
Aalto University
School of Science
Degree Programme of Computer Science and Engineering

Orestis Kostakis

Analyzing and comparing arrangements of

temporal intervals

Master's thesis

Espoo, November 5, 2011

Supervisor: Prof. Pekka Orponen

Instructor: Panagiotis Papapetrou, PhD

Aalto University
School of Science
Degree Programme of Computer Science and
Engineering

ABSTRACT OF MASTER'S THESIS

Author: Orestis Kostakis

Title: Analyzing and comparing arrangements of temporal intervals

Number of pages: vi + 38 Date: November 5, 2011 Language: English

Professorship: Theoretical Computer Science Code: T-79

Supervisor: Prof. Pekka Orponen

Instructor: Panagiotis Papapetrou, PhD

Abstract:

This thesis focuses on comparing and analyzing arrangements of temporal intervals.
Such arrangements are sets of concurrent events that are not instantaneous, but are
characterized by duration.
We study two major problems. The �rst problem is comparing arrangements of

event-intervals and acquiring their distance. To the best of our knowledge, we are the
�rst to formally de�ne the problem. Furthermore, we present three polynomial-time
distance functions which we study and benchmark through rigorous experimentation.
The proposed methods were tested on three datasets: American Sign Language utter-
ances, sensor data and Hepatitis patient data. In addition, we provide a linear-time
lower bound for one of the distance measures. The distance measures can be applied to
event-interval sequences, too. In this case, neither the event-interval durations nor the
absolute time values are considered.
The second problem which we study is �nding the longest common sub-pattern

(LCSP) of arrangements of temporal intervals. We prove hardness results for the prob-
lem and devise an exact algorithm for computing the LCSP of pairs of arrangements.

Keywords: Arrangements of temporal intervals, Event-interval sequences,
Distance measure, Longest Common Sub-pattern (LCSP),
Lower bound.

Preface

This thesis is submitted in partial ful�llment of the requirements for a Computer Science
and Engineering, Master's Programme on Foundations of Advanced Computing. It consists
of the formal documentation of work performed by the author during the period January -
May 2011, in close collaboration with the �Data Mining: Theory and Applications� group.
This thesis has been supervised by Prof. Pekka Orponen, while Dr. Panagiotis Papapetrou
has been the instructor.

The thesis topic resulted from an informal conversation with Dr. Papapetrou in Au-
tumn 2010. The following months involved successful e�orts to solve a series of interesting
problems. The ideas and the results presented in this thesis have already received positive
feedback from the academic community. Di�erent parts have already been presented at two
peer-reviewed scienti�c conferences [26, 25].

Acknowledgments

The submission of this master thesis implies the completion of my studies and work at
TKK/ Aalto University. After two creative years, I leave full of great memories. During
my presence at the Department of Information and Computer Science, I had the chance
to meet and collaborate with outstanding colleagues. However, all this would not have
been possible if I had not joined the Combinatorial Algorithms and Computation group as
a Summer Trainee in 2009. Therefore, I feel it is imperative to sincerely thank Professor
Pekka Orponen, for being not only a remarkable supervisor, but also for accepting me as an
equal member of the group from the �rst day.

In similar manner, I would like to thank the �Data Mining: Theory and Applications�
group for the collaboration related to my Master's Thesis. In particular, I would like to thank
Dr. Panagiotis Papapetrou for being the instructor of this thesis. Additionally, special thanks
go to Dr. Jaakko Hollmén.

Moreover, I thank all the colleagues and peers with whom I had the opportunity to work
as part of the Future Internet project. The experience gained is truly invaluable. Last but
not least, to all my teachers and my classmates (especially the FAdCo class of 2011: Nguyen
Chi Mai, Rehan Abdul Aziz and Tao Sun) for contributing to the success of my MSc studies.

Otaniemi, November 5, 2011

Orestis N. Kostakis

Contents

1 Introduction 1

2 Related Work 3

3 Background 4
3.1 Event-Interval Sequences . 4
3.2 Dynamic Time Warping . 6

4 Distance functions 8
4.1 The Vector-based DTW Distance . 8
4.2 Relation Matrix . 9

4.2.1 Creation of Relation Matrix . 9
4.2.2 Comparison of Relation Matrices . 10

The Manhattan Distance . 11
The Normalized Manhattan Distance 11
The Frobenius Norm . 11

4.2.3 Properties . 12
4.3 Artemis: A Bipartite-based Matching Distance 12
4.4 Lower Bounding Artemis . 14

5 Longest Common Sub-Pattern 17
5.1 An exact algorithm for LCSP . 18

6 Experiments 21
6.1 Experimental Setup . 21
6.2 Results . 24
6.3 Lessons learned . 31

7 Summary and directions for Future Work 33

References 35

iii

Abbreviations

ASL American Sign Language
BFS Breadth-First Search
DFS Depth-First Search
DTW Dynamic Time Warping
EIS Event-interval Sequence
ED Euclidean Distance
LCSP Longest Common Sub-pattern
TIS Temporal Interval Sequence

iv

List of Figures

1.1 An example of a sequence of event-intervals. 2

3.1 The seven temporal relations between two event-intervals that are considered
in this thesis. 5

3.2 Comparison of the matchings allowed in the cases of ED and DTW 6

4.1 DTW distance measure: Mapping of arrangements or e-sequences to event
vectors. 9

4.2 Two arrangements for which DTW yields a zero distance score, although they
represent di�erent situations. 9

4.3 An arrangement with alphabet σ = {A,B}. Its corresponding relation matrix
is shown in Table 4.1. 10

4.4 Two arrangements for which δp violates the identity of indiscernibles. 12
4.5 Two e-sequences S and T used as an example for Artemis. 14
4.6 A pair of e-sequences that would cause Artemis to yield zero distance, if the

distance of event-intervals were computed using Equation 4.11. 14

5.1 An example for the LCSP of two temporal interval arrangements. 17
5.2 A category of arrangement pairs where any event-interval label appears ex-

actly once, yet the number of candidate solutions stored at each point of the
dynamic programming algorithm is exponential in the size of the arrangements. 20

6.1 O�set noise robustness experiment. ASL dataset. 25
6.2 O�set noise robustness experiment. Hepatitis dataset. 26
6.3 O�set noise robustness experiment. Pioneer dataset. 27
6.4 Label swaps noise robustness experiment. ASL dataset. 28
6.5 Label swaps noise robustness experiment. Hepatitis dataset. 28
6.6 Label swaps noise robustness experiment. Pioneer dataset. 29
6.7 Identical phrase experiment. ASL dataset. 29
6.8 Time (in Milliseconds) required to compare each elemet against the whole

dataset. Pioneer dataset. 30
6.9 Time (in Milliseconds) required to compare each elemet against the whole

dataset. ASL dataset. 30
6.10 Time (in Milliseconds) required to compare each elemet against the whole

dataset. Hepatitis dataset. 31

v

List of Tables

4.1 The relation matrix MA of arrangement A shown in Figure 4.3. 10

6.1 Dataset Summary. 22
6.2 k-NN classi�cation results. 24
6.3 Lower Bound tightness and pruning power. 31

vi

Chapter 1

Introduction

Temporal interval sequences (or event-interval sequences) allow the representation of all
possible series of temporal events. Their main advantage over traditional sequences, which
model series of instantaneous events, is that they incorporate the notion of duration in their
event representation. Due to this, they are used in a broad range of �elds such as geoin-
formatics [43], cognitive science [6], linguistic analysis [7], music research [38] and medicine
[24]. Essentially, temporal interval sequences can be encoded as a collection of labeled events
accompanied by their start and end time values. An example of a sequence of �ve event-
intervals is shown in Figure 1.1.

So far, the work related to event-interval sequences has focused on the aspect of knowl-
edge discovery. Sequences are mined in order to discover patterns and association rules that
might be of interest to the researchers [19, 3]. However, surprisingly no work has been per-
formed on comparing event-interval sequences. Often, it is required to assess the similarity
of pairs of sequences or to infer about the existence of a single sequence in a database. Fur-
thermore, once a framework for comparing temporal interval sequences has been de�ned, it
would enable many types of classi�cation and clustering algorithms and facilitate the imple-
mentation of solutions such as recommender systems, phylogenies and assistive applications.
Existing similarity measures focus on either symbolic sequences or time series and it is not
possible to directly apply them on event-interval sequences (this is further discussed in Sec-
tion 4.1). To the best of our knowledge, there has been yet no robust distance or similarity
measure for comparing sequences of event-intervals.

During the course of this thesis, we were able to provide several contributions of varying
importance. In the following chapters, we formulate the problem of comparing sequences of
event-intervals and show that solving the problem by directly mapping it to string matching
fails to capture any temporal dependencies between the events. Furthermore, we propose
three distance measures to solve this problem: the �rst maps the event-interval sequence to a
sequence of vectors that corresponds to a multi-dimensional time series. The second measure
enumerates all event-interval relations within each sequence and reduces the problem to that
of comparing matrices. Finally, the third distance measure attempts to �nd corresponding
or equivalent event-intervals and employs maximum bipartite matching. Moreover, we pro-
pose a lower bounding technique for the third method that achieves signi�cant speed-ups
during similarity search. In order to acquire an insight into the behavior of the three pro-
posed methods, we present an extensive experimental evaluation on real datasets from three
di�erent domains. The methods are benchmarked with respect to their robustness to noise,
nearest-neighbor classi�cation accuracy, and scalability. In addition, we study the pruning
power and tightness of the proposed lower bound. Furthermore, we study the problem of
�nding the longest common sub-arrangement (or sub-pattern) of pairs of temporal interval
arrangements. Lastly, we de�ne the problem of �nding the longest common sub-pattern
(LCSP), for which we prove hardness properties and provide an exact algorithm.

This thesis is arranged as follows: existing related work is presented in Chapter 2 and
in Chapter 3 we provide the required background, which includes a description of the used

Figure 1.1: An example of a sequence of event-intervals.

notation and terminology. In Chapter 4 we formally de�ne the proposed distance functions,
while we devote Chapter 5 to the problem of the longest common sub-pattern. The experi-
mental setup, the results and our conclusions are presented in Chapter 6. Finally, in Chapter
7 we provide a summary of this thesis and several directions for future work.

2

Chapter 2

Related Work

Existing work on interval-based sequences has so far been focusing merely on frequent pattern
and association rule mining.

