect
assumption that this capability is straightforward. There has been a large body of research
on pattern recognition that has highlighted the complexity of our perceptual processes.
For instance, to interpret a natural scene, a human being utilizes the information provided
by 6 million cones and 120 million rods in the retina (Kalat 1995). Similarly, a complex
analysis problem arises from the situation in which a digital image of several million
picture elements need to be analyzed. Interpreting any pattern of the basic perception as
an object is made difficult, for instance, by different lighting conditions, partial occlusion,
pattern distortions. In his seminal work, Marr (1982) developed a computational theory
of visual processing including the representation of objects to facilitate recognition.

Statistical and adaptive approaches have been used successfully to develop artificial pat-
tern recognition systems (see, e.g., Schalkoff 1992, Theodiridis and Koutrombas 1999).
There are computational models of many human perceptual processes including vision,
speech and touching. Industrial applications include speech recognition, recognition of
handwritten characters, computer vision for quality analysis and fault detection, image
recognition (e.g. faces), and robot grasping.

The traditional approaches in artificial intelligence and conceptual has been based on the
idea that the world consists of discrete objects (Platonic idealism). In contrast, the sta-
tistical and adaptive approach follows the Aristotelian empiricist tradition (Dreyfus and
Dreyfus 1990). Maturana and Varela (1980) and Von Foerster (1981) point out that cog-
nitive, living agents construct their description of the world, and this description consists
of constructed categories such as objects and events along with their associated subcate-
gories. Each of those constructions is subjective but at the same time their formation is
based on the interaction with other agents as well as artefacts that reflect the structural
characteristics of the constructions of other agents.

The statistical approaches have concentrated on modeling the perceptual processes. How-
ever, evidently the cognition includes both linguistic and perceptual skills. There have
been attempts to create hybrid models that apply statistical methods on the lower-level
perceptual processing but also allow a symbolic interpretation (see e.g. Wermter and Sun
2000). An attempt to provide a concise descriptive framework for the integration of the
neural, conceptual and symbolic levels of representation is presented by Gärdenfors (2000).

In summary, we consider the development and application of adaptive and statistical
methods for conceptual modeling to be particularly important. Probability theory is
an excellent model for dealing with noisy and ambiguous phenomena, such as language.
Probabilistic models of linguistic structure exist at every level (phonology, morphology,
the lexicon, syntax, discourse). Furthermore psycholinguistic research has shown that
probabilities play an important role throughout language comprehension, production and
learning.

Statistical and probabilistic approaches are nowadays rather widely used in natural lan-
guage processing (Manning and Schütze 1999). Specific examples include methods such
as Bayesian methods for spam filtering, Latent Semantic Analysis (LSA) for information
retrieval applications, and Hidden Markov Models for speech recognition.

In this publication, adaptive and statistical methods are considered within the area of



semantics, in particular. An important aspect is emergence: how representations emerge
through a learning or analysis process. Specific topics include emergence of structure
(Chapter 2), similarity of emergent representations (Chapter 3), modeling of concepts
that are based on multimodal domains (Chapter 4), representation of action (Chapter 5),
and category learning (Chapter 6).
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Chapter 2

Emergence of Structure and
Relations in Conceptual
Representations

Krista Lagus, Aarno Lehtola, Mikko Määttä and Sakari Virkki

2.1 Introduction

Concepts have been studied with different aims and emphasis in many fields of science,
from philosphy, psychology and linguistics to the very technical and practical fields. In
the former fields the emphasis is on the internal cognitive representations in human minds:
what are the representations like and how do they form. In the technical fields concepts and
structures related to them are needed in many practical applications where information
must be represented and exchanged.

We will review literature on concepts and their structure from four seemingly distant
perspectives. The aim is first to clarify the concept of structure in the context of conceptual
representations, and to create a unifying approach for the remaining chapter. Second to
view how structures are explained and presented in selected psychological theories. Third
to view how structures might emerge from natural or textual data in selected statistical
and neural learning methods. Fourth to view how structures are discovered from textual
sources for the purposes of practical engineering or language applications.

By taking a wide perspective on the question of concepts and their structure we wish to
aid the cross-fertilization of ideas in different disciplines.

2.1.1 What is structure?

One can easily find many intuitively appealing definitions of structure in various sources,
including the internet. There seems to be no common agreement on the concept of struc-
ture, which can be readily noted from the following list of sample definitions:

• ”Structure is sort of permanence that makes changes difficult.”

• ”Structure is a complex of events interacting to form a stable pattern.”
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• ”Structure is dually composed of schemas and resources.”

• ”Structure is the path of least resistance.”

• ”Structure is an entity formed by the influence the parts have on each other and on
the whole.”

• ”Structure is defined as a locally regenerative pattern integrity of Universe.”

• ”The concept of ”structure” is a complex one and I don’t intend, for the moment, to
explore its many depths and facets in great detail. One way of thinking about the
concept, however, is to see it as a framework of rules and relationships, in the sense
that all relationships are governed in some way by rules of behaviour.”

While all the definitions bear some relevance regarding the subject, most of them are not
elaborable for further use. In order to tackle ”emergence of structure” instead of merely
”structure” we needed more precise and structured conceptual tools. Van Aken (1978)
has presented a structured set of “system concepts” that we find very useful in defining
and clarifying the objective of this chapter.

2.1.2 Definitions

• Element — ”An element is the smallest entity considered in an argument.” (Aken,
1978)

This definition brings some insight in the controversy between concepts, properties
and attributes. It is all about the chosen level of abstraction and levels of detail.
From a more detailed level attributes can be considered as concepts and from a
higher level concepts can be considered as attributes or properties.

• Set — ”A set is a collection of elements” (Aken, 1978).

• Relation — ”Relation is a link, connection, ratio, proportion, act, transition, trans-
action, etc. that can connect elements.”

This (our) definition of relation is a tentative one and lacks the compactness of
definitions of van Aken, but is sufficient here. From the example in Fig. 2.1 one can
easily note that most of the relations are dualistic in nature. For example one can
state that concept shapes ”includes” concept circle, but concept circle ”is member
of” concept shapes. It is arguable whether relations ”includes” and ”is member of”
are different aspects of one relation or two directed, distict relations. We take a
dualistic view and consider ”includes” and ”is member of” as two different aspects
of one relation. This is motivated by the fact that ”includes” always carries ”is
member of” as it counterpart. This also means that the interpretation of a relation
depends on from which end of the relation one reads it.

includes

is member of 
CIRCLESHAPES

Figure 2.1: A sample relation.



There are also relations that are seemingly not affected by this dualism. For example
relation ”is equal to” is the same in both directions. Without going any further our
main conclusion here is that from now on, relation is regarded as the constituent of
structure.

• System — ”A system S is a set E of elements with a set R of relations between
the elements, R having the property that all elements of E are directly or indirectly
related.” (Aken, 1978)

• Structure — ”The structure of a system S is the set R of relations of its elements
with other elements. The internal structure Ri is the subset of R containing the
relations between the elements of S. The external structure Re is the subset of R
containing relations of S with elements outside S.” (Aken, 1978)

This definition of structure finally captures the objective of this chapter in an elab-
orate way. However, it is important to note that since the division of relations into
internal and external relations depends on the object system, demand for discipline
and preciseness in the definition of it (object system) is crucial. For example, if we
select the society as an object system then relations between humans are considered
internal, but if we take a human as an object system then relations between humans
are considered external. Being precise with the object system clears a lot of con-
fusion between internal and external relations. This definition of structure is used
to evaluate selected psychological theories, selected technologies and text analysing
methods in respect to structures in the Sections 2.2, 2.3, and 2.4.

• Concept — Traditionally concept is defined as follows: ”Concept is constituted by
two parts: its extension which consists of all objects belonging to the concept, and
its intension which comprises all attributes shared by those objects.”

Surprisingly this definition totally ignores the context of the concept. We could not
help thinking that also the context is a key constituent to interpret the meaning of
a concept. Since concept is also a data structure we decided to apply the definitions
above to define the concept of concept:

”Concept is a data structure defined by its set E of elements, its internal relations
Ri and its external relations Re that connect it to other concepts.”

As an example, one can think of elements E and relations Ri forming the properties
and attributes of the concept, and other concepts and relations Re forming the con-
text of the concept. But, as was noted in connection with the definition of Element,
depending on the level of abstraction attributes can be considered as concepts and
concepts can be considered as attributes or properties. This means that the internal
relations Ri are also, in addition to Re, in fact relations between concepts. The
relevance of this point will become apparent in Section 2.2.

This is also a new way to define the concept of concept without the use of intension
and extension. It also gives a role to internal relations Ri in the interpretation of
concept: even if two entities (concepts) share the same attribute, the attribute can
be shared in many different ways as described by the internal relations. Thus sharing
the same attributes does not necessarily mean that the intensions are the same since
internal relations can differ.

This definition of concept is on the constructive-operational level. At this point and
for the purpose of this chapter we try to avoid a more semantic and more teleological
definition of concept of concept. This definition serves the purpose to understand
the role of structures (ie. relations) within the concept of concept itself.



As an example of the application of the definitions above in Fig. 2.2 we present an EAR
(entity-attribute-relationship) model of how the task of writing this chapter can be struc-
tured.

WRITER

ARTICLE

writes

uses 

is used

1−5 1−4

C

is used in

is written by is combination of

APPROACH

1−
n 

   
  1

−m
1−m

       1−n

DATE: 23.3.2004

in conceptual representations"

SUBJECT:

by

 
 

 

C

"Emergence of structure

LOGY

SYSTEMS

THEORY

COMPUT−

ANALYSIS

TEXT

METHODS

ATIONAL

PSYCHO−

AARNOKRISTA SAKARIMIKKO

SPACES

CONCEPTUAL

Figure 2.2: An example of conceptual structure depicted using the EAR formalism. A
circle marks an entity (in practice often concepts), The letter C corresponds to classifi-
cation, a thin line a lateral relation, a thick line abstraction/hierarchy relation (Re), the
black box is attribute that describes the properties of the concept, and the boxes on the
relations are attributes that describe the cardinality of the relation.

2.1.3 Structure of the remaining chapter

In Section 2.2, we review selected psychological and philosophical theories and look at how
concepts and their relations are explained and presented in them. In particular, we wish
to find out whether the theories consider the issue of emergence of structure, or whether
the idea of emergence is at all compatible with the theory.

In Section 2.3, based on treatments in the previous sections, in particular Gärdenfors’
model of conceptual spaces, we suggest a set of subtasks in the emergence of structure. We
then review work on several (mainly unsupervised) learning methods, including SOM, ICA,
IVGA, and probabilistic modeling, as potential models for performing various subtasks.
We discuss how concepts, their internal structure and external relations might emerge
autonomously from natural or textual data in these models.

In Section 2.4, we look at ontology discovery from text. The aim in this field is to derive
what in the technical domain are called ontologies, that is, descriptions of concepts and



their relations1 Typically the concepts themselves are given, and the task is to discover
relations between the concepts for the practical purposes of various language applications.
Manual specification of concepts and their relationships is slow and expensive and there is
a wide interest in developing machine learning tools for the task. Nevertheless currently it
is common to utilize considerable amounts of heuristics to obtain the desired quality and
coverage of the results.

Finally, we summarize our findings and contributions.

2.2 Conceptual Structure in Psychology, Philosophy and
Linguistics

In this section we will discuss views of what concepts are. More particularly, in In Sec-
tion 2.2.1 we look at views of what concepts are. Various theories of their internal structure
are then briefly introduced in Section 2.2.2. In Section 2.2.3 we discuss how the theories
treat the formation of the structure.

A more specific cognitive model, the Conceptual Spaces model of concepts and their
structure is considered in Section 2.2.4. In Section 2.2.5 we will briefly discuss some
linguistic theories of case frames that have a connection to external relations. Finally, we
summarize our findings on relations in concept theories in Section 2.2.6.

2.2.1 Concepts, Structure and Relations

In modern cognitive psychology and mostly in philosophy, too, concepts are considered to
be mental representations instead of, for example, abstract entities (Laurence & Margolis,
1999). Concepts can be thought of as mental representations that correspond to a class
of objects in the world and store information about those objects (Murphy, 2002). This
characterization focuses on the concepts of concrete objects and leaves out more abstract
concepts whose referents can’t be identified with objects. This is however the focus of
most of modern psychological research of concepts (Murphy, 2002), so this chapter will
also focus on these kinds of concepts.

The internal structure of concepts (Ri)

Most theories of concepts in psychology and philosophy assume that concepts have some
kind of internal structure (Laurence & Margolis, 1999), so it is natural to ask what kind
of structure concepts have. Laurence and Margolis (1999) differentiate two ways in which
concepts can have structure. Although Laurence and Margolis talk explicitly about rela-
tions only in the second case, both of their models can be interpreted to claim that the
internal structure of a concept is constituted by its (internal or Ri) relations to other con-
cepts. These other concepts can also be called the attributes or properties of the concept
in question, although attributes and properties are usually thought of as just concepts
themselves.

1It should be noted that the use of the term “ontology” differs in the technical and philosophical

domains.



The containment model. The first model Laurence and Margolis dub the Containment
Model. According to this model, a concept is a structured complex of other concepts in
the sense that it has some other concepts as its proper parts. For example, if the concept
c has the concepts x, y and z as its proper parts, c can be said to be a structured concept.
This kind of structure implies that whenever one entertains the concept c, one also has to
entertain the concepts x, y and z. The relation between the concepts in this case, then,
is the containment relation.

The inferential model. Laurence and Margolis call the second view the Inferential
Model. In this case, a concept’s structure is constituted by its inferential relations to
other concepts. So, if one knows, for example, that concept c has a definition (c =df x,
y, z), and one knows also that a certain object can be categorized as a c, then one can
infer that the concepts x, y and z apply to the same object (this follows from the nature
of definitions). Note that on this view, entertaining the complex concept doesn’t entail
entertaining the constituent concepts. One can perfectly well think about c:s without
thinking about x:s, y:s and z:s.

Relations to other concepts (Re)

In addition to what were in Section 2.1.2 dubbed internal relations (Ri) that constitute
a concept’s structure, a concept can have relations to other concepts that are better
described as external relations (Re). By external relations we mean the relations between
concepts that are not the property or attribute relations ”is-contained-in” or ”can-be-
inferred-from”. In psychology, by far the most studied of the external relations are the
taxonomic or hierarchical relations ”is-a-superordinate-category-of” and ”is-a-subordinate-
category-of”, so we will focus on them here.

The following description of the hierarchical structure of the human conceptual system is
based on Murphy’s (2002) exposition. The hierarchy consists of inclusion relations between
categories or concepts. For example, the category of animal includes all mammals, which
in turn includes all dogs and so forth. Psychologists usually consider one particular level
of the conceptual hierarchy to be especially important. This level is called the basic level.
The levels above the basic level are called superordinate levels and the levels below are
called subordinate levels. Below are examples of concepts at the different levels:

The three levels of the conceptual hierarchy

1. Superordinate level (furniture)

2. basic level (chair)

3. subordinate level (an ergonomic working chair)

The basic level. The basic level is a privileged level in the sense that it is the level
whose concepts people mostly use. Here are a few examples: People mostly talk about
”chairs” and rarely about ”furniture” or specific species of chairs when they are talking
about a chair. Parents also use mostly basic level categories when talking to their children.
Another example of the basic level effect is that when asked, people list many more common
features for concepts at the basic level than for objects at the superordinate level, and
only a few features more for concepts at the subordinate level.



Explanation of the basic level effects. Murphy (2002) explains the basic level effects
in terms of the informativeness and distinctiveness of basic level concepts. He calls the
explanation the differentiation explanation.

Informativeness means that the concept in question contains a lot of information about
the category. Both basic level and subordinate level concepts usually contain a lot of
information that applies to all (or most of the) category members, but the superordinate
category doesn’t. When one knows an object to be a piece of furniture, one doesn’t know
much about its features (chairs, beds and lamps are quite different).

Distinctiveness refers to the fact that basic level categories don’t have many of the same
features that other categories at the same level have. Chairs and lamps (both are furniture)
don’t share many features. In contrast the subordinate categories do have a lot of features
in common, so they are harder to distinguish.

Put together, informativeness and distinctiveness explain why people usually prefer the
basic level concepts.

2.2.2 Theories of the Internal Structure of Concepts (Ri)

Next we will present brief summaries of the major theories of the internal structure of
concepts that philosophers and psychologists have considered.

The classical or definition theory

Until relatively recently, the idea that the mental representations of concepts are definitions
was widely accepted in both philosophy and psychology. Murphy (2002) claims that this
view was implicitly assumed in psychological concept learning studies from the 1920’s to
the 1970’s. Laurence and Margolis (1999) summarize this view as the claim that concepts
encode a set of necessary and sufficient conditions for the concepts’ application.

Criticism of the definition theory. In the 1970’s, this view became unpopular in
both psychology and philosophy. Laurence and Margolis (1999) give six main reasons for
the demise of the definitional or classical view of concepts. These can be divided into
philosophical and empirical (psychological) reasons.

The philosophical objections are:

• Very few definitions have been found. It has been extremely difficult to find defini-
tions for most of the concepts people use by analyzing the concepts.

• The analytic/synthetic distinction is not principled. Quine (1953) has argued that
in scientific theories there is no principled way to make the distinction between
analytically true (true in virtue of meaning alone) and synthetically true (true in
virtue of something else than meaning, experience, for example) statements. Because
definitions are considered to be analytically true statements, Quine’s critique has
been interpreted by many to imply that there is no principled way to form definitions,
either, and hence concepts can’t be definitions.

• Concept possession can’t be a matter of knowing a description (or any description for
that matter), because people often have erroneous beliefs about the entities that fall



under a concept, and sometimes they are completely ignorant about those entities’
properties. In spite of this, in many such cases one would be inclined to say that
these persons nevertheless possess the concepts in question.

The empirical objections are:

• Differences in the complexity of concepts don’t show in psychological processes.
For example, the processing of allegedly structurally complex concepts doesn’t take
longer than allegedly simple concepts, which has been demonstrated in reaction time
studies.

• The boundaries of categories are not sharp. The definition theory predicts that the
boundaries of concepts’ extensions (the class of entities that fall under the concept)
should be sharp: No fuzziness is allowed. This is, however, not the case. People are
uncertain whether or not certain borderline cases belong to a category or not.

• Some members of a category are more typical than others. The definition theory also
predicts that belonging to a category is an all-or-nothing matter. A large number of
psychological studies show that people generally take some members of a category
to be better examples of the category than others. These phenomena are called
typicality effects.

The prototype theory

Mainly for the last two reasons the definition theory has been abandoned in experimental
psychology of concepts. The dominant views in the last two or three decades have been the
prototype theory and the exemplar theory. According to Murphy (2002), in the prototype
theory a concept is a mental representation that is composed of a list of features. Thus, a
prototype resembles a definition in many ways. The crucial difference is that the features
that a prototype contains are not considered to be necessary for the concept. Each feature
has a weight value that reflects its importance in the category. In fact, the weight reflects
how common the feature is among the category members.

The exemplar theory

The exemplar view differs from the prototype view in that no summary representation
is assumed. Instead, the category is represented by multiple exemplars of the category
members. It is noteworthy that the exemplars themselves are not summary representations
of encountered individuals. According to the exemplar theory, people store actual, separate
encounters with a certain dog, for example. (Murphy, 2002)

The knowledge approach

A third major strand in recent psychological study of conceps is the knowledge approach,
also known as the theory theory (Murphy, 2002). According to Murphy (2002) the knowl-
edge approach is not a full-fledged theory of concepts. Rather, the researchers emphasize
the importance of background knowledge to various conceptual phenomena.

For example, Wisniewski & Medin (1994) studied the effect of background knowledge on
feature analysis of stimuli. They found that the subjects clearly analyzed the stimuli



(pictures drawn by children) differently depending on the information they got prior to
the presentation of the stimuli. One group of subjects were told that the pictures were
made by either creative or noncreative children, whereas another group were told only
that the pictures were made by two groups of children. The first subjects listed many
more abstract features of the pictures than the second subjects.

This study highlights the difficulty of the experimental research of human conceptual
representations. It also sheds doubt on some other experimental results in the field, such
as those about different numbers of features shared on different category levels, discussed
earlier in Section 2.2.1.

