
J Comput Virol
DOI 10.1007/s11416-011-0151-y

ORIGINAL PAPER

Malware classification based on call graph clustering

Joris Kinable · Orestis Kostakis

Received: 6 August 2010 / Accepted: 7 January 2011
© Springer-Verlag France 2011

Abstract Each day, anti-virus companies receive tens of
thousands samples of potentially harmful executables. Many
of the malicious samples are variations of previously encoun-
tered malware, created by their authors to evade pattern-
based detection. Dealing with these large amounts of data
requires robust, automatic detection approaches. This paper
studies malware classification based on call graph clustering.
By representing malware samples as call graphs, it is possible
to abstract certain variations away, enabling the detection of
structural similarities between samples. The ability to cluster
similar samples together will make more generic detection
techniques possible, thereby targeting the commonalities of
the samples within a cluster. To compare call graphs mutu-
ally, we compute pairwise graph similarity scores via graph
matchings which approximately minimize the graph edit dis-
tance. Next, to facilitate the discovery of similar malware
samples, we employ several clustering algorithms, including

This research has been supported by TEKES—the Finnish Funding
Agency for Technology and Innovation as part of its ICT SHOK
Future Internet research programme, grant 40212/09.

J. Kinable (B) · O. Kostakis
Department of Information and Computer Science,
Helsinki Institute for Information Technology
Aalto University, P. O. Box 15400, 00076 Aalto, Finland
e-mail: Joris.Kinable@kuleuven-kortrijk.be

O. Kostakis
e-mail: Orestis.Kostakis@tkk.fi

J. Kinable
Department of Computer Science, Katholieke Universiteit
Leuven (Kortrijk), Etienne Sabbelaan 53,
8500 Kortrijk, Belgium

k-medoids and Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN). Clustering experiments are
conducted on a collection of real malware samples, and the
results are evaluated against manual classifications provided
by human malware analysts. Experiments show that it is
indeed possible to accurately detect malware families via
call graph clustering. We anticipate that in the future, call
graphs can be used to analyse the emergence of new mal-
ware families, and ultimately to automate implementation of
generic detection schemes.

1 Introduction

Tens of thousands of potentially harmfull executables are
submitted for analysis to data security companies on a daily
basis. To deal with these vast amounts of samples in a timely
manner, autonomous systems for detection, identification and
categorization are required. However, in practice automated
detection of malware is hindered by code obfuscation tech-
niques such as packing or encryption of the executable code.
Furthermore, cyber criminals constantly develop new ver-
sions of their malicious software to evade pattern-based
detection by anti-virus products [38].

For each sample a data security company receives, it has to
be determined whether the sample is malicious, and whether
it has been encountered before, possibly in a modified form.
Analogous to the human immune system, the ability to rec-
ognize commonalities among malware which belong to the
same malware family would allow anti-virus products to pro-
actively detect both known samples, as well as future releases
of the malware samples from the family. To facilitate the rec-
ognition of similar samples or commonalities among multi-
ple samples which have been subject to change, a high-level
structure, i.e. an abstraction, of the samples is required.

123

J. Kinable, O. Kostakis

One such abstraction is the call graph. A call graph is a
representation of a binary executable as a directed graph in
which functions are modeled as vertices, and calls between
those functions as directed edges [37].

This paper deals with mutual comparisons of malware
via their call graph representations, and the classification of
structurally similar samples into malware families through
the use of clustering algorithms. So far, only a limited amount
of research has been devoted to malware classification and
identification using graph representations. Flake [14] and
later Dullien and Rolles [15] describe approaches to find-
ing subgraph isomorphisms within control flow graphs, by
mapping functions from one flow graph to the other. Func-
tions which could not be reliably mapped have been subject
to change. Via this approach, the authors of both papers can
for instance reveal differences between versions of the same
executable or detect code theft. Additionally, the authors of
[15] suggest that security experts could save valuable time
by only analyzing the differences among variants of the same
malware.

Preliminary work on call graphs specifically in the con-
text of malware analysis has been performed by Carrera and
Erdélyi [11]. To speed up the process of malware analy-
sis, Carrera and Erdélyi use call graphs to reveal similar-
ities among multiple malware samples. Furthermore, after
deriving similarity metrics to compare call graphs mutu-
ally, they apply the metrics to create a small malware taxon-
omy using a hierarchical clustering algorithm. Briones and
Gomez [9] continued the work started by Carrera and Erdé-
lyi. Their contributions mainly focus on the design of a dis-
tributed system to compare, analyse and store call graphs
for automated malware classification. The first large scale
experiments on malware comparisons using call graphs based
on real malware samples were recently published in
[23,26]. Additionally, the authors of [23] describe techniques
for efficient indexing of call graphs in hierarchical databases
to support fast malware lookups and comparisons. Finally, in
contrast to [9,11,23,26] which rely on structural similarities
of malware, the authors of [2,4] attempt to create hierarchical
malware clusterings based on the correspondence in malware
behavior.

In this paper we explore the potentials of call graph based
malware identification and classification. First call graphs
are introduced in more detail as well as graph similarity met-
rics to compare malware via their call graph representations
in Sects. 2 and 3. At the basis of call graph comparisons
lay graph matching algorithms. Exact graph matchings are
expensive to compute, and hence we resort to approximation
algorithms (Sects. 3, 4). Finally, in Sect. 5, the graph simi-
larity metrics are used for automated malware classification
via clustering algorithms on a collection of real malware call
graphs. A more extensive report on the work is available in
[26].

2 Introduction to call graphs

A call graph models a binary executable as a directed graph
whose vertices, representing the functions the executable
is composed of, are interconnected through directed edges
which symbolize function calls [37] (Fig. 1). A vertex can
represent either one of the following two types of functions:

1. Local functions, implemented by the program designer.
2. External functions: system and library calls.

Local functions, the most frequently occurring functions in
any program, are written by the programmer of the binary
executable. External functions, such as system and library
calls, are stored in a library as part of an operating system.
Contrary to local functions, external functions never invoke
local functions.

Analogous to [23], call graphs are formally defined as
follows:

Definition 1 (Call Graph) A call graph is a directed graph
G with vertex set V = V (G), representing the functions,
and edge set E = E(G), where E(G) ⊆ V (G) × V (G), in
correspondence with the function calls.