Several approaches [30, 46] consider discovering frequent intervals in databases, where
intervals appear sequentially and are not labeled, while others [13] consider temporally anno-
tated sequential patterns where transitions from one event to another have a time duration.
A graph-based approach [16] represents each temporal pattern by a graph considering only
two types of relations between events (follow and overlap). An approach for mining se-
quences of interval-based events in a database is discussed by Kam and Fu [19], however it
is limited to certain forms of patterns.

A generalized interval-based framework [28] improves support counting techniques for
mining interval-based episodes; nonetheless, no temporal relations are considered between
events. Apriori-based techniques [1, 10, 14, 15, 32] for �nding temporal patterns and asso-
ciation rules on interval-based event sequences have been proposed, some [15] also applying
interestingness measures to evaluate the signi�cance of the �ndings.

BFS-based and DFS-based approaches [48, 40, 39, 41] apply e�cient pruning techniques,
thus reducing the inherent exponential complexity of the mining problem, while a non-
ambiguous event-interval representation is de�ned in [49] that considers start and end points
of event sequences and converts them to a sequential representation. In addition, there has
been some recent work on mining semi-partial orders of time intervals [35].

Moreover, in Ale et al. [3], the lifetime of an item is de�ned as the time between its
�rst and the last occurrence and the temporal support is calculated with respect to this
interval. Finally, Lu et al. [31] study inter-transaction association rules by merging all
itemsets within a sliding time window inside a transaction.

Recent work on margin-closed patterns [34, 35] focuses on signi�cantly reducing the num-
ber of reported patterns by favoring longer patterns and suppressing shorter patterns with
similar frequencies. The extracted set of margin-closed patterns may include a signi�cantly
smaller set of patterns compared to the set of closed patterns while retaining the most im-
portant information about the data. A unifying view of temporal concepts and data models
has been formulated in [33] to enable categorization of existing approaches to unsupervised
pattern mining from symbolic temporal data; time point-based methods and interval-based
methods as well as univariate and multivariate methods are considered.

3

Chapter 3

Background

In this Chapter we provide the necessary background related to our work. In Section 3.1 we
de�ne the used terminology and notation, while in Section 3.2, for completeness, we describe
the Dynamic Time Warping algorithm used for time series matching.

3.1 Event-Interval Sequences

Given an alphabet σ of event labels, a triple Si = (Ei, t
i
start, t

i
end) is called an event-interval,

where Ei ∈ σ and tistart, t
i
end denote the start and end time of Si, respectively. Ei is in some

cases equivalently denoted as ESi to achieve clarity. The values of tistart and tiend can be
real numbers. In general, tistart ≤ tiend; the equality holds when the event is instantaneous.
Let S={S1, . . . , Sn} be a sequence of events occurring at time intervals. S is called an
event interval sequence, or e-sequence [40, 41]. In the current context, event-intervals are
equivalent to temporal intervals, so e-sequences are equivalent to temporal interval sequences.
The temporal order of the event-intervals in S is ascending based on their start time and
in the case of ties it is descending based on their end time. If ties still exist, alphabetical
ordering is applied based on the event-interval labels. An example of an e-sequence is shown
in Figure 1.1, and it corresponds to:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (C, 24, 30)}

In several cases, the duration or the absolute time values of the start and end points of
the event-intervals are not important. Hence, an additional term, that of temporal interval
arrangements or simply arrangements [40, 41], can be used to describe sequences of temporal
intervals. In this case, the important information is in the temporal relations between the
intervals. Formally, an arrangement A = {E ,R} of n events consists of a sequence of event
labels E that contains the labels of all temporal intervals included in A, with |E| = n,
and a set of relations R = {R(E1, E2), R(E1, E3), . . . , R(En−1, En)}, where each R(Ei, Ej)
denotes the temporal relation between (Ei, Ej), for i = 1, . . . , n − 1 and j = i + 1, . . . , n,
with R(Ei, Ej) ∈ I. I = {r1, . . . , r|I|} is the set of all legal temporal relations that can exist
between any pair of events. We use the term Rl(Ei, Ej), called labeled relation, to denote
the combination of both the interval relation R(Ei, Ej) of a pair of intervals and the ordered
pair of interval labels (Ei, Ej). Then, for a pair of labeled relations, Rl(Ei, Ej) = Rl(Ek, El)
holds if and only if R(Ei, Ej) = R(Ek, El), Ei = Ek and Ej = El. The de�nition of the
labeled relation is equivalently applied to pairs of event-intervals in e-sequences. Finally, the

size of an arrangement A = {E ,R} is equal to |E|. Although |R| = |E|(|E|−1)
2 , it is possible

to reconstruct R from a event-interval sequence of size |E| with nominal time values.
Based on Allen's model for temporal intervals and their relations [5, 4, 40, 41] we consider

the following seven relations for two event-intervals A and B. This is also presented in Figure
3.1.

4

A
B

A

B

A

B

A

B

A B

A meet B

A match B

A overlap B A contain B

A

B A left-contain B

A right-contain B
A

B

A follow B

Figure 3.1: The seven temporal relations between two event-intervals that are consid-
ered in this thesis.

• follow(A,B) denotes the case where A occurs before B; A ends before B begins, tAend ≤
tBstart.

• meet(A,B) denotes the case where A meets B; B starts at the same time that A ends,
tAend = tBstart.

• match(A,B) denotes the case where A matches B; A starts and ends at the same time
as B, tAstart = tBstart and t

A
end = tBend.

• overlap(A,B) denotes the case where A and B have overlapping parts; A starts before
B and B starts before A has ended, tAstart < tBstart and t

A
end > tBstart.

• contain(A,B) denotes the case where A contains B; A starts before B starts and A
ends after B has ended, tAstart < tBstart and t

A
end > tBend.

• left contain(A,B) denotes the case where A left-contains B; A and B start simulta-
neously and A ends after B, tAstart = tBstart and t

A
end > tBend.

• right contain(A,B) denotes the case where A right-contains B; A starts before B,
but end simultaneously, tAstart < tBstart and t

A
end = tBend.

We do not consider symmetric relations, i.e. B is contained by A, since these can be
expressed by the above and thus are redundant. Hence, I = {meet,match, overlap, contain,
left contain, right contain, follow} and |I| = 7.

Furthermore, as discussed in Papapetrou et al. [41] there may exist ambiguities between
the aforementioned relations due to noise in the data; for simplicity, we do not consider this
in our work.

Using the above de�nitions, the problem studied in this thesis is formulated as follows:

Problem 3.1. (E-sequence Distance) Given two e-sequences S and T , de�ne a distance
measure D, such that ∀S, T it holds: D(S, T) ≥ 0, D(S,S) = 0 and D(S, T) = D(T ,S).
The degree to which the two e-sequences di�er should be re�ected in the value of D(S, T).

Obviously, if the last sentence was not present in the problem de�nition, then D(S, T) =
0 would satisfy all the conditions, but would be of no practical use. In addition, the scores
returned by the distance measure should be in accordance with the knowledge obtained from
domain experts.

5

3.2 Dynamic Time Warping

In this Section we provide a description of the Dynamic Time Warping (DTW) algorithm
[8, 27]. DTW takes as input two time series [9] and returns their distance score. As the
name suggests, the algorithm is based on the notion of dynamic programming. DTW is a
very popular choice for full-sequence matching, since it o�ers a series of advantages over the
Euclidean distance (ED).

Time series are sequences of real numbers representing the measurements of a real vari-
able, sampled at equal time intervals. They can represent the �uctuation in the value of
variables such as stock prices, ECG measurements and temperature. Time series are a valu-
able representation of data in the cases where the order of the values are of importance.
Driven by the need to index and retrieve similar time series, scientists have devised DTW.

The aim of the DTW algorithm is to compute the distance between pairs of time se-
ries. The algorithm implicitly attempts to identify common regions or patterns between
the sequences. One of the main characteristics of DTW is the possibility to allow non-linear
matchings of the time points in the two time series. An example of that can be seen in Figure
3.2. Matching multiple points of one time series to a single point of the other translates to
adding stutter in the speci�c point of the second time series. Equivalently, it can represent
a stretch of the time series along the time axis. This allows to overcome the problem of
the Euclidean distance that requires the time series to be of equal length. The algorithm
computes all valid matchings and returns the one of minimum cost. The cost of a matching
is equal to the sum of the di�erence in the values of all matched pairs of points. The general
form of DTW is depicted in Algorithm 1. The Euclidean distance is equivalent to the case
of DTW where the only allowed dynamic path is that of the diagonal. Thus, DTW can be
seen as a generalization of the Euclidean distance.

To compute the DTW distance of two time series of length n and m, time O(nm) is
required, since n·m pre�x matching costs have to be computed. Various approaches to speed
up the computation have been proposed. These can be divided into two main categories. The
�rst consists of techniques such as the Sakoe-Chiba band [44] and the Itakura parallelogram
[17], which, by aiming to prevent pathological warpings, impose a constraint on the valid

Q

Q

C

C

Figure 3.2: Comparison of the matchings allowed in Euclidean distance (top) and
DTW (bottom). ED allows only 1-1 matching of the points that are in the same
position. In contrast, DTW allows any time point of any sequence to be matched to
multiple consecutive time points in the other. Figure taken from [22].

6

dynamic paths. The second category consists of constant- or linear-time lower bounds. Lower
bounding techniques approximate the real distance value by using a subset of the time series'
values. Several lower bounding techniques have been proposed [22, 23, 50] for use in time
series databases.

The DTW distance does not satisfy the triangular inequality and thus, is not a metric.
Nevertheless, its use is very broad since it provides the basis for solving additional problems
such as that of subsequence matching, e.g., with algorithms such as SPRING [45].

Algorithm 1 Dynamic Time Warping

Input: Two time series X = x1, · · · , xn and Y = y1, · · · , ym.
Output: DTW (X, Y)

Declare int DTW [0..n, 0..m];
Declare int i, j, cost;

/* Initialization */
DTW [0, 0] = 0;
for i = 1 to n do

DTW [i, 0] =∞;
end for

for i = 1 to m do

DTW [0, i] =∞;
end for

/* Main Procedure */
for i = 1 to n do

for j = 1 to m do

cost = |xi − yj|;
DTW [i, j] = cost+min(DTW [i− 1, j],

DTW [i, j − 1],
DTW [i− 1, j − 1]);

end for

end for

return DTW [n,m];

7

Chapter 4

Distance functions

In this section we propose three distance functions to compare event-interval sequences. The
�rst is based on mapping event-interval sequences to vectors. In Section 4.1 we de�ne the
vector-based DTW distance function. The second distance function focuses on the set of
interval relations within each e-sequence. The distance of a pair of e-sequences is derived by
assigning equal weight to each interval relation. This becomes possible by mapping each e-
sequence to a Relation Matrix and, consequently, comparing the two matrices. The Relation
Matrix distance function is de�ned in Section 4.2. Finally, the third distance function,
Artemis, focuses on the interval relations, too, but the distance score is inferred after �nding
corresponding intervals in the pair of e-sequences. Artemis computes relation sets and
applies maximum bipartite matching; the details are described in Section 4.3. Additionally,
in Section 4.4 we provide a linear-time lower-bounding technique for Artemis.