Conceptual atomism

The above theories all assume that the mental representations of categories are structured
in some way or another. In the literature, there is one notable exception to this consensus.
Conceptual atomism is the view that most lexical concepts don’t have internal structure.
Lexical concepts are concepts that usually correspond to lexicalized morphemes in natural
languages (Laurence & Margolis, 1999). Conceptual atomism has been most prominently
defended by Jerry Fodor (1998). Fodor’s alternative to the dominant theories is that lexical
concepts have no internal structure, hence they are atoms or primitives. Fodor arrives at
this conclusion because he sees it as the only alternative that is left after the other theories
have been shown to be incorrect. First of all, he agrees with much of the criticism mounted
against the definition theory, and second of all, he claims that the concepts of prototype
theory (Fodor seems to consider exemplar theory to be a variant of the prototype theory)
aren’t compositional, which means very informally that they can’t be combined in the right
way to form complex concepts. The main problem with prototypes is that the prototypes
of complex concepts can’t be derived from the prototypes of constituent concepts in any
lawful way, which in turn is required to explain (among other things) the productivity of
language and thought.

2.2.3 Formation of Conceptual Structure

The question of how conceptual structure emerges or is formed can be viewed from the
perspective of internal or external relations. So two questions about the formation of
structure can be asked. The first question concerns how, given a certain set of features
or concepts, these features or concepts are combined (by forming relations between the
concepts) to form new concepts, i.e. how the internal relations of a concept are created.
This is the process normally referred to as concept learning. The second question concerns
the formation of a concept’s external relations.

Concept learning

The first question is the most studied one in the psychology of concepts. Laurence and
Margolis (1999) describe the process of concept learning as the process of assembling
or combining together the features of the concept. The learner notes which features go
together in the world and builds the concept out of these correlations.

The concept learning experiment. The above view is compatible with the descrip-
tion that Murphy (2002) gives of the typical concept learning experiment. According to



Murphy, the concept learning experiment is a situation in which the subject of the exper-
iment is presented with a series of stimuli, often simple geometric shapes that vary on a
few dimension like shape and color. Usually the task of the subject is to categorize the
stimuli into two categories. After each stimulus, the subject makes a categorization deci-
sion and gets feedback from the experimenter concerning the correctness of the decision.
This pattern is repeated until the subject can categorize the stimuli correctly or a certain
number of trials is reached, in which case the subject either has learned the concept or
hasn’t. Fodor (1981) emphasizes that the subject makes hypotheses about the features
that are relevant for the concept, tests these hypotheses and adjusts them according to
feedback.

Category construction. The noteworthy detail in the concept learning experiment
is that the subject receives feedback on her categorization decisions. This is, however,
usually not the case in real-life concept acquisition (Murphy, 2002). This unsupervised
concept learning situation Murphy (2002) dubs category construction. In psychology, this
is a much less studied strand of concept acquisition than supervised learning.

The formation of external relations

We now turn to the third question presented at the beginning of this section, the question
of how the relations between concepts that are external to the structure of a concept are
formed. In Section 2.2.1 it was noted that psychologists have mostly studied the external
relations associated with conceptual hierarchies. Next we will give a suggestion of how
these relations could be formed based on Murphy’s (2002) description of the conceptual
hierarchy.

Formation of hierarchical relations. Murphy claims that psychological studies favor
the view of hierarchy representation according to which hierarchical relations are not
explicitly represented. According to this view, concept a is the superordinate concept of
concept b if the features of a are a subset of the features of b. Thus, a subordinate concept
has all the features of its superordinate plus some others. So maybe super-/subordinate
relations don’t have to be learned explicitly. It could be enough to learn the concepts
separately, and when the relations are needed they can be constructed from the structure
of the concepts.

2.2.4 Relations in the Conceptual Spaces Model

Gärdenfors’s model of conceptual spaces (Gärdenfors, 2000) cannot be reduced to any of
the standard philosophical theories of concepts. However, as he points out, several aspects
of the Prototype theory of concepts can be explained with his theory of properties. The
theory proposes a conceptual level of representation between a neural level and a symbolic
level, and suggests that the connection between the conceptual and the neural levels is
mediated by prototypes.

Central terms regarding the Conceptual level

• Quality dimensions. Quality dimensions are geometric or ordered representa-
tions of qualities or possible values of attributes. As examples of quality dimensions



closely connected to the sensory system Gärdenfors mentions temperature, weight,
brightness, and pitch. An example of a more abstract dimension is physical or
social force that may be exerted. By virtue of the geometrical representation, the
dimensions provide a way for making judgements of similarity and difference by mea-
suring distances. The similarity judgements in turn give rise to an ordering relation
among stimuli. Gärdenfors emphasizes the phenomenal or psychological rather than
scientific nature of these dimensions: ”When the dimensions are seen as cognitive
entities-that is, when the goal is to explain naturally occurring cognitive processes-
their geometrical structure should not be derived from scientific theories that at-
tempt to give a ’realistic’ description of the world, but from psycho-physiological
measurements that determine how our phenomenal spaces are structured.”

• Domain is a set of integral quality dimensions that are separable from all other
dimensions. For example, colour is a domain consisting of the integral dimensions
hue, chromaticity, and brightness that are presumably separable from other quality
dimensions. As another example, the shapes of physical objects form a domain.

• Property is a well-behaved region in a single domain. For example, the colour
blue is a property. Dynamic properties are ones that describe actions, and in their
representation the dimension of force (physical or social) might be instrumental.
Similarity judgements can be made also in the space of dynamic properties, for
example, walking is more similar to running than to throwing. Gärdenfors mentions
that properties may, in principle, also be functional, e.g., relating to the uses or
affordances of objects, although this possibility is not discussed in detail.

• Concept is a well-behaved region in several domains, as opposed to a property that
is a region in a single domain. For example, apple is a concept. Not all domains are
involved for all concepts. Moreover, each domain may have an associated salience
weight for a particular concept.

• A particular instance of a stimulus corresponds to a point in a conceptual space.

On the origins of domains and quality dimensions

According to Gärdenfors, some domains and dimensions are needed to begin with. By
learning, new dimensions can be added. Some quality dimensions are culturally deter-
mined. As an example, Gärdenfors mentions time which in some cultures is seen as circu-
lar, while in others, linear. Some dimensions are introduced by science, such as Newton’s
differentiation of weight from mass.

Gärdenfors considers examples of neural network methods that could be utilized to rep-
resent quality dimensions, among them the SOM and the MDS.

2.2.5 Deep Cases in Case Grammars

Since the previous theories have mainly concerned with the constituency of concepts (Ri)
or their hierarchical relations, we wish to examine more closely what is meant by the ex-
ternal relation, that is the relation between separate concepts in (computational) linguistic
theory.

Deep cases in case grammars address external/context-sensitive semantic relations of en-
tities. Deep cases are assigned to linguistic entities extracted from sentence analysis to



mark-up their semantic roles with respect to each other or the sentence wholeness. If
the analysis is based on dependency grammar the semantic relations are between word
centered entities. Bruce (1975) reviews several case systems and their deep cases. One of
the most famous is Charles Fillmore’s case system, which is suitable for describing events
and which consists of the following deep cases:

• Agent — the instigator of event

• Counter-Agent — the force or resistance against which the action is carried out

• Object — the entity that moves or changes or whose position or existence is in
consideration

• Result — the entity that comes into existence as a result of the action

• Instrument — the stimulus or immediate physical cause of an event

• Source — the place from which something moves

• Goal — the place to which something moves

• Experience — the entity which receives or accepts or experiences or undergoes the
effect of an action

Fillmore’s case system can explain sentences like ”John opened the door with a chisel”,
in which John constitutes an agent, door serves as an object and chisel as an instrument.
The main verb “opened” refers to the event with respect to which the relations are found.
Joseph Grimes has developed an even more sophisticated case system with thirteen deep
cases for discourse analysis.

Roger Schank’s case system is a famous one, as well. His formulation implies a conceptual
structure built out of actions and their role fillers. Such actions include primitive acts like
moving of body parts (MOVE), building of thought (MBUILD), transfer a physical object
(PTRANS), and transfer of mental information (MTRANS). Primitive acts together with
the conceptual cases are regarded as the components of meaning representations. These
representations are claimed to be unique in the sense that irrespective of the original
language of surface sentences, if their semantics are equal, also the conceptual structures
are equal. The same principle is in use in so called interlingual machine translation systems,
that use an intermediate semantic language for translation. A successful example of the
use of deep cases is in the Mu system (Hutchins 1995) that was accepted for operational use
in 1986 to translate abstracts for Japanese Information Center for Science and Technology.
It has an extensive case system of over 40 cases.



2.2.6 Summary of Relations in the Discussed Theories

Theory Elements Internal relations External relations

Definition theory Concepts1 Feature relations:
Is-contained-in,
Can-be-inferred-
from

Not addressed

Prototype theory Concepts1 Feature relations:
Is-contained-in,
Can-be-inferred-
from

Hierarchical re-
lations, e.g. Is-
a-superordinate-
category-of

Exemplar theory Exemplars? Is-an-exemplar-of-
category-X?

This issue is not re-
ally addressed

Knowledge approach Concepts?1 The distinction be-
tween internal and
external relations is
even more fuzzy.

All sorts of relations
between concepts

Conceptual atomism Concepts1 Non-existent. Re-
lations to other
concepts don’t con-
stitute a concept’s
structure.

This issue is not re-
ally addressed

Conceptual spaces Quality
dimensions,
Domains,
Properties,
Concepts

Property is a region
in one domain. Con-
cept is a region in
several domains.

This issue is not re-
ally addressed

Case grammars Word-
centered
concepts

Not addressed Deep cases, e.g.
Agent, Counter-
agent, Object,
Result, Source,
Goal, Experience

1) It seems that no distinction is made between concepts, features, attributes, properties
etc. at least in definition and prototype theories and in conceptual atomism.

2.3 The Emergence of Structure in Computational Methods

There exist a large variety of computational methods that can be applied to learning
models for a system based on the examination of data produced by the system (cf. e.g.
Haykin 1999; Gelman & al, 1995). The human conceptual system can be treated as such
a system. Perceptual data, such as natural images and speech, has been used mostly for
modeling the emergence of low-level perceptual features. Reaching higher-level processes
by learning from data while starting from unconstrained perceptual data sets and very
general model families has nevertheless proven hard (for theoretical considerations for the
reasons for this, see Tuulos et al, 2004). Therefore it is common to use e.g. artificial
agent simulations, or lately, robots for examining models that operate also on a higher
conceptual level. Another approach to modelling higher-level processes is to start with text
data as input, suitably preprocessed; Section 2.4 examines this approach for the learning
of (external) relations.



Table 2.1: Subtasks and potential methods in the emergence of structure.
Tasks Potential Methods Examples

Differentiation into domains IVGA, MICA

Formation of features / quality di-
mensions

SOM, ICA X X

Categorization or clustering SOM, other clustering methods X X

Which domains or features to con-
nect a concept to (the Attribute re-
lation)

Probabilistic evidence account-
ing

X

Hierarchical relations: super / sub-
ordinate category

SOM, hierarchical clustering X

Other external relations N/A (See Sec. 2.4)

In this section we will consider the emergence of structure mainly in the context of Proto-
type theory of concepts and Gärdenfors’ conceptual spaces, both discussed in Section 2.2.
We will apply some of the terminology introduced in Section 2.1.

2.3.1 Suggested subtasks regarding the emergence of structure

The Table 2.3.1 outlines the subtasks in the formation of structured models as we currently
perceive them. Moreover, connections are made between each task and methods that have
been, or can in principle be, utilized for solving that task. Some of the methods will be
discussed using examples from the literature. The list of subtasks is tentative, and the set
of connections to methods is not complete, but rather a sample of connections examined
in this chapter.

We will now look at some neural networks from the point of view of conceptual emergence,
and in particular emergence of relations. We ask the question, whether a particular model
type could, in principle, serve as an implementation where relations might emerge, given
the right kind of input. By emergence it is meant here that the relations arise in a
non-trivial manner from the properties of the data set by the utilization of a particular
general-purpose statistical learning algorithm, such as a neural network.

2.3.2 The Self-Organizing Map

The Self-Organizing Map (Kohonen 1982; 2001) is a neural network method that utilizes
unsupervised learning for obtaining an ordered representation of a large data set. A SOM
consists of a set of prototypes in the input space and a (typically 2-dimensional) lattice
of fixed connections that defines the neighbours for each prototype in the output space.
During learning the prototypes move in the input space so that they sample the input
signal space in an orderly fashion, roughly approximating the density of the samples in
the input space. As a result, the prototypes reflect common patterns in the input data.
Moreover, they form an ordered representation of the data set in the output space, the
map lattice: any two neighbouring prototypes are generally very similar. While moving on
the map lattice, the properties of the models (prototypes) and of the corresponding input
data change gradually. The ordering of the map depends on the choice and weighting of
the input features, and the statistical properties and dependencies in the data set given
as input.



SOM as a model of the internal and external relations of a concept

In a seminal article on the use of SOM for semantic modelling, Ritter & Kohonen (1989)
organized words with the SOM using as data three-word sentences generated from an
artificial grammar. Later (Honkela et al, 1995) applied a similar method for the text
of Grimm tales. We will highlight some of the results of the latter experiment. The
information collected for each word consisted of its averaged context (+-1 words) in the
whole data set. The word representations were then organized on a two-dimensional SOM,
resulting in a map where an implicit ordering of syntactic and semantic word classes could
be observed. For example, in the noun region there was a subregion for humans (Hans,
woman, man, king, child, son, daughter, mother, father, wife), and next to it in the ”other”
category a region of pronouns referring to humans (she, he, they, we, I, you).

It thus appears that on a SOM organized using a suitable data set and a suitable feature
selection, a concept can be viewed to correspond to a map region spanned by one or
more model vectors. One can also observe that the hierarchical relationship, e.g. the
“superordinate-category-of”, is in some cases represented implicitly, as regions on the
map.

It does not, however, seem reasonable to assume that a single SOM could be the repre-
sentation of the totality of concepts. Already Ritter & Kohonen (1989) emphasize that
their work is just a demonstration of the potential of SOMs, and that ”Any realistic brain
maps would need a much more complicated, probably hierarchical model.” One reason for
this becomes clearer when one takes notice that each prototype of a SOM has internal
relations to an identical set of properties. In contrast, many concepts seem to require
internal relations to altogether different domains (consider e.g. ”book”, ”society”, and ”to
escape”). This kind of per-concept feature selection is not implemented in the SOM, but
must be implemented in some additional way.

Another reason why a single SOM is not sufficient for representing all concepts and their
relations comes from the examination of external relations: It would appear that varying
suitably the input features and their weighting, any binary relation could in principle
emerge and be represented as a similarity relation on the map. However, there are two
problems: (1) The relations are not named, i.e. ”part-of” is not distinguishable from
”subordinate-category-of” and (2) the number of relations that can be represented by
neighbourhood connections is very limited, whereas the number of relations a concept can
have is very large. There exist possibilities for solving the first problem (such as the use of
additional relation maps) but we are not aware of works that have examined such solutions.
The second problem can be alleviated with the use of several SOMs that have been ordered
based on different sets of input features (or using different feature weightings).

As suggested by Gärdenfors (2000), it seems more appropriate to consider the output
space of the SOM as a computational model of a single domain: it is an ordered represen-
tation that is made up by integral ”dimensions”. Kohonen points out in (Kohonen, 1990)
that topological closeness and connectivity of representations alleviates the ”property in-
heritance” problem found in semantics and artificial intelligence. He also gives several
examples of sensory-level maps: acoustic (tonotopic) maps, phonemes of speech, colors
(hue and saturation), all of which have been produced by analyzing particular natural
signals. Such might serve as models for Gärdenfors’ domains.

Some of the desired qualities with respect to Gärdenfors’ domains are as follows: The
SOM is able to represent efficiently a possibly sparse data set that contains statistical de-
pendencies between its input features. The output space of the SOM is able to contract,



stretch and bend in the input space, roughly following the distribution of the data. More-
over, other than two-dimensional lattices and different neighbourhood topologies may be
applied for the SOM. Also differing metrics may be utilized. It is not clear, however, how
a specific metric would be derived solely from observing a set of data.

The main challenge we see in the application of the SOMs is how to choose the input
features for obtaining a particular, interesting quality domain. This question is outside
the scope of the SOM algorithm, and must be determined prior to its application. Note
that this is a question regarding the structure of the model that is not included in the
concept of ”relation”, but exists on a lower level of the model.

The modeling of causal action schemas on a hierarchy of SOMs

In (Chaput 2003) a hierarchy of self-organizing maps is used to model causal action
schemas, that is, to learn causal relations between actions performed by the agent and
states of the world before and after the action. An example of such schema is “Door is
open / I close door / Door is closed”.

There exists a predefined set of primitive actions that the agent can take. For each action,
a specific action SOM is taught. The input to an action SOM consists of the context
(the complete state of environment before the action) and the result (the state after the
action). Any particular input is gated to the corresponding action SOM whose action was
just performed. These action SOMs form the first layer of maps. On the second layer of
SOMs, each SOM obtains as input the output “fingerprint” of activations of a whole SOM
below it.

The output of the first map is processed to identify and collect a subset of the SOM
units that have at least one data point, and transform them to schemas. In transforming
a unit to a schema, value tresholding is applied to the context and result features to
collect the ones that are sufficiently strong and to ignore others. The schemas learned are
considered as synthetic states of the world (representing an action schema that was just
performed). At this point the original action maps can be discarded and their resources re-
used. Next, a new set of action maps is created, with input that consists of both the initial
inputs (primitives describing world state) as well as the synthetic input obtained from the
previous maps (history information). This allows the learning of complex actions and their
effects. The authors report exellent results of a simulation of Drescher’s “Microworld”: in
addition to replicating the earlier results of earlier experiments that did not utilize neural
representations, it is found that there emerge features that represent the beginnings of
persistent-object -concept.

In summary, the paper shows how by the applicatin of a hierarchy of SOMs in a partic-
ular way leads to the non-trivial emergence of more powerful, higher-level abstractions.
By looking at actions, their pre-and post-contexts, emerge not only more complex aggre-
gate actions but also the beginnings of the concept of object persistence. The structural
assumptions made regarding connectivity of the maps seem domain-general, but the emer-
gence of such a structure is not discussed.

2.3.3 On the emergence of perceptual features using SOM and ICA

A large body of work has been carried out on modelling the emergence of cortical features
on various areas of the cortex. We will only mention two approaches. Miikkulainen



et al. have studied extensively the modelling of visual cortex using layers of connected
sheets of neurons (a set of hierarchically organized self-organizing maps that have been
enhanced with properties such as lateral connections, receptive fields, on-off channels,
spiking neurons, and delay adaptation) that receive as input natural image data (e.g.,
Choe 1998; Bednar 2003). Also here the utilization of particularly connected hierarchy of
maps is essential.

Hyvärinen et al. have applied variants of Independent Component Analysis (ICA) for
modelling various functions of the visual cortex, including the emergence of features car-
rying out contour coding (see e.g. Hoyer & Hyvärinen, 2002). ICA is an unsupervised
statistical method that models its input data in terms of linear combination of some hid-
den (latent) variables, while maximizing mutual independence of the hidden variables. In
general, such latent variables can be considered to correspond to primitive features or
quality dimensions that are rather closely connected with the sensory modalities.

2.3.4 IVGA as a model of the differentiation of Gärdenfors’ quality do-
mains

Gärdenfors’ model left open the question regarding how quality domains might emerge,
and we address the issue here.

Independent Variable Group Analysis (IVGA) (Lagus et al, 2001) is an unsupervised
data analysis method that groups input features into subsets by minimizing the statistical
dependencies between the subsets of features. To achieve this the data is in fact modeled
using many different feature groupings, and an efficient search algorithm is applied to find
a good feature grouping. The algorithm was evaluated on a set of natural images encoded
using low-level visual features such as gray level and fourier features.

A particular feature group and its respective model can be considered to correspond to
Gärdenfors’ quality domain in the sense that the dimensions (features) in a group are
statistically dependent (integral), but as independent as possible (separable) from other
feature groups. Moreover, each feature group may be modeled using a completely different
method. The only requirement is that a cost function must be definable that measures
both model accuracy and model complexity.