Call graphs are generated from a binary executable through
static analysis of the binary with disassembly tools [16].
First, obfuscation layers are removed, thereby unpacking
and, if necessary, decrypting the executable. Next, a dis-
assembler like IDA Pro [21] is used to identify the func-
tions and assign them symbolic names. Since the function
names of user written functions are not preserved during the
compilation of the software, random yet unique symbolic
names are assigned to them. External functions, however,
have common names across executables. In case an external
function is imported dynamically, one can obtain its name
from the Import Address Table (IAT) [29,32]. When, on the
other hand, a library function is statically linked, the library
function code is merged by the compiler into the executable.
If this is the case, software like IDA Pro’s FLIRT [22] has
to be used to recognize the standard library functions and
to assign them the correct canonical names. Once all func-
tions, i.e. the vertices in the call graph, are identified, edges
between the vertices are added, corresponding to the func-
tion calls extracted from the disassembled executable. The
methods presented in this paper fully rely on the extraction
of call graphs via static analysis of the binary executable.
Indeed, recent works [7,30] demonstrate that static code anal-
ysis is in some cases cumbersome or even impossible due to
advanced code obfuscation techniques, and therefore suggest
to use dynamic analysis instead. The latter approach exe-
cutes the executable for a limited amount of time, thereby
examining the execution trace. However, dynamic analysis

123

Malware classification based on call graph clustering

sub_4079C6

GetProcAddressGetModuleHandleA GetTickCount MessageBoxA

sub_407D36

sub_407D6A

HeapAlloc GetProcessHeap

sub_407D4E

sub_407D1C

start

GetCommandLineA

Fig. 1 Example of a small malware call graph. Function names starting with ‘sub’ denote local functions, whereas the remaining functions are
external functions

is strained by scalability issues; dedicated hardware and soft-
ware is required to analyze a single malware sample at a time
[3,5,45]. Consequently, to deal with the vast amounts of mal-
ware in a timely manner, static approaches are required in
addition to dynamic approaches, because they are generally
faster and cheaper to perform.

3 Graph matching

3.1 Graph matching techniques

Detecting malware through the use of call graphs requires
means to compare call graphs mutually, and ultimately, means
to distinguish call graphs representing benign programs from
call graphs derived from malware samples. Mutual graph
comparison is accomplished with graph matching.

Definition 2 (Graph matching) For two graphs, G and H , of
equal order, the graph matching problem is concerned with
finding a one-to-one mapping (bijection) φ : V (G) → V (H)

that optimizes a cost function which measures the quality of
the mapping.

In general, graph matching involves discovering structural
similarities between graphs [34] through one of the following
techniques:

1. Finding graph isomorphisms
2. Detecting maximum common subgraphs (MCS)
3. Finding minimum graph edit distances (GED)

An exact graph isomorphism for two graphs, G and H ,
is a bijective function f (v) that maps the vertices V (G) to
V (H) such that for all i, j ∈ V (G), (i, j) ∈ E(G) if and
only if (f (i), f (j)) ∈ E(H) [44]. Detecting the largest com-
mon subgraph for a pair of graphs is closely related to graph
isomorphism as it attempts to find the largest induced sub-
graph of G which is isomorphic to a subgraph in H . Conse-
quently, one could interpret an exact graph isomorphism as

a special case of MCS, where the common subgraph encom-
passes all the vertices and edges in both graphs. Finally, the
last technique, GED, calculates the minimum number of edit
operations required to transform graph G into graph H .

Definition 3 (Graph edit distance) The graph edit distance
is the minimum number of elementary operations required
to transform a graph G into graph H . A cost is defined for
each edit operation, where the total cost to transform G into
H equals the edit distance.

Note that the GED metric depends on the choice of edit
operations and the cost involved with each operation. Simi-
lar to [23,34,46], we only consider vertex insertion/deletion,
edge insertion/deletion and vertex relabeling as possible edit
operations.

We can now show that the MCS problem can be trans-
formed into the GED problem. Given is the shortest sequence
of edit operations ep which transforms graph G into graph
H , for a pair of unlabeled, directed graphs G and H . Apply
all the necessary destructive operations, i.e. edge deletion
and vertex deletion, on graph G as prescribed by ep. The
maximum common subgraph of G and H equals the largest
connected component of the resulting graph. Without further
proof, this reasoning can be extended to labeled graphs.

For the purpose of identifying, quantifying and expressing
similarities between malware samples, both MCS and GED
seem feasible techniques. Unfortunately, MCS is proven to be
an NP-Complete problem [20], from which the NP-
hardness of GED optimization follows by the prevous argu-
ment (The latter result was first proven in [46] by a reduction
from the subgraph isomorphism problem). Since exact solu-
tions for both MCS and GED are computationally expensive
to calculate, a large amount of research has been devoted to
fast and accurate approximation algorithms for these prob-
lems, mainly in the field of image processing [19] and for
bio-chemical applications [33,43]. The remainder of this sub-
section serves as a brief literature review of different MCS
and GED approximation approaches.

A two-stage discrete optimization approach for MCS is
designed in [18]. In the first stage, a greedy search is

123

J. Kinable, O. Kostakis

performed to find an arbitrary common subgraph, after which
the second stage executes a local search for a limited num-
ber of iterations to improve upon the graph discovered in
stage one. Similarly to [18], the authors of [43] also rely
on a two-stage optimization procedure, however contrary to
[18], their algorithm tolerates errors in the MCS matching.
A genetic algorithm approach to MCS is given in [41].
Finally, a distributed technique for MCS based on message
passing is provided in [8].

A survey of three different approaches to perform GED
calculations is conducted by Neuhaus, Riesen et. al. in
[31,34,35]. They first give an exact GED algorithm using
A* search, but this algorithm is only suitable for small graph
instances [31]. Next, A*-Beamsearch, a variant of A* search
which prunes the search tree more rigidly, is tested. As is
to be expected, the latter algorithm provides fast but subop-
timal results. The last algorithm they survey uses Munkres’
bipartite graph matching algorithm as an underlying scheme.
Benchmarks show that this approach, compared to the
A*-search variations, handles large graphs well, without
affecting the accuracy too much. In [24], the GED problem
is formulated as a Binary Linear Program, but the authors
conclude that their approach is not suitable for large graphs.
Nevertheless, they derive algorithms to calculate respectively
the lower and upper bounds of the GED in polynomial time,
which can be deployed for large graph instances as estima-
tors of the exact GED. Inspired by the work of Justice and
Hero in [24], the authors of [46] developed new polynomial
algorithms which find tighter upper and lower bounds for the
GED problem.

3.2 Graph similarity

In general, malware consists of multiple components, some
of which are new and others which are reused from other
malware [16]. The virus writer will test his creations against
several anti-virus products, making modifications along the
way until the anti-virus programs do not recognize the virus
anymore. Furthermore, at a later stage the virus writer might
release new, slightly altered, versions of the same virus
[10,39].

In this section, we will describe how to determine the sim-
ilarity between two malware samples, based on the similarity
σ(G, H) of their underlying call graphs. As will become evi-
dent shortly, the graph edit distance plays an important role
in the quantification of graph similarity. After all, the extent
to which the malware writer modifies a virus or reuses com-
ponents should be reflected by the edit distance.

Definition 4 (Graph similarity) The similarity σ(G, H)

between two graphs G and H indicates the extent to which
graph G resembles graph H and vice versa. The similar-
ity σ(G, H) is a real value on the interval [0,1], where 0

indicates that graphs G and H are identical whereas a value
1 implies that there are no similarities. In addition, the fol-
lowing constraints hold: σ(G, H) = σ(H, G) (symmetry),
σ(G, G) = 0, and σ(G, K0) = 1 where K0 is the null graph,
G �= K0.