In the following sections, it will become apparent that neither the duration of temporal
events nor the time separating them is taken into account. As a result, scaling the temporal
values of an e-sequence does not a�ect the result when compared to another e-sequence.
Most importantly, the methods are directly applicable to temporal interval arrangements.

4.1 The Vector-based DTW Distance

An intuitive approach to compare event-interval sequences would be to map them to strings,
by projecting the start and end points onto the time axis, and then apply string matching or
string edit algorithms, such as computing the Levenshtein distance [29]. Due to the fact that
events can start or end concurrently, it is impossible to apply any ordering on the symbols
that would not create ambiguities [26]. Thus, one has to resort to the use of vectors to
encode all the information for a speci�c time-point.

Our �rst method employs a vector-based representation of e-sequences. For each e-
sequence, a set of vectors is de�ned (technically, it is a multi-set), where each vector indicates
which and how many event-intervals are active at speci�c time points in the e-sequence. The
selected time points are all the instances in which an event-interval begins or ends.

De�nition 4.1. (Event Vector) Given an e-sequence S de�ned over an alphabet σ, an
event vector V t = (V t

1 , . . . , V
t
|σ|) consists of integer values, where each V

t
i records the number

of occurrences of events with label i ∈ σ, at time stamp t in S.

Hence, an e-sequence S can be mapped to a sequence of event vectors VS = {V t0 , V t1 ,
. . . , V tm}. The set of time stamps {t1, . . . , tm} includes all time points in S where the status
of at least one event-interval changes, i.e., an event-interval starts or ends. V t0 is the null
vector which denotes the initial condition at t0 where no event takes place. In addition, V tm

is always the null vector, since all events have ended. An example of mapping an e-sequence
to event vectors, can be seen in Figure 4.1.

8

A

A B

A

B() 0

0() 1

0() 2

0() 1

0() 0

0() 0

1() 0

0()

Figure 4.1: Mapping of arrangements or e-sequences to event vectors. The above
arrangement can be encoded as a sequence of 7 event vectors. Once the vectors are
computed, multi-dimensional DTW can be applied.

Given two e-sequences S and T , their vectors can also be seen as |σ|-dimensional time
series; thus, their distance can be computed using Dynamic Time Warping. In order to
avoid assigning unequal weight between any combinations of event-intervals, the vectors are
compared using the L1 norm.

Complexity. The sets of event vectors VS and VT can be computed in O(|VS ||σ|+ |VT ||σ|)
time. The time complexity of this DTW computation is O(|VS ||VT ||σ|). Signi�cant speedup
in similarity search under DTW can be achieved using the LB_Keogh lower bound extension
for multidimensional time series [47].

Despite the simplicity of this method, it only takes into account the temporal ordering of
the event-intervals but does not explicitly consider any temporal relations. This may result
in exactly matching two di�erent e-sequences by mapping them to the same set of event
vectors; such an example is depicted in Figure 4.2.

A

A

A

A

(0) (1) (2) (1) (0) (0) (1) (2) (1) (0)

Figure 4.2: Two arrangements for which DTW yields a zero distance score, although
they represent di�erent situations.

4.2 Relation Matrix

4.2.1 Creation of Relation Matrix

In this section we de�ne a method to compare e-sequences by enumerating all their interval
relations and assigning to each one equal weight. Focus is given only on the relations among
the event-intervals, disregarding absolute time values. The steps involved in this computation
include: (1) discarding the time stamps and representing each of the two e-sequences as an
arrangement, (2) mapping each arrangement to a relation matrix. The two matrices are then
compared to derive the distance score.

To de�ne a relation matrix for an e-sequence S we should �rst map the e-sequence to an
arrangement A = {E ,R}. The relation matrixMA of A is an |I|×|σ|2 integer-valued matrix

9

that keeps track of the count of all |I| types of temporal relation pairs that may occur in
the arrangement. By de�ning the ordered set of event-label pairs P = {σ × σ} and Pj the
jth pair in the set, we can easily de�ne the Relation matrix as follows.

De�nition 4.2. Given an arrangement A, the corresponding relation matrix MA is de�ned
as follows:

MA(i, j) = |{Rl(Ek, El)|R(Ek, El) = ri and (Ek, El) = Pj}|, (4.1)

∀ri ∈ I, j = 1, . . . , |σ|2, k = 1, . . . , |E| − 1, l = k + 1, . . . , |E|.

Rows ofMA correspond to relations among event-intervals (as de�ned in I) and columns
correspond to pairs of interval labels in σ. The value of each cell is the number of times the
labeled relation occurs in A. For example, MA(1, 1) denotes the number of times relation r1
appears between (σ1, σ1) in A (where σ1 the �rst element of the label alphabet σ).

For any arrangement A of size m, it holds that

|I|∑
i=1

|σ|2∑
j=1

MA(i, j) =
m(m− 1)

2
. (4.2)

To better illustrate this mapping, the example in Table 4.1 demonstrates the relation
matrix of the arrangement shown in Figure 4.3.

Figure 4.3: An arrangement with alphabet σ = {A,B}. Its corresponding relation
matrix is shown in Table 4.1.

relation (A,A) (A,B) (B,A) (B,B)

meet 0 1 0 0

match 0 0 1 0

overlap 1 2 0 1

contain 0 0 0 0

left-contain 0 0 0 0

right-contain 0 0 0 0

follow 0 0 0 0

Table 4.1: The relation matrix MA of arrangement A shown in Figure 4.3.

4.2.2 Comparison of Relation Matrices

Suppose we would like to compare e-sequences S and T . We should �rst express these e-
sequences with respect to their arrangement representation (say, A and B, respectively), i.e.,
ignoring the event-interval durations and considering only the temporal relations between
the events. Then each arrangement will be mapped to its corresponding relation matrix
representation; thus creating matricesMA andMB. Consequently, the problem of comparing
the original e-sequences is mapped to the problem of comparing their relation matrices.

10

De�nition 4.3. We de�ne the following generalized arrangement distance function:

δp(A,B) =

 |I|∑
i=1

|σ|2∑
j=1

|MA(i, j)−MB(i, j)|p
 1

p

, p ∈ N∗ (4.3)

The Manhattan Distance

For p = 1, Equation 4.3 yields the entry-wise Manhattan distance between MA and MB.
Using this distance, it is possible that the comparison of two equal sized arrangements yields a
higher score than the comparison of one of them with a signi�cantly smaller arrangement. For
example, consider three arrangementsA, B, C with 5, 10, and 10 event-intervals, respectively.
E�ectively, this means that A contains 10 possible temporal relations, while B and C contain
45. Now suppose that A and B agree on 8 relations, whereas B and C agree on 25 relations.
Then, δ1(A,B) = 2 + 37 = 39, since they di�er on the remaining 2 relations of A and the
remaining 37 relations of B. Similarly, δ1(B, C) = 20+20 = 40. This suggests that B is more
similar to A than C.

By a more detailed examination, however, one may easily notice that the total number
of relations that may exist between A and B is 55, while 90 relations may exist between
B and C. This means that the former pair of arrangements agree on a smaller fraction of
relations (i.e., 2×8

55 ≈ 0.28) than the later pair (i.e., 2×25
90 ≈ 0.56). Yet, by the Manhattan

Distance the �rst pair appears to be more similar compared to the second. If the Manhattan
distance were to be adopted, this anomaly would propagate into further procedures, such as
clustering, giving incorrect results.

The Normalized Manhattan Distance

For the reason mentioned, we propose the following normalized version of δ1:

De�nition 4.4. Given arrangements A and B, the normalized Manhattan distance is de�ned
as follows:

δnorm(A,B) =
∑

i

∑
j |MA(i, j)−MB(i, j)|

|A|(|A|−1)
2 + |B|(|B|−1)

2

= 2×
∑

i

∑
j |MA(i, j)−MB(i, j)|

|A|(|A| − 1) + |B|(|B| − 1)
(4.4)

For any pair of arrangements A and B the following three properties hold:

0 ≤ δnorm(A,B) ≤ 1 (4.5)

δnorm(A,A) = 0 (4.6)

δnorm(A,A∅) = 1 (4.7)

where A∅ corresponds to the arrangement of the null e-sequence, i.e., an e-sequence without
any event-intervals.

The Frobenius Norm

For p = 2, the distance expressed by Equation 4.3 is equal to the Frobenius norm of (MA −
MB):

δ2(A,B) =

√√√√√ |I|∑
i=1

|σ|2∑
j=1

|MA(i, j)−MB(i, j)|2 (4.8)

11

4.2.3 Properties

Proposition 4.1. Distance function δp is not a metric for any p ∈ N.

Proof. δp violates the identity of indiscernibles (also known as Leibniz's law). There exist
arrangements A 6= B such that δp(A,B) = 0. An example of such pair is shown in Figure 4.4.
Clearly,MA andMB are identical even though they correspond to di�erent arrangements.

Proposition 4.2. There exists an in�nite number of pairs of arrangements that, although
they are di�erent, have the same Relation Matrix representation and thus, yield a zero δp
distance score.

Proof. By appending any arrangement (combination) of event-intervals to the arrangements
mentioned in Proposition 4.1, we create pairs of arrangements that continue to have the
same Relation Matrix representation. This holds because the induced relations between
the existing arrangement and the appended are only of type follow and between event-
intervals of the same label pair combination. The relations corresponding to the appended
arrangement are identical in both cases. So, an in�nite number of arrangements(of arbitrary
size and label combinations) can be appended, thus, there exists an in�nite number of pairs
of arrangements A, B such that δp(A,B) = 0.

(a) Arrangement A (b) Arrangement B

Figure 4.4: Two arrangements for which δp violates the identity of indiscernibles.

Complexity. In the case where basic arithmetic operations can be performed in constant
time, i.e., addition, multiplication, and square root need O(1) time units, the time needed
to compare two arrangements A and B of sizes n and m respectively is O(n2 +m2 + |σ|2),
assuming that both arrangements are de�ned over the same alphabet σ.