IVGA provides an unsupervised, computationally feasible principle for explaining how
the separation of the quality domains could in principle emerge during a combination of
evolution (selection of a particular feature grouping) and individual learning (modeling of
the data using a particular feature grouping). However, further experiments are needed
to examine the plausibility of this hypothesis. An argument against the sufficiency of this
approach would be that both data-directed (without feedback, unsupervised) and goal-
directed (feedback-driven) effects are needed to produce the quality domains humans have.
However, the same argument can be applied in general against the idea of unsupervised
learning of concepts, their attributes or relations.

2.3.5 A probabilistic model of embodied lexical development

An implemented computational model of embodied lexical development for learning action
verbs is presented in (Bailey, 1997). The authors stress the importance of embodiment in
language acquisition, and address the question of how does a child learn to label his/her
own actions, a task which the authors consider to be central in grounding language. The



model consists of an embodied system, namely a robot, capable of performing various
actions using its hands, like pushing or yanking.

A concept is represented by a Feature structure and a link to Execution schema. The
Execution schema, implemented by a Petri Net, consists of a network of consecutive actions
that control hand movement. Prior to execution, the feature values from the feature
structure are passed to the execution schema affecting e.g. hand position.

The internal discrete features found in the feature structure are fixed by the designer,
including motor parameter features such as elbow joint (fixed;extended), posture (values:
grasp;palm;index), acceleration (low;medium;high) and direction (up;down;left;right), as
well as world state features such as object shape (cube;button).

A feature structure for an actual hand motion (instance) consists of a set of features
each with probability 1 (certainty). The feature structure for a particular concept, then,
consists of a subset of the features present in the instance, as well as a probability distri-
bution for each feature. Concepts are learned by merging instances of a word used in its
motor context. At the same time some features may be dropped from a concept’s feature
structure if they are not informative enough; that is by observing the peakedness of the
probability distribution of the feature for that particular concept.

The authors review results of a small experiment where 50 random executions of the
execution schema SLIDE were generated and labelled by an informant as push, pull, and
slide (for sideways motion). They report that the merging algorithm collapsed the 12
instances of “push” into a single sense, likewise for the 9 instances of “pull”. For the
4 instances of “slide”, the algorithm differentiated the senses of leftward and rightward
slide. Some of the features that were present for an instance were abstracted away in the
concepts, e.g. the feature acceleration for ”push”.

In summary, the system learns how many senses (concepts) per verb there are, which
features to use for a verb sense, and what are their probability distributions. The internal
features (the subclass of concepts that Gärdenfors calls properties) are not learned, it is
assumed that they were formed prior to language acquisition, e.g. due to being embodied
in the world. By fixing the features a stable basis is obtained for parameter passing
between motor actions and concepts. While the learning in this example is very limited,
we consider it relevant for completeness of the treatment of the emergence of structured
models, in part because it exemplifies learning in an embodied system.

2.4 Discovering Conceptual Relations from Texts

In this review we concentrate on the discovery of conceptual relations when there is already
knowledge about the concepts (i.e. what concepts there are and what are their properties).
Whereas the approaches in Section 2.3, were attempts at neural or cognitive modelling of
concepts, the examples in this section are intended as technical solutions to the problem
of how to discover and represent relational information. Learning is utilized to ensure
completeness of the result, and to avoid laborious manual coding.

Gruber gives a compact definition that ”An ontology is a formal, explicit specification
of a shared conceptualisation” (Gruber 1993). The word formal has very important con-
notation for us, as we necessitate that the models are machine readable and suitable for
automatic processing. Ontologies have been widely recognised as important for sharing
conceptualisations in electronic commerce and business intelligence applications (Fensel



2001). However, manual specification of ontologies is slow and expensive and there is a
wide interest in developing human assisted machine learning tools for the tasks. Starting
from the 1990’s automatic discovery of ontologies has been researched in several institutes.
A popular approach has been to use natural language texts as a starting point. A typical
approach may include following phases:

1. Tokenising including morphological analysis and associating lexical knowledge

2. Syntactic analysis (e.g. shallow parsing, dependency parsing)

3. Recognising concepts

4. Establishing concept taxonomy

5. Discovering non-taxonomic relationships

6. Manual editing and pruning of the outcomes (this may be interlaced with the earlier
steps)

The phases 1 and 2 have been widely researched during the last two decades and there
are several solutions available. The step 3 has also been elaborated considerably. In this
review we concentrate on steps 4 and 5, that is, the discovery of concept taxonomies
and non-taxonomic relationships from texts when there is already knowledge about the
concepts.

There are several types of ontologies, such as domain ontologies (e.g. electronic, medical,
clothing etc. domain), metadata ontologies (e.g. Dublin Core initiative for describing
content of on-line info sources, www.dublincore.org), generic or common sense ontolo-
gies (CYC, meteorology, colours etc.), representational ontologies (e.g. frame ontology),
method and task ontologies (e.g. workflow management definitions), etc (Fensel 2002).

The reviewed approaches focus on domain ontologies of rather narrow topic, such as models
for corporate information in business news (Byrd & Ravin 1999), tourist services and
telecommunication services (Maedche & Staab 2000a & 2000b), extracting models from
corpora of cooking recipes and travelling (Faure & al 1998, Faure & Nédellec 1999), and
biological relationships discovery from texts (Palakal 2002).

The survey revealed that the notion of a relation might vary much alongside with the
application requirements. Are there discovered new relationships to add into an ontology
model or are there discovered instances of relations that are pre-specified in an ontology?
For instance, if we are doing the first activity, the sentence ”the president of Finland, Mrs.
Halonen, met with . . . ” would introduce to an ontological world model a new relation
type: a country has-a-president who is a human. However, if we are only interested
in recognising instances of relations, our world model should contain a definition of a
president and a method how to recognise that relationship from texts. After having those,
we could recognise the relation instance president(Finland,Halonen).

There is also variance in the types of relations that are discovered. The IBM approach
mostly concentrates on recognising instances of binary relationships between concepts
(Byrd & Ravin 1999). The Univ. of Karlsruhe solution concentrates on discovering non-
taxonomic binary relations to a domain ontology (Maedche & Staab 2000a & 2000b). The
Asium system of Université Paris Sud finds syntactico-semantic n-ary relations of verbs
to concepts/headwords, called case frames, and builds a concept hierarchy (Faure & al
1998, Faure & Nédellec 1999). The multi-level text mining method of Purdue University



extracts hierarchical relations and non-taxonomic directional relations in the domain of
biology (Palakal 2002). All the approaches regard concepts as points in the domain space.
There is no consideration to their internal structure like attributes.

2.4.1 Required Qualities

We consider the following properties important for evaluating the approaches.

Precision and recall. It is better to discover some erroneous relations than to miss
very central ones. Later checking and pruning of the results of automatic discovery is in
any case necessary, before taking automatically discovered models into production use.
Thus the goal usually is to achieve high recall even while sacrificing some precision.

Linguistic generality. The input language should not be restricted in its syntax or
vocabulary. The domain specificity for the solution comes from the used lexico-semantic
information and from the initial concept model, which both may be restricted by their
domain.

Language independence. The overall approach should be as independent as possible
of the language in the texts. This applies particularly to the later semantics centred phases
of the discovery. Although there are language specific grammars involved, the formalisms
and algorithms should be language independent.

2.4.2 Approaches

Company information modelling at IBM

IBM has developed the text mining system Textract that recognises instances of binary
relations between concepts and entities in texts (Byrd & Ravin 1999). Predefined patterns
are used to indentify named relations and statistical analysis of co-occurrences of concepts
to postulate so far unnamed relations. The analysis starts with the identification of domain
terms, proper names as well as their type (place, person, organisation etc.), abbreviations,
and other special single words. After this tokenising the system analyses input with
specially-built finite state automata specified by the patterns. The system does not require
full syntactic analysis, it is enough that piecewise matches are found. There are three
classes of patterns:

1. Patterns anchoring the positions of the both concepts and specify the discovery
of the relation name. As an example, the pattern ”PERSON, . . . of ORGAN-
ISATION” recognises the new CEO relation < Louis V. Gerstner : CEO :
International Business Machines > from the text excerpt ”Today, Gerstner,
the CEO of IBM, announced that the company . . . ”.

2. Patterns anchoring the positions of both concepts and assigning a predefined relation
name.



3. Patterns anchoring the position of one of the concepts and fixing the relation name.
When the pattern ”ORG MAKE-VP . . . ” is applied to ”. . . IBM, which manufac-
tures computing equipment ...”,it yields < International Business Machines :
make : computing equipment > .

The process is not precise enough and there is need to prune the intermediate results. To
do this, there are filters for rejecting bad candidates:

1. frequency filters, to reject, for example, a relation name that occurs only once and
may therefore be just an accidental string of words;

2. lexical and morphological filters, to require, for example, that the lexical head of the
verb phrase be a verb of manufacturing or selling;

3. selectional restrictions, to require a place name, for example, as the first concept in
a location relation;

4. other filters like co-ordination censors, and length filters.

The approach involves additional heuristics, for instance, to categorise unknown entities
based on the patterns where they have been recognised. For instance, an entity may
be upgraded to a PERSON, if it is in a CEO-of relationship with an organisation. Co-
occurrence with unnamed relations adds thrust to a named relation candidate.

Non-taxonomic binary relation discovery at Univ. of Karlsruhe

University of Karlsruhe has developed a system called Ontology Learning Environment
for discovering ontologies from texts. It includes a parsing mechanism for acquiring con-
cept taxonomy from a domain-specific dictionary and an algorithm for discovering non-
taxonomic relations from texts (Maedche & Staab 2000a & 2000b). Human co-operation
is involved in the pruning phase of the discovery process. The system has been tested in
the restricted domains of accommodation services, tourist sights and telecommunication
services. Next we outline the process of non-taxonomic relations discovery from texts.

The linguistic text analysis is based on the SMES (Saarbrücken Message Extraction Sys-
tem) software, which includes a tokenizer, a lexical analysis component, and a chunk
parser, that makes first phrasal and then sentence level dependence analysis. Syntactic
dependency relations coincide rather closely with semantic relations holding between the
same entities. The dependence parser still returns many constituent trees that are not
related within or across sentence boundaries. For instance, the parser does not attach
prepositional phrases in any way and it does not handle anaphora. Three heuristic corre-
lations have been added to ensure recall: (1) NP-PP-heuristics attaches all prepositional
phrases to adjacent noun phrases, (2) Sentence-heuristics relates all concepts contained in
one sentence if other criteria fail, and (3) title-heuristics links in titles with all concepts in
the overall document. The last heuristics has been found very effective in handling hotel
and tourist sight descriptions.

The previous processing steps have produced a set of candidate concept pairs. The dis-
covery of generic relations uses a shopping basket mining algorithm (Srikant & Agrawal
1997). The found relation hypotheses are treated as shopping basket associations. Gener-
alisations are done according to concept hierarchies and/or lexico-semantic categories. The



algorithm expects a set of transactions T where each transaction ti consists of a set of items
ti = {ai,j |j = 1 . . . mi, ai,j ∈ C} which all belong to a set of concepts C. The algorithm
computes association rules Xk ⇒ Yk, in which Xk, Yk ⊂ C and Xk∩Yk = {}, and for which
measures for support and confidence exceed user-defined thresholds (see Formulas 1 and 2).
The associations are determined at the right level of a taxonomy, which is defined by the
relation H ⊂ C×C, and which may have been derived from a domain-specific dictionary or
defined manually. First, each transaction is extended to include each ancestor of a partic-
ular item. Thus a transaction will contain items t′i = ti

⋃

{ai,l|(ai,j , ai,l) ∈ H}. Secondly,
there is calculated support for all association rules Xk ⇒ Yk, where |Xk| = |Yk| = 1.
Thirdly, there is calculated confidence for all rules exceeding the user-defined support
threshold in second step. Finally, those rules, which exceed the user-defined confidence
threshold, are applied the ancestral pruning rule. This means pruning of those association
rules that have ancestral rules with higher or equal confidence and support.

support(Xk ⇒ Yk) =
|{ti|Xk ∪ Yk ⊆ ti}|

n
(2.1)

confidence(Xk ⇒ Yk) =
|{ti|Xk ∪ Yk ⊆ ti}|

|{ti|Xk ⊆ ti}|
(2.2)

From the sentences “Mecklenburg ’s most beautiful hotel is located in Rostock. A hair-
dresser in our hotel is a special service for our guests. The hotel Mercure offers balconies
with direct access to the beach. All rooms have TV, telephone, modem and minibar”,
Words with concept references in italics. Four concept pairs, among many others, can
be derived with knowledge from the domain lexicon: (area, hotel), (hairdresser, hotel),
(balcony, access), (room, television). Similar analysis is done for a larger part of a corpus
and the shopping basket algorithm is executed. The final result has two of the rela-
tions replaced by their ancestral relations found using the domain-specific taxonomy. The
resulting non-taxonomic relations are (area, accommodation) with confidence 0.38 and
support 0.04, (room, furnishing) with confidence 0.39 and support 0.034, (accommoda-
tion, address) with confidence 0.34 and support 0.05, and (restaurant, accommodation)
with confidence 0.33 and support 0.02.

Asium system of Univ. Paris Sud and discovery of n-ary case frames and
concept hierarchies

Université Paris Sud has researched discovery of syntactico-semantic relations of verbs
and concept hierarchies from technical documents. Its Asium system is a co-operative
machine learning system for learning case frames and for clustering concepts and learning
their hierarchies from technical documents. The source documents are characterised by
specific domain, limited vocabulary, restricted polysemy and verbs being mostly concrete
and action verbs (Faure & al 1998, Faure & Nédellec 1999). The case frames are verb
centric templates that denote which subordinates a verb must or may have. For a verb a
template may reflect either its syntactic relationships (e.g. the syntactic functions subject
and object) or semantic relationships (like the role of vehicle for the verb travel). The
discovered knowledge is meant for a writer-assistant program that would help the technical
editors at Dassault Aviation Company to produce technical documentation in a controlled
way.

The format of frames is simply: <verb> (<role><concept><optionality >)∗ In the



learning process the roles can be taken from the syntactic dependence structure of the
input and headwords of subordinates can be considered as concepts. When there are
recognised more syntactically similar instances of the verb, new more abstract concepts
are formed to replace the original ones.

When there are learned new generalised frames, the system is simultaneously building a
hierarchical ontology of new concepts, which it uses while doing its generalisations. As an
example, if there are recognised frames <to travel> <subject> <Bart> <by> <boat>
and <to travel> <subject> <David> <by> <train>, there can be generalised the frame
<to travel> <subject> <Human> <by> <V ehicle>.

Considering conceptual clustering Faure & al criticise the applicability of vector based
learning methods for their task, such as (Cheeseman & Stutz 1996), as the size of the
vectors of headword-frequencies would grow very high due to the large vocabulary and the
vectors would be very sparse. As well, they doubt the applicability of FOL based learning
methods like (Bisson 1992), because for them the semantic classes may have more than
one super-class, to express different viewpoints on the same objects.

Faure & al present their own learning algorithm for finding concepts and their hierarchical
relations. The inputs are the initial clusters, which are sets of words associated with
the frequency of the corresponding syntactic verb frame in the corpus. The simplest
version is called Asium-Best, which computes the distances between all pairs of clusters
and compares them to a threshold. Clusters are merged if there are too close to form
a new one. The process stops when all computed distances exceed the threshold. The
learned clusters are displayed to the user for validation and labelling. The algorithm
Asium-Pyramid applies a cleverer strategy for choosing the pair of clusters to process at a
time and strives for forming a pyramid hierarchy between the concepts (i.e., a DAG that
is possible to represent as a tree with no lines crossing each other). In both versions of the
algorithm the distance between clusters is the proportion of common headwords between
the two clusters, balanced by the relative frequency of the instantiated verb frames in the
cluster. Formula 2.3 defines this distance function between head word clusters C1 and C2.
freq(C,w) is the frequency of head word w in cluster C and nh(C) is the number of head
words in cluster C. The distance varies between 0 for equal clusters and 1 for disjoint
clusters.

d(C1, C2) = 1 −

(
∑

wi∈C1∩C2

freq(C1, wi))
nh(C1 ∩ C2)

nh(C1)
+ (

∑

wi∈C1∩C2

freq(C2, wi))
nh(C1 ∩ C2)

nh(C2)
∑

wi∈C1

freq(C1, wi) +
∑

wi∈C2

freq(C2, wi)

(2.3)

Biological relationships mining at Purdue Univ.

At Purdue University there has been developed a multi-level text mining method for
extracting biological relationships from texts documents (Palakal & al 2002). The ap-
proach involves object identification, reference resolution, synonym discovery, extracting
object-object relationships. Technical solution is based on Hidden Markow Models, do-
main dictionaries, and N-Gram models. Experiments with a corpus of around thousand
Medline abstracts found 53 relations from which 43 were correct. The method includes the
following phases: (1) extracting biological concept names, (2) grouping concept synonyms,



and (3) extracting concept relations.

The goal of extracting biological concept names is to recognise concepts that denote genes,
proteins, cell types, organisms, RBNA, chemicals, diseases, drugs etc. Concept name
detection is based on using domain dictionaries for identifying known concepts, N-Gram
models to resolve concept name ambiguity, and Hidden Markov models (HMM) to identify
unknown concepts based on term suffices. A domain dictionary may state, e.g., that class
protein consists of protein, kinase, enolase, antigen, cytokeratin, amelogenin and vimentin.

N-gram model is a simple Markov model where the probability of a word w1 being in the

position n is
∏n

k=1

count(wk−1

k−N+1
wk)

count(wk−1

k−N+1
)

. Word probability is assumed to depend on the previous

N words. count(wk−1
k−N+1wk) is the number of times the previous N words are followed

by wk and count(wk−1
k−N+1) is the total number of times the previous N words occur. For

the disambiguation is taken the phrase data that was obtained using the N-Gram training
process. Probabilities are analysed for each class given a phrase. An HMM is used to
classify words that are abbreviations composed of less than six characters. Separate set
of abbreviation dictionaries is used in training.

Extracting concept relations considers two types of relations. The first is non-taxonomic
directional relations, like in ”protein A inhibits protein B”. The second type is hierarchical
relations, like in ”brain is part of the nervous system”. Directional relations are mined
using HMMs and hierarchical ones using a data mining algorithm developed for genetic
analysis. The statistical nature of the extraction method allows for finding new relations
that would not be found in a rule-based system. Combining hierarchical relations with
directional relations creates more complex relations than just binary ones. For example,
a directional binary relation (e.g. between proteins) could be associated with another
concept (e.g. disease) using a common hierarchical relation that the concepts in the
directional relation share.

2.4.3 Summary of the Reviewed Relation Discovery Approaches

A summary of the findings is presented in Table 2.2.

2.5 Conclusions

It seems that many aspects of the concept learning process can be modelled by the existing
learning methods such as neural networks. The SOM demonstrates how unsupervised
category construction could take place by noticing correlations in the input. Also, the
hierarchical relations can be modeled implicitly as regions of a SOM map. Latent features
can be derived also using other methods, such as the ICA.

The necessity of structured, possibly hierarchical representations was examined and argued
for. Some aspects of the emergence of such a structured model were addressed using
examples from literature, including the emergence of conceptual dimensions or features, the
differentiation into domains, categorization of sample data, and feature/domain selection
in concept formation. Also hierarchical representations and some of their benefits were
observed. However, the discussed examples utilized different learning approaches and
solve only partial problems. It remains to be seen how a complete conceptual system
might be assembled from such parts, and to which degree the assemblage could emerge
from properties of natural signals, communication, resource limitations of the brain etc.



Table 2.2: Types of relations found in the discussed discovery approaches.
Approaches Entities Relations (E = exter-

nal, I = internal)
Methodologies

Company infor-
mation modelling
at IBM

Concepts
(postulated
along do-
main terms
& names)

Instances of binary rela-
tions (E);
relations (E, named and
unnamed)

Pattern matching, sta-
tistical analysis, heuris-
tic pruning rules

Non-taxonomic
binary relation
discovery at
Univ. of Karl-
sruhe

Concepts
(domain-
specific
dictionaries
as source)

Generalised non-taxo-
nomic binary relations
(E)

Linguistic dependency
relations + heuristics ⇒
initial hypothesis;
Shopping basket DM
algorithm

Asium system of
Univ. Paris Sud
and discovery of
n-ary case frames
and concept hier-
archies

Concepts Generalised case frames
(E);
Concept hierarchy
(I/E);
KD for HLP

Linguistic dependency
relations of verbs yield
initial frames;
Generalisations along
concept hierarchies;
Concept clustering
algorithm

Biological rela-
tionships mining
at Purdue Univ.

