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ABSTRACT
Time series representations are not always rich enough to de-
scribe the temporal activity, for instance, when the context
and the relations of the observed elements are of interest. Se-
quences of temporal intervals use such intervals as primitives
in their representation, and allow focusing on the temporal
relations of these elements. This is a useful representation of
data across many domains. Searching, indexing, and min-
ing such sequences is essential for domain experts in order
to discover useful information out of them. In this paper,
we formulate the problem of comparing sequences of tem-
poral intervals and propose a novel distance measure. We
discuss the properties of the measure and study its robust-
ness in the domain of sign language. Experiments on real
data show that the measure is robust in terms of retrieval
accuracy even for high levels of artificially introduced dis-
tortion.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, experimentation

Keywords
sequence, temporal intervals, distance measure, American
Sign Language

1. INTRODUCTION
The improved ability to measure and store information

and the interest to analyse temporal behaviour of systems
and people are dominant drivers behind the growth of time
series databases. The time series analysis [9] usually builds
on the assumption that time series have a fixed sampling fre-
quency, resulting in a equally spaced measurements in time.
Here, we are interested in a special kind of temporal data,
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where the elements are temporal intervals. The main mo-
tivation of our work is sign language data, where temporal
intervals are a natural way to represent its elements. Pro-
ficiency in interpreting and learning the gestures that form
sign language must be acquired in order to obtain a deeper
understanding of it.

Sequences of temporal intervals exist in many application
domains, such as human motion databases, sign language
data, human activity monitoring, and medical data. Their
main characteristic is the fact that events are not necessarily
instantaneous but they may have a time duration. Thus,
there can be several temporal relations between events in
these sequences. An example of such sequence is shown in
Figure 1.
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Figure 1: An example of a sequence of temporal
intervals.

A review of temporal knowledge discovery paradigms and
methods placing the temporal intervals into a proposed tax-
onomy knowledge discovery paradigms and methods [26].

Video technology can be used to transcribe a video frame
sequence into a set of gestures. The transcription can be
done manually by an expert or in an automated fashion
by video analysis software — an interesting topic by itself.
In this paper, however, we concentrate on the analysis of
transcribed sequences. The individual gestures have a cer-
tain duration The are used in combination with others and
carry the meaning of the words. If transcribed sequences
are represented as sequential information, a faithful repre-
sentation would take this duration information into account.
Standard time series analysis, which would take these kind
of relations into account explicitly, is not possible. This is
the problem, which we try to alleviate by describing a suit-
able distance measure for collections of temporal intervals.
Once a distance measure has been defined, a similarity can
be computed between a transcribed (query) sequence and
a database of transcribed sequences. For instance, given a
query we may look up similar sequences, or train the user to
make correct gestures in expressing a given word or sentence.

A very straightforward solution to comparing temporal
interval sequences would be to map each one of them to



a sequence of instantaneous events by only considering the
start and end points of each event interval. This would re-
sult in a simplification of the representation of sequences
of interval-based events as they would be mapped to regu-
lar sequences of instantaneous events without the need for
keeping track of the pair-wise event-interval relations. In ad-
dition, the size of the alphabet (i.e., set of all possible event
labels) would double since each event interval label would
be mapped to two instantaneous event labels corresponding
to the start and end point of the event interval. Then, the
solution to the problem would reduce to applying an exist-
ing distance/similarity measure for sequence matching, such
as the edit distance [16]. The aforementioned solution may
sound simple enough, though it is not correct, as it may
lead to a large number of false positives. Consider the ex-
ample shown in Figure 2. Obviously, the mapping for both
sequences is the same: {Astart, Astart, Aend, Aend} and the
edit distance would match them fully even though the rela-
tion between the two event intervals is different in the two
sequences. Hence, we can deduce that in order to provide
a robust similarity measure for such sequences, their repre-
sentation should include additional information about the
relations between the event intervals.

Figure 2: Two different sequences of temporal inter-
vals where the mapping to a sequence of instanta-
neous events may produce the same representation
for both.