4.3 Artemis: A Bipartite-based Matching Distance

In this section we describe an alternative method, called Artemis�shorthand for Assessing
coRrespondence of Temporal Events Measure for Interval Sequences�which is based on de-
termining correspondence between pairs of event-intervals to infer the overall similarity of
e-sequences. Given a pair of event-intervals belonging to two di�erent e-sequences, corre-
spondence is determined by the fraction of common interval relations. The overall distance
score is derived from the sum of pairwise scores using the Hungarian algorithm (also known
as Kuhn-Munkres' algorithm) [37]. Artemis consists of two main steps: (a) the mapping
step and (b) the matching step.

The mapping step. The �rst step of Artemis is to map each e-sequence S to a sequence
of multi-sets of temporal relations between event-intervals. More speci�cally, for each event-
interval Si ∈ S we record the set of labeled relations of Si with Sj ∈ S,∀j 6= i in the same
e-sequence. Three multi-sets of labeled relations are computed:

• rleft(Si) = {Rl(Sj , Si)|1 ≤ j < i}, which contains the labeled temporal relations of Si
with all event-intervals preceding Si in S.

• rright(Si) = {Rl(Si, Sj)|i < j ≤ |S|}, which contains the labeled temporal relations of
Si with all event-intervals succeeding Si in S, and

12

• r∅(Si) = {Rl(∅, Si)}, which is a singleton with a labeled follow relation between Si
and ∅�an extra symbol such that ∅ /∈ σ.

We additionally denote: r∅left(Si) = rleft(Si) ∪ r∅(Si).

De�nition 4.5. (Event-interval Relation Set) Given an e-sequence S, for each event-
interval Si ∈ S, the event-interval relation set of Si is de�ned as follows:

r(Si) = rleft(Si) ∪ rright(Si) ∪ r∅(Si). (4.9)

Note that ∅ is introduced so that event-interval labels are also taken into account:
e-sequences that di�er in event-interval relations but share similar event labels will be as-
signed with smaller distance values than e-sequences that di�er in both event labels and
event-interval relations. Another important note is that when enumerating the three sets of
relations, the actual labels and the order of the pair matters, so these are not discarded.

The matching step. Given two e-sequences S and T , the matching step of Artemis

computes a distance value for each pair of event-intervals Si ∈ S and Tj ∈ T as follows:

dm(Si, Tj)=


max{|S|, |T |} − |r∅left(Si) ∩ r∅left(Tj)| − |rright(Si) ∩ rright(Tj)|

max{|S|, |T |}
, ifESi =ETj

1, ifESi 6=ETj

To handle the case of e-sequences of di�erent size, �dummy� event-intervals, with dis-
tance 1 from all other event-intervals, are added to the smaller e-sequence. We denote the
potentially augmented e-sequences by S ′ and T ′. In addition, |S ′| = |T ′| = max{|S|, |T |}.

Let DS′,T ′ be a |S ′|×|T ′| matrix, with DS′,T ′(i, j) = dm(S
′
i, T
′
j), S

′
i ∈ S ′ and T ′j ∈ T ′. We

call DS′,T ′ the event-interval distance matrix of S ′ and T ′. Problem 3.1 can be formalized
in the present context as the following optimization problem:

Problem 4.1. (The Assignment Problem) Given S ′, T ′, and DS′,T ′ , assign each event-
interval in S ′ to exactly one event-interval in T ′ so that the total assignment cost is mini-
mized.

Problem 4.1 can be solved by the Hungarian algorithm. Let the output of the algo-
rithm be the following matching H(S ′, T ′) = (h(S′1), . . . , h(S

′
|S′|)) with an assignment cost

C(S ′, T ′). By h(S′i) ∈ H(S ′, T ′) we simply denote the event-interval in T ′ that S′i ∈ S ′ is
matched to by the Hungarian algorithm. The assignment cost C(S ′, T ′) corresponds to the
distance, called Artemis Distance, between the original e-sequences S and T .

De�nition 4.6. (Artemis Distance) Given S ′, T ′, and H(S ′, T ′), the Artemis distance
of S and T is de�ned as follows:

Artemis(S, T) =
|S′|∑
i=1

dm(S
′
i, h(S

′
i)). (4.10)

The whole procedure for calculating the Artemis Distance of two event-interval sequences
is depicted using pseudocode in Algorithm 2.

Example. Figure 4.5 shows two e-sequences S and T . The event-interval relation sets will
be �rst computed by the mapping step. For S, these sets are: {follow(∅, A), overlap(A,B),
follow(A,C)} forA, {follow(∅, B), overlap(A,B), overlap(B,C)} forB, and {follow(∅, C),
follow(A,C), overlap(B,C)} for C. For T , these sets are {follow(∅, A), follow(A,B),
follow(A,D)} forA, {follow(∅, B), follow(A,B), overlap(B,D)} forB, and {follow(∅, D),

13

Figure 4.5: Two e-sequences S and T used as an example for Artemis.

follow(A,D), overlap(B,D)} for D. At the matching step the Hungarian algorithm would
return H(S, T) = (A,B,D). Finally, Artemis(S, T) = (2/3 + 2/3 + 1) = 7/3.

If the distance of event-intervals (dm(Si, Tj)) were calculated simply by the following
equation:

dm(Si, Tj)=


max{|S|, |T |} − |r(Si) ∩ r(Tj)|

max{|S|, |T |}
, ifESi

=ETj

1, ifESi
6=ETj

(4.11)

then Artemis would be unable to distinguish between the event-interval sequences in Figure
4.6, since their distance would be zero.

A

A

A A A

A

Figure 4.6: A pair of e-sequences that would cause Artemis to yield zero distance, if
the distance of event-intervals were computed using Equation 4.11.

Complexity. Let m = max(|S|, |T |). Then, at the mapping step, O(m2) relations are
enumerated, while the complexity of computing D(S, T) using hashing is O(m3). The cost
of applying the Hungarian algorithm to the two event-interval relation sets results in a total
time complexity of O(m3) [11]. A lower bound for speeding up the computation of Artemis
is described next.

Claim 4.1. Artemis does not violate the identity of indiscernibles.

Proof. The proof is trivial. In order to have Artemis(S, T) = 0, the two e-sequences must
have the same count of each label. Otherwise, the Hungarian algorithm would match at least
one pair of event-intervals with a score of 1. In addition, the interval labels must appear
in the same order. Otherwise, in the matching, the sets r∅left and rright would not have
equal cardinality for at least one of the matched pairs, which would not allow a zero overall
score. Finally, for the same reason, for each pair of matched event-intervals, the sets r∅left
and rright must contain the same relations. As a result, the event-intervals of the two e-
sequences must appear in the same order and event-intervals in the same position must have
the same relations with any of the other event-intervals in the same position. This implies
that Artemis(S, T) = 0 if and only if S and T are identical.

4.4 Lower Bounding Artemis

The proposed lower bound can be computed in linear time and is based on the comparison
of event label counts. By knowing the number of labels in which two e-sequences di�er, we
can determine a lower bound for their Artemis distance.

14

Algorithm 2 Computing Artemis

Input: Two Event-Interval Sequences S, T
Output: The distance score: Artemis(S, T)
/* Compute relation sets for all event-intervals in S */
for all intervals Si ∈ S do

r∅(Si) = Rl(∅, Si)
rleft(Si) = ∅
for all intervals Sj ∈ S s.t. j < i do
rleft(Si) = rleft(Si) ∪Rl(Sj, Si)

end for

rright(Si) = ∅
for all intervals Sj ∈ S s.t. j > i do
rright(Si) = rright(Si) ∪Rl(Si, Sj)

end for

end for

/* Compute relation sets for all event-intervals in T */
for all intervals Ti ∈ T do

r∅(Ti) = Rl(∅, Ti)
rleft(Ti) = ∅
for all intervals Tj ∈ T s.t. j < i do
rleft(Ti) = rleft(Ti) ∪Rl(Tj, Ti)

end for

rright(Ti) = ∅
for all intervals Tj ∈ T s.t. j > i do
rright(Ti) = rright(Ti) ∪R(Ti, Tj)

end for

end for

S ′, T ′ = Augment(S,T)
/* Compute all event-interval distances dm(S

′
i, T

′
j) */

for all S ′i ∈ S ′ do
for all T ′j ∈ T ′ do
DistanceMatrix(i, j) = dm(S

′
i, T

′
j)

end for

end for

H(S ′, T ′) = Min_Cost_Maximum_Bipartite_Matching(DistanceMatrix)

return
∑|S′|

i=1 dm(S
′
i, h(S

′
i))

15

Given an e-sequence S, we de�ne a |σ|-dimensional vector vS , that stores, for each event
label in σ, the count of event-intervals in S that share that label.

Theorem 4.1. Given S and T , a lower bound for Artemis(S, T) is given by

ArtemisLB(S, T) =
k

2
+

(
m− k

2

)(
k

2m

)
= k − k2

4m
, (4.12)

where k = ||vS − vT ||1 and m = max(|S|, |T |).

Proof. Knowing that ||vS − vT ||1 = k we can be sure that Artemis(S, T) ≥ k/2; those k
event-intervals, k/2 in each e-sequence, are matched with each other contributing a score of
dm(Si, Tj) = 1 for each of the k/2 pairs. If k/2 is equal to the length of the e-sequences, then
Artemis(S, T) = k/2. However, if the opposite case holds, then the fact that ||vS−vT ||1 = k
is re�ected in the matching scores of the rest of the event-intervals. So, given that m =
max(|S|, |T |) and m > k

2 , the rest of the m − k/2 event-intervals of each e-sequence would
have at least k/2 non-common relations with their matched event-intervals. Thus, yielding
adding to Artemis(S, T) an additional (m− k/2) · (k/2m).

The proposed lower bound focuses on label counts and not on relations of event-intervals.
When the di�erences of two e-sequences are restricted to event-interval labels, the lower
bound is equal to the distance obtained by Artemis. On the other hand, when the e-
sequences share the same event labels and di�er only in the type of event-interval relations,
then the lower bound is ine�cient and yields zero score. The tightness and pruning power
of the lower bound is studied on three datasets in Section 6.2.

16

Chapter 5

Longest Common Sub-Pattern

In this section we study the problem of �nding the Longest Common Sub-pattern (LCSP)
between a pair of arrangements of temporal intervals. We formally de�ne the notion of the
LCSP and prove that �nding it belongs to the class of NP -complete problems. Furthermore,
we present an exact algorithm to retrieve the LCSP of pairs of arrangements, which is based
on dynamic programming.