Before we can attend to the problem of graph similarity,
we first have to revisit the definition of a graph matching
as given in the previous section. To find a bijection which
maps the vertex set V (G) to V (H), the graphs G and H
have to be of the same order. However, the latter is rarely the
case when comparing call graphs. To circumvent this prob-
lem, the vertex sets V (G) and V (H) are supplemented with
dummy vertices ε such that the resulting sets V ′(G), V ′(H)

are both of size |V (G) + V (H)| [23,46]. A mapping of a
vertex v in graph G to a dummy vertex ε is then interpreted
as deleting vertex v from graph G, whereas the opposite
mapping implies a vertex insertion into graph H . Now, for a
given graph matching φ, we can define three cost functions:
VertexCost, EdgeCost and RelabelCost.

VertexCost The number of deleted/inserted vertices: |{v :
v ∈ [V ′(G) ∪ V ′(H)] ∧ [φ(v) = ε ∨ φ(ε) = v]}|.

EdgeCost The number of unpreserved edges: |E(G)| +
|E(H)| − 2 × |{(i, j) : [(i, j) ∈ E(G) ∧ (φ(i), φ(j)) ∈
E(H)]}|.

RelabelCost The number of mismatched functions, i.e. the
number of external functions in G and H which are
mapped against different external functions or local func-
tions.

The sum of these cost functions results in the graph edit
distance λφ(G, H):

λφ(G, H)=V ertexCost+EdgeCost +RelabelCost (1)

Note that, as mentioned before, finding the minimum GED,
i.e. min

φ
λφ(G, H), is an NP-hard problem, but can be approx-

imated. The latter is elaborated in the next section.
Finally, the similarity σ(G, H) of two graphs is obtained

from the graph edit distance λφ(G, H):

σ(G, H) = λφ(G, H)

|V (G)| + |V (H)| + |E(G)| + |E(H)| (2)

3.3 Graph edit distance approximation

Finding a graph matching φ which minimizes the graph
edit distance is proven to be an NP-Complete problem [46].
Indeed, empirical results show that finding such a matching
is only feasible for low order graphs, due to the time com-
plexity [31]. In [26,27], the performance of several graph
matching algorithms for call graphs is investigated. Based on
the findings in [27], the fastest and most accurate results are

123

Malware classification based on call graph clustering

obtained with an adapted version of Simulated Annealing;
a local search algorithm which searches for a vertex map-
ping that minimizes the GED. This algorithm turns out to
be both faster and more accurate than for example the algo-
rithms based on Munkres’ bipartite graph matching algo-
rithm as applied in the related works [23,46]. Two steps can
be distinguished in the Simulated Annealing algorithm for
call graph matching. In the first step, the algorithm deter-
mines which external functions a pair of call graphs have in
common. These functions are mapped one-to-one. Next, the
remaining functions are mapped based on the outcome of
the Simulated Annealing algorithm, which attempts to
map the remaining functions in such a way that the GED
for the call graphs under consideration is minimized. For
more details, refer to [27].

4 Clustering

Writing a malware detection signature for each individual
malware sample encountered is a cumbersome and time con-
suming process. Hence, to combat malware effectively, it is
desirable to identify groups of malware with strong structural
similarities, allowing one to write generic signatures which
capture the commonalities of all malware samples within a
group. This section investigates several approaches to detect
malware families, i.e. groups of similar malware samples,
via clustering algorithms. Note however that, in contrast to
[11,9,23,4,2] we do not intend to create malware taxono-
mies using hierarchical clustering algorithms. Instead, part-
itional clustering algorithms are used to identify groups of
malware samples which have highly similar underlying call
graphs.

4.1 k-medoids clustering

One of the most commonly used clustering techniques is
k-means clustering. The formal description of k-means clus-
tering is summarized as follows [1,13]:

Definition 5 (k-means Clustering): Given a data setχ , where
each sample x ∈ χ is represented by a vector of parame-
ters, k-means clustering attempts to group all samples into
k clusters. For each cluster Ci ∈ C , a cluster center μCi

can be defined, where μCi is the mean vector, taken over all
the samples in the cluster. The objective function of k-means
clustering is to minimize the total squared Euclidean distance
||x −μCi ||2 between each sample x ∈ χ , and the cluster cen-
ter μCi of the cluster the sample has been allocated to:

min
k∑

i=1

∑

x∈Ci

||x − μCi ||2

The above definition assumes that for each cluster, it is
possible to calculate a mean vector, the cluster center (also
known as centroid), based on all the samples inside a cluster.
However, with a cluster containing call graphs, it is not a triv-
ial procedure to define a mean vector. Consequently, instead
of defining a mean vector, a call graph inside the cluster is
selected as the cluster center. More specifically, the selected
call graph has the most commonalities, i.e. the highest simi-
larity, with all other samples in the same cluster. This allows
us to reformulate the objective function:

min
k∑

i=1

∑

x∈Ci

σ(x, μCi)

where σ(G, H) is the similarity score of graphs G and H as
discussed in Sect. 3. The latter algorithm is more commonly
known as a k-medoids clustering algorithm [25], where the
cluster centers μCi are referred to as ‘medoids’. Since finding
an exact solution in accordance with the objective function
has been proven to be NP-hard [12], an approximation algo-
rithm is used (Algorithm 1).

Algorithm 1: The k-medoids clustering algorithm
Input: Number of clusters k, set of call graphs χ .
Output: A set of k clusters C

foreach Ci ∈ C do1
Initialize μCi with an unused sample from χ ;2

repeat3
Classify the remaining |χ | − k call graphs. Each sample4
x ∈ χ is put in the cluster which has the most similar cluster
medoid;
foreach Ci ∈ C do5

Recompute μCi ;6

until The objective function converges;7
return C = C0, C1, ..., Ck−18

In [28], a formal proof on the convergence of k-means
clustering with respect to its objective function is given. To
summarize, the authors of [28] prove that the objective func-
tion decreases monotonically during each iteration of the
k-means algorithm. Because there are only a finite number
of possible clusterings, the k-means clustering algorithm will
always obtain a result which corresponds to a (local) mini-
mum of the objective function. Since k-medoids clustering
is directly derived from k-means clustering, the proof also
applies for k-medoids clustering.

To initialize the cluster medoids, we use three different
algorithms. The first approach selects the medoids at random
from χ . Arthur and Vassilvitskii observed in their work [1]
that k-means clustering, and consequently also k-medoids
clustering, is a fast, but not necessarily accurate approach.
In fact, the clusterings obtained through k-means clustering
can be arbitrarily bad [1]. In their results, the authors of [1]

123

J. Kinable, O. Kostakis

conclude that bad results are often obtained due to a poor
choice of the initial cluster centroids, and hence they pro-
pose a novel way to select the initial centroids, which con-
siderably improves the speed and accuracy of the k-means
clustering algorithm [1]. In summary, the authors describe an
iterative approach to select the medoids, one after another,
where the choice of a new medoid depends on the earlier
selected medoids. For a detailed description of their k-
means++ algorithm, refer to [1]. Finally, the last algorithm
to select the initial medoids will be used as a means to assess
the quality of the clustering results. To assist the k-medoids
clustering algorithm, the initial medoids are selected manu-
ally by anti-virus analysts. We will refer to this initialization
technique as “Trained initialization”.