Concepts Non-taxonomic direc-
tional relations (E);
Hierarchical relations
(I/E)

HMM;
DM algorithm for
generic analysis;
Deducing of more com-
plex relations from
simple ones

The methods discussed in Section 2.3 were general learning mechanisms designed for learn-
ing models for continuous-valued data, such as is found in the natural world (although
also discrete inputs may be successfully analysed). In contrast, the methods in Section 2.4
are more oriented towards models where both inputs and outputs are discrete, which may
indeed be appropriate for the treatment of external relations. Moreover, heuristics and
prior information are readily utilized e.g. in the preprocessing of the language data, the
design of patterns to be matched, etc.

What seems to be lacking from both the psychological and philosophical approaches and
the modelling approaches is the inclusion of holistic sensory information in the conceptual
representation. By this we mean that it is often not enough to know the feature decom-
position of the shape of a concept, for example. What is needed is a stored memory of the
holistic form of the object, or perhaps a visual exemplar of the object’s shape. Similarly
for actions. It is unclear how this could be represented in, for example, Gärdenfors’ con-
ceptual spaces. A possible solution might be the storage of a small number of remembered
exemplars that are not decomposed into features, along with the corresponding prototypes
that connect the neural and conceptual level.
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Honkela, T., Hynnä, K., Lagus, K. & Särelä, K. (Eds.), Adaptive and Statistical Ap-
proaches in Conceptual Modeling, pp. 45-55.

Van Aken, J.E. (1978). On the control of complex industrial organizations. Boston:
Martinus Nijhoff Publishing.

Wermter, S., Sun, R., Eds. (2000). Hybrid Neural Systems. Lecture Notes in Artificial
Intelligence, 1778, Springer, Berlin.



Chapter 3

Assessing Similarity of Emergent
Representations

Juha Raitio, Ricardo Vigário, Jaakko Särelä and Timo Honkela

Introduction1

According to the connectionist view, mental states consist of activations of neural units
in a connectionist network. We consider the similarity of representations that emerge in
an unsupervised, self-organization process of neural lattices when exposed to color spec-
trum stimuli. Self-Organizing Maps (SOM) are trained with color spectrum input, using
various vectorial encodings for representation of the input. Further, the SOM is used
as a heteroassociative mapping to associate color spectrum with color names. Recall of
association between the spectra and colors is assessed, and it is shown that the SOM
learns representations for both stimuli and color names, and is able to associate them
successfully. The resulting organization is compared through correlation of the activa-
tion patterns of the neural maps when responding to color spectrum stimuli. Experi-
ments show that the emerged representations for stimuli are similar with respect to the
partitioning-of-activation-space measure almost independently of the encoding used for
input representation. This adds new evidence in favour of the usability of the state space
semantics.

3.1 Connectionist networks and representation of content

The state of a connectionist network is the momentary activation levels of neurons in the
network configuration [3]. A particular state may occur as a response to stimuli. Then the
stimuli has a state space representation in the space spanned by the possible activations
of the neurons in the network. Vice versa, any pattern of activations in the network may
represent some, perhaps latent, information. According to the connectionist view, mental
states are instantiated by these activations of neural units [3]. Therefore connectionists
have been puzzled with a criterion for determining when activations in two connectionist

1Parts of this chapter have been published in the Proceedings of IJCNN’04, International Joint Con-

ference on Neural Networks.

34



networks have similar content – or even, when they are representing exactly the same
mental state.

Fodor and Lepore [5] argue that a connectionist theory of mind cannot give a satisfactory
account of different individuals being in the same mental state, for identity of networks
is a suffient condition for identity of content, but this condition will never be satisfied in
practice. Laakso and Cottrell [11] note the same problem in their statement: If connec-
tionism is to be an adequate theory of mind, we must have a theory of representation for
neural networks that allows for individual differencies in weighting and architecture while
preserving sameness of content.

In this article, we consider a method for comparing the similarity of representations in
connectionist networks, and examine the possibilities for exploiting it for comparing emer-
gent representations in unsupervised learning networks. We report the results of applying
this method as a similarity measure for representations emerging in Self-Organizing Maps.

3.2 Measuring the similarity of state space representations

A straightforward way of measuring the similarity of the state space representations in a
network, or between two networks having the same configuration, is to measure the dis-
tance between the activation levels of the neurons. In this position-in-activation-space view
of similarity [3], the proximity of the state space representations are clearly dependent on
the positions of activation. It is unclear however, how two networks with different number
of neurons could be compared according to this view, for common distance measures are
only defined for vectors of equal lengths.

Identifying content with characteristic groupings of activation patterns was proposed by
Churchland [4]. He claims that people react to the world in a similar way, because their
activation spaces are similarly partitioned. Laakso and Cottrell acknowlegde this as an
evident solution, for it allows different individuals to represent the same latent information
without having identical networks.

Adopting this partitioning-of-activation-space view to similarity of representations, Laakso
and Cottrell [11] propose that content is associated with relative positions in the partition-
ing of the activation space. The momentary representations should then be compared by
each representation’s location relative to other possible activations in the same network.

Further, Laakso and Cottrell [11] develop a method for assessing the similarity of represen-
tations in two networks by comparing their partitionings through correlating the distances
between all pairs of activation patterns in each network:

1. Collect the activation patterns evoked by inputs and compute all possible distances
between these representations.

2. Compute the correlation between the distances between representations in one state
space and distances between representations in the other state space.

The distances effectively capture the structure of representational space and eliminate the
need to match the dimensions of the two spaces.

Laakso and Cottrell [11] test their measure and present two experiments that demonstrate
MLP networks that learn to classify colors based on spectral stimuli. Reported results show
that



1. MLP networks that were given differently encoded spectra as input, learn internal
representations in the hidden layer that are quite similar by the measure, and that
networks receiving identical stimuli learn nearly identical representations,

2. MLP networks having different number of neurons in the hidden layer, thus not
sharing the same activation state space, were found to build nearly identical repre-
sentations by the measure.

In computing the similarity of the distances between points in two representational spaces,
Laakso and Cottrell [11] provide a partitioning-of-activation-space criterion for semantic
similarity that answers the challenge Fodor and Lepore [5] place on state space semantics.

3.3 Emergent, unsupervised representations and associa-

tion

The Laakso and Cottrell experiments are based on supervised learning to associate color
names with color spectra. This, we think, is not a particularly plausible approach (though
maybe intentionally simplified) in the context where they present it:

• encodings representing different sensory organs of animal species,

• different numbers of neurons in the hidden layer varying according to individual and
cross-species differences in brain capacity and

• the color names being symbols to be identified.

We believe that, more realistically, color spectra stimuli as a physiological input to a
connectionistic system emerge as unsupervised, latent representations, irrespectively of
whether the colors have known symbols or not (answerme:could we refer here to some
known brain maps of this nature?). Adopting an unsupervised learning approach, no
color names or ready content are needed for the formation of meaningful representations
of the stimuli.

If colors (names) are to have a representation in a network, it could have emerged inde-
pendently of the physiological spectra stimuli. Also, we believe, an association between a
color symbol (name) and spectrum stimuli could grow unsupervised by their simultaneous
excitation in a learning connectionist network.

The partitioning-of-activation-space criterion of Laakso and Cottrell can be generally ap-
plied to measure the similarity between any two neural representations. In the following we
introduce tools to study this criterion and to repeat their experiments in the unsupervised
learning framework.

3.4 Methodology

3.4.1 Self-Organizing Maps

The set of input samples to a connectionist network is described by a real vector xj ∈ Rn

where j is the index of the sample. Each node in the Self-Organizing Map (SOM) contains
a model vector mi ∈ Rn, which has the same number of elements as the input vectors.



The nodes of the map form an array with a definite topology each having a location vector
ri. The array is often a two dimensional rectangular grid.

In the learning phase, the self-organizing algorithm creates an ordered mapping from the
input space to the map array as a repetition of the following tasks [9] at each discrete-time
step t = 0, 1, 2, . . . :

1. An input vector x(t) is compared with all the model vectors mi(t). The best-
matching unit (BMU) c on the map, i.e. the node, whose model vector mc(t) is
most similar to the input vector in some metric (e.g. Euclidean) is identified:

c = argmin
i

{‖x(t) − mi(t)‖}. (3.1)

This best matching unit is often call the winner.

2. The model vectors of the winner and a number of its neighbouring nodes in the array
are changed towards the input vector according to

mi(t + 1) = mi(t) + hci(t) [x(t) − mi(t)] , (3.2)

where hci(t) is the so-called neighborhood function that has higher values for nodes
that are topographically close to the BMU in the map array, and smaller values for
nodes that are distant. For convergence of learning it is necessary that hci(t) → 0,
as t → ∞. One such function, written in terms of a Gaussian is

hci(t) = α(t) · exp

(

−
‖rc − ri‖

2

2σ2(t)

)

, where (3.3)

α(t) and σ(t) decrease monotonically in time.

The net outcome of the adaptation process is that ordered values for the mi(t) emerge
over the array. Initial values of the mi(0) can be arbitrary. The basic properties of this
ordering are that the distribution of the model vectors tends to approximate the density
of the input vectors x(t), and that the organization of model vectors in the array is such
that the mapping tends to preserve the topology of the input space.

The output or the activation of the SOM, as a response to stimuli x(t), is the excitation of
the BMU and its neighbouring neurons hci(t) (3.3) , where α and σ have some fixed values
determined by the application. This is referred to as postsynaptic activation in [10].

A detailed description about the selection of the parameters, variants of the map, and
many other aspects have been covered in [9]. Perhaps the most typical interpretation of
the SOM is to consider it as an artificial neural network model of the brain [10], especially
of the experimentally found ordered “maps” in the cortex. The Self-Organizing Map can
also be viewed as a model of unsupervised statistical machine learning, as an adaptive
knowledge representation scheme, as a statistical tool for multivariate analysis, or as a
tool for data mining and visualization [7].

3.4.2 Associative Mappings with the SOM

Assume two input patterns x(A) ∈ Rn1 and x(B) ∈ Rn2 are concatenated to form a
single input vector x(AB) ∈ Rn1+n2. x(A) and x(B) may encode some information A and



B presented simultaneously to the SOM. Now the model vectors mi have components
corresponding to A and B, respectively:

mi =

[

m
(A)
i

m
(B)
i

]

. (3.4)

During training the SOM builds an association between A and B. To evoke this associa-

tion, the BMU c is defined on the basis of m
(A)
i and x(A) only, then an estimate of x(B),

in the sense of the SOM mapping, is obtained as the vector m
(B)
c . This recall of the m

(B)
c

is referred to as associative mapping by Kohonen [9]. An example of utilising associative
mapping are the early versions of the “Phonetic Typewriter”.

If the magnitudes of the vector components of the pattern x(A) are large compared to the
magnitudes of x(B), then component x(B) of the input has in general little significance
in choosing the BMU in (3.1). Consequently, the organization of the map is not affected
by x(B), but the SOM learns to approximate x(B) in the SOM neighborhood of x(A).
The special case, where x(B) is not used in finding the BMU at all is referred to as
heteroassociative mapping [9].

3.5 Experiments

3.5.1 Data

In order to compare our results with those of Laakso and Cottrell presented for the
MLP [11], we prepared the spectrophotometer measurements [2] of the Munsell book of
color: matte finish collection [1] in the same manner. This resulted in 640 patterns of

color spectrum x
(S)
j , (j = 0, 1, 2 . . . , 640) consisting of colors red, yellow, green, blue and

purple with hue values 2.5, 5, 7.5 and 10. The pattern is a 12-dimensional vector, where
each component represents the reflectance intensity of a color chip measured at 25 nm
intervals from 400 nm to 700 nm ranging from 0 to 4095. These spectrum patterns were
further encoded as described in [11] into binary, real, gaussian and sequential representa-
tions x(Sb),x(Sr),x(Sg),x(Ss) having dimensions 96, 12, 60 and 3, respectively The symbol
of the colors R, Y, G, B or P of the spectrum input was encoded into the binary vectors

x
(C)
j =



























[ 1 0 0 0 0 ]T , if the symbol is R

[ 0 1 0 0 0 ]T , if the symbol is Y

[ 0 0 1 0 0 ]T , if the symbol is G

[ 0 0 0 1 0 ]T , if the symbol is B

[ 0 0 0 0 1 ]T , if the symbol is P

(3.5)

Every sixth of the patterns was taken in the holdout set and the rest were used as the
training set.

(answerme:should we open the spectrum encodings more?)

3.5.2 Testing procedure

To study the effects of encoding, a sample of five SOMs, each with random initial values
for model vectors, were trained for the four encodings of the color spectrum. Each SOM
was configured to use 13x9 neurons in hexagonal lattice and the Gaussian neighborhood
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Figure 3.1: Representations for the stimuli are similar except for the sequential encoding.
The Hinton diagram displays correlations between pairwise distances of the input patterns
of different encodings. The area of a box is proportional to the correlation. Black boxes
indicate significant correlation (p-value < 0.05). Numbering of the encodings: 1 for binary,
2 for real, 3 for gaussian and 4 for sequential.

function. To find the effect of the map size, maps of sizes 3x2, 5x3, 8x5, 10x8, 13x9, 15x11,
18x14, 20x15, 22x18 and 25x20 were trained additionally for the binary and sequential
encodings.

Following the partitioning-of-activation-space criterion (Sec. 3.2), Euclidean distances of
the activations on each map were computed for every pair of the test input patterns.
Pearson correlations and their p-values were then computed for these distances. The
activation of a neuron was computed with a Gaussian neighborhood function [9], where
the radius was set to 1/10 of the smaller of the dimensions of the map lattice.

For the emergence of an association between spectrum input x(S) and color symbol input
x(C), these were concatenated to form a single input vector during training (Sec. 3.4.2).
The color symbol part of the input was not used in finding the BMU. After training, the
map units were labelled with the color symbol, whose component had the highest value in

the color part m
(C)
i of the model vectors. This strongest association for each test pattern

was compared with the respective color symbol of the test pattern. The performance of
recall of the color symbol was recorded.

SOM Toolbox [12] has been utilized throughout this study when working with the SOM.

3.6 Results

3.6.1 Similarity of the emergent representations

First we want to get an understanding on how similar the input representations resulting
from the four encodings of the color spectra are. For this purpose the correlations between
the distances between every input pattern pair is computed as described in Sec. 3.2.
Correlations are strong except for the sequential encoding, where the pattern distances only
correlate weakly with distances of the other encodings (Fig. 3.1). The strong correlations
indicate that the respective encodings have preserved the relative distances between the
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Figure 3.2: Emerged representations for the stimuli in the maps are similar to the repre-
sentations of the stimuli to some degree except for the sequential encoding. The Hinton
diagram displays the mean correlations between distances between input patterns for each
encoding and distances between activations of five networks trained on each encoding.
Black boxes indicate mean p-value less than 0.05. Numbering of the encodings: 1 for
binary, 2 for real, 3 for gaussian and 4 for sequential.

patterns to a large degree. In these encodings like spectrum samples have close distances
and different samples have longer distances. The reason for the weak correlations with the
sequential encoded patterns is the peculiarity [11] of the sequential encoding itself that
hardly reflects the distances between the original physical spectrum patterns.

Next we examine the similarity between the representation that has emerged in the map
for the input stimuli and the representation of the stimuli itself, the encoding. For this
purpose the distances between the activations of the map evoked by each input pair are
computed. For the five samples of maps trained on each encoding, these are found to
be similar to some degree to input representations across encodings (Fig. 3.2). Only the
sequential encoded stimuli is not similar to any other representation. As the SOM forms
a non-linear mapping that tends to preserve the topology of the input space, there is an
expected similarity between the distances of the input pattern and the distances of their
representations in the map — in proportion to the similarity of the stimuli encodings
themselves (Fig. 3.1).

Finally we compare the emerged organization of representations in the maps with respect
to the partitioning-of-activation-space view of similarity. The distances between the ac-
tivations of the maps as response to the spectrum stimuli, do correlate irrespectively of
the encoding that the map was trained with, except for the maps that were trained with
the sequential encoded stimuli (Fig. 3.3). Those representations correlate only with other
maps trained using the sequential encoding.

The representations are similar, where they correlate, to the extent that the same color
spectra activate approximately equal positions in the maps relative to activations stimu-
lated by other spectrum samples. If one compares individual responses between two maps
they seem to have no relation at all. This is due to the degrees of freedom available to the
organization during training. The SOM may take different directions in the organization
process depending on the initial values or other randomness in the training phase. Still,
the SOM partitions the activation space roughly the same way for the encodings that
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Figure 3.4: Correlations between the representations in the maps of different size trained
on the real encoding, and their correlation to input patterns. Map sizes are 3x2, 5x3, 8x5,
10x8, 9x13, 15x13, 18x14, 22x16 and 25x20 (fixme:update sizes).

result in similar input representations. It is worth noting that the correlations seem to be
stronger between the activations than between the activations and stimuli (Fig. 3.2).

3.6.2 Effects of scaling of the map capacity

Like in L&C, Figures 3.4 and 3.5 agree that there should be a much weaker relation
between the stimulus and the coded representations than across representations. More
interestingly, when the map size is small, i.e., there are not enough degrees of freedom to
account for the complexity of the data to be coded, the best it can do is to get close to
reproducing the input, hence the poor results found as well for different sizes of the maps
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Figure 3.5: Correlations between the representations in the maps of different size trained
on the sequential encoding, and their correlation to input patterns. Map sizes are 3x2,
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— metaphorically, it would correspond to being able to simply reproduce the inputs in a
’parrot-like’ manner.

When the degrees of freedom increase, the map representation is able to reach a ’mean-
ingful’ coding of the inputs, in such a way that formation of the internal semantics occurs,
hence getting more distant from the inputs, but better structured. Using a similar analogy
as in the above, one could say that the map is already capable of understanding the mean-
ing of what it is producing. After reaching a certain degree of complexity, any increase of
map size can only help to refine the structuring.

Figure 3.5 shows that, if the input encoding is ’unnatural’, it is quite expected that,
without a clear external constraint on the representation, i.e., supervision, all maps can
not reach the desired representation, hence staying at the level of simply reproducing as
much as possible of the input pattern. We could say that these maps have not found any
significant internal structure, or content, in the stimuli.

3.7 Discussion

We have studied the relationship between continuous (perceptual) domain and discrete
(symbolic, linguistic) domain in supervised learning framework (see also [8]). In particular,
we have considered how different encodings or representations of the input data influence
concept formation process.

Figures 3.4 and 3.5 show that there is a much weaker relationship between the stimulus
and the coded representations than across representations. This was also reported in [11].
More interestingly, when the map size is small, i.e., there are not enough degrees of freedom
to account for the complexity of the data to be coded, the best it can do is to get close to
reproducing the input. This is the reason for the poor results found for small sizes of the
maps — metaphorically, it would correspond to being able to simply reproduce the inputs
in a ’parrot-like’ manner.

When the degrees of freedom increase, the map representation is able to reach ’meaningful’
coding of the inputs, in such a way that formation of the internal semantics occurs, hence



getting more distant from the inputs, but better structured. Using a similar analogy
as in the above, one could say metaphorically that the map is capable of understanding
the meaning of what it is producing. After reaching a certain degree of complexity, any
increase of map size can only help refining the structuring.

Figure 3.5 shows that, if the input encoding is ’unnatural’, it can be expected that without
a clear external constrain to the representation, i.e., supervision, all maps can not reach
the desired representation. The maps then stay in the level of simply reproducing as much
as possible the input pattern. We could say that these maps have not found any significant
internal structure, content, in the stimuli.

The measure of similarity presented in [11] is easily transposable to unsupervised mapping.
We still find it to be a very useful one. Emergent representations follow a similar path
as supervised codings, as different systems (e.g. varying sizes of maps) reach similar
formation of the core content.

We have shown that supervision is not needed in order to gain meaningful representations
regardless of the input encoding if the encoding can be considered ’natural’. Of course,
raw input may not always be sufficient source for meaning conceptual organization but
some external or secondary information is necessary. However, we claim that the statistical
characteristics of the primary input data is a reasonable starting point for the formation
of conceptual structures.