De�nition 5.1. Given two temporal interval arrangements, A and B, their Longest Common
Sub-pattern is the maximum ordered set of intervals SLCSP = { SLCSP 1, SLCSP 2, · · · ,
SLCSP k}, such that there exist event-intervals {Sa1, Sa2, · · · , Sak} in A, and {Sb1, Sb2, · · · ,
Sbk} in B, and it holds: ESLCSP i = ESai = ESbi, 1 ≤ i ≤ k and R(ESLCSP i, ESLCSP j)
= R(ESai, ESaj) = R(ESbi, ESbj),∀i, j s.t. 1 ≤ i < j ≤ k.

In other words, the LCSP of a pair of arrangements, A and B, is an arrangement with
its intervals being a subset of those present in both A and B. Furthermore, for any pair of
intervals in the LCSP, the corresponding pairs of intervals in A and B have the same type
of relation. For example, in Figure 5.1, the LCSP of the two arrangements is the pattern
formed by intervals A,C,D.

A

B

C
D

A

B

C
D

Figure 5.1: The Longest Common Sub-pattern of the two temporal interval arrange-
ments is the sub-arrangement formed by the intervals with labels A,C and D.

Theorem 5.1. The problem of �nding the LCSP of two temporal interval arrangements is
NP-complete.

Proof. We prove the theorem by �rst proving the following lemma.

Lemma 5.1. The Clique decision problem can be reduced to the LCSP problem.

If we prove the lemma, we have proved that LCSP is at least as hard as the Clique
decision problem, which is NP -complete [20]. Thus, LCSP would belong to the NP -hard
class of problems. First, we demonstrate how any undirected graph G = (V,E) can be
encoded as an e-sequence. After that, the e-sequence can be trivially transformed into an
arrangement simply by disregarding the absolute values of the time points (but maintaining
their order).

17

In the transformation of graphs into e-sequences, each vertex ui ∈ V corresponds to a
time point ti; the correspondence between vertices and time points is not important as long
as it is consistent throughout the procedure. For every edge e = (ui, uj) ∈ E we create
interval S = (a, ti, tj) (if ti < tj , else S = (a, tj , ti)). There is no reason to speci�cally select
`a' as a label, but it is important that all labels are the same. Unconnected vertices do not
a�ect the solution of Clique so they can be discarded; alternatively, they can be conserved
by creating instantaneous intervals of the form (a.ti, ti). Note that the reverse procedure,
from e-sequences to graphs, would create undirected multigraphs with labeled edges.

Clique can be reduced to LCSP as follows. The graph G is transformed into an arrange-
ment AG as described above. Given the parameter k we create a second sequence Ak that
corresponds to a clique of size k. This is easily achieved by creating all possible k(k − 1)/2
intervals of the form S = (a, ti, tj), with 1 ≤ i ≤ k − 1, i < j ≤ k. The result of LCSP
determines the result for Clique. The whole arrangement Ak is found in AG, or equivalently
the size of the LCSP between AG and Ak is equal to k(k − 1)/2, if and only if the graph
contains a clique of size k. Proving the last statement:

(⇐) If graph G has a clique of size k, then the size of the LCSP is k(k − 1)/2: If graph
G has a clique of size k, then there exist k vertices that are fully connected. Suppose the
vertices of the clique are Vclique = {uc1, ...uck}. The reduction would create AG containing,
among others, all k(k−1)/2 intervals of the form (a, tuc i, tucj), with 1 ≤ i ≤ k−1, i < j ≤ k.
The reduction would also create Ak, which contains exactly k(k−1)/2 intervals in a pattern
identical to that formed by the intervals corresponding to the clique. Thus, the size of the
LCSP would be equal to k(k − 1)/2.

(⇒) If the size of the LCSP is k(k− 1)/2, then the graph G has a clique of size k: If the
size of LCSP is equal to k(k − 1)/2 then there exists a set of intervals in AG which create a
pattern identical to that of Ak. That means there exist k(k−1)/2 intervals in A of the form
S = (a, ti, tj) for all 1 ≤ i ≤ k− 1, i < j ≤ k. Thus, k vertices exist in G connected by edges
(ui, uj) for all 1 ≤ i ≤ k − 1, i < j ≤ k. Equivalently, k nodes in G are fully connected.

Proposition 5.1. The decision version of LCSP belongs to the NP complexity class.

It is trivial to show that a candidate solution can be veri�ed in polynomial time, based on
the De�nition 5.1.

We have shown that LCSP ∈ NP and that every problem in NP reduces to LCSP. As
a consequence, LCSP is an NP -complete problem.

5.1 An exact algorithm for LCSP

We present an exact algorithm, based on dynamic programming, to retrieve the LCSP
between pairs of temporal interval arrangements. Given A = {SA1,· · · ,SAm} and B =
{SB1,· · · ,SBn}, we denote by LCS(i, j), 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, the LCSP between
{SA1,· · · ,SAi} and {SB1,· · · ,SBj} where the sub-pattern must include an interval corre-
sponding to SAi and SBj ; if ESAi 6= ESBj then LCS(i, j) = ∅. The idea behind this
algorithm is that we can infer LCS(i, j) if we know all previous LCS(p, q), with 1 ≤ p ≤ i
and 1 ≤ q ≤ j.

Unlike the case of LCS for strings, in temporal interval arrangements it is not su�cient to
know only LCS(i−1, j−1), LCS(i−1, j) and LCS(i, j−1). Furthermore, given LCS(p, q),
with p < i and q < j, it is not su�cient to simply append the new interval. Actually, it is
not even correct. The reason is that all other previous intervals do not necessarily have a
follow relation with SAi and SBj . For example, in Figure 5.1 the interval labeled �D� has a
di�erent relation with the �B� interval in the two arrangements respectively, although �C� is
the previous of �D�. Thus, it is not su�cient to check just the relation with the last interval.
Instead, SAi and SBj must be checked against all intervals of the sub-solution and keep only

18

those that have the same relation (thus, it is possible to have |LCS(p, q)| ≥ |LCS(i, j)|). So,
for each L(i, j) all L(p, q) must be examined to discover the one that yields the actual longest
CSP. Additionally, for a single LCS(i, j), multiple solutions may exist, e.g. for L(3, 3) the
two solutions are {A,C} and {B,C}. None of the solutions can be discarded since it is not
clear which one would be the appropriate choice for the next sub-problems.

In a general form, the described approach can be expressed as:

LCS(i, j) =


∅, if ESAi 6= ESBj

max
p≤i,q≤j

(p,q)6=(i,j)

{LCS(p, q)⊗ (i, j)}, else

where LCS(p, q) ⊗ (i, j) is the arrangement that occurs from the interval corresponding
to SAi and SBj and the event-intervals in LCSP (p, q) that have the same relations with
intervals SAi and SBj in their respective arrangements. The LCSP of two arrangements can
be computed as described in Algorithm 3.

Algorithm 3 Longest Common Sub-pattern of Temporal Interval Arrangements

for i = 1 to |A| do
for j = 1 to |B| do
if label(SAi) 6= label(SBj) then

LCS(i, j) = ∅
else

for all sub-problems (p, q) of (i, j) do
for all solutions Sk(p, q) of LCS(p, q) do
newLCS = Sk(p, q)⊗ (i, j)
if |newLCS| > |Sm|, Sm ∈ LCS(i, j) then
LCS(i,j) = {newLCS}

else if |newLCS| = |Sm| then
LCS(i, j) = LCS(i, j) ∪ {newLCS}

end if

end for

end for

end if

end for

end for

Claim 5.1. Algorithm 3 returns the LCSP of a pair of arrangements of temporal intervals.

Proof. First we must prove that L(i, j) returns the LCSP for the corresponding sub-problem
.

For any 1 ≤ i ≤ m, 1 ≤ j ≤ n:

• If ESAi 6= ESBj then LCS(i, j) = ∅. If the two intervals do not have the same label,
then it is not possible to have an LCS with its last interval corresponding to SAi and
SBj , since no labeled interval can be identical to two intervals of di�erent labels.

• IfESAi =ESBj then LCS(p, q)⊗(i, j) yields a common sub-pattern of {ESA1, ..., ESAi}
and {ESB1, ..., ESBj}: By selecting only the intervals that induce similar relations,
we make sure that the correspondent to i and j has the same relations to the previous
intervals. Conversely, the existing intervals have the same relations to the correspon-
dent of i and j. Additionally, existing intervals of LCS have identical relations with

19

their correspondents in A and B; this was examined when each interval was added to
the solution of the previous sub-problems.

• If ESAi = ESBj and all previous sub-problems LCS(p, q) yield ∅ as their solution, then
LCS(i, j) is composed only of an interval corresponding to SAi and SBj : Supposing
that LCS(i, j) was composed of more than one interval, then there must exist a pair
of intervals with the same label in {SA1, .., SAi−1} and {SB1, .., SBi−1}. That is a
contradiction since it would imply that not all previous sub-problems yield ∅ as their
solution.

• If ESAi = ESBj then the ⊗ operation yields a LCSP: Suppose that the LCSP is
correctly retrieved for all previous sub-problems LCS(p, q), but not for LCS(i, j).
This would imply that an interval belonging to the LCSP of {ESA1, ..., ESAi} and
{ESB1, ..., ESBj} exists but was not selected. If the not-selected interval belongs to
the LCS of {ESA1, ..., ESAi} and {ESB1, ..., ESBj} then it has the same relation to
SAi and SBj . But then, since the relations are the same, the interval would have been
selected for LCS(i, j), which contradicts to the previous. Thus, the algorithm at point
(i, j) returns the LCSP of {ESA1, ..., ESAi} and {ESB1, ..., ESBj}.

Since the method at point (i, j) returns the LCSP for the corresponding sub-problem,
then the LCSP of the two whole arrangements is found by selecting LCS(i, j) which yields
the largest value.

Complexity In the above approach, LCS(i, j) must be computed for all possible pairs of
i and j. To compute each LCS(i, j), it is necessary to check all the solutions of all O(|A|·|B|)
sub-problems; checking a solution requires linear time with respect to the size of the LCS,
which is at most min{|A|, |B|}. So, the total complexity of the algorithm is O(n3 ·m2 · s),
if n ≤ m, where s is the maximum number of solutions over all LCS(i, j). This does not
prove that we have found a polynomial time algorithm for NP -complete problems, since the
number of solutions s can be exponential in the size of the input.

Computationally hard instances of Clique reduce to hard instances of LCSP. In such
cases, the exact algorithm has to search among a number of solutions which is exponential
in the size of the arrangements. This becomes evident as for every sub-problem, the labels
of the pair of the corresponding intervals are the same and all previous solutions must be
examined. Despite that, this is not a characteristic only of arrangements containing intervals
which all have the same label.