The main focus of this paper is to study sequences of tem-
poral intervals from the domain of American Sign Language
(ASL), since it is closely related to assistive environments.
Our target is the development of a distance measure for
comparing such sequences that could be further used for
searching and indexing in large sequence databases, or for
several data mining [10] tasks, such as summarisation, clus-
tering, and classification. It should be noted, however, that
our wider goal is not just to devise a distance measure but
to define it in such a way that it provides a clear tie-in to
significant patterns that may be found in each application
domain (in our case we are looking for linguistically signifi-
cant patterns). In other words, the measure should be able
to discover new (and significant) patterns that domain ex-
perts would use in practice.

The main contributions of this paper include:

• the formulation of the problem of comparing sequences
of temporal intervals and the definition of a novel dis-
tance measure to solve this problem

• discussion of the properties of the proposed measure

• experimental evaluation of the distance measure and
its robustness on real data from the field of American
sign language

This paper is organized as follows: in Section 2, we pro-
vide the necessary background and definitions along with
the problem formulation; in Section 3 we present the related

work on sequences of temporal intervals, while in Section 4
we describe the proposed distance measure and its proper-
ties. Section 5 provides an extensive experimentation on
real data. Finally, Section 6 summarizes and further dis-
cusses the findings of our paper.

2. BACKGROUND
The present work is based on the framework of Allen [4],

where the temporal intervals are considered as primitive el-
ements in a sequence, and where the relations between the
temporal intervals are represented explicitly. In this Section,
we formulate the problem, we present the seven relations
among temporal intervals that we consider and, addition-
ally, we describe the used notation.

2.1 Problem Formulation
Let S={S1, . . . , Sn} be an ordered set of events occurring

at time intervals, called sequence of temporal intervals or e-
sequence. Given an alphabet of event labels σ, each Si =
(Ei, t

i
start, t

i
end) is called an event interval, where Ei ∈ σ

and ti
start,t

i
end denote the start and end time of Ei. The

temporal order of the event intervals is ascending based on
their start time; for intervals with the same start time the
order is descending based on their end time. If ties still exist,
alphabetical ordering is applied based on their labels. An
instantaneous event Ei has ti

start = ti
end. An e-sequence of

size k is a k-e-sequence. The e-sequence that is shown in
Figure 1 corresponds to:

S = {(A, 1, 7), (B, 3, 19), (D, 4, 30), (C, 7, 15), (C, 23, 42)}
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Figure 3: Two examples of arrangements of size 3
with alphabet σ = {A, B, C}.

In a database of e-sequences there may exist patterns of
temporally related events; such patterns are called arrange-
ments. An arrangement A of n events is defined as A =
{E ,R}, where E is the set of event labels of all intervals that
occur in A, with |E| = n, and R = {R(E1, E2), R(E1, E3), . . . ,
R(En−1, En)} is the set of all interval relations R(Ei, Ej)
between each ordered pair (Ei, Ej), for i = 1, . . . , n and
j = i + 1, . . . , n, with R(Ei, Ej) ∈ I. I = {r1, . . . , r|I|}
denotes the set of all legal temporal relations that can ex-
ist between any pair of events and it will be defined in
more detail in Section 2.2. The size of an arrangement
A = {E ,R} is equal to |E|. Two examples of arrangements
of size 3 are shown in Figure 3. For the first case (Figure
3(a)) E = {A, B, C} and R = {overlap, follow, follow}
whereas for the second case (Figure 3(b)) E = {A, B, C}
and R = {overlap, overlap, contain}.

Based on the above formulation, we can now define prob-
lem of comparing sequences of temporal intervals as follows.



Problem 2.1. Given two e-sequences S and T , define a
distance measure D, such that ∀S, T :

D(S, T ) ≥ 0 (1)

D(S,S) = 0 (2)

D(S, T ) = D(T ,S) (3)

The degree to which the two e-sequences differ should be
reflected in the value of D(S, T ) and should be in accordance
with the knowledge obtained from domain experts.

2.2 Temporal Interval relations
Based on Allen’s model for temporal intervals and their

relations [4, 3, 24, 25] we consider the following relations
for two interval events A and B. This is also presented in
Figure 4.