4.1.1 Clustering performance analysis

In this subsection, we will test and investigate the perfor-
mance of k-medoids clustering, in combination with the
graph similarity scores obtained via the GED algorithm dis-
cussed in Sect. 3. The data set χ we use consists of 194
malware call graph samples which have been manually clas-
sified by analysts from F-Secure Corporation into 24 fam-
ilies. Evaluation of the cluster algorithms is performed by
comparing the obtained clusters against these 24 partitions.
To get a general impression of the samples, the call graphs
in our test set contain on average 234 nodes and 488 edges.
The largest sample has 748 vertices and 1875 edges. Family
sizes vary from 2 samples to 17 unique call graph samples.

Before k-medoids clustering can be applied on the data
collection, we need to select a suitable value for k. Let koptimal

be the natural number of clusters present in the data set. Find-
ing koptimal is not a trivial task, and is analysed in depth in
the next subsection. For now, we assume that koptimal =
24; the number of clusters obtained after manual classifi-
cation. Note however that koptimal depends on the cluster
criteria used to obtain a clustering. In Fig. 2, the average dis-
tance d̄(xi , μCi) between a sample xi in cluster Ci and the
medoid of that cluster μCi is plotted against the number of
clusters in use. Each time k-medoids clustering is repeated,
the algorithm could yield a different clustering due to the
randomness in the algorithm. Hence, for a given number
of clusters k, we run k-medoids clustering 50 times, and
average d̄(xi , μCi). When comparing the different initiali-
zation methods of k-medoids clustering, based on Fig. 2,
one can indeed conclude that k-means++ yields better results
than the randomly initialized k-medoids algorithm because
k-means++ discovers tighter, more coherent clusters. Fur-
thermore, the best results are obtained with Trained clus-
tering where a member from each of the 24 predetermined
malware families are chosen as the initial cluster medoids.

Figures 3a, b depict heat maps of two possible clusterings
of the sample data. Each square in the heat map denotes the

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50

A
V

G
di

st
an

ce
sa

m
pl

e
to

m
ed

oi
d

Number of clusters

k-means++
k-medoids

k-medoidsTrained

Fig. 2 Quality of clusters. The average distance d̄(xi , μCi) between a
sample xi in cluster Ci and the cluster’s medoid μCi is averaged over
50 executions of the k-means algorithm

0

5

10

15

20

C
ee

in
je

ct
Sy

st
em

hi
ja

ck
St

ar
tp

ag
e

V
bi

nd
er

V
un

do
bh

R
un

on
ce

B
oa

xx
e

T
ds

s
A

ut
or

un
R

ed
os

dr
u

R
ef

pr
on

B
ai

du
B

eb
lo

h
V

es
lo

rn
V

un
do

N
ee

ri
s

Pu
sh

bo
t

C
hi

fr
ax

M
ul

tib
an

ke
r

D
ao

no
l

B
if

ro
se

Z
lo

b
dl

l
Z

lo
b

B
iv

id
on

C
lu

st
er

ID

Malwarefamily

0

0.2

0.4

0.6

0.8

1

(a)

0

5

10

15

20

C
ee

in
je

ct
Sy

st
em

hi
ja

ck
St

ar
tp

ag
e

V
bi

nd
er

V
un

do
bh

R
un

on
ce

B
oa

xx
e

T
ds

s
A

ut
or

un
R

ed
os

dr
u

R
ef

pr
on

B
ai

du
B

eb
lo

h
V

es
lo

rn
V

un
do

N
ee

ri
s

Pu
sh

bo
t

C
hi

fr
ax

M
ul

tib
an

ke
r

D
ao

no
l

B
if

ro
se

Z
lo

b
dl

l
Z

lo
b

B
iv

id
on

C
lu

st
er

ID

Malware family

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 3 Heat maps depicting non-unique clusterings of 194 samples in
24 clusters. The color of a square depicts the extent to which a cer-
tain family is present in a cluster. a trained k-medoids clustering. b
k-means++ clustering

123

Malware classification based on call graph clustering

presence of samples from a given malware family in a cluster.
As an example, cluster 0 in Fig. 3a comprises 86% Ceeinject
samples, 7% Runonce samples and 7% Neeris samples. The
family names are invented by data security companies and
serve only as a means to distinguish families.

Figure 3a shows the results of k-medoids clustering with
Trained initialization. The initial medoids are selected by
manually choosing a single sample from each of the 24 fam-
ilies identified by F-Secure. The clustering results are very
promising: nearly all members from each family end up in
the same cluster (Fig. 3a). Only a few families, such as Baidu
and Boaxxe, are scattered over multiple clusters. Figure 3b
shows the clustering results of k-means++1. Clearly, the clus-
terings are not as accurate as with our Trained k-medoids
algorithm; samples from different families are merged into
the same cluster. Nevertheless, in most clusters samples orig-
inating from a single family are prominently present. Yet,
before one can conclude whether k-means++ clustering is a
suitable algorithm to perform call graph clustering, one first
needs an automated procedure to discover, or at the minimum
estimate with reasonable accuracy, koptimal . The latter issue
is investigated in the next subsection.

4.2 Determining the number of clusters

The k-medoids algorithm requires the number of clusters the
algorithm should deliver as input. Two quality metrics are
used to analyse the natural number of clusters, koptimal , in
the sample set: Sum of Error and the silhouette coefficient.
For a more elaborate discussion, and additional metrics, refer
to [26].

4.2.1 Sum of (squared) error

The Sum of Error (SE p), measures the total amount of scatter
in a cluster. The general formula of SE p is:

SE p =
k∑

i=1

∑

x∈Ci

(d(xi , μCi))
p (3)

In this equation, d(x, y) is a distance metric which measures
the distance between a sample and its corresponding cluster
centroid (medoid) as a positive real value. Here we choose
d(xi , μCi) = 100×σ(xi , μCi). Ideally, when one plots SE p

against an increasing number of clusters, one should observe
a quick decreasing SE p on the interval [k = 1, koptimal] and
a slowly decreasing value on the interval [koptimal , k = |χ |]
[40].

1 A similar figure for randomly initialized k-medoids clustering is
omitted due to its reduced accuracy with respect to k-means++.

4.2.2 Silhouette coefficient

The average distance between a sample and its cluster med-
oid measures the cluster cohesion [40]. The cluster cohesion
expresses how similar the objects inside a cluster are. The
cluster separation on the other hand reflects how distinct
the clusters are mutually. An ideal clustering results in well-
separated (non-overlapping) clusters with a strong internal
cohesion. Therefore, koptimal equals the number of clusters
which maximizes both cohesion and separation. The notions
of cohesion and separation can be combined into a single
function which expresses the quality of a clustering: the
silhouette coefficient [36,40].