A

B

A B

C

D

C D

E

F

E F

Figure 5.2: A category of arrangement pairs where any event-interval label appears
exactly once, yet the number of candidate solutions stored at each point of the dynamic
programming algorithm is exponential in the size of the arrangements.

In Figure 5.2 we display a category of instances where any event-interval label appears
exactly once, yet the number of candidate solutions stored at each point of the dynamic
programming algorithm is exponential in the size of the arrangements. In particular, the
number of partial solutions is O(2

n

2). There exist multiple LCSPs with size equal to half
the size of the original arrangements. They contain only one event-interval for every pair of
overlapping event-intervals in the �rst arrangement.

20

Chapter 6

Experiments

In this chapter we attempt to obtain an insight into the behavior of the three proposed
distance functions and the lower bounding technique for Artemis, which were presented in
Chapter 4. In Section 6.1 we describe our methodology and the performed experiments,
while the results are demonstrated in Section 6.2. Finally, our conclusions are presented in
Section 6.3.

6.1 Experimental Setup

In Kostakis et al. [26] we have demonstrated, through thorough experimentation, the supe-
riority of the normalized Manhattan distance over its simpler form and the Frobenius norm.
Due to that, experiments in this thesis are limited only to the use of the normalized version
of the distance measure. We refer to the measure using the term �Relation Matrix� and by
that we mean the whole procedure with the use of the normalized version when comparing
the matrices.

The proposed distance functions have been benchmarked on three real datasets (Details
regarding the datasets are displayed in Table 6.1):

• Hepatitis [42] The dataset contains information about 498 patients who have either
Hepatitis B or Hepatitis C. The event-intervals represent the results of 25 regular tests.

• ASL [41] The event labels in this dataset are transcriptions from videos of American
Sign Language expressions provided by Boston University.

• Pioneer [35] This dataset was constructed from the Pioneer-1 dataset available in
the UCI repository. Each e-sequence in the dataset describes one of three scenarios:
gripper, move, turn. The event-intervals correspond to the input provided by the robot
sensors.

The distance functions were evaluated with respect to robustness against two types of
arti�cial noise, k-NN classi�cation accuracy, and scalability. In addition, the e�ciency of
ArtemisLB was tested by computing its tightness and pruning power on 1-NN queries. These
two metrics are commonly used in the evaluation of lower bounds (e.g., Keogh et al. [21]).

Noise robustness. The robustness in the presence of noise was tested by using two types
of arti�cial noise. In the �rst type of noise, each event-interval within an e-sequence is
independently shifted by an o�set back or forth in time. Whether an event-interval will be
shifted is determined by the o�set probability value. In addition, the limits on the value of
the o�set are given by the distortion level d. The distortion level is given as a percentage
of the length of the whole e-sequence. For each event-interval, a random value under the
uniform distribution is chosen in that integer interval to determine the o�set. An event-
interval has equal probability to be shifted either back or forth in time. The durations of

21

Dataset E-Sequences Total Intervals Min Max Average Labels (|σ|) Classes
ASL 873 15675 4 41 17.95 216 5

Hepatitis 498 53921 15 592 108.27 147 2
Pioneer 160 8949 36 89 55.93 92 3

Table 6.1: Dataset Summary.

the event-intervals remained una�ected. This type of arti�cial noise attempts to simulate
noisy sources or recording devices. Real-world cases for this could include humans who learn
American sign language or who rehabilitate from brain injuries, or noise in sensor networks.
The distortion level and o�set probability parameter values were set to 0.2 to 1, with step
0.2.

A drawback of the �rst noise type is that the shifting of event-intervals could result to
semantic invalidity, e.g. �robot walks forward� overlaps with �robot walks backwards�. To
avoid such cases, we further experiment with arti�cial noise which is based on swaps of event-
interval labels, while the durations and the relations of the event-intervals remain una�ected.
Given an e-sequence, the swap probability parameter determines if an event-interval will have
its label swapped with that of another event-interval. The other event-interval is chosen
uniformly at random from the whole e-sequence. The swap probability parameters values
tested were 0.2 to 1, with step 0.2. We must note that, in all cases, the noise is added o�-line
and that all methods were tested on exactly the same distorted e-sequences. This happened
in order to rule out di�erences in score caused by the randomness factor.

Noise is incorporated into e-sequences which then serve as the queries in 1-NN search
tasks. Given a database of event-interval sequences, a copy of an e-sequence is distorted,
based on the parameter values, and then its nearest neighbor is found by scanning the
database and using a distance function to calculate the distances. This is performed for
each and every e-sequence in the database. Ideally, we would like each noisy e-sequence
(query) to be matched to the e-sequence from which it originated. We compared the three
distance functions in terms of: retrieval accuracy (the fraction of noisy queries for which
the originating e-sequence is retrieved) and rank of nearest neighbor (for each query, the
number of database e-sequences with distance less than or equal to that of the originating
counterpart).

Classi�cation. For the k-NN classi�cation experiments, we studied the distance functions'
e�ciency under 1-NN and 3-NN classi�ers. Our datasets contain labeled samples; the sam-
ples belong to prede�ned classes and the class of each sample is known (The number of
classes for each dataset is depicted in Table 6.1). In this experiment, we classify each sample
based on the class labels of its nearest neighbors. The neighbors are determined by the
the distance function. In the 1-NN case the sample is assigned to the class of its nearest
neighbor, while in the case of 3-NN the sample is assigned to the class which is the majority
element of the classes of the 3 nearest neighbors. A classi�cation of a sample is considered
correct if the class assignment agrees with the true class of the sample. The accuracy of each
classi�er is determined as the ratio of correct class assignments.

Due to the fact that the e-sequences in the ASL dataset can belong to up to 5 classes
(wh-question, etc) simultaneously, while some e-sequences do not belong to any class (simple
a�rmative phrases), we had to modify the accuracy evaluation metric. Only for the ASL
dataset, we considered two cases, one that classi�es the whole dataset and another that
focuses on the classi�cation of samples that have non-empty label sets. In both cases, for
each sample the classi�er returns a score in [0, 1] denoting the average ratio of common class-
labels with its k nearest neighbors. For example, a phrase with labels {a} and neighbors
with label sets {a}, {a, b} and ∅ respectively, would yield (1+ 0.5+ 0)/3. Thus, for the ASL
dataset the accuracy of the classi�er is the average score over all samples.

We designed an additional experiment speci�cally for the ASL dataset. There exist in
total 288 e-sequences in the dataset which portray exactly the same phrase in English with

22

one or more other e-sequences. We study what ratio of the 288 equivalent e-sequences are
retrieved by examining the k nearest neighbors of every sample, for all possible values of k.
We monitor two values. The �rst is the ratio of the 288 e-sequences for which an identical
phrase can be detected within their k nearest neighbors. The second is the total sum of
identical phrases that can be detected within the k nearest neighbors. The two values would
be the same if any phrase in English were to be represented by at most two e-sequences in
the dataset. This experiment was designed to investigate the suitability of the methods in
the �eld of language technology and relevant real-world applications.

Scalability. In the attempt to evaluate the scalability of the proposed distance functions, we
embedded time-monitoring functions in our implementations. For each e-sequence, we count
the time needed to transform the e-sequence in the right form (vector form for DTW, enu-
merate the relation sets for Artemis, creation of relation matrix) and then compare it against
the whole dataset. The dataset, serving as the database, had already been transformed in
the appropriate forms in advance. For the case of Artemis, we have not implemented the
use of hashing, thus the complexity is O(n4) with respect to the size of the e-sequences. Our
experiments were implemented in Java and were performed on a PC running Ubuntu Linux,
equipped with Intel Core 2 Duo 2GHz CPU and 4GB RAM.

Lower bounding. To assess the quality of ArtemisLB, we compute its pruning power for
1-NN queries in the database (see Algorithm 4) and its tightness. The pruning power is
de�ned as the ratio of pruned comparisons, using the Artemis, over the total number of
comparisons that would have been required if the database were to be serially scanned. The
tightness is de�ned as the average ratio of the lower bound distance over the distance given
by Artemis.

Algorithm 4 1-NN Search Using ArtemisLB

dNN = ∞
for each Si in DB do

//Check Lower Bound distance
if ArtemisLB(Si,Q) < dNN then

//Check distance given by Artemis

if Artemis(Si,Q) < dNN then

dNN = Artemis(Si, Q)
end if

end if

end for

23

6.2 Results

Figures 6.1, 6.2 and 6.3 depict the results of the noise robustness experiment for the three
datasets, when the noise appears as shifts of the event-intervals. When tested on the Pioneer
dataset (results in Figure 6.3) Artemis achieved 100% retrieval accuracy for all pairs of noise
probability and distortion level values. Due to that, we omit the sub�gure of the comparison.
The results of the noise robustness experiments for the second type of arti�cial noise are
depicted in Figures 6.4, 6.5 and 6.6.

The results of the tests on the three distance functions for their robustness against noise
depict Artemis to be a clear winner. The Relation Matrix approach performed signi�cantly
better than DTW, achieving high retrieval accuracy rates but did not consistently achieve
the success rates of Artemis. The DTW vector-based approach displayed a signi�cant decline
in performance with the increase in the value of the o�set or swap probability and distortion
level parameters. Artemis was able to maintain a very high rate of �nding the noisy queries'
originating counterparts. For all but one of the datasets and experiments its success rate was
over 98%. Artemis displayed a decline in performance only for the Pioneer dataset and the
noise type that consists of swapping the labels (Figure 6.6). Similarily, the rate for Relation
Matrix was over 85% for all the cases excluding the Pioneer dataset with swaps-based noise.
To summarize, in all the noise robustness results, Artemis' performance was either identical
to or better than the performance of Relation Matrix and DTW.

The results of the k-NN classi�cation are depicted on Table 6.2. The values in the
cells denote the classi�cation accuracy of each classi�er on each dataset. For the Hepatitis
dataset, the 3-NN DTW-based classi�er performs marginally better than the rest. Artemis
and Relation Matrix perform better than DTW for the Pioneer dataset, but contrary to the
Relation Matrix, Artemis maintains its high classi�cation accuracy in the 3-NN setting. For
the ASL dataset, the Relation Matrix approach is the best, while DTW ranks second and
Artemis third. However, for the pruned ASL dataset (only samples of non-empty label-sets)
the situation is reversed. Additionally, we examined the clustering performance of LCSP by
using our exact algorithm. The only purpose was to study whether the LCSP was a more
meaningful measure for clustering any of the datasets, in comparison to the pairwise distance.
The Hepatitis dataset contained hard instances which resulted in almost exponential memory
requirements (over 4GB for the comparison of two arrangements with 250 intervals each).
Due to that, we were not able to derive any results for that dataset.