• meet(A,B) denotes the case where A meets B; B starts
at the same time that A ends, tA

end = tB
start.

• match(A,B) denotes the case where A matches B; A
starts and end at the same time as B, tA

start = tB
start

and tA
end = tB

end.

• overlap(A,B) denotes the case where A and B have
overlapping parts; A starts before B and B starts be-
fore A has ended, tA

end > tB
start and tA

start < tB
start.

• contain(A,B) denotes the case where A contains B; A
starts before B starts and A ends after B ends, tA

start <
tB
start and tA

end > tB
end.

• left contain(A,B) denotes the case where A right-
contains B; A and B start simultaneously and A ends
after B, tA

start = tB
start and tA

end > tB
end.

• right contain(A,B) denotes the case where A left-
contains B; A starts before B starts but end simulta-
neously, tA

start < tB
start and tA

end = tB
end.

• follow(A,B) denotes the case where A occurs before
B; A ends before B begins, tA

end ≤ tB
start.

We do not consider symmetric relations, i.e. B is contained
by A, since these can be expressed by the above and thus,
are redundant. Hence, based on the definitions in Section
2.1, I = {meet, match, overlap, contain, left contain, right
contain, follow} and |I| = 7.

Furthermore, as discussed in Papapetrou et. al [25] there
may exist ambiguities between the aforementioned relations
due to noise in the data; for simplicity, we do no consider
this in our work.

3. RELATED WORK
Sequences of temporal intervals have been of great interest

over the last decade. Existing studies, however, have focused
merely on mining patterns and association rules, and not on
comparing and querying such sequences.

Several approaches consider discovering frequent intervals
in transactional databases [18, 28]. The intervals are, in
many cases, not labelled and thus no relations between them
are considered. Giannoti et. al [8] considers temporally
annotated sequential patterns, where transitions from one
event to another have a time duration. In addition, a graph-
based approach [13] represents each temporal pattern by a

graph; nonetheless, only two types of relations are consid-
ered (follow and overlap).

A generalized interval-based framework has been devel-
oped [15] with improved support counting techniques for
mining interval-based episodes, without, however, consider-
ing any temporal relations or association rules between the
events. Apriori-based techniques [11, 12, 20] for finding tem-
poral patterns that and association rules on interval-based
event sequences have been proposed, some [12] also apply-
ing interestingness measures to evaluate the significance of
the findings. Another approach that considers sequences
of interval-based events in a database is discussed in [14],
however limited to certain forms of arrangements. Recent
BFS-based and DFS-based approaches [29, 24, 23, 25] ap-
ply efficient pruning techniques thus reducing the inherent
exponential complexity of the mining problem. In [30], a
non-ambiguous event-interval representation is defined that
considers the start and end points of each e-sequence and
converts the interval-based representation to a sequential
representation. Finally, there has been some recent work on
mining semi-partial orders of time intervals [21].

Furthermore, several methods [6, 1] have been focusing on
mining association rules from data that contains interval-
based events. The support of the rules is measured only
during these intervals. Moreover, in Ale et. al [2], the lifetime
of an item is defined as the time between the first and the
last occurrence and the temporal support is calculated with
respect to this interval. In this way, the extracted rules are
only active during a certain time, and outdated rules can
be pruned by the user. Finally, Lu et. al [19] studies inter-
transaction association rules by merging all itemsets within
a sliding time window inside a transaction, whereas in [27]
efficient techniques for mining spatio-temporal patterns are
proposed.

Despite the active research in sequences of temporal in-
tervals, the main focus of the existing literature is limited
to mining patterns and association rules. To the best of our
knowledge, there has been yet no robust distance or similar-
ity measure for comparing such sequences.

4. DISTANCE MEASURE
In this section we define a distance measure for comparing

two e-sequences. Focus is given on the relations among the
event intervals, disregarding absolute time values. The steps
involved in this computation include: (1) dropping the time
stamps and representing each of the two e-sequences as an
arrangement, (2) mapping each arrangement to a relation
matrix. The two matrices are then compared to derive the
distance score.