3.8 Conclusions

The motivation behind the present paper was to examine Laakso and Cottrell findings re-
garding measures of similarity between representations [11], in emergent, i.e. unsupervised
environments. We observed the following:

1. the SOM learns representations both for stimuli and color symbols and is able to
associate them successfully,

2. application of the partitioning-of-action-space criterion for measuring the similarity
of the latent representations for the stimuli show that the representation are alike
almost independently of the encoding used for input.

The discovered usability of this criterion for the emergent representations, adds new sup-
port in favour of the state space semantic view of mind, and gives a counter example
against the challenges Fodor and Lepore [5] have placed on the connectionist theory.
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Chapter 4

Modeling Multimodal Concepts

Ville Tuulos, Jukka Perkiö and Timo Honkela

4.1 Introduction

There have been attempts to learn concepts based on text corpora: it is assumed that
the statistical analysis of the co-occurrence relationships of the words in the texts would
reveal some structures of the external world, at least partly following Language of Thought
hypothesis. This appears to succeed to a certain, however limited extent. What appears
to be even more important is the possibility to conduct crossmodal learning. In particular,
for human beings the development of a large number of concepts is based on visual domain.

Use of multimodal concepts is motivated partly by computational complexity of natural
phenomena which involve human cognition either directly or indirectly. Implications of
resulting burden of complexity suggests taking a practical bottom-up approach.

We outline our experimental approach to model image similarity using independent com-
ponent analysis and motivate its use to construct multimodal concepts.

By a widely accepted view the brain is a semantic engine. It captures invariances in
perceptual data and associates them with some corresponding internal representations.
Representations are flexible so they may accommodate to changing situation. With these
representations the brain performs sophisticated inferences eventually leading to actions.

There is a two-fold motivation to study this process where the sub-personal representations
seem to have an utmost importance. Firstly, we want to understand and describe the
cognitive process within the relevant context. Secondly, we would like to mimic the process,
typically with a computational method, and thus be able to handle automatically certain
tasks where the brain seem to perform particularly well. However, there is no reason
to believe a priori that these distinct problems could be solved with the same method
simultaneously.

This paper focuses on the second problem of automating processes of conceptual learning
based on visual input. The first part of the paper gives some philosophical background
to our approach. We point out some reasons why we see that the two problems are not
actually the same. We go through some central difficulties in the long tradition of modeling
the mind computationally1 which are mainly seen to be caused by a burden of complexity.

1For brevity terms ”modeling” and ”models” refer to computational modeling and models from now on.
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The second part of this paper introduces our initial experiments with multimodal concept
creation. We give some motivation for using varying modalities to model concepts instead
of relying solely on natural language. The bottom-up approach we take is motivated partly
by technical reasons of the first section, partly by ideas of perceptual symbol systems.

4.2 Burden of Complexity

For the point of view of modeling, the notion of “mind” can be considered misleading.
Folk-psychological concepts like “beliefs”, “intentions” and “desires” do not have clear
correspondence to functions or states of the brain. Therefore, one can state that their
importance for computational models is doubtful, or at least those concepts are only useful
in characterizing some meta-level or emergent properties of the system. In an extreme
eliminativistic stand even the concept of “concept” might be seen only as a convenient
abstraction for humans lacking any relevance per se for the models. We may see products
of folk psychology as special artifacts of one specific model, namely the human brain.
Thus, by focusing on these properties we try to model the symptoms, not the cause.

This is just one instance of a constantly recurring theme in this paper: How to handle
complexity. One common sense approach is to focus on facts which mostly constraint the
problem at hand. Looking at the past focusing on the folk-psychological concepts seem to
have made models more complex, not simpler, mostly due to their vagueness. The next
section tries to show why these models may lack descriptive power as well.

4.2.1 Computational models of mind

Let us consider the following situation. You are given a problem P to solve. Here, P
represents an arbitrary task where P involves interaction with concepts of the human
world. Its level of abstraction may vary from modeling of “conceptual spaces” to recog-
nizing potential aunts among other people in a forest. The idea is here that most of the
“natural” problems, where human cognition is involved, employ the delicate machinery of
human mind quite thoroughly. Thus, recognizing aunts can be considered to be effectively
as difficult problem (to a model) as classifying documents by subject or telling jokes. The
idea is analogous to complexity classes (PSPACE,NPSPACE,PTIME etc.) in theory of
computation2. We believe that this is a result of tightly interwoven subsystems of the
brain as well as their peculiar structure.

The idea is presented for this discussion to get the right mind-set about P. It should not
be read as a metaphysical claim about the inherent nature of the world.

Although we know that humans perform well on task P, our primary task is not to
understand why it is so. Let us suppose here that dumb mimicking or simulation is
easier than gaining true understanding. If the task is extremely regular and its domain
restricted, we may be able to construct a set of static rules to solve the problem, even
without looking how the humans solve the same task. If the domain is not restricted
enough, we probably face the frame problem as we cannot identify and explicate all the
relevant facts with respect to P. On the other hand, if the task is not regular enough but
changing over time, a rule-based system lacks flexibility to accommodate to the changing
situation. Variants of this approach are most widely used since practically all computer

2As with other hard problems, they may be approximated with varying success, but in essence they are

as difficult.



programs are still written in a procedural or object-oriented manner which shares many
properties with rule-based systems.

Connectionistic models are often usen when a task is too hard to model “by hand”. They
should solve the dilemma of complexity by changing their behavior based on invariances in
the input data. Practically all connectionistic models are based on a non-structured homo-
geneous graph (self-organizing maps, multilayer perceptrons, etc.). Due to their graphical
structure connectionistic models are extremely flexible. It is well known that multilayer
perceptrons may approximate an arbitrary function. As their structure (model) is not
strongly restricted to any particular kinds of invariances, parameter estimation process
have to make some assumptions on the data3 so that the problem would be computable.
Thus, the burden of the complexity is effectively moved to the preprocessing of the data
(feature selection) and selection of the model parameters.

It is not difficult to build an artificial neural network model to capture some invariances of
the data set but guiding its behavior towards useful and non-arbitrary results is extremely
non-trivial. This is a result of having too flexible a model family. Moreover, the effect
of certain assumptions in the model and its parameter estimation process are hard to
analyze.

The use of connectionistic methods is often argued to be data driven, saying that the input
data is supposed to restrict the model to solve the particular problem at hand. This claim
is analogous to an extreme tabula rasa viewpoint of human mind which hardly has any
empirical evidence. Learning by induction is also effectively the same idea. All of these
share the same difficulty that the data by itself contains typically arbitrary invariances so
one can support almost any claim by looking at the data from the right direction. However,
if one were to look for something, it would be possible to use the data to verify whether
the search is on the right track. One can either explicitly express what she is looking for
or one can trust on the model assumptions. The latter seldom produces wanted results, if
the assumptions are not carefully and explicitly chosen.

One crucial feature of human mind is generativity – humans can easily produce infinite
amounts of varying written symbols or utterances. Compared to the other models of mind,
connectionistic models usually lack this feature. This makes especially evaluation more
difficult as we will see later on.

It is no surprise that graphical models such as Bayesian networks have proven to be
more useful in many practical applications than their connectionistic counterparts from a
particular point of view. Namely, by letting the user specify the properties (assumptions)
of the problem explicitly by choosing appropriate graph, the user may better embed her
domain-specific knowledge to the system. In case that the user does not have any a priori
knowledge, she may select some general (simplified) graph structure which is suitable for
the problem at hand, like Naive-Bayes model for classification. The complexity has not
been magically diminished but now the user has an opportunity to use her knowledge
to restrict the problem. Again, the user could let the computer go through a part of
exponential amount of possibilities, ranking the models according to some measure. The
results would probably tell more about the part of the space and scoring methods used
than about the actual P. Therefore, it can also be stated that a connectionist model may
be more faithful to a phenomenon under consideration while the user may also introduce
erroneous or too limiting assumptions in the case of graphical models.

Metaphorically, the complexity of human mind propagates to the model through P. No

3E.g. similarity measure



matter which model you use, you have to somehow handle the complexity or accept ar-
bitrary results. The idea is that you cannot avoid this situation as long as your problem
is in connection with the human cognition which inherently seems to “contaminate” the
problem with complexity.

This leads to the dichotomy between descriptive and simulating models. Well-working
computational models are bad descriptions of a phenomenon as they have captured the
complexity of it and thus they cannot be described concisely. On the other hand good
descriptions lead often to folk psychology – they are concise, but rough approximations
and thus simulate badly the actual phenomenon. Descriptive models are inevitably reduc-
tionistic.

The third option would be a simple (deterministic) model producing complex behavior.
This idea is actually not far-fetched as phenomena like that are found all over in the
nature. However, these processes are almost always irreversible so looking at the data
does not tell almost anything about the model, maybe except some sporadic invariances.

The dichotomy has also some implications to evaluation of the models. Simulating models
should be easy to evaluate. If they can predict a phenomenon well a priori they have
captured its essential features. Similarly, solving given P adequately should prove the
model appropriate from a pragmatic point of view. Regrettably many P are so complex
(e.g. natural language processing) that even formalization of an explicit prediction task
may be too difficult.

Here it is relevant to ask how to evaluate a descriptive model. By definition, a descriptive
model tries to show concisely and understandably essential features of P. Yet, by definition
P is complex, showing complex behavior, so it is practically impossible to just “see”
whether the description is correct or not. Thus, the model is not falsifiable. If the model
was generative, one could use it to generate some behavior (data) and then compare
this generated behavior to the behavior produced by P. This is typically easier than
comparing the models directly. Still this approach needs a measure or another model to
evaluate similarity between behaviors, introducing yet another problematic issue.

The account described above explains why descriptive connectionistic models are brittle –
they can “explain” phenomena post hoc due to their flexibility but in a certain way they
are too simplistic to be falsifiable. Seldom being generative, they make reliable evaluation
almost impossible with respect to a complex problem.

This gives us also motivation for being pragmatic with modeling. Being descriptive in-
herently restricts complexity, as we must keep our description understandable. Moreover
it is difficult to be generative and descriptive at the same time without losing much in
the model likelihood. In the end, computer hardware is so different from the brain that
following the same principles might lead to sub-optimal solutions. We believe that well
working practical models solving actual problems may eventually increase our knowledge
about the brain even more than unfalsifiable descriptive ones.

4.2.2 Representations and LOT

As described in the very first paragraphs of this paper, representations (schemata, con-
cept spaces) have a central role in the modern (cognitive) psychology. Developments are
reflected back and forth between philosophy, cognitive science and computational intelli-
gence.

We define representations to be the part in the hypothetical cognitive processes where per-



ceptions get transduced after some processing by perceptual systems. Atomic constituents
of representational system are symbolic in the sense that their actual form is arbitrary,
like words in the language. We do not claim that their implementation or form would be
similar to the symbolic systems in the traditional sense. We do not either make any claims
about structure or functioning of the system.

In the light of the previous section, constructing reliably a system like the above is not
easy. In the descriptive point of view, hypotheses about representation systems do not
give many restrictions on the system structure. One can ask whether it is possible to
automatically “learn” a representation system. As the system is symbolic, it would be
tempting to use some symbolic data in abundance, e.g. written language to model it.
This would lead to a language of thought (LOT) hypothesis giving natural language a
central or even a definite role in the human cognition.

The LOT hypothesis introduces several well-known problems:

1. Grounding: How arbitrary symbols lead to semantics? Perhaps the most famous
exemplification of this problem is Searle’s Chinese Room argument.

2. Transduction: How perceptions lead to symbols?

3. Bootstrapping: How to learn language without representations? How to learn rep-
resentations without language?

4. Pragmatics: Does language have any meaning without use?

5. Evolution: If language is of central importance, how do other animals survive without
it?

Following the Occam’s Razor it’s questionable whether this hypothesis could be correct.
At least we may ask whether some alternative hypothesis leads to more effective models.
Maybe the LOT hypothesis is a Gordian Knot.

4.3 Perceptual Multimodality

We have an intuition that behind the words there is something more abstract, let us call
them concepts, which bring together different modalities (haptic, kinetic, visual etc). Yet,
simple co-occurrence statistics of words alone do not seem to coincide well enough with
our introspective ideas of what concepts are, partly due to technical reasons described
in the first section, partly due to problems of the LOT4. Previous attempts to capture
hidden variables behind text have produced varying results Instead of trying to build more
elaborate models on text, we take a more bottom-up approach.

To be able to evaluate our model we take a practical problem. Given a set of different real-
life data sets of different types (modalities), we try to model their co-occurrences so that
one modality can be retrieved using another. In practice, we need a model of similarity
for each modality and a model of similarity between the modalities.

Following our experimental setting, let us choose two modalities, i.e., text and images.
Given an image of a tiger the model should return texts about tiger. Given an example

4If LOT hypothesis is not exactly correct, it is quite improbable that written language would reflect

conceptual system with any satisfiable precision – refer also to Von Foerster.



document about tigers, the model should return images of tigers. Some implementations
with these modalities (text and images) exist already using probabilistic approach. Our
setting models image similarity with Independent Component Analysis (ICA) [2], which
to our knowledge is not used before in this kind of an image retrieval task. Multinomial
Principal Component Analysis (MPCA) is used for modeling language.

One can easily see that the experimental setting has no descriptive power with respect
to the brain. However, we believe that systems combining different perceptual modalities
may exhibit behavior which closely resembles results of human inference in certain tasks.
Use of perceptual input (like images) directly in inference in spite of dubious transduction
to some symbolic representation has some useful properties:

• Problems of grounding and transduction diminish. According to [1] concepts in per-
ceptual systems may be seen as simulators which reproduce neural activations simi-
lar to those which typically co-occur with external phenomena behind the concept.
Correspondingly, commonly co-occurring perceptions form a concept. Naturally the
correspondence is not quite this simple in practice.

• Discrimination between syntax and semantics is not as crucial as it has often con-
sidered to be. In a LOT-based view syntax and semantics are orthogonal properties.
If concepts are seen as multimodal co-occurrences of perceptions the distinction be-
comes more blurred. In cognitive linguistics, this conclusion has been made, e.g., by
Langacker [7].

• Perceptual multimodality seems to suit well with the current understanding of evolu-
tion. Different modalities may have developed somehow separately at different pace.
This stand agrees well with Dennett’s Pandemonium-model for competing modules
of mind.

• Neurophysiological evidence from fMRI imaging with certain tasks. See again[1] for
details.

For more detailed discussion on benefits of perceptual symbol systems, see[1]. The above
reasons are motivating also with respect to the first section: They introduce some structure
to the model (separate models for different modalities with clear characteristics). It also
provides a simpler explanation for the phenomenon of interest than a LOT-based approach.
In the following section, we describe our setting to evaluate whether the model works also
in practice.

4.4 Experiments

4.4.1 Measuring image similarities

Now we have the problem of measuring similarities between different images. That is a
very widely researched area and there is a vast number of different statistical techniques
that may be used. We use ICA as the framework for image processing that we need.

4.4.2 ICA

Independent component analysis (ICA) is a statistical technique to find hidden factors
from data. The observed data is assumed to be a linear or non-linear mixture of some



latent variables i.e. hidden factors. ICA is a generative model and it assumes latent
variables to be non-Gaussian and mutually independent. The basic ICA model in its
linear form is following

x = As =
∑

i

aisi, (4.1)

where x = (x1, x2, x3, . . . , xn)T is the observed data, A is the linear mixing matrix and
s = (s1, s2, s3, . . . , sn)T is the latent data, which is also called the components.

Now the task is to find the mixing matrix A so that the components s can be estimated
as

s = A−1x. (4.2)

As it was mentioned independent components can be estimated also for non-linear mixtures
but for our purposes we only need the linear version of ICA. In our context also the number
of components and the number “observations” is always the same.

There are many different algorithms to estimate the independent components. One of the
fastest and most widely used is the FastICA algorithm developed in [3].

4.4.3 ICA for image data

As it was mentioned ICA assumes some hidden factors in the data and that those factors
are somehow more characteristic to the data than the observed data in itself. For image
processing the feature extraction is a fundamental problem and it seems very intuitive to
assume that in an image data there might be also some hidden factors that could be used
as features to discriminate between images. It has been shown that the receptive fields
of V1 simple cells resemble the independent components estimated from natural images
[5]. That makes it even more attractive to use ICA for feature extraction. ICA has been
used for feature extraction [4] but normally it has been done to many different images
collectively and not to single images.

The application of ICA to image data is normally done by sampling small windows from the
image and then the independent components are estimated from these samples. There are
questions related to the nature of the sampling window e.g. its size, form and its functional
form. Common choice but probably not the best one is to use a square sampling window
of size 122 to 162 pixels. That approach have some drawbacks and a better choice is to
use a round smoothly decaying window [6].

Independent components estimated from image data share some very nice properties.
They are not only local in spatial domain but also they are local in frequency domain and
orientation. In that they resemble Gabor filters that are widely used in image processing.

We use ICA to create a filter set for an image and then we apply this filter set on other
images to estimate how similar those images are to the image from which the filter set was
estimated.

4.4.4 Creating the filter set

We produce the filter set in the following manner:

1. We sample the image using a rectangular sample window to produce 256-dimensional
vectors as we are dealing with gray-scale images.



2. Local mean is subtracted from the vectors.

3. The dimensionality of these vectors is reduced to n using PCA.

4. Independent components are estimated from this n-dimensional data.

5. The estimated components are projected back to the 256-dimensional space to pro-
duce the filter set.

Now we have a single image Ik and a set of images

I =
⋃

k

Ik (4.3)

and a filter set
F k =

⋃

i

F k
i , (4.4)

where i denotes a single filter. We calculate for each image its specific filter set and we
get a set of filter sets

F =
⋃

k

F k, (4.5)

which contains one filter set containing n filters for each image Ik.

As it happens, different images produce different filter sets and these filter sets can be
used for discriminating between images. We could try comparing those filter sets directly.
However a better solution is to compare the outputs of those filters applied to an image.
Now we denote the output of filter set F k on image Ij with Ok

Ok = F k(Ij). (4.6)

Output of a filter set on an image is calculated simply by sliding the filter over the image
and calculating a dot product between the filter and the image window below the filter.
That produces a vector, which size depends on the way we do the sliding. In our case
we slide the filter horizontally from left to right and from top to bottom using different
step sizes. It seems that the step size is not very critical as long as it is small enough to
capture local changes in the image e.g. from 1 to 8 pixels seem to be all right. Of course
that depends on the image resolution.

4.4.5 Using the filter outputs

Now that we have the filter responses from a set of images including the image from
which the filter set is calculated. We could compare these responses and try to estimate
the similarities based on that. However if we calculate the probability distributions of
these responses we can use different measures e.g. Kullback-Leibler divergence or Jensen-
Shannon divergence for the comparison. We calculate for each filter set output Ok its
empirical probability distributions that we denote with Dk. Now

Dk =
⋃

i

pk
i , (4.7)

where pk
i is the distribution of a single filter F k

i . In order to do that there are some
technical questions like discretization etc. but they are rather trivial.
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Figure 4.1: The output of same filter from two different images. The upper plot is from
the same image that the filter was calculated from.
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Figure 4.2: The probability distributions of the filter outputs in figure 4.1. The plots are
in the same order as in figure 4.1.

Now that we have the distributions of the filter outputs we can compare those distributions
directly. The Kullback-Leibler divergence of two discrete distributions is defined as

KL(p1||p2) =
∑

i

p1(xi) log
p1(xi)

p2(xi)
(4.8)

as we can see it is not a symmetric operation but it is always ≥ 0 and it is 0 only if p = q.
Furthermore the Kullback-Leibler -divergence can easily be done symmetric if we define

KLsymm(p1||p2) = KL(p1||p2) + KL(p2||p1). (4.9)

That is still not a true metrics as it does not satisfy the triangle inequality. However that
is not a problem in our case.

Another option would be to use Jensen-Shannon divergence, which is a true metrics if we
take its square root. Jensen-Shannon divergence is defined as follows. Let us define the
average of two distributions p1 and p2

p̄12 =
p1(x) + p2(x)

2
,∀x ∈ X. (4.10)



Now Jensen-Shannon divergence of distributions p1 and p2 is defined as

JS(p1||p2) =
KL(p1||p̄12) + KL(p2||p̄12)

2
. (4.11)

As it was mentioned if we take the square root of Jensen-Shannon divergence it then
is a true metrics in a sense that it satisfies non-negativity, reflexivity, symmetry and
the triangle inequality. However in this context we prefer symmetric Kullback-Leibler
divergence for its simplicity.