Dataset Artemis 1-NN Artemis 3-NN DTW 1-NN DTW 3-NNMatrix 1-NNMatrix 3-NN LCSP 1-NN LCSP 3-NN

HepData 0.7209 0.7811 0.7403 0.8072 0.7490 0.7831 - -
Pioneer 0.9750 0.9750 0.93750 0.9375 0.9750 0.9688 0.9750 0.9625
ASL 0.4307 0.4013 0.4358 0.4188 0.4404 0.4230 0.3418 0.3248

ASL(pruned) 0.3464 0.3402 0.3020 0.2893 0.2813 0.2733 0.2400 0.2265

Table 6.2: k-NN classi�cation results.

Figure 6.7 depicts the results of the experiment, conducted on the ASL dataset, in which
the k nearest neighbors of each e-sequence are scanned to determine if they denote the same
phrase in English. Figure 6.7a shows the ratio (of the e-sequences which do have equivalents)
for which at least one identical phrase can be found within k nearest neighbors. The ratio of
the total sum of existing identical phrases that have been found for each method is displayed
in Figure 6.7b. For both cases, Relation Matrix returns a better grouping of semantically
related e-sequences. Additionally, Artemis performs better than DTW.

The results of the scalability results can be seen in Figures 6.8, 6.9 and 6.10. In Figure
6.8 we observe that Artemis is slower than the Relation Matrix and vector-based DTW
approaches, as the complexity analysis of Chapter 4 would suggest. On the other hand, we
observe, in Figure 6.9, that for the case of ASL, Artemis is faster than the Relation Matrix
and DTWmeasures. The reason for that is the large size of the alphabet (|σ|). In Figure 6.10
we witness a blow up in the run times of Artemis. For e-sequences of large size, Artemis'
O(n4) complexity (without the use of hashing) signi�cantly a�ects its performance.

24

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Matrix
DTW
Artemis

(a) Retrieval Accuracy. O�set probability 1.0

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(b) DTW Retrieval Accuracy comparison

0.2 0.4 0.6 0.8 1
0.98

0.985

0.99

0.995

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(c) Artemis Retrieval Accuracy comparison

0.2 0.4 0.6 0.8 1
0.98

0.985

0.99

0.995

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(d) Relation Matrix Retrieval Accuracy compari-
son

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(e) Ranks of NN. O�set probability 1.0, distortion
1.0

Figure 6.1: O�set noise robustness experiment. ASL dataset.

25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Matrix
DTW
Artemis

(a) Retrieval Accuracy. O�set probability 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(b) DTW Retrieval Accuracy comparison

0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(c) Artemis Retrieval Accuracy comparison

0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(d) Relation Matrix Retrieval Accuracy compari-
son

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(e) Ranks of NN. O�set probability 1.0, distortion
1.0

Figure 6.2: O�set noise robustness experiment. Hepatitis dataset.

26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Matrix
DTW
Artemis

(a) Retrieval Accuracy. O�set probability 1.0

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(b) DTW Retrieval Accuracy

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Distortion

Probability 0.2
Probability 0.4
Probability 0.6
Probability 0.8
Probability 1.0

(c) Relation Matrix Retrieval Accuracy

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(d) Ranks of NN. O�set probability 1.0, distortion
1.0

Figure 6.3: O�set noise robustness experiment. Pioneer dataset.

27

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Swap Probability

Matrix
DTW
Artemis

(a) Retrieval Accuracy.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(b) Ranks of NN. Swap probability 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(c) Ranks of NN. Swap probability 1.0

Figure 6.4: Label swaps noise robustness experiment. ASL dataset.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Swap Probability

Matrix
DTW
Artemis

(a) Retrieval Accuracy.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(b) Ranks of NN. Swap probability 1.0

Figure 6.5: Label swaps noise robustness experiment. Hepatitis dataset.

28

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

C
or

re
ct

 M
at

ch
es

 R
at

io

Swap Probability

Matrix
DTW
Artemis

(a) Retrieval Accuracy.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(b) Ranks of NN. Swap probability 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

Rank of nearest neighbor ratio

DTW
Artemis
Matrix

(c) Ranks of NN. Swap probability 1.0

Figure 6.6: Label swaps noise robustness experiment. Pioneer dataset.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Id
en

tic
al

s
fo

un
d

ra
tio

Database ratio scanned

DTW
Artemis
Matrix

(a) Found identical phrases

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Database ratio scanned

T
ot

al
 id

en
tic

al
s

fo
un

d

DTW
Artemis
Matrix

(b) Total sum of identical phrases found

Figure 6.7: Identical phrase experiment. ASL dataset.

29

0 50 100 150
0

100

200

300

400

500

Dataset Sample

Ti
m

e
to

 s
ca

n
D

B DTW
Artemis
Matrix

(a) Required times for each element, in ascending
order.

0 200 400
0

50

100

150

200

Time to scan DB

C
ou

nt

DTW
Artemis
Matrix

(b) Histograms of required times

Figure 6.8: Time (in Milliseconds) required to compare each elemet against the whole
dataset. Pioneer dataset.

0 200 400 600 800
0

200

400

600

800

1000

Dataset Sample

T
im

e
to

 s
ca

n
D

B DTW
Artemis
Matrix

(a) Required times for each element, in ascending
order.

0 500 1000
0

200

400

600

800

1000

Time to scan DB

C
ou

nt

DTW
Artemis
Matrix

(b) Histograms of required times

Figure 6.9: Time (in Milliseconds) required to compare each elemet against the whole
dataset. ASL dataset.

30

0 100 200 300 400
0

5

10

15

x 10
5

Dataset Sample

T
im

e
to

 s
ca

n
D

B DTW
Artemis
Matrix

(a) Required times for each element, in ascending
order.

0 5 10 15

x 10
5

0

100

200

300

400

500

Time to scan DB

C
ou

nt

DTW
Artemis
Matrix

(b) Histograms of required times

Figure 6.10: Time (in Milliseconds) required to compare each elemet against the whole
dataset. Hepatitis dataset.

The assessment of ArtemisLB is summarized in Table 6.3. The second column shows
the tightness of the lower bounding technique while the third shows its pruning power. The
higher values are observed on ASL, contrary to Pioneer which yields the lowest scores. The
latter dataset consists of unequally represented classes; one of the three classes contains 102
out of 160 samples in total. E-sequences of the same class in the Pioneer dataset denote
the same scenario in the robot's movement. Due to that, these e-sequences are expected to
share large portions of common event-interval labels. Thus, they render ArtemisLB unable
to prune many of the comparisons.

Dataset LB Tightness 1-NN pruning power

ASL 0.8837 0.7931
Hepatitis 0.7166 0.7012
Pioneer 0.6189 0.4855

Table 6.3: Lower Bound tightness and pruning power.

6.3 Lessons learned

The proposed distance functions were evaluated with respect to robustness against two types
of arti�cial noise, k-NN classi�cation accuracy, and scalability. In addition, the e�ciency of
the lower bound was tested by computing its tightness and its pruning power during 1-NN
queries.

Artemis proved to be the most robust method to noise. The reason does not appear
to be only the focus on the relations of the event-intervals, which is common with Relation
Matrix. It is also the underlying nature of the method that attempts to �nd correspondence
between event-intervals. The correspondence among event-intervals allows Artemis to easily
identify the originating counterpart of noisy e-sequences; e-sequences with the same number
of each label yield overall lower distance scores than others with di�erent labels and size.
On the other hand, the DTW approach examines the e-sequences point-by-point and the
event-intervals out of their context. This makes it more sensitive to minor edit operations.

31

Consequently, DTW displayed a decline in performance in accordance with the increase of
noise.

There was no clear winner, between the three proposed methods, in our k-NN classi�-
cation experiments. The insight we acquired suggests that the choice must be application
dependent. Additionally, the multiple possible ways that the class label can manifest in the
e-sequences (e.g. as a single event-interval, a common sub-arrangement, a semantic combi-
nation) do not allow for a standard choice between our proposed methods.

The additional experiment on the ASL dataset supports the thesis that, if semantic
information resides in the relations between event-intervals, the Relation Matrix measure
has an advantage over the other two approaches. The reason is the fact that Relation
Matrix assigns equal weight to all the event-interval relations and similar utterances in ASL
share common pairs or event-interval relations. In fact, the insight we acquired suggests that
in ASL common semantic information among similar utterances appears as sets of common
sub-arrangements. In turn, this implies that the distance of pairs of e-sequences is not the
most appropriate measure for studying ASL utterances.

The scalability experiments showed that DTW and Relation Matrix perform, in the
average case, faster than Artemis, which su�ers from a computational blow up for large
e-sequences. In contrast, DTW and the Relation Matrix approach become slower when the
alphabet size is signi�cantly larger than the size of the e-sequences.

A way to overcome the increase in complexity due to the alphabet size would be to prune
the alphabet during the comparisons and keep only the union of the labels present in the
e-sequences that are being compared. That would yield a complexity of O(|VS ||VT | · (|VS |+
|VT |)) for DTW and O(|VS |2 + |VT |2 + (|VS |+ |VT |)2) for the Relation Matrix.

To speed up searches using Artemis, our lower bound technique ArtemisLB proved
signi�cantly tight; the average tightness ranged from 61.8% (Pioneer dataset) up to 88%
(ASL dataset). This translates to a pruning power of 48.5% to 79.3% over the brute force
serial scan of the database. The fact that ArtemisLB yields a zero distance score for pairs
of e-sequences that share the same number of event-intervals for each label appears to a�ect
only the experiments with the Pioneer dataset.

In conclusion, the choice of distance measure is application and task dependent. For
clustering, the choice should depend on the way the classes are encoded into the e-sequences.
For identifying exact similarity of e-sequences, Artemis is the only one that does not violate
the identity of indiscernibles. Its high asymptotic complexity can be circumvented by the
use of lower bounding techniques such as the one we presented.

32

Chapter 7

Summary and directions for Future

Work

During the course of this thesis we studied the problem of comparing and analyzing ar-
rangements of temporal intervals. We were the �rst to de�ne the problem of comparing
such arrangements [26] and provided three relevant distance functions: the Relation Ma-
trix measure, the vector-based DTW and Artemis. In addition, we provided a linear-time
lower-bounding technique for Artemis.