4.1 Relation Matrix
To define a relation matrix for an e-sequence S we should

first map the e-sequence to an arrangement A = {E ,R}.
The relation matrix MA of A is a |I| × |σ|2 integer-valued
matrix that keeps track of the count of all |I| types of tem-
poral relation pairs that may occur in the arrangement.

Definition 4.1. Given an arrangement A, the correspond-
ing relation matrix MA is defined as follows:

MA(i, j) = |R(Ek, El) = ri|, (4)

∀ri ∈ I, j ∈ [1, |σ|2], k ∈ [1, |E|], l ∈ [k + 1, . . . , |E|].



Figure 4: The seven temporal relations between two event intervals that are considered in this paper.

Rows of MA correspond to relations among intervals (as
defined in I) and columns correspond to pairs of interval
labels in σ. The value of each cell is the number of times
a relation between the corresponding intervals occurs in A.
For example, MA(1, 1) denotes the number of times relation
r1 appears between (E1, E1) in A.

For any arrangement A of size k, it holds that

|I|X

i=1

|σ|2X

j=1

MA(i, j) =
k(k − 1)

2
. (5)

To better illustrate this mapping, consider the example
in Table 1 that demonstrates the relation matrix of the ar-
rangement shown in Figure 5.

Figure 5: An arrangement with alphabet σ = {A, B}.
Its corresponding relation matrix is shown in Table
1.

relation {A,A} {A,B} {B,A} {B,B}
meet 0 1 0 0
match 0 0 1 0
overlap 1 2 0 1
contain 0 0 0 0
left-contain 0 0 0 0
right-contain 0 0 0 0
follow 0 0 0 0

Table 1: The relation matrix MA of arrangement A
shown in Figure 5.

4.2 Arrangement Distance
Suppose we would like to compare e-sequences S and T .

We should first express these sequences with respect to their
arrangement representation (say, A and B, respectively),

i.e., ignoring the event interval durations and considering
only the temporal relations between the events. Then each
arrangement will be mapped to its corresponding relation
matrix representation; thus creating matrices MA and MB.
Now, the problem of comparing the original e-sequences is
mapped to the problem of comparing their relation matrices.

Definition 4.2. We define the following generalized ar-
rangement distance function:

δp(A,B) =

0

@
|I|X

i=1

|σ|2X

j=1

|MA(i, j) − MB(i, j)|p
1

A

1
p

, p ∈ N∗

(6)

4.2.1 The Manhattan Distance
For p = 1, Equation 6 yields the entry-wise Manhattan

distance between MA and MB. Nonetheless, using this dis-
tance, it is possible that the comparison of two equal sized
arrangements may yield a higher score than the comparison
of one of these arrangements with a significantly smaller one
since they are entirely different in size. For example, con-
sider three arrangements A, B, C with 5, 10, and 10 event
intervals, respectively. Effectively, this means that A con-
tains 10 possible temporal relations, while B and C contain
45. Now suppose that A and B agree on 8 relations, whereas
B and C agree on 25 relations. Then, δ1(A,B) = 2+37 = 39,
since they differ on the remaining 2 relations of A and the re-
maining 37 relations of B. Similarly, δ1(B, C) = 20+20 = 40.
This suggests that B is more similar to A than C.

Taking a closer look, however, one may easily notice that
the total number of relations that may exist between A
and B is 55, while 90 relations may exist between B and
C. This means that the former pair of arrangements agree
on a smaller fraction of relations (i.e., 2×8

55 ≈ 0.28) than the
later pair (i.e., 2×25

90 ≈ 0.56). This anomaly would propagate
into further procedures, such as clustering, giving incorrect
results.

For this reason, we propose the following normalized ver-
sion of δ1:

Definition 4.3. Given arrangements A and B, the nor-



malized manhattan distance is defined as follows:

δnorm(A,B) =

P
i

P
j |MA(i, j) − MB(i, j)|

|A|(|A|−1)
2 + |B|(|B|−1)

2

= 2 ×
P

i

P
j |MA(i, j) − MB(i, j)|

|A|(|A| − 1) + |B|(|B| − 1)

=

|I|X

i=1

|σ|2X

j=1

|MA(i, j) − MB(i, j)|
MA(i, j) + MB(i, j)

(7)

For any pair of arrangements A and B the following three
properties hold:

0 ≤ δnorm(A,B) ≤ 1 (8)

δnorm(A,A) = 0 (9)

δnorm(A,A∅) = 1 (10)

where A∅ corresponds to the arrangement of the null e-
sequence, i.e., a sequence without any intervals.