Now that we have calculated the Kullback-Leibler divergences between given distributions
we can deduce the similarity between one image compared to others. In other words we
produce a ranking telling which image is closest to a certain image. Our empirical tests
are not yet finished but at the moment our approach looks quite promising.

4.4.6 Assessing the method

The method explained in this chapter can be seen as a query model to retrieve images.
That is we want to retrieve images that are similar to one particular image. For our
purposes that is sufficient as there are always more than one image involved in the process
and we are mostly interested in seeing whether other images are similar to one particular
image and which one is the most similar. The method explained does not produce any
“real” distance information as all we can say is that one image is closer to another than
some other image.

As it was mentioned we only produce a ranking according to similarity to one image.
Intuitively it feels very hard to give any absolute metrics for distances between images the
way human observers do on average. The empirical tests have not yet been performed
completely but the preliminary results are encouraging.
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Chapter 5

On Representation of Action
within Real-World Situations

Kevin I. Hynnä, Mathias Creutz, Tarja Knuuttila, and Timo Honkela

5.1 Introduction

In traditional artificial intelligence, models of action have been considered in the context
of planning and decision making (see, e.g., Levison 1996, Tiebaux et al. 1994). It has
been commonplace to represent the action directives as rules that determine the actions
of an agent. In real-world contexts in which the agent receives perceptual input and may
have to act in a natural environment, the input data and the low-level action directives
are not straightforwardly in symbolic form. For instance, if the plan for a robot in some
hypothetical action description language would be (GET SALT (FROM-PLACE TABLE)) the
concepts1 SALT and TABLE refer among other things to complex patterns in the visual scene.
Moreover, the agent would need to have information of the position about its effectors and
their relation to the physical item in some spatial coordinate systems in order to accomplish
the actual grasping. This grounding problem has widely been acknowledged as a central
problem for symbolic representations. Therefore, a link between the symbolic level and
the perceptual or pattern level is needed.2

Wermter and Sun (2000) define hybrid neural systems as computational systems which
are mainly based on artificial neural networks (often referred to as connectionist systems)
but which also allow a symbolic interpretation or interaction with symbolic components.
The artificial neural networks deal naturally with perceptual level. The recognition of
the limitations of symbolic and connectionist approaches as such has lead into active
research that combines or integrates these approaches within hybrid systems (consider,
e.g., Dorffner (1997), Hilario (1995), Barnden and Holyoak (1994), Miikkulainen (1993),
Reilly and Sharkey, Ritter and Kohonen (1989), and Wermter (1995).

Gärdenfors (2000) has developed a conceptual spaces theory (CST) that he provides as an

1Here we use the word ’concept’ even though we consider concepts to be complex patterns in continuous

multidimensional spaces and which cannot usually be represented symbolically.
2Even if we assume that we could build a successful cognitive agent model without the use of explicit

symbolic descriptions, symbolic representations are presumably needed in communication with human

beings. In principle, artificial agents could have a language, or rather a form of communication which is

based on continuous representations.
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alternative for plain symbolic representations of knowledge and as a higher level of repre-
sentation of information processing than in connectionist systems. Conceptual spaces are
spanned by a number of quality dimensions which can be used to describe, e.g., concept
formation. Gärdenfors divides in his theory the levels of representation into symbolic,
conceptual and subconceptual. As opposed to theories based solely on symbolic represen-
tations, he considers how to take into account symbol grounding and perceptual input in
the concept formation process.

Gärdenfors (2000) does not, however, explain in detail where the quality dimensions are
derived from and how, e.g., they are to be related to perception or behavior. Moreover,
Gärdenfors’ theory, in its current form, is focused on static objects and perceptual qualities.
He characterizes one consequence of this restriction as follows: “another large class of
properties are the functional properties that are often used for characterizing artifacts.
For example, Vaina (1983) notes that when deciding whether an object is a ”chair”, the
perceptual dimensions of the object, like those of shape, color, and weight, are largely
irrelevant or at least extremely variable. Since I have focused on such variables in my
description of conceptual spaces, the analysis of functional properties is an enigma for my
theory.” Gärdenfors also provides similar criticism on the ability of his theory to deal with
action concepts.

Action is used to refer to:

1) Action words or concepts

2) Actions as behavior of a model, i.e., ability to make decisions or perform actions.

Investigation of (1) is ultimately useful only to the extent that it aids in our explanations of
behavior, of both real and simulated agents. Nevertheless, there is an intimate, interrelated
relationship between the ability to identify and classify other people’s actions and the
classification and performance of one’s own actions, as evidenced by recent work concerning
so-called ’mirror neurons’.

In this chapter, we bring together a number of recent trends from cognitive modelling
that have arisen from concerns over the ability of a purely symbolic approach to ground
symbols in any realistic, biologically plausible way. our main goal is to present a unified
framework which is sensitive to the criticisms laid at symbolic approaches,, and which can
be used to guide investigations involving robot or agent-based simulations.

After outlining and motivating the basic tenets of this framework we consider whether
Gärdenfors’ approach to conceptual modelling is in accordance with this framework. We
conclude that it is possible to align Gärdenfors’ approach with the framework outlined
here, but in order to do so it is useful to consider Gärdenfors’ approach as falling within
the more general framework of Dynamical Systems Theory.

5.2 Ontological and epistemological assumptions

When we discuss the representation of action relevant to agents in real-world contexts, it
is useful to characterize what we mean by the real world, i.e., what are our ontological
assumptions. In addition to that, in the following we also outline the basic epistemological
points of view. First of all, the world is a dynamic, continuous process. The continuity is
a relevant point of view, for instance, when the symbolic or linguistic level is considered,
in which matters are discretized. Cognitive agents perceive and conceptualize the world
to consist of objects (persons, trains, houses, flowers, countries, etc.) and events (leaves



falling, people running, earthquakes, television reporting an earthquake, etc.) and they
use words and phrases, e.g., to communicate them in propositional form. Concepts reside
in the minds (and even brains) but they are formed in a cultural and historical process
which involves perception, communication and collaboration, activity, etc.

Maturana and Varela’s theory of autopoietic systems provides a useful account on con-
sidering the nature of the agents that are responsible for conducting actions. Maturana
(1978) describes autopoietic systems in the following manner: “There is a class of dynamic
systems that are realized, as unities, as networks of productions (and disintegrations) of
components that: (a) recursively participate through their interactions in the realization
of the network of productions (and disintegrations) of components that produce them;
and (b) by realizing its boundaries, constitute this network of productions (and disin-
tegrations) of components as a unity in the space they specify and in which they exist.
Francisco Varela and I called such systems autopoietic systems, and autopoietic organiza-
tion their organization [...]. An autopoietic system that exists in physical space is a living
system (or, more correctly, the physical space is the space that the components of living
systems specify and in which they exist) [...].”

Maturana (1978) continues: “Autopoietic closure is the condition for autonomy in au-
topoietic systems in general. In living systems in particular, autopoietic closure is realized
through a continuous structural change under conditions of continuous material inter-
change with the medium. Accordingly, since thermodynamics describes the constraints
that the entities that specify the physical space impose on any system they may compose,
autopoietic closure in living systems does not imply the violation of these constraints, but
constitutes a particular mode of realization of autopoiesis in a space in which thermody-
namic constraints are valid. As a result, a structurally plastic living system either operates
as a structurally determined homeostatic system that maintains invariant its organization
under conditions of continuous structural change, or it disintegrates.”

In summary, autopoietic (living) systems are autonomous and they aim at keeping them-
selves alive but in their autonomy they are also constantly “in the world”.

If we follow the theory of autopoietic systems the ontological status of objects and events as
objective, distinct and independent of any observer can be questioned as Maturana (1988)
does: “Since everything said is said by an observer to another observer, and since objects
(entities, things) arise in language, we cannot operate with objects (entities or things) as if
they existed outside the distinctions of distinctions that constitute them. Furthermore, as
entities in language, objects are brought forth as explanatory elements in the explanation
of the operational coherences of the happening of living in which languaging takes place.
Without observers nothing exists, and with observers everything that exists exists in
explanations.”

Von Foerster (1972) has presented a similar account: “Objects and events are not primi-
tive experiences. Objects and events are representations of relations. Since ’objects’ and
’events’ are not primary experiences and thus cannot claim to have absolute (objective)
status, their interrelations, the ’environment’ is a purely personal affair, whose constraints
are anatomical or cultural factors. Moreover, the postulate of an ’external (objective)
reality’ disappears to give way to reality that is determined by modes of internal compu-
tations.”

It is important to note that Maturana, Varela and Von Foerster do not wish, with their
point of view, to deny the existence of the external world. They merely point out that cog-
nitive, living agents construct their description of the world, and this description consists



of constructed categories such as objects and events along with their associated subcate-
gories. Each of those constructions is subjective but at the same time their formation is
based on the interaction with other agents as well as artefacts that reflect the structural
characteristics of the constructions of other agents.

5.3 Embodied cognition approach

In this chapter we study the embodiment of action in robotics, in particular. We refer
extensively to Pfeifer and Scheir’s work. Similar argumentations and results can be found,
for instance, in Brooks (1991) and Steels (1995).

5.3.1 Sense-think-act cycle

Planning is the core of traditional artificial intelligence (AI). Based on a comparison of a
representation of a goal state to the current state, an agent constructs a plan for moving
from its current state to the goal state. A popular strategy has been means-end analysis
(Newell and Simon, 1972). Means-end analysis requires a measure of distance between
the current state and goal state. Operators [actions] are then chosen on the basis of
an evaluation of how much their application will reduce the distance to the goal state.
Operators are associated with certain preconditions, which have to be met in order for
an operator to be chosen. Preconditions can be achieved by applying other operators
[actions]. This produces a chain of subgoals that leads to the final goal state. The final
goal state is thus attained by applying subgoal-directed operators in a sequence.

This kind of planning method seems intuitively plausible, but it is subject to a combi-
natorial explosion. For example, if there are 10 branching points in a plan, and at each
branching point there are two possibilities, there will be 210 or roughly 1000 different plans.
Such planning systems have therefore not been very successful on real robots. (Pfeifer and
Scheier, 1999)

Means-end analysis goes nicely with the classical idea that intelligent behavior is based
on a sense-think-act cycle. The agent first perceives something (sense), it then processes
what it has perceived (think) and finally executes an action (act). In terms of means-end
analysis, the agent has to be able to sense its environment in order to determine its current
state. The thinking corresponds to setting up a plan including subgoals; and finally, acting
consists in choosing appropriate operators.

5.3.2 Frame-of-reference problem

In their book ”Understanding intelligence” Pfeifer and Scheier (1999) challenge the idea
that intelligent behavior is based on a sense-think-act cycle. They set up a framework
for embodied cognitive science with the goal of designing so-called complete agents. A
complete agent is autonomous, i.e., it is independent of external control to a certain
degree. Furthermore, it is self-sufficient, which means that it is capable of sustaining itself
for extended periods of time without any human intermediary. It is embodied, i.e., realized
as a physical robot or as a simulated agent, and it is situated, thus acquiring information
about its environment solely through its own sensors in interaction with the environment.
Complete artificial agents are inspired by natural agents, animals and humans, which are
capable of surviving in the real world. Being ”complete” means incorporating everything



that is required to perform actual behavior. (By contrast, standard computer programs
are not complete because they cannot behave in the real world.)

Pfeifer and Scheier argue that as far as the behavior, or the actions, of an agent is con-
cerned, we have to be aware of the frame-of-reference problem: ”We have to distinguish
between the perspective of an observer looking at and agent and the perspective of the
agent itself. In particular, descriptions of behavior from an observer’s perspective must
not be taken as the internal mechanisms underlying the behavior.” Or put differently:
”We must make a distinction between rational thought, which concerns the mechanism
within the agent, and rational behavior, which pertains to the agent’s interaction with the
environment. Rational behavior is, of course, behavior and can thus be perceived by an
observer. It is not necessary, in order for rational behavior to take place, to postulate goals
and knowledge as being explicitly represented within the agent. In other words, rational
thought is not a prerequisite for rational behavior.”

Pfeifer and Scheier stress that the behavior of an agent is always the result of system-
environment interaction. It cannot be explained on the basis of internal mechanisms
only. They illustrate that the complexity that we as observers attribute to a particular
behavior does not always indicate accurately the complexity of the underlying mechanisms.
Experiments with very simple robots that merely react to stimuli in their environment have
shown that rather complex behavior can emerge. In the study of robot communities, where
robots can interact with other robots in their environment, nature-like behavior has been
observed, such as bird-like flocking (REF) and ant-like heap building (REF).

5.3.3 The action selection problem

Pfeifer and Scheier further address the action selection problem: ”Complete systems always
have several behaviors in which they must engage. Some of the behaviors are compatible,
others mutually exclusive. Because not all behaviors are compatible, a decision must be
made as to which behaviors to engage in at each point in time...

The most straightforward solution to this problem is to assume that there is an internal
module or representation for each observed behavior category. For example, if we observe
that a rat (or a robot) is following a wall, we might postulate that it has an internal
module or a representation for wall following. Such a representation is often called an
action... [T]o control behavior under this assumption, you need a mechanism for which
action to choose for execution at any given point in time...

The problem with this approach to behavior control is that the assumption of a straight-
forward, one-to-one mapping from a specific behavior to a specific internal action does
not reflect what actually occurs in natural systems... There are two issues of which to
be aware: First, the segmentation of an agent’s behavior is observer-based and largely
arbitrary... Second, it is not appropriate to conclude that for each of these behavioral
segments there is an internal module.”

As an example of different possible segmentations of a particular event Pfeifer and Scheier
contrast the action ”going to class” with the action sequence ”getting up from chair”,
”moving left leg forward”, ”moving right leg forward”, and so forth. These are observer-
based categories chosen according to some criteria.



5.3.4 Loosely coupled, parallel processes

In contrast to earlier AI and cognitivistic approaches, Pfeifer and Scheier demonstrate
mechanisms for behavior control that do not require the existence of internal actions.
These mechanisms are based on the so-called subsumption architecture, which was first
introduced by Brooks (1986). Subsumption is a method of decomposing a robot’s control
architecture into a set of task-achieving behaviors or competences. In contrast to the
traditional approach, information from different sensory systems (e.g., vision, auditory) is
not integrated to a central representation. The subsumption architecture consists in the
incremental adding of task-achieving behaviors on top of each other. Implementations of
such behaviors are called layers. Instead of having a single sequence-of-information flow
– from perception to world modeling and planning to action (sense-think-act) – there are
multiple paths, the layers, that are active in parallel. Each of these paths is concerned only
with a small subtask of the robot’s overall task, such as avoiding walls, circling around
targets, or moving to a charging station. Each layer can function relatively independently
without having to await instructions or results produced by other layers. (pp. 201–202)

The use of layers naturally leads to extendable designs in which new competences can
simply be added to the already existing and functioning control system. At each level,
there are sensory inputs and motor outputs. Higher levels, just like lower ones, can directly
interact with the environment, without the need to go through lower levels. Subsumption
combines robot design with evolutionary principles. Once a particular competence is in
place and is working (such as moving around and avoiding obstacles) it should no longer
be changed when new competences are added (such as approaching a light source).

However, a certain amount of interaction between layers is necessary, even though this
interaction should be minimized in order to facilitate the design process and to achieve
maximum incrementality and emergence of optimal behavior. Subsumption means that
higher layers can subsume lower ones, i.e., suppress their input or inhibit their output.
For instance, a chair-pushing robot has to stop avoiding obstacles when it has to push a
chair.

5.3.5 Examples of emergent complex behavior

Wall-following robot

Pfeifer and Scheier describe several experiments where complex behavior emerges as a
result of robot-environment interaction. In the following example, a neural network is used
for controlling the robot. The robot lives in an ”ecological niche”, a closed environment
with obstacles and light sources. The light sources are placed along the walls and the
obstacles are distributed randomly over the open space. The robot has three kinds of
sensors: collision, proximity and light. The sensors are distributed along the front half of
the robot, and two are in the back. There are two wheels, each with one motor. The robot
has a number of built-in reflexes. If it hits an obstacle, activating a collision sensor on its
either side, it will back up a little and turn to the other side. Whenever it is sensing light
on one side, it turns towards that side. If it senses no obstacles and no lights, it simply
moves forward.

In the beginning, the robot will crash into obstacles often. However, over time it will
”learn” the correlation between the activation of its collision sensors and its proximity
sensors. This leads to avoidance behavior before the actual collision takes place. The



robot is thus ”anticipating” a collision and taking corrective actions in order to continue
its forward moving behavior.

As a consequence of its built-in reflexes, the robot will approach light sources along the
walls. However, as it approaches the wall, it turns away because it has learned to avoid
obstacles. Now the turn-toward-target is activated again, and the robot wiggles its way
along the wall. Over time wall-following behavior emerges. The robot will further associate
light with lateral stimulation in its proximity sensors, and will continue to follow the wall,
even though the light is switched off. If we assume that the light represents food, we could
say that the robot has learned that food is normally located along walls. Because it has
this knowledge, it follows the walls hoping to find food, even if it currently doesn’t sense
any. This is our interpretation as observers. All that happened within the robot was a
change of weights in the neural network.

Categorizing robot

In another experiment, a similar robot has the task of distinguishing between small and
large objects. It should learn to collect small object with its gripper and bring them to its
nest. Large objects are too large to fit into the gripper and they should be avoided. The
robot has only two types of sensors: infrared sensors (for proximity) and wheel encoders.
Seven processes are working in parallel: move-forward, avoid-obstacle, turn-toward-object,
grasp-object, turn-away, and bring-to-nest.

To distinguish between objects, the robot develops a strategy to explore the objects in
such a way that the sensor readings are correlated in time and correlations exist between
different sensors. Circling is such a behavior. However, there is no simple one-to-one
mapping between behavior and the underlying mechanism: The robot normally moves
forward and when it senses an obstacle it avoids it by turning away. At the same time, if
it senses stimulation in one of its lateral sensors, it turns slightly toward the object. (Such
a reflex ensures that the robot has a tendency to be near objects that are generally more
interesting than open spaces.) The interaction of these three processes leads to a behavior
that can be called move-along-object or circling. Circling implies that the motor speeds
are different for the left and the right wheel. The larger the difference, the smaller the
object being circled. The robot can thus learn to categorize objects in its environment by
interacting with them.

In addition to emerging behavior, this example illustrates that there is no special catego-
rization module. Most current models study categorization in isolation, but Pfeifer and
Scheier claim that categorization makes sense only with respect to the complete agent
and involves sensory-motor coordination. By interacting with an object to be categorized
the agent overcomes the object constancy problem, i.e., the problem of determining which
parts of the input belong to one and the same object. The problem is hard, because the
same object can lead to very different input patterns depending on the viewing angle, light
conditions, noise in the sensors, etc. The problem is much reduced, if rather than passive
perception active interaction with the environment is allowed. In this way, the agent can
produce sensory input that is considerably easier to process.

5.3.6 Scalability and self-awareness

Whether the embodied cognition approach scales to human levels of intelligence is un-
known. Pfeifer and Scheier feel that they have not currently found any in-principle rea-



sons why their principles should cease to work at some level of complexity. However, they
suggest that a distinction be made. Are we trying to understand human intelligence or are
we trying to build an enormously complex robot, comparable in complexity to a human?
If the former is the goal, they say that they have shown that relatively simple agents can
be employed to study issues in human intelligence (e.g., category learning). The point is
more about understanding than scale, and about how to employ models in the scientific
process. But if the latter is the goal, i.e., building highly complex robots, we indeed face
a scaling issue.

Furthermore, Pfeifer and Scheier speculate whether an artificial agent could eventually
develop a sense of ”self”. Patterns and regularities in sensory data and behavior, though
emergent, are objectively measurable. These regularities can potentially be observed and
used by the agent itself. This might form the basis on which the agent could develop a
sense of ”self” that would be grounded in physical interactions rather than an abstract
entity living in the agent’s head. It would enable the agent to develop knowledge about
its own sensory-motor setup and its relations to the world. It is possible that such a need
is only present in social environments, where the agent has to be able to communicate
about his own needs or capabilities.