The three distance functions were tested on three datasets: American sign language,
hepatitis and sensor data. The experiments included a thorough evaluation of the proposed
distance functions in terms of robustness against two types of arti�cial noise, k-NN classi-
�cation accuracy and scalability. Artemis and the Relation Matrix methods proved highly
robust against noise. The results of k-NN classi�cation were inconclusive as to which method
should be preferred, while the scalability results were in accordance with the time complexity
of the algorithms. Finally, the proposed lower bound proved to be highly tight and provided
great pruning power for 1-NN search.

In addition, we studied the problem of �nding the longest common sub-pattern in ar-
rangements of temporal intervals. We proved that �nding the LCSP of a pair of arrangements
is an NP -complete problem. We presented an exact algorithm, based on dynamic program-
ming, for �nding the LCSP of a pair of arrangements. The algorithm is e�cient for easy
instances but requires exponential time for hard instances.

For the future, a series of further problems must be solved. Most importantly, Artemis
must be further examined to determine if it obeys the triangular inequality. The result
would answer the question whether Artemis is a metric. This would enable the creation
of new and the use of existing techniques for indexing event-interval sequences. Similarly,
additional lower bounding techniques, which provide greater tightness and pruning power,
would facilitate the use of large event-interval sequence databases. For this setting, the
bounding techniques must be either constant- or linear-time. Deriving metric lower bounds
would be desirable in the e�ort to provide large-scale database services.

The proposed functions for comparing event-interval sequences require a priori knowledge
of the whole sequences. Devising on-line algorithms [2], where the active arrangements are
given in a streaming or bursty fashion, would provide solutions for additional real-world
scenarios related to �elds such as assistive environments. Furthermore, the distance functions
that we presented required at least quadratic time with respect to the the length of the e-
sequences. It would be interesting to study the use of randomized algorithms [36] in an e�ort
to provide faster solutions.

Randomized algorithms would prove useful for tackling hard instances of LCSP, too. In
addition, approximation algorithms [18] are needed for many related computational tasks.
It would be interesting to study the relation among hard instances of other NP -complete
problems and instances of LCSP. Previous results regarding the hardness of approximating
the Clique problem [12] provide the intuition that LCSP must be hard to approximate.

33

Furthermore, since we proved that event-interval sequences are an alternative to encoding
multi-graphs with labeled edges, we must now study whether event-interval relations provide
an additional scope for proving or determining properties in graphs and multi-graphs.

Summarizing our work on event-interval sequences, we solved the problem of comparing
sequences. Existing work included mining the sequences for retrieving frequent patterns
and association rules. Regarding event-interval sequences from the scope of data mining, it
remains an open problem to �nd e�cient algorithms for detecting closed patterns.

34

Bibliography

[1] T. Abraham and J. F. Roddick. Incremental meta-mining from large temporal data
sets. In ER '98: Proceedings of the Workshops on Data Warehousing and Data Mining,
pages 41�54, 1999.

[2] S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1):3�26, 2003.

[3] J. M. Ale and G. H. Rossi. An approach to discovering temporal association rules. In
Proceedings of the 15th ACM Symposium On Applied Computing, pages 294�300, 2000.

[4] J. Allen and G. Ferguson. Actions and events in interval temporal logic. Journal of
Logic and Computation, 1994.

[5] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832�843, 1983.

[6] B. Berendt. Explaining preferred mental models in Allen inferences with a metrical
model of imagery. In Proceedings of the 18th Annual Conference of the Cognitive Science
Society, pages 489�494, 1996.

[7] B. Bergen and N. Chang. Embodied construction grammar in simulation-based language
understanding. Construction grammars: Cognitive grounding and theoretical extensions,
pages 147�190, 2005.

[8] D. Berndt and J. Cli�ord. Using dynamic time warping to �nd patterns in time series.
In AAAI Workshop on Knowledge Discovery in Databases, pages 359�370, 1994.

[9] G. Box and G. Jenkins. Time Series Analysis: Forecasting and Control. Prentice Hall
PTR, 1994.

[10] X. Chen and I. Petrounias. Mining temporal features in association rules. In Proceedings
of the 3rd European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 295�300. Springer-Verlag, 1999.

[11] J. Edmonds and R. Karp. Theoretical improvements in algorithmic e�ciency for net-
work �ow problems. Journal of the ACM, 19(2):248�264, 1972.

[12] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete. In Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science, pages 2�12. IEEE, 1991.

[13] F. Giannotti, M. Nanni, and D. Pedreschi. E�cient mining of temporally annotated
sequences. In Proceedings of the 6th SIAM Data Mining Conference, volume 124, pages
348�359, 2006.

[14] F. Höppner. Discovery of temporal patterns - learning rules about the qualitative
behaviour of time series. In Proceedings of the 5th European Conference on Principles
of Knowledge Discovery in Databases, pages 192�203, 2001.

35

[15] F. Höppner and F. Klawonn. Finding informative rules in interval sequences. In Pro-
ceedings of the 4th International Symposium on Advances in Intelligent Data Analysis,
pages 123�132, 2001.

[16] S.-Y. Hwang, C.-P. Wei, and W.-S. Yang. Discovery of temporal patterns from process
instances. Computers in Industry, 53(3):345�364, 2004.

[17] F. Itakura. Minimum prediction residual principle applied to speech recognition. IEEE
Transactions on Acoustics, Speech and Signal Processing, 23(1):67�72, 1975.

[18] D. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9(3):256�278, 1974.

[19] P. Kam and A. W. Fu. Discovering temporal patterns for interval-based events. In
Proceedings of the 2nd International Conference on Data Warehousing and Knowledge
Discovery, pages 317�326, 2000.

[20] R. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-
putations, pages 85�103, 1972.

[21] E. Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th Inter-
national Conference on Very Large Data Bases, pages 406�417, 2002.

[22] E. Keogh and C. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge
and Information Systems, 7(3):358�386, 2005.

[23] S. Kim, S. Park, and W. Chu. An index-based approach for similarity search sup-
porting time warping in large sequence databases. In Proceedings of 17th International
Conference on Data Engineering, pages 607�614, 2001.

[24] R. Kosara and S. Miksch. Visualizing complex notions of time. Studies in Health
Technology and Informatics, pages 211�215, 2001.

[25] O. Kostakis, P. Papapetrou, and J. Hollmén. Artemis: Assessing the similarity of
event-interval sequences. In Proceedings of the Conference on Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD 2011), volume 6912 of Lecture Notes
in Computer Science, pages 229�244. Springer-Verlag, 2011.

[26] O. Kostakis, P. Papapetrou, and J. Hollmén. Distance measure for querying arrange-
ments of temporal intervals. In Proceedings of Pervasive Technologies Related to Assis-
tive Environments, 2011.

[27] J. Kruskal and M. Liberman. The symmetric time warping problem: From continuous
to discrete. Time Warps, String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison, pages 125�161, 1983.

[28] S. Laxman, P. Sastry, and K. Unnikrishnan. Discovering frequent generalized episodes
when events persist for di�erent durations. IEEE Transactions on Knowledge and Data
Engineering, 19(9):1188�1201, 2007.

[29] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics, 10(8):707�710, 1966.

[30] J.-L. Lin. Mining maximal frequent intervals. In Proceedings of the 18th ACM Sympo-
sium On Applied Computing, pages 624�629.

[31] H. Lu, J. Han, and L. Feng. Stock movement precdiction and n-dimensional inter-
transaction association rules. In Proceedings of the ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge Discovery, pages 12:1�7, 1998.

36

[32] C. Mooney and J. F. Roddick. Mining relationships between interacting episodes. In
Proceedings of the 4th SIAM International Conference on Data Mining, 2004.

[33] F. Mörchen. Unsupervised pattern mining from symbolic temporal data. SIGKDD
Exploration Newsletter, 9:41�55, June 2007.

[34] F. Mörchen. Temporal pattern mining in symbolic time point and time interval data.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data mining, KDD '10, pages 2:1�2:1. ACM, 2010.

[35] F. Mörchen and D. Fradkin. Robust mining of time intervals with semi-interval partial
order patterns. In Proceedings of the 10th SIAM International Conference on Data
Mining, pages 315�326, 2010.

[36] R. Motwani and P. Raghavan. Randomized algorithms. ACM Computing Surveys,
28(1):33�37, 1996.

[37] J. Munkres. Algorithms for the assignment and transportation problems. Journal of
the Society for Industrial and Applied Mathematics, 5(1):32�38, 1957.

[38] F. Pachet, G. Ramalho, and J. Carrive. Representing temporal musical objects and
reasoning in the MusES system. Journal of New Music Research, 25(3):252�275, 1996.

[39] P. Papapetrou, G. Benson, and G. Kollios. Discovering frequent poly-regions in DNA
sequences. In Proceedings of the IEEE ICDM Workshop on Data Mining in Bioinfor-
matics, 2006.

[40] P. Papapetrou, G. Kollios, S. Sclaro�, and D. Gunopulos. Discovering frequent arrange-
ments of temporal intervals. In Proceedings of 5th IEEE International Conference on
Data Mining, pages 354�361, 2005.

[41] P. Papapetrou, G. Kollios, S. Sclaro�, and D. Gunopulos. Mining frequent arrangements
of temporal intervals. Knowledge and Information Systems, pages 133�171, 2009.

[42] D. Patel, W. Hsu, and M. Lee. Mining relationships among interval-based events for
classi�cation. In Proceedings of the 28th ACM SIGMOD International Conference on
Management of Data, pages 393�404. ACM, 2008.

[43] N. Pissinou, I. Radev, and K. Makki. Spatio-temporal modeling in video and multimedia
geographic information systems. GeoInformatica, 5(4):375�409, 2001.

[44] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43�
49, 1978.

[45] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream monitoring under the time warping
distance. In 2007 IEEE 23rd International Conference on Data Engineering, pages
1046�1055. IEEE, 2007.

[46] R. Villafane, K. A. Hua, D. Tran, and B. Maulik. Knowledge discovery from series of
interval events. Intelligent Information Systems, 15(1):71�89, 2000.

[47] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multidimen-
sional time-series. The VLDB Journal, 15:1�20, January 2006.

[48] E. Winarko and J. F. Roddick. Armada - an algorithm for discovering richer relative
temporal association rules from interval-based data. Data & Knowledge Engineering,
63(1):76�90, 2007.

37

[49] S.-Y. Wu and Y.-L. Chen. Mining nonambiguous temporal patterns for interval-based
events. IEEE Transactions on Knowledge and Data Engineering, 19(6):742�758, 2007.

[50] B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp norms. In Proceed-
ings of the 26th International Conference on Very Large Data Bases, pages 385�394.
Citeseer, 2000.

38