For each sample xi ∈ χ , let a(xi) be the average similarity
of sample xi ∈ Ck in cluster Ck to all other samples in cluster
Ck :

a(xi) =
∑

x j ∈Ck
σ(xi , x j)

|Ck | − 1
(xi ∈ Ck)

Furthermore, let bk(xi), xi /∈ Ck be the average similarity
from sample xi to a cluster Ck which does not accommodate
sample xi .

bk(xi) =
∑

x j ∈Ck
σ(xi , x j)

|Ck | (xi /∈ Ck)

Finally, b(xi) equals the minimum such bk(xi):

b(xi) = min
k

bk(xi) k ∈ {0, 1, . . . , |C |}

The cluster for which bk(xi) is minimal, is the second best
alternative cluster to accommodate sample xi . From the dis-
cussion of cohesion and separation, it is evident that for each
sample xi , it is desirable to have a(xi)
 b(xi) so to obtain
a clustering with tight, well-separated clusters.

The silhouette coefficient of a sample xi is defined as:

s(xi) = b(xi) − a(xi)

max(a(xi), b(xi))
(4)

It is important to note that s(xi) is only defined when there
are 2 or more clusters. Furthermore, s(xi) = 0 if sample xi

is the only sample inside its cluster [36].
The silhouette coefficient s(xi) in Eq. 4 always yields a

real value on the interval [−1, 1]. To measure the quality of a
cluster, the average silhouette coefficient over the samples of
the respective cluster is computed. An indication of the over-
all clustering quality is obtained by averaging the silhouette
coefficient over all the samples in χ . To find koptimal , one
has to search for a clustering that yields the highest silhou-
ette coefficient.

For a single sample xi , s(xi) reflects how well the sample is
classified. Typically, when s(xi) is close to 1, the sample has
been classified well. On the other hand, when s(xi) is a neg-
ative value, then sample xi has been classified into the wrong

123

J. Kinable, O. Kostakis

1000

10000

100000

1e+06

1e+07

1e+08

0 20 40 60 80 100

Su
m

of
E

rr
or

(

Number of clusters

(a)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sc
or

e

Number of clusters

Silhouette: Average
Average
Average

(b)

Fig. 4 Finding koptimal in the set with 194 pre-classified malware samples. a SSp for various p. b Silhouette coefficient

cluster. Finally, when s(xi) is close to 0, i.e. a(xi) ≈ b(xi),
it is unclear to which cluster sample xi should belong: there
are at least two clusters which could accommodate sample
xi well.

4.2.3 Experimental results

The SE p and silhouette coefficients obtained after clustering
the 194 malware samples for various numbers of clusters are
depicted in Fig. 4. Since the results of the clustering are sub-
ject to the randomness in k-medoids clustering, each cluster-
ing is repeated 10,000 times, and the best obtained results are
used in Fig. 4. Interestingly, the SE p curves for different val-
ues of p in Fig. 4a do not show an evident value for koptimal .
Similarly, no clear peak in the silhouette plot (Fig. 4b) is
visible either, making it impossible to derive koptimal . Con-
sequently, using a k-means based algorithm, it is not possi-
ble to partition all samples in cohesive, well-separated clus-
ters based on the graph similarity scores, such that the result
corresponds with the manual partitioning of the samples by
F-Secure. Furthermore, experimental results show that for
some samples it is unclear to which cluster they should be
assigned too, hence making it difficult to automatically repro-
duce the 24 clusters as proposed by F-Secure.

4.3 DBSCAN clustering

In the previous section, we have concluded that the entire
sample collection cannot be partitioned in well-defined clus-
ters, such that each cluster is both tight and well-separated,
using a k-means based clustering algorithm. Central to the
k-medoid clustering algorithm stands the selection of med-
oids. A family inside the data collection is only correctly
identified by k-medoids if there exists a medoid with a high
similarity to all other samples in that family. This, however,
is not necessary the case with malware. Instead of assuming

that all malware samples in a family are mutually similar to
a single parent sample, it is more realistic to assume that
malware evolves. In such an evolution, malware samples
from one generation are based on the samples from the previ-
ous generation. Consequently, samples in generation n likely
have a high similarity to samples in generation n + 1, but
samples in generation 0 are possibly quite different from
those in generation n, n � 0. This evolution theory sug-
gests that there are no clusters where the samples are posi-
tioned around a single center in a spherical fashion, which
makes it much harder for a k-means based clustering algo-
rithm to discover clusters. Although the k-medoids algo-
rithms failed to partition all 194 samples in well defined
clusters, both Fig. 3a and Fig. 3b nevertheless reveal a strong
correspondence between the clusters found by the k-medoids
algorithm and the clusters as predefined by F-Secure. This
observation motivates us to investigate partial clustering of
the data which discards samples for which it is not clear
to which cluster or family they belong. For this purpose,
we apply the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) clustering algorithm [17,40].
DBSCAN clustering searches for dense areas in the data
space, which are separated by areas of low density. Sam-
ples in the low density areas are considered noise and are
therefore discarded, thereby ensuring that the clusters are
well-separated. An advantage of DBSCAN clustering is that
the high density areas can have an arbitrary shape; the sam-
ples do not necessarily need to be grouped around a single
center.

To separate areas of low density from high density areas,
DBSCAN utilizes two parameters: Min Pts and Rad. Using
these parameters, DBSCAN is able to distinguishes between
three types of sample points:

• Core points: Pc = {x ∈ χ, |NRad(x)| > Min Pts},
where NRad(x) = {y ∈ χ, σ(x, y) ≤ Rad}

123

Malware classification based on call graph clustering

• Border points: Pb = {x ∈ (χ\Pc), ∃y ∈ Pc : σ(x, y) ≤
Rad}

• Noise points: Pn = χ\(Pc ∪ Pb)

An informal description of the DBSCAN clustering algo-
rithm is given in Algorithm 2.

Algorithm 2: DBSCAN clustering algorithm
Input: Set of call graphs χ , Min Pts, Rad
Output: Partial clustering of χ

Classify χ in Core points, Border points and Noise;1
Discard all samples classified as noise;2
Connect all pairs (x, y) of core points with σ(x, y) ≤ Rad;3
Each connected structure of core points forms a cluster;4
For each border point identify the cluster containing the nearest5
core point, and add the border point to this cluster;
return Clustering6

The question now arises how to select the parameters
Min Pts and Rad. Based on experimental results, the authors
of [17] find Min Pts = 4 to be a good value in general.
To determine a suitable value for Rad, the authors suggest
to create a graph where the samples are plotted against the
distance (similarity) to their k-nearest neighbor in ascend-
ing order. Here k equals Min Pts. The reasoning behind this
procedure is as follows: Core or Border points are expected
to have a nearly constant similarity to their k-nearest neigh-
bor, assuming that k is smaller than the size of the cluster
the point resides in, and that the clusters are roughly of equal
density. Noise points, on the contrary, are expected to have a
relatively larger distance to their k-nearest neighbor. The lat-
ter change in distance should be reflected in the graph, since
the distances are sorted in ascending order.