4.2.2 The Frobenius Norm
For p = 2, the distance expressed by Equation 6 is equal

to the Frobenius norm of MA − MB:

δ2(A,B) =

vuut
|I|X

i=1

|σ|2X

j=1

|MA(i, j) − MB(i, j)|2 (11)

4.3 Properties

Theorem 4.1. δp is not metric.

Proof: δp violates the identity of indiscernibles that should
be satisfied by metric distance functions. Consider arrange-
ments A and B shown in Figure 6. Clearly, MA and MB are
identical even though they correspond to different arrange-
ments.

(a) A (b) B

Figure 6: Two arrangements for which δp violates
the identity of indiscernibles.

It becomes apparent that neither the duration of temporal
events nor the time separating them is taken into account.
As a result, scaling the temporal values of a sequence does
not affect the result when compared to another sequence.

In the case where basic arithmetic operations can be per-
formed in constant time, i.e., addition, multiplication, and
square root need O(1) time units, the time needed to com-
pare two arrangements A and B of sizes n and m respectively
is O(n2 + m2 + |σ|2), assuming that both arrangements are
defined over the same alphabet σ.

5. EXPERIMENTS

5.1 Dataset
We evaluated the robustness of the proposed distance mea-

sure on the American Sign Language database created by the
National Center for Sign Language and Gesture Resources
at Boston University1. The database contains a collection of
873 utterances, where each utterance associates a segment
of video with a detailed transcription. Facial gestures play
a crucial role in the grammar of ASL [5, 7, 17, 22], thus for
our experiments we focused only on: specific types of ges-
tures (e.g., raised eyebrows, head tilt forward), functional
identification of clusters of these non-manual gestures that
carry syntactic meaning (e.g., wh-question, negation), and
part-of-speech identifications of manual signs (e.g., verb, wh-
word), each one occurring over a time interval. A histogram
of the e-sequence lengths in the ASL dataset is shown in
Figure 7.
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Figure 7: Histogram of the e-sequence lengths in the
ASL dataset.

5.2 Setup
We tested the proposed measures using the ASL database.

Queries were generated from the database sequences by add-
ing noise to them. We generated 50 sets of 873 queries. For
each set, a query was taken from a database sequence and
then, each event interval in the query was shifted with prob-
ability p by a value bounded by a distortion factor of d. The
chosen distortion factors were 10%, 20%, 30%, 40 and% 50%
while probability levels varied from 0.1 to 1 with a step of
0.1. Put together, given a distortion level d as a percentage
of the length of the whole query sequence, a random value
under the uniform distribution is chosen in that integer in-
terval. An interval has equal probability to be shifted back
or forth in time. The durations of the intervals remained
unaffected. Whether an interval would be affected by noise
is determined independently by the probability parameter
p.

Ideally, we would like each noisy sequence (query) to be
matched to the sequence from which it originated. Thus, we
performed a test individually for all elements in our database
for various probability and distortion levels. We performed
a linear search in the database and computed all pair-wise
distances between each query and each database sequence.

We compared the Normalized distance, the Manhattan
distance, and the Frobenius distance in terms of:

1http://www.bu.edu/asllrp/cslgr/.



1. nearest neighbour retrieval accuracy: the frac-
tion of noisy queries for which the originating sequence
is retrieved.

2. rank of nearest neighbour: for each query, the
number of database sequences with distance at least
than or equal to that of the originating counterpart..

Our experiments were implemented in Java and were per-
formed on a PC running Ubuntu Linux, equipped with Intel
Core 2 Duo 2GHz and 4GB RAM. To distort and query each
of the 873 sentences, for the 50 different pairs of noise and
probability parameters, required approximately a total of 4
hours.

5.3 Results
As it is expected