5.3.7 Embodied meaning in Neural Theory of Language

In the previous section, we demonstrated that seemingly intelligent behavior need not
be accompanied by any explicit internal conceptual representation. In this section, we
demonstrate how the embodied cognitive approach can incorporate the notion of concepts
and language.

Feldman and Narayanan (2004) propose a neural theory of language (NTL) that is based
on embodiment. They claim that one should not expect to find brain areas specialized only
for language or to find language processing confined to only a few areas of the human brain.
The NTL assumption is that people understand narratives by subconsciously imaging (or
simulating) the situation being described, e.g.:

“When asked to grasp, we enact it. When hearing or reading about grasping, we simulate
grasping, being grasped, or watching someone grasp... The action of grasping has both a
motor component (what you do in grasping) and various perceptual components (what it
looks like for someone to grasp and what a graspable object looks like). There are other
modalities involved as well, such as the somato-sensory component (what it feels like to
grasp something or to be grasped yourself).”

The NTL approach to language suggests that the complex synergy that supports grasping
is the core semantics of the word. If we accept this complex of neural circuits and behaviors
as the core meaning of grasping, it remains to show how a word like “grasp” gets associated
with the embodied concept. Apparently, in the approach proposed by Pfeifer and Scheier
this would theoretically not be a problem. If an agent were to associate a certain behavior
with hearing or uttering a certain linguistic expression, hearing that expression could in
the future trigger the behavior, and the behavior could in turn trigger the uttering of the
expression.

However, Feldman and Narayanan identify a problem, the correlation problem. A child (or
a robot) must learn what features of the situation and of its actions the parent (or tutor)
is talking about. Furthermore, different languages differ widely in the way that they label
actions. In English there are quite many verbs denoting actions involving hands (e.g.,



grasp, grip, drop, tug, lift, nudge) and other languages make distinctions that English
does not. But according to Feldmann and Narayanan, if the meaning of an action word
were supposed to be the activity of a vast distributed network of neurons, there seems to
be a complexity barrier. The key to solve this problem is parameterization. All people
share the same neural circuitry and thus the same semantic potential. “A motor action
such as grasping involves many coordinated neural firings, muscle contractions, etc., but
we have no awareness of these details. What we can be aware of (and talk about) are
certain parameters of action – force, direction, effector, posture, repetition, etc. The
crucial hypothesis is that languages only label the action properties of which we can be
aware. That is, there is a fixed set of embodied features that determine the semantic
space for any set of concepts, such as motor actions... [C]ontrol of action can also be
parameterized and thus made available to language learning.”

By claiming that parameterization, and thus discretization, of the semantic space is crucial,
Feldman and Narayanan indirectly take a stance on the action selection problem. The
segmentation of an agent’s behavior is indeed largely arbitrary, and different languages
can use different categorizations, but there is a minimal set of action properties that we
can be aware of. This makes learning of concepts and language possible in the first place.

The authors do not restrict themselves to single words describing concrete actions. They
extend their theory to abstract words and entire sentences. In the NTL, abstract and
metaphorical words derive their meanings from concrete words. There are, e.g., several
metaphorical uses of the word “grasp”: “grasp an idea”, “grasp an opportunity” etc. NTL
suggests that all understanding involves simulating or enacting the appropriate embodied
experience. “This ability to simulate or imagine situations is a core component of human
intelligence and is central to our model of language.” The understanding of whole sen-
tences is based on constructional composition according to the principles of Construction
Grammar (Bergen and Chang 2002).

So far, we have discussed how an agent can learn concepts and language relating to its
own actions. But how can an agent identify actions performed by other agents? Several
studies on so called “mirror neurons” that have demonstrated the existence of a mirror
system in the brains of apes and humans, such that the same neurons are activated both
when an action is observed and performed (cf., e,g, Meltzoff and Decety 2003). Thus, the
same neural circuitry can be used for observing and performing action, and furthermore
imagining action. It does not seem far-fetched that a particular activation pattern of
neurons could trigger a linguistic expression that is related to a particular kind of situation,
and vice versa.

5.4 Dynamical Systems Theory Approach

We began this paper with a problem, namely, how do we extend Gärdenfors’ conceptual
space theory (CST) to account for the actions of agents. In particular, we considered
the problem of modelling autonomous agents which are capable of acting and interacting
adaptively and flexibly in some environment. Following Pfeifer and Scheier (1999) and
Brooks (1991), methodological considerations suggest that a key requirement of any such
models is that the agents be situated and embodied, i.e., they deal with the here and
now of the real world around them, and they experience the real world directly via their
bodily manifestations. In this section, we will attempt to make explicit the connection
between CST and the modelling of the action of autonomous agents, and we will do so
by suggesting that Gärdenfors’ model be recast in terms of dynamical systems theory



(DST). Or, in other words, we will argue that sufficient similarity exists so as to warrant
characterizing the former as an instance of the latter, and doing so allows us to quite
naturally extend CST to the domain of actions.

A word of caution is in order. As noted by van Gelder (1998), dynamical modelling
taken by itself ”does not somehow automatically constitute an account of cognition. It
is a highly general framework which must be adapted, supplemented, fine-tuned, etc.,
to apply to any particular cognitive phenomenon”. In other words, the DST approach
is simply a framework, a set of tools, as it were. Establishing that CST can be viewed
from a DST perspective does not in and of itself accomplish very much. Demonstrating
that this is a useful exercise is the hard part. In this paper, we only suggest why this
might be the case. Accordingly, our strategy will be as follows: First, we will briefly
introduce the dynamical systems framework. Then, we will show that this framework is
in principle capable of accomodating the observations about the design of autonomous
agents which have arisen from the field of robotics and were discussed in the previous
section. Finally, we will discuss why it seems plausible to consider CST as an instantiation
of DST. Here we can only introduce some of the main concepts which characterize the
DST approach. There are numerous introductions to the more formal aspects of DST
available, with one common source being Abraham and Shaw (1982). Bechtel (1998), Beer
(1995), Elman (1998), Smolensky (1986), van Gelder (1998), all introduce and discuss some
more or less methodological aspect of the DST approach as it applies to the modelling
of cognition. Kelso (1995), and Thelen and Smith (1994) develop the DST approach to
cognitive modelling, and van Gelder and Port (1995) serves as a standard overview of the
DST approach which includes numerous papers involving applications of the DST approach
to cognitive modelling. Although what follows is largely based on the presentation found
in Beer (1995), it is a standard treatment of the material.

5.4.1 Dynamical Systems

Simply put, a dynamical system is a system that changes or evolves over time. A dynamical
system can be characterized by a set of state variables, x, and an evolution equation (or
dynamical law), F , that governs how the values of the state variables change over time.
The set of all possible values of the state variables constitutes the system’s state space. In
a continuous-time dynamical system, the evolution equation is given in terms of a set of
differential equations.3 Often, change in the system depends on factors outside the system
itself, which are usually referred to as parameters. If the evolution equation depends only
upon the values of the state variables and the values of some set of fixed parameters,
u, then the system is said to be autonomous. A non-autonomous dynamical system, by
contrast, is one in which one or more parameters are allowed to vary in time. Time-varying
parameters can be thought of as inputs into the system.

Note that this formal, mathematical notion of autonomy of a dynamical system should
not be confused with what we mean by an autonomous agent, which was informally intro-
duced above as an agent that is independent of external control but which, following Beer
(1995), can now be specified further as “any embodied system designed to satisfy internal
or external goals by its own actions while in continuous long-term interaction with the
environment in which it is situated”. As we shall see below, when describing agents (or
systems) within DST, they may turn out to be non-autonomous in the mathematical sense,

3If time is considered discretely then difference equations are used. Here, we shall assume that time is

continuous.



but still, intuitively at least, be considered autonomous as agents, per se (see below).

dx1/dt = F1(x1;u1) (5.1)

dx2/dt = F2(x2;u2) (5.2)

Let equations (1) and (2) give the evolution equations for two systems, s1 and s2 respec-
tively. Equation (1) simply says that x1, the state variable of system s1, changes over time
as some function of the (current) state variable itself, x1, and some set of parameters, u1.
Equation (2) says the same thing for system s2. A very important phenomena in DST
occurs if the state variable of one system appears as a parameter in the evolution equation
of another system, and vice versa. In this case, the two systems are said to be coupled.
So, if x2 is a parameter in equation (1), and x1 is a parameter in (2), then systems s1 and
s2 are coupled.

Given some initial state x0, the sequence of states generated by the application of the
evolution equation is called a trajectory of the system. In describing a dynamical system,
one is usually interested in the qualitative long-term behavior of the system. The state
of some systems will simply diverge to infinity (which we shall not consider further here),
while others will eventually converge over time to a limit set, which is simply a set of points
that is invariant with respect to the evolution equation, meaning that if the system ever
enters this region of its state space, it will stay there indefinitely. Of particular interest are
the stable limit sets or attractors. All trajectories passing nearby to an attractor converge
to that attractor and the set of initial state points for which this holds is called the basin
of attraction for that attractor. Four classes of attractors are usually distinguished based
on qualities of the trajectories associated with each: point attractors, periodic attractors
(or limit cycles), quasi-periodic attractors and chaotic attractors.

5.4.2 Agents and Environments as Dynamical Systems

Let us model an agent and its environment as two dynamical systems, A and E, respec-
tively.

dxA/dt = A(xA;uA), (5.3)

dxE/dt = E(xE ;uE). (5.4)

It is obvious that an agent and its environment are in constant interaction. Let S(xE)
represent the agent’s (sensory) inputs from its environment and let M(xA) represent its
(motor) outputs to the environment. (3) and (4) then become:

dxA/dt = A(xA;S(xE), u′
A), (5.5)

dxE/dt = E(xE ;M(xA), u′
E). (5.6)

where u′
A captures all of the agent’s parameters uA that do not come from the environ-

ment and u′
E represents all of the parameters of the environment uE that do not depend



on the agent. Note that S and M are defined rather broadly. S, for example, is intended
to capture all of the effects of the environment E on agent A, regardless of whether these
effects occur as part of what is normally regarded as ’sensory input’. Likewise M is meant
to capture all effects agent A has on the environment E, whether or not they occur as a
result of what would normally be considered the ’motor output’ of an effector. Note that
what we have just outlined is simply a coupling between an agent and its environment.
Any action by the agent affects its environment in some way through M , which in turn
affects the agent itself through the feedback from its environment via S. Likewise, the
environment’s effect on the agent through S are fed back through M to affect the envi-
ronment itself. In other words, what we informally described as a constant interaction
between an agent and its environment is straightforwardly implemented formally using
the notion of coupling.

Since equations (5) and (6) are defined with respect to continuous real time, we have
implicitly satisfied the criterion of situatedness mentioned above. What then of embodi-
ment? As noted by Beer (see also Chapter 2 and van Gelder(1998)), the division between
an agent and its environment is always somewhat arbitrary (e.g., is an artificial limb or
a tool part of the agent or part of the environment?) It should be clear however that a
dynamical systems approach is in principle capable of capturing (given some appropriate
set of agent variables) the notion of embodiment as outlined above. We can make one
final point about using a DST approach to capture the relationship between an agent and
its environment. Although two coupled systems, such as A and E as given in (5) in (6)
above, are non-autonomous in the formal sense mentioned earlier, intuitively, at least, the
agent ’acts’ independently of any external control. Furthermore, as Beer notes, formu-
lating the agent-environment relationship in this way captures nicely one of the central
themes of recent autonomous agent research, namely, the idea that an agent’s behavior
arises not simply from within the agent itself, but rather through its interaction with its
environment. Note finally, that two non-autonomous coupled systems such as A and E
taken together can be viewed as a single autonomous dynamical system U (whose state
variables are the union of the state variables of A and E and whose evolution equation is
modified accordingly). The question therefore is simply one of scale.

5.4.3 Conceptual Space Theory as a Dynamical System

Points of Contact

In this section, we present prima facie support for the similarity of the CST and DST
approaches.

1. Emphasis on geometry and topology.

“Here, I advocate a third form of representing information that is based on geomet-
rical structures rather than symbols or connections among neurons.” (Gärdenfors
2000, p. 2)

A property is “a region of a conceptual space S, where ’region’ should be understood
as a spatial notion determined by the topology or geometry of S.” (Gärdenfors 2000,
p. 67)

“The main difference among these theories and the one presented here is that I
put geater emphasis on the geometrical structure of the concept representations.”
(Gärdenfors 2000, p. 105)



”Dynamicists... conceptualize systems geometrically, i.e., in terms of positions, dis-
tances, regions, and paths in a space of possible states. DST aims to understand
structural properties of the flow, i.e., the entire range of possible paths.” (van Gelder,
p. 11)

2. Importance of similarity relations.

“One notion that is severely downplayed in symbolic representations is that of simi-
larity. Judgments of similarity are central for a large number of cognitive processes...
the similarity of two objects can be defined via the distance between their represent-
ing points in a conceptual space...” (Gärdenfors 2000, p. 44)

“[T]he domains we consider have a metric so that we can also talk about distances
between points in the space.” (Gärdenfors 2000, p. 71)

“[D]ynamical systems in cognitive science might be defined as quantitative systems.
Roughly, a system is quantitative when there are distances in state or time, such
that these distances matter to behavior.” (van Gelder, p. 7)

“A system that is quantitative... is one whose states form a space; states are po-
sitions in that space, and behavior are paths or trajectories. Thus quantitative
systems support a geometric perspective on system behavior, one of the hallmarks
of a dynamical orientation.” (van Gelder, p. 8)

Points of Disagreement

Gärdenfors considers but rejects identifying CST directly with DST approaches, in a one-
to-one manner:

“Conceptual spaces are static in the sense that they only describe the structure of the rep-
resentations. A full model of cognitive mechanisms not only includes the representational
form, but also a description of the processes operating on the representations. A particular
conceptual space is, in general, compatible with several types of processes, and it must
therefore be complemented with a description of the dynamics of the representations to
generate testable predictions.” (Gärdenfors 2000, p. 31)

Literature

Abraham, R.H. and Shaw, C.D. (1982). Dynamics, the Geometry of Behavior. Benjamin
Cummings, Reading, Massachusetts.

Badler, N.I., Bindiganavale, R., Allbeck, J. and Schuler, W., Zhao, L., Lee, S.-J., Shin,
H., and Palmer, M. (2000). Parameterized Action Representation and Natural Language
Instructions for Dynamic Behavior Modification of Embodied Agents. AAAI Spring Sym-
posium 2000.
http : //hms.upenn.edu/software/par/

Barnden, J.A. and Holyoak, K.J. (eds.) (1994). Advances in connectionist and neural
computation theory, volume 3. Ablex Publishing Corporation.

Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist
challenge in cognitive science. Cognitive Science, 22, 295-318.

Beer, R.D. (1995). A dynamical systems perspective on agent-environment interaction.
Artificial Intelligence, 72(12):173–215.



Bergen, B. and Chang, N. (2002). Embodied Construction Grammar in Simulation-Based
Language Understanding. Technical Report TR-02-004, International Computer Science
Institute.

Brooks, R. A. (1991). Intelligence Without Representation. Artificial Intelligence Journal,
vol. 47, pp. 139-159.

Dorffner, G. (1997). Neural Networks and a New AI. London, UK: Chapman and Hall.

Elman, J.L. (1998). Connectionism, artificial life, and dynamical systems: New approaches
to old questions. W. Bechtel and G. Graham (eds.), A Companion to Cognitive Science,
Basil Blackwood, Oxford.

Feldman, J. and Narayanan, S. (2004). Embodied Meaning in a Neural Theory of Lan-
guage, Brain and Language, 89, 385-392.

Gärdenfors, P. (2000). Conceptual Spaces. MIT Press.

Hilario, M. (1995). An Overview of Strategies for Neurosymbolic Integration. Proceed-
ings of the Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid Ap-
proaches, Montreal, pp. 1-6.

Kelso, J.A.S. (1995). Dynamic Patterns: The Self-Organization of Brain and Behavior.
MIT Press, Cambridge, MA.

Kopp. L. (2003). Natural Vision for Artificial Systems, Active Vision and Thought. PhD
Thesis, Lund University Cognitive Science.

Levison, L. (1996). Connecting planning and acting via objectspecific reasoning. PhD
thesis, University of Pennsylvania.

Maturana, H.R. (1978). Biology of Language: The Epistemology of Reality. Miller, George
A., and Elizabeth Lenneberg (eds.), Psychology and Biology of Language and Thought:
Essays in Honor of Eric Lenneberg, New York: Academic Press, pp. 27-63.

Maturana, H.R. (1988). Ontology of Observing - The Biological Foundations of Self Con-
sciousness and the Physical Domain of Existence. Conference Workbook: Texts in Cyber-
netics, Felton, CA: American Society for Cybernetics.

Meltzoff, A.N. and Decety, J. (2003). What imitation tells us about social cognition: a rap-
prochement between developmental psychology and cognitive neuroscience. Philosophical
Transactions of the Royal Society, 358:491-500.

Miikkulainen, R. (1993). Subsymbolic Natural Language Processing. MIT Press, Cam-
bridge, MA.

Newell, A. and Simon, H.A. (1972). Human Problem Solving. Prentice-Hall, Inc., Engle-
wood Cliffs NJ.

Pfeifer, R., and Scheier, C. (1999). Understanding intelligence. MIT Press, Cambridge,
MA.

Reilly, R. G. and Sharkey, N. E. (1992). Connectionist Approaches to Natural Language
Processing. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ritter, H. and Kohonen, T. (1989). Self-organizing semantic maps. Biological Cybernetics,
vol. 61, pp. 241-254.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of har-
mony theory. In D.E. Rumelhart, J.L. McClelland and the PDP Research Group, Parallel



Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foun-
dations. MIT Press/Bradford Books, Cambridge, MA, pp. 194-281.

Steels, L. (1995). Intelligence - dynamics and representations. L. Steels, (ed.), The Biology
and Technology of Intelligent Autonomous Agents, Springer-Verlag, Berlin.

Thelen, E., and Smith, L. B. (1994). A Dynamic Systems Approach to the Development
of Cognition and Action. MIT Press, Cambridge, MA.

Vaina (1983). From shapes and movements to objects and actions. Synthese, 54:3-36.

van Gelder, T.J. (1998). The dynamical hypothesis in cognitive science. Behavioral and
Brain Sciences, 21, 1-14.

van Gelder, T.J. and Port, R. (1995). It’s About Time: An Overview of the Dynamical
Approach to Cognition. R. Port & T. van Gelder (ed.), Mind as Motion: Explorations in
the Dynamics of Cognition. MIT Press, Cambridge MA, pp. 1-43.

Wermter, S. (1995). Hybrid Connectionist Natural Language Processing. London, UK:
Chapman and Hall, Thomson International.

Wermter, S. and Sun, R. (eds.) (2000). Hybrid Neural Systems. Springer.

Von Foerster, H. (1981). Notes on an epistemology for living things. Observing Systems.
Intersystems Publications, pp. 257-271. Originally published in 1972 as BCL Report No
9.3., Biological Computer Laboratory, University of Illinois, Urbana.



Chapter 6

Concept Learning by Formation of
Regions

Jan-Hendrik Schleimer, Mikko Berg, Jaakko Särelä, and Timo Honkela

6.1 Introduction

In this paper, we discuss the issue of conceptualization. The traditional view is that
concepts are essentially linguistic. Recently, Gärdenfors has proposed a contradicting
view where the concepts get associated to language terms, but essentially belong into other
domain called conceptual spaces defined by quality dimensions. These dimensions form
meaningful representations of the concept domains in hand and they should be formable
by mappings from the sensory input and possibly from other more basic quality dimensions
as well.

In the space spanned by the quality dimensions, natural concepts form convex regions.
The borders of these regions can be hard or soft and can vary according to the context.
In the present work, we have decided to code the regions by prototypes, so that instances
closest to a particular prototype in the conceptual space form a region. In other words, the
regions are defined by the Voronoi tessallations of the prototypes, which then define hard
bordered regions. In the case of soft borders, the prototypes can consist of probabilistic
density functions defining graded membership function for each point in the conceptual
space.

In this paper, we mainly discuss the formation of the regions of concepts via different kinds
of clustering approaches. Some discussion of the connections to the lower, connectionist
level and to the higher, symbolic level are discussed in brief.