Figure 5a shows the similarity of our malware samples
to their k-nearest neighbors, for various k. Arguably, one
can observe rapid increases in slope both at Rad = 2.2 and
Rad = 4.8 for all k. A Rad = 4.8 radius can be consid-
ered too large to apply in the DBSCAN algorithm since such
a wide radius would merge several natural clusters into a
single cluster. Even though Rad = 2.2 seems a plausible
radius, it is not evident from Fig. 5a which value of Minpts
should be selected. To circumvent this issue, DBSCAN clus-
tering has been performed for a large number of Minpts and
Rad combinations (Fig. 5b). For each resulting partitioning,
the quality of the clusters has been established with the sil-
houette coefficient. From Fig. 5b one can observe that the
best clustering is obtained for Minpts = 3 and Rad = 0.3.
While comparing Fig. 5b against Fig. 5a, it is not evident
why Rad = 0.3 is a good choice. We however believe that
the silhouette coefficient is the more descriptive metric.

4.3.1 Experimental results

Figure 6 shows the results of the DBSCAN algorithm on the
set of 192 samples in a frequency diagram, using Minpts =
3 and Rad = 0.3. Each colored square gives the frequency of
samples from a given family present in a cluster. The top two
rows of the diagram represent respectively the total size of
the family, and the number of samples from a family which
were categorized as noise. For example, the Boaxxe fam-
ily contains 17 samples in total, which were divided over
clusters 1 (14 samples), 6 (1 sample), and 17 (2 samples).
No samples of the Boaxxe family were classified as noise.
The observation that the Boaxxe family is partitioned in mul-
tiple clusters is analysed in more detail; closer analysis of
this family revealed that there are several samples within the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200

Si
m

il
ar

it
y

to
k

-n
ea

re
st

ne
ig

hb
or

Malware sample

3-nearest neighbor
4-nearest neighbor
5-nearest neighbor
6-nearest neighbor

(a)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Si
lh

ou
et

te
co

ef
fic

ie
nt

Rad

minPts=3
minPts=4
minPts=5
minPts=6

(b)

Fig. 5 Finding Rad and Min Pts. a Similarity to k-nearest neighbor, for different values of k, sorted in ascending order. b Silhouette coefficient
for different combinations of Rad and Min Pts

123

J. Kinable, O. Kostakis

C
lu

st
er

ID

Malware family

0

5

10

15

Unclustered:
Total:

Sy
st

em
hi

ja
ck

B
oa

xx
e

Pu
sh

bo
t

N
ee

ri
s

D
ao

no
l

B
ai

du
T

ds
s

Z
lo

b
V

un
do

bh
C

hi
fr

ax
R

ef
pr

on
C

ee
in

je
ct

B
if

ro
se

Z
lo

b
dl

l
M

ul
tib

an
ke

r
V

un
do

A
ut

or
un

B
eb

lo
h

St
ar

tp
ag

e
B

iv
id

on
R

un
on

ce
V

bi
nd

er
V

es
lo

rn
R

ed
os

dr
u

0

2

4

6

8

10

12

14

16

18

Fig. 6 DBSCAN clustering with Minpts = 3, Rad = 0.3. The
colors depict the frequency of occurrence of a malware sample from
a certain family in a cluster

family with a call graph structure which differs significantly
from the other samples in the family.

The results from the fully automatic DBSCAN algorithm
on the malware samples are much better than those achieved
with k-means++ clustering (Fig. 3). Except 3 clusters, each
DBSCAN cluster identifies a family correctly without mix-
ing samples from multiple families. Furthermore, the major-
ity of samples originating from larger families were classified
inside a cluster and hence were not considered noise. Families
which contain fewer than Minpts samples are mostly clas-
sified as noise (e.g. Vundo, Blebloh, Startpage, etc), unless
they are highly similar to samples from different families
(e.g. Autorun). Finally, only the larger families Veslorn
(8 samples) and Redosdru (9 samples) were fully discarded
as noise. Reexamination of the samples within these clusters
confirmed that there are little structural similarities amongst
the samples; the initial grouping of the samples into Veslorn
and Redosdru was based on non-structural properties.

Figure 7 depicts a plot of the diameter and the cluster
tightness, for each cluster in Fig. 6. The diameter of a clus-
ter is defined as the similarity of the most dissimilar pair
of samples in the cluster, whereas the cluster tightness is
the average similarity over all pairs of samples. Most of the
clusters are found to be very coherent. Only for clusters 2, 6,
and 7, the diameter differs significantly from the average
pairwise similarity. For clusters 2 and 6, this is caused by the
presence of samples from 2 different families which are still
within Rad distance from each other. Cluster 7 is the only
exception where samples are fairly different and seem to be
modified over multiple generations. Lastly, a special case is
cluster 16, where the cluster diameter is 0. The call graphs in
this cluster are isomorphic; one cannot distinguish between
these samples based on their call graphs, even though they

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

S
im

il
ar

it
y

Cluster ID

Average cluster
Diameter

Fig. 7 Plot of the diameter and tightness of the DBSCAN clustering

come from different families. Closer inspection of the sam-
ples in cluster 16 by F-Secure Corporation revealed that the
respective samples are so-called ‘droppers’. A dropper is an
installer which contains a hidden malicious payload. Upon
execution, the dropper installs the payload on the victim’s
system. The samples in cluster 16 appear to be copies of the
same dropper, but each with a different malicious payload.
Based on these findings, the call graph extraction has been
adapted such that this type of dropper is recognized in the
future. Instead of creating the call graph from the possibly
harmless installer code, the payload is extracted from the
dropper first, after which a call graph is created from the
extracted payload.

To scale up the experiments, we applied the clustering
algorithm on two large batches of call graphs, containing
respectively 675 and 1,050 samples, which were collected on
the 8th and 15th of February 2010. The DBSCAN algorithm
is executed on both sets individually, using the same settings
as in the previous experiments (Minpts = 3, Rad = 0.3).
The results of the clusterings are given in Table 1. Each
of the clusters generated by DBSCAN is validated by mal-
ware analysts. A cluster is marked as ‘correct’ when all its
samples are considered part of the same malware family.
Alternatively, a cluster is denoted ‘mixed’ if the cluster con-
tains samples from multiple families. Many different mal-
ware families were correctly identified. Also, samples which
were obfuscated in a similar fashion, or packed with the same
packer were frequently detected. The cluster sizes varied
from 3 to 142 distinct samples. Some of the correct clusters
contain samples which are relatively dissimilar; the largest
cluster diameter of a correct cluster discovered by DBSCAN
equals 0.46. Finally, when analyzing the mixed clusters in
more detail, it turns out that in several cases, there are just
one or two samples misclassified in the respected cluster.

123

Malware classification based on call graph clustering

Table 1 Large scale call graph comparison

Feb 7th Feb 15th

Total number of samples 675 1,050

Total number of clusters 48 50

Correct clusters 29 36

Mixed clusters 19 14

Unclassified samples 260 253

4.3.2 Directions to improve call graph clustering

DBSCAN circumvents the problem encountered with
k-means clustering as the algorithm autonomously detects
the clusters without the need to specify cluster centroids.
Nevertheless, determining good parameters Minpts and
Rad remains a challenging task. Some of the correct clus-
ters have a large diameter, whereas there there are also some
incorrect clusters with a small diameter, i.e. its samples are
relatively similar. Throughout the entire clustering proce-
dure, the parameters Minpts and Rad remained unchanged.
Using a more adaptive way to determine the parameters could
further improve the results. Another potential approach to
reduce the number of misclassified samples is to take more
information into account while comparing call graphs. As
discussed in [6,27,42], it is possible to describe each func-
tion in a binary executable using a vector of features. Pairwise
similarity scores for functions are estimated by taking the rel-
ative distance between the feature vectors. The cost functions
in Sect. 3.2 can take these function similarity scores into con-
sideration while expressing the overall similarity of malware
samples, thereby improving the accuracy of the malware
similarity scores.

5 Conclusion

In this paper, automated classification of malware into mal-
ware families has been studied. First, metrics to express the
similarities among malware samples which are represented
as call graphs have been introduced, after which the simi-
larity scores are used to cluster structurally similar malware
samples. Malware samples which are found to be very simi-
lar to known malicious code, are likely mutations of the same
initial source. Automated recognition of similarities as well
as differences among these samples will ultimately aid and
accelerate the process of malware analysis, rendering it no
longer necessary to write detection patterns for each individ-
ual sample within a family. Instead, anti-virus engines can
employ generic signatures targeting the mutual similarities
among samples in a malware family.

After an introduction of call graphs in Sect. 2 and a brief
description on the extraction of call graphs from malware
samples, Sect. 3 discusses methods to compare call graphs
mutually. Graph similarity is expressed via the Graph Edit
Distance, which, based on our experiments, seems to be a
viable metric. To facilitate the discovery of malware fam-
ilies, Sect. 4 applies several clustering algorithms on a set
of malware call graphs. Verification of the classifications
is performed against a set of 194 unique malware samples,
manually categorized in 24 malware families by the anti-
virus company F-Secure Corporation. The clustering algo-
rithms used in the experiments include various versions of
the k-medoids clustering algorithm, as well as the DBSCAN
algorithm. One of the main issues encountered with k-med-
oids clustering is the specification of the desired number of
clusters. Metrics to determine the optimal number of clus-
ters did not yield conclusive results, and hence it followed
that k-means clustering is not effective to discover malware
families. Much better results on the other hand are obtained
with the density-based clustering algorithm DBSCAN; using
DBSCAN we were able to successfully identify malware
families in data sets of respectively 194, 675 and 1,050 dis-
tinct malware samples.

Today’s malware analysts can already benefit from the
techniques presented in this paper; after all, it is more effi-
cient to analyze sets of similar malware samples than to study,
possibly unrelated samples individually. In the near future,
goals are to enhance the accuracy of the call graph classi-
fication, and to link our malware identification and family
recognition software to a live stream of incoming malware
samples. Observing the emergence of new malware families,
as well as automated implementation of protection schemes
against malware families belong to the long term prospects
of malware detection through call graphs.

Acknowledgments The authors of this paper would like to acknowl-
edge F-Secure Corporation for providing the data required to perform
this research. Special thanks go to Pekka Orponen (Head of the ICS
Department, Aalto University), Alexey Kirichenko (Research
Collaboration Manager F-Secure), Gergely Erdelyi (Research Manager
Anti-malware, F-Secure) for their valuable support and many useful
comments. This work was supported by TEKES as part of the Future
Internet Programme of TIVIT (Finnish Strategic Centre for Science,
Technology and Innovation in the field of ICT).

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of care-
ful seeding. In: SODA ’07: Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035.
Society for Industrial and Applied Mathematics (2007)

2. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian,
F., Nazario, J.: Automated classification and analysis of internet
malware. In: Proceedings of the 10th international conference on

123

J. Kinable, O. Kostakis

Recent advances in intrusion detection, pp. 178–197. Springer,
Berlin (2007)

3. Bayer, U.: Large-scale dynamic malware analysis. Ph.D. disserta-
tion, Technischen Universität Wien, December 2009

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda,
E.: Scalable, Behavior-Based Malware Clustering. In: 16th Annual
Network and Distributed System Security (2009)

5. Bayer, U., Kirda, E., Kruegel, C.: Improving the efficiency of
dynamic malware analysis. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, pp. 1871–1878.
ACM, New York (2010). doi:10.1145/1774088.1774484

6. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secu-
rity Digital Forensics 1(2), 156–168 (2007)

7. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamor-
phic viruses. J. Comput. Virol. 4, 211–220 (2008). doi:10.1007/
s11416-008-0084-2

8. Bradde, S., Braunstein, A., Mahmoudi, H., Tria, F., Weigt, M.,
Zecchina, R.: Aligning graphs and finding substructures by mes-
sage passing, May 2009, Retrieved on March 2010. http://arxiv.
org/abs/0905.1893

9. Briones, I., Gomez, A.: Graphs, entropy and grid computing: Auto-
matic comparison of malware. In: Proceedings of the 2008 Virus
Bulletin Conference, 2008, Retrieved on May 2010. http://www.
virusbtn.com/conference/vb2008

10. Bruschi, D., Martignoni, L., Monga, M.: Code normalization for
self-mutating malware. IEEE Security Privacy 5(2), 46–54 (2007)

11. Carrera, E., Erdélyi, G.: Digital genome mapping-advanced binary
malware analysis. In: Virus Bulletin Conference, 2004, Retrieved
on May 2010. http://www.virusbtn.com/conference/vb2004

12. Dasgupta, S.: The hardness of k-means clustering, Tech. Rep.
CS2008-0916 (2008)

13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, ch. 10,
2nd edn, pp. 517–598. Wiley, London (2000)

14. Dullien, T.: Structural comparison of executable objects. In: Pro-
ceedings of the IEEE Conference on Detection of Intrusions, Mal-
ware and Vulnerability Assessment (DIMVA), pp. 161–173 (2004)

15. Dullien, T., Rolles, R.: Graph-based comparison of exe-
cutable objects. In: Symposium sur la Sécurité des Tech-
nologies de l’Information et des Communications (SSTIC),
2005, Retrieved on May 2010. http://actes.sstic.org/SSTIC05/
Analyse_differentielle_de_binaires/