Intelligent systems generalize and compress the complex input they get from their per-
ceptual organs. This is extremely necessary to survive in a complex and hostile world.
Human beings have an exceptional capacity to utilize this process. We often rise from the
basic regularities of the world to secondary, sometimes very abstract, models. This makes
it possible to exploit even very distant (in time or place) similarities to make effective
predictions of the state of the world. Another trait of humans is the capability to complex
communication. Probably for robustness reasons, this communication occurs mainly using
discrete symbols, words.

Until now, the biggest issue in artificial intelligence (AI) is arguably the relation between
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these very central traits: effective modeling of the world (accessed by sensory organs) and
effective communication of the relevant parts of these models (language).

The traditional view, formulated by Newell & Simon [17] is that we are physical symbol
manipulating systems. This is to claim that the models we have of the world, are essentially
linguistic. The modern view relies on dynamic systems theory [10]. It claims that symbols
emerge from dynamic interaction processes.

In the early 90’s, the connectionist paradigm for AI gained popularity, mainly through two
books [14, 11]. There it was argued that human information processing is mainly continu-
ous not discrete. Furthermore, the essential feature of human intelligence is learning, thus
making it a dynamic process rather that a static one. One drawback of most of the con-
nectionist algorithms are their distributed knowledge representation, which does not allow
explicit interpretation of the inference process. Therefore these systems are sometimes
referred to as “blackboxes“. A famous example is the NetTalk system from Seinowski and
Rosenberg, a multi-layerd perceptron capable of reading English texts. The system was
trained in a supervised manner with text as input and corresponding phonemes as output.
Although achieving an accuracy of 95% the neural network did not extract rules for the
decision making, that could be interpreted by linguistic processing. This shows the gap
between the connectionist models and symbol manipulation systems.

Connectionism can be interpreted as a special case of associationism using ANN (Artificial
Neural Networks). Gärdenfors [7] presents a new level on top of that trying to reach the
symbolic level proceses that humans are naturally capable of. Functional model Gärdenfors
states that conceptual spaces can be seen as a set of attractor points of dynamic systems.
Yet, his model with the three levels: connectionism as the lowest, conceptual spaces in
between and classical symbol manipulation as the highest level, retains the possibilities of
classical symbol manipulation approaches to AI. Also Kelso [10] agrees that attractors of
dynamic systems could be interpreted as prototypes.

Domains in conceptual spaces are an attempt to give functional and contextual focus for
otherwise ambiguous symbolic level. One concept can be evaluated in several domains
using different salience weights, where as properties are domain specific. Scale of the
particular dimension in a domain is obtained using contrast classes. In another words,
the continuous mapping to the subspace is performed within the boundaries of contextual
extreme values. For example, what is considered to be (phenomenological) hot for bathing
water is merely warm for coffee. In general, different abstractions are created with the
corresponding quality dimensions having specific metrics. But although the explanation
of how these domains and quality dimensions come about is not satisfactory answered in
[7], it will not be further discussed in this article. Here we are taken them as given, as
some of them result from innate biological structures with evolutionary background. This
is of course not true to all dimensions that are more abstract and which can be learned.

In conceptual spaces, (natural) concepts are defined as (convex) regions1 The convex spaces
are necessarily result of Voronoi tessellations in Euclidean metrics. Voronoi tessellation
partitions given space based on prototypical attractors. Clustering methods tackle the
reverse problem, by defining regions which detect the prototypes.

The nature of a concept in conceptual spaces is

1. prototypical, coding of the structure

1According to Gärdenfors, natural concepts are the only concepts that can participate in inductive

reasoning.



2. regional, geometric area instead of points (objects are very narrow concepts, perhaps
even points), this makes the concepts vague or fuzzy, which relates to frame theory

In a sense prototype and frame theory are combined.

It still seems that there are a lot more reason for vagueness in concept formation and even
more in communication them. There are thought to be 3 different entities in interaction:
(1) cognitive concepts (including laws of psychology), (2) language and social interaction,
and (3) phenomenal common world (including laws of physics). Connection between any
of them is considered to be a source of impreciseness or fuzziness.

Next two sections discuss these two essential properties, one at a time. After that, in
Sec. 6.2 we review two clustering methods, as well as discuss the possibility to combine
similar concepts into more general concepts corresponding to larger regions in the concep-
tual space. Finally, in Sec. 6.3 we apply these clustering methods to divide a space with
colour quality dimensions into concepts according to two images differing in characteristics.

6.1.1 Prototype theory

Prototype theory was formulated by Rosch and got started from findings relating to typ-
icality (not yet having prototypical structure) among the category members. Findings of
Rosch and Mervis [20] emphasized typicality as opposed to all category members repre-
senting the category equally. Rosch [19] found that there are more typical members that
are learned faster and serve as cognitive reference. The membership was considered to be
graded and it was shown not to result from frequency or familiarity of the particular test
items. The correlations with frequencies turned out to be useful in many cases, but not
being definitive. As an exception, chicken is frequent, but not typical bird. The results of
Rosch & al. [21] supported this finding, but only when structural relations between items
were held constant.

After that, the characterising properties were the target of the research. First, Wittgen-
stein’s family resemblance rate was found to describe categories better. There were no
explicit definitions, but similarities between individual group members, that could be
modeled with locally similar cells. Second, exclusiveness (not total) was also proposed as
typicality measure. Then the typicality would not only relate to the features of particular
group, but also to the shortage of important features from other groups (contrast cate-
gory). This is the phenomenon that Gärdenfors’ [7] quality dimensions are explained to
obtain their scaling. Contrast categories are difficult to verify empirically, because it would
involve all the (other) categories. Third, it was found that broader knowledge structures
and top-down processing play their part in this as well. For example functionalities can
be inherited to sub-categories [20]. Barsalou [2] repeated the related experiments later.

The actual prototype theory was based on one summary representation of all the members,
not as commonly misunderstood on the best match. Based on psychological experiments,
Strauss [23] proposed a method, in which features of the prototype should be averaged
if their distribution is small and counted distinctively if it is sparse. The counting was
explained by subject’s interpretation as qualitative differences, not on one continuos axis.
There is an analogy to how Gäärdenfors’ dimensions evolve from integral, having corre-
lation, to distinct separable dimensions, for example when child learns to separate shape
from colour. Feature correlations are method for applying prototypes and correlations
alone are not sufficient for categorization. In terms of conceptual spaces, after arbitrary
mapping, any two points in space can be close to each other. It has been claimed that



people use hierarchical clusters. The intermediate groupings effect the typicalities, for
example the statement that robin is a typical bird may be overlooking the fact that it is
small, chirping, worm- or seed-eating tree bird [13].

Rosch [19] describes the vertical dimension of the structure as taxonomy of category rela-
tions. There is inclusiveness of subordinate (lower-level) through basic level into superor-
dinate (higher-level). The basic level categories is a topic with much empirical research.
Read more from [19]. The horizontal dimension is segmented structure without clear-cut
boundaries. There is only the judgment for clearness of the case, the prototypicality.

There has been the idea of using probabilities to increase the accuracy of categorization
and for example Churchland [5] uses term warranty for uncertainty of chosen prototype.
Experiments of Ross and Murphy [22] showed that this was not actually accounted and
turned the focus on preciseness of categorization.

There should be discussion about what extent can human cognition be modeled with
prototypes or with ANN (Artificial Neural Networks) algorithms such as SOM and this
discussion should be guided by psychological research, not ideological speculations. Some
of such attempts find the limitations in the past are context model (started by Medin &
Schaffer [15]) exemplar effect and human memory, and different models about the use of
background knowledge (e.g. [16], read more from ”Theory-Theory” in [12])

SOM vector as Roschian prototype represent summary of all the members of the cell,
not the best match. The prototype theory doesn’t provide any model for the process,
representation or learning. It only presents constraints and a possibility to deal with
abstractions without any context. One of such constraints or descriptions is that there
is correlation structure of the neighbors in nature of family resemblance [19]. This is the
exact way in which input of SOM map is connected, because it gives emphasis on retaining
the local level structure. There is no explicit way to define how SOM creates the model
vectors, because the process is a result from heuristic principles. Neither is there evidence
there should be such for prototype theory. For example independent cue model [15] is only
one ineffective implementation.

6.2 Possible implementations in conceptual spaces

Identifying concepts with regions in the space already adds the element of vagueness to
the concept representation, because it subsumes objects x ∈ R

d with a variety of different
attributes as one concept.

Assuming that there is a further vague element, namely that objects do not utterly be-
long to concepts or putting it in a probabilistic way, there are varying probabilities with
which different objects are explained by a concept. Then the hard margins of the regions,
representing concepts, in the plainly geometric approach make it difficult to incorporate
this vagueness. A possible solution is to define a probability distribution in the conceptual
space, that itself corresponds to a concept.

Finding the regions can be solved by clustering methods, but it is as well necessary to infer
how many clusters are needed, and in an dynamical environment, the decision whether to
split or combine regions, respectively concepts, arises. This question can be partly solved
by hierarchical clustering methods or moving to Bayesian versions of clustering algorithms
that give evidence on the model complexity, e.g. the number of concepts needed.

In the following sections we discuss three methods for finding these regions and defining a



vague concept in them. It is assumed that the objects, perceived in nature or encountered
in a more abstract way in our mind, are represented in as points in a conceptual space [7].

6.2.1 K-means clustering

The k-means clustering algorithm [3] moves a chosen number of k cluster centers, so that
they cover the whole data and thereby partitioning it for i ∈ [1, k] into subsets Si, defined
by their center µi and containing the Ni nearest data points. It does it via minimizing
the sum-of-squares error function,

E =
k
∑

j=1

∑

n∈Si

||xn − µi||
2 (6.1)

but other distance measures can be used as well [the batch version of the algorithm has
an update rule ∆µi = η(xn − µi) quite similar to SOM’s only lacing the neighborhood
function]. With the help of the mean vectors a Voronoi tessellation can be found, as used
by Gärdenfors for concept representation.

The defined regions are vague representations of concepts. But if the euclidean distance is
used to identify the k nearest neighbors or even a tessellation, than there are hard margin
between concepts, which does not seem to be a natural representation.

6.2.2 Density estimation

As shown in [3] the k-mean algorithm can be regarded as a limit of the EM optimization of
a Gaussian mixture model (MOG) with a common variance, when σ2 → 0. In a Gaussian
mixture model the probability density of the data p(x) =

∏N
n=1 p(xn) is modeled as a

weighted sum of Gaussians

p(xn) =

k
∑

i=1

p(xn|i)p(i). (6.2)

with a soft max prior p(i) = exp(γi)
∑

j exp(γj)
and p(xn|i) ∼ Nµiσi. The negative log-likelihood

of the data

− log(p(x)) = −
N
∑

n=1

log

{

k
∑

i=1

p(xn|i)p(i)

}

(6.3)

can be used as an error function. Finding the minimum by setting the derivatives for µi,
σ2

i and γi to zero and using the the Bayes’ theorem to get the corresponding posterior

p(i|xn) = p(xn|i)p(i)
p(xn) , the following updating rules can be derived

µ̂i =

∑

n p(i|xn)xn
∑

n p(i|xn)
(6.4)

σ̂2
i =

∑

n p(i|xn)||xn − µ̂i||

d
∑

n p(i|xn)
(6.5)

p̂(i) =
1

N

∑

n

p(i|xn) (6.6)



Due to the nonlinear dependencies in the equation a iterative update scheme is used
to solve the problem. Starting with random initial values for the parameters and then
calculating the posterior and the new parameter values. It can be shown that repeating
this process will converge to a maximum likelihood solution.

Applying this algorithm to points in a conceptual space results in a probability density
function that covers the structure of the points arrangement in the space. This distribution
can be identified with a certain concept, where the mean vectors of the Gaussian mixture
components are prototype like examples of them. The individual Gaussians can represent
more detailed sub-concepts. But still remains the question of how many centers shall be
used.

Another unsolved problem is that, when operating the algorithm on every object of the
conceptual space one large MOG distribution will result and therefore only one concept.
So one has to use the clustering in a hierarchical way. For example first tessellate in a crude
way to find different concepts using the k-means algorithm and than find the distributions
in the cluster with the help of a Gaussian mixture model.

6.2.3 Hierarchical clustering

In stead of applying the above mentioned clustering methods repeatedly one can utilize
a hierarchical clustering in the first place. A possible class of methods are called single
linkage algorithms for a detailed description see [18]. These algorithm start by treating
every data point as one cluster and than combine the “most similar” according to the used
metric. This is done repeatedly using minimum, maximum, the average distance or the
distance of the centers of gravity2 for comparing clusters containing more than one data
point, and thereby creating a hierarchical structure.

The lower branches in the hierarchy can be cut away, meeting the concerns of difference
only to a certain level of detail. But how is it then that a concept generating process in
an intelligent system could find a level that is meaningful to use? There are two answers
at hand: (i) just use any detail level for a start, and then, by a process similar to natural
selection in living creatures or maximizing the model evidence in AI, it will turn out to
be more useful to go into a more detailed version of the concepts or to thin them out and
therefore have broader concepts; (ii) in a Bayesian version of the clustering algorithms,
in spirit closer to density estimation, it is possible to combine the data likelihood with a
prior distribution, representing the anticipation for the number of concepts needed, which
can itself result from previous knowledge and experience in the world, and hence get a
posterior probability distribution over the needed number of concepts.

6.2.4 Bayesian mixture model

Deriving concepts from available facts, e.g. sensory data and existing knowledge of the
world - in this case represented in conceptual spaces, is an inferential task with statistical
properties, resulting from the irregularities in the frequency of the data and the incertitude
of the already gained knowledge, respectively.

A mathematical framework for describing statistical inference problems is the Bayesian
statistics, where a basic idea is to interpret the probability of an event as the degree of

2this relates to discussions in prototype theory about which set member should be used as the repre-
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belief on the occurrence of that event. Learning the attributes θ of a model structure H
e.g. the shape and location of the gaussians forming the distribution associated with a
concept, is achieved by combining prior knowledge, described by a distribution indicating
the believe in certain facts, with new information from data x, described by a likelihood
of the data given the learned quantity and the model structure. A possibility to calculate
the posterior distribution of the attributes, which combines old an new knowledge is given
by Bayes’ theorem

p(θ|x,H) =
p(x|θ,H)p(θ|H)

p(x|H)
, (6.7)

with p(x|H) =
∫

p(x|θ)p(θ|H)dθ being known as the model evidence. This integral over all
possible parameter values is, for difficult distributions not always solvable, but maximizing
it with respect to H would lead to more optimal model structures.

This calculation of the posterior can be conducted each time new data is available and
if the posterior distribution of the former inference step is used as the prior in the next
execution of the Bayes’ rule, it will lead to an adaptive learning mechanism. An intelligent
system acting in a new environment and starting to conceptualize from scratch might in
some circumstances not have prior knowledge for the shape of concepts, and therefor the
categorization of the new and unknown. Still it is possible to define non-informative
priors, that do not influence the finding of the posterior for the attributes, but ”let the
data speak for its self”.

As mentioned earlier, one can express the density estimation problem in the bayesian
framework (see [1] for a detailed derivation). One advantage is that this treatment allows
searching for optimal model structure, e.g. the number of gaussians in the mixture model,
whereas this is not feasible in the ML solution (paragraph 6.2.2) without empirical reg-
ularization terms. This is due to the fact that the ML solution from the EM algorithm
prefers more complex model structures, that fit better to the data.

The approach in [1] is from the structure of the algorithm related to EM, but utilizes a
helpful technique in bayesian inference called variational learning. There the posterior
distribution of the parameter, that is often complicated to calculate, due to the difficult
integral in (6.7), is approximated by a distribution with desired properties. In the case
where the best model structure should be determined the requirement is that the approx-
imate model evindence needed to optimize the number of gaussian components can be
obtained in closed form.

It should be mentioned that there are many other model selection techniques like boot-
strapping [6], cross-validation, Markov-Chain-Monte Carlo sampling and Bayesian Infor-
mation Criterion (BIC), see[8], which all somehow work in practice, but most of them are
theoretically only justified for infinite data sets, whereas concepts can certainly emerge
from only a view examples.

6.3 Clustering of color spaces into concepts

As a simple example the conceptualization of colors in two pictures, originating form a
landscape in summer and winter, was studied. Choosing these pictures it can be expected
that the process of conceptualization in our model depends on the encountered examples,
a peculiarity of concept forming, that can be observed in the real world, e.g. considering
various ethnic groups, that divide the color spectrum in to differently detailed colors [4, 9].



The color code for the pixel elements of the pictures is the hue-saturation-value color map,
which is a intuitive representation for humans. The colors are coded with three numbers,
firstly the hue, ranging from 0 to 360 degree in a circular arrangement and indicating
the color type according to its wavelength, secondly the saturation or intensity between
0-100%, telling how grayish the color is and finally the value in percentage, that tells the
brightness or the spread of wavelength. The hsv color space is redundant because there
exists white and black for every color. Therefore, a color spindle instead of the cylinder
in HSV model has been suggested. It is achieved by reducing the range of the saturation
linearly as the intensity approaches 0 or 100 %. This modified color code has been used
in the experiments and the intervals were scaled to unit.

A representative set of the data points for the summer and winter pictures can be seen
in Figs. 6.1 and 6.2 respectively. The prototypes for the MOG model, i.e., the means of
the Gaussians have been marked there with x’s as well. As expected, the MOG model
has used more resources that is, more prototypes to account for areas having more data
points. Observing that they cover the distribution of the color samples quite well, the
corresponding colors can be expected to cover the coloring, present in the picture, appro-
priately. But the results depend completely on how many initial mixture components are
chosen.

Thus the clusters given by the EM algorithm were further combined to bigger clusters by
the hierarchical linkage algorithm. The resulting colors as well as the hierarchy can be
seem in Figs.. 6.1 and 6.2 for the summer and winter pictures respectively. Now one can
see the grouping of different shades of white an brown to a more general concept of the
color.

Definite differences in the prototype colors can be seen. While the clusters formed from
the summer picture have several shades of green and dark gray, the colors in the winter
picture are concentrated in lighter shades of gray and white.

[More inferences of the results are made, when we have the results of the spindle model.
Now there are, for example, very dark colors that do not appear to be close to each others.
This is due to the significant difference in the hue.]
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Figure 6.1: The color vectors of the summer picture with 27 centers for a mixture of
Gaussian model after 30 iterations of training with EM algorithm
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Figure 6.2: The color vectors of the winter picture with 27 centers for a mixture of Gaussian
model after 30 iterations of training with EM algorithm

Figure 6.3: The 27 colors of the summer picture in a dendrogram

6.4 Discussion

In this paper, we issued some implementational aspects left open by Gärdenfors’ Concep-
tual spaces [7]. We mainly discussed the formation of the concepts that is regions in a
given conceptual space. The significance of these results to the understanding of actual
implementation of human intelligence might be questionable or at least modest. How-
ever, the central contribution of this paper does not lie therein, but in simulation of the
intelligence, that is AI project.

In this paper, we only payed attention to the categorisation in already acquired conceptual
spaces. We now discuss in brief the connection of the conceptual level to the connectionist,
namely the acquisition of the quality dimensions, and the symbolic levels, namely thought
processes and language.

A natural way to connect the conceptual level to the basic sensory input level is provided
by the connectionist approach. Then the quality dimensions are determined by the sensory
input as well as possibly some other more basic quality dimensions using a flexible nonlinear
mapping. However, Gärdenfors usually takes the quality dimensions as given, though
clearly this cannot be true for all concepts. The principles guiding the learning are not
easy to state as they should include at least, capacity constraints, generalization properties
and finally, the relevance of different structures in the sensory data for the particular task
the concepts are needed for.



Figure 6.4: The 27 colors of the winter picture in a dendrogram

Furthermore, to really bridge the conceptual level to the symbolic level, one needs to
explain the relation between the acquired concepts and language. We see it plausible to
assume that language terms get associated to the regions in the conceptual spaces, that is
concepts. Then concepts that get instantiated due to sensory input or voluntary thought
processes may trigger the use of language, internally or in a speech act.

An other property of concepts, at least of those used by humans in their language, is
their context sensitivity. Exemplary one could think of the different meaning of hot when
going to sauna or having fever. Gärdenfors suggests that by a magnification or scaling
of the quality dimensions (see the skin color example on page 119f of [7]) could amount
to this property. In the bayesian framework context sensitivity can be achieved by the
use of different priors, that modify the mean and variance of the gaussians to meant the
contextual environment.
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