16. Erdélyi, G.: Senior Manager, Anti-malware Research F-Secure
Corporation, personal communication (2010)

17. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: Proceedings of 2nd International Conference of Knowledge
Discovery and Data Mining, pp. 226–231. AAAI Press (1996)

18. Funabiki, N., Kitamichi, J.: A two-stage discrete optimization
method for largest common subgraph problems. In: IEICE Trans-
actions on Information and Systems, 82(8), 1145–1153, 19990825.
http://ci.nii.ac.jp/naid/110003210164/en/

19. Gao, X., Xiao, B., Tao, D., Li, X.: Image categorization:
Graph edit distance+edge direction histogram. Pattern Recog-
nit. 41(10), 3179–3191 (2008)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco,
January 1979

21. Hex-rays. The IDA Pro disassembler and debugger. http://www.
hex-rays.com/idapro/. Retrieved on 12-2-2010

22. Hex-rays. Fast library identification and recognition technology.
http://www.hex-rays.com/idapro/flirt.htm, 2010, Retrieved on
12-2-2010

23. Hu, X., Chiueh, T., Shin, K.G.: Large-scale malware indexing using
function-call graphs. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds) ACM Conference on Computer and Communications Secu-
rity, pp. 611–620. ACM (2009)

24. Justice, A., Hero, D.: A binary linear programming formulation of
the graph edit distance. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, pp. 1200–1214 (2006). http://
people.ee.duke.edu/~lcarin/JusticeHero.pdf

25. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Intro-
duction to Cluster Analysis (Wiley Series in Probability and Sta-
tistics), pp. 68–125. Wiley, London (2005)

26. Kinable, J.: Malware Detection Through Call Graphs. Master’s
thesis, Department of Information and Computer Science, Aalto
University, Finland (2010)

27. Kostakis, O., Kinable, J., Mahmoudi, H., Mustonen, K.: Improved
Call Graph Comparison Using Simulated Annealing. In: Proceed-
ings of the 2011 ACM Symposium on Applied Computing (SAC
2011), March 2011 (to appear)

28. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Infor-
mation Retrieval, ch. 16, 1st edn. Cambridge University Press,
Cambridge (2008)

29. Microsoft. Microsoft portable executable and common object file
format specification, 2008. Retrieved on 12-2-2010. http://www.
microsoft.com/whdc/system/platform/firmware/PECOFFdwn.
mspx

30. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for mal-
ware detection. In: Computer Security Applications Conference,
2007, pp. 421–430. doi:10.1109/ACSAC.2007.21

31. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms
for the computation of graph edit distance. In: Structural, Syn-
tactic, and Statistical Pattern Recognition. LNCS, vol. 4109/2006,
pp. 163–170. Springer, Berlin (2006)

32. Pietrek, M.: An in-depth look into the win32 portable executable
file format, 2002, Retrieved on 12-2-2010. http://msdn.microsoft.
com/nl-nl/magazine/cc301805%28en-us%29.aspx

33. Raymond, J.W., Willett, P.: Maximum common subgraph iso-
morphism algorithms for the matching of chemical structures.
J. Comput. Aided Molecular Design 16, 2002 (2002)

34. Riesen, K., Bunke, H.: Approximate graph edit distance
computation by means of bipartite graph matching. Image Vis.
Comput. 27(7), 950–959, (2009). 7th IAPR-TC15 Workshop on
Graph-based Representations (GbR 2007)

35. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for
computing the edit distance of graphs. In: Graph-Based Repre-
sentations in Pattern Recognition, 2007, pp. 1–12. doi:10.1007/
978-3-540-72903-7_1

36. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20(1),
53–65 (1987)

37. Ryder, B.: Constructing the call graph of a program. IEEE Trans.
Softw. Eng. SE-5(3), 216–226 (1979)

38. Symantec Corporation. Symantec Global Internet Security Threat
Report Volume—Trends for 2009—Volume XV, April 2010,
Retrieved on March 2010. http://www.symantec.com

39. Szor, P.: The Art of Computer Virus Research and Defense, ch. 6.
Addison-Wesley, Reading (2005)

40. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining,
ch. 8, pp. 487–568. Addison Wesley, Reading (2005)

41. Wagener, M., Gasteiger, J.: The determination of maximum com-
mon substructures by a genetic algorithm: Application in synthesis
design and for the structural analysis of biological activity. Ange-
wandte Chem. Int. Ed. 33, 1189–1192 (1994)

42. Walenstein, A., Venable, M., Hayes, M., Thompson, C., Lakhotia,
A.: Exploiting similarity between variants to defeat malware: vilo
method for comparing and searching binary programs. In: Proceed-
ings of BlackHat DC 2007 (2007)

43. Weskamp, N., Hullermeier, E., Kuhn, D., Klebe, G.: Mul-
tiple graph alignment for the structural analysis of protein
active sites. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2),
310–320 (2007)

123

http://dx.doi.org/10.1145/1774088.1774484
http://dx.doi.org/10.1007/s11416-008-0084-2
http://dx.doi.org/10.1007/s11416-008-0084-2
http://arxiv.org/abs/0905.1893
http://arxiv.org/abs/0905.1893
http://www.virusbtn.com/conference/vb2008
http://www.virusbtn.com/conference/vb2008
http://www.virusbtn.com/conference/vb2004
http://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/
http://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/
http://ci.nii.ac.jp/naid/110003210164/en/
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/flirt.htm
http://people.ee.duke.edu/~lcarin/JusticeHero.pdf
http://people.ee.duke.edu/~lcarin/JusticeHero.pdf
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx
http://dx.doi.org/10.1109/ACSAC.2007.21
http://msdn.microsoft.com/nl-nl/magazine/cc301805%28en-us%29.aspx
http://msdn.microsoft.com/nl-nl/magazine/cc301805%28en-us%29.aspx
http://dx.doi.org/10.1007/978-3-540-72903-7_1
http://dx.doi.org/10.1007/978-3-540-72903-7_1
http://www.symantec.com

Malware classification based on call graph clustering

44. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-
Hall, Englewood cliffs (2000)

45. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic mal-
ware analysis using cwsandbox. IEEE Security Privacy 5, 32–39
(2007). http://portal.acm.org/citation.cfm?id=1262542.1262675

46. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Compar-
ing stars: on approximating graph edit distance. PVLDB 2(1),
25–36 (2009)

123

http://portal.acm.org/citation.cfm?id=1262542.1262675

	Malware classification based on call graph clustering
	Abstract
	1 Introduction
	2 Introduction to call graphs
	3 Graph matching
	3.1 Graph matching techniques
	3.2 Graph similarity
	3.3 Graph edit distance approximation

	4 Clustering
	4.1 k-medoids clustering
	4.1.1 Clustering performance analysis

	4.2 Determining the number of clusters
	4.2.1 Sum of (squared) error
	4.2.2 Silhouette coefficient
	4.2.3 Experimental results

	4.3 DBSCAN clustering
	4.3.1 Experimental results
	4.3.2 Directions to improve call graph clustering

	5 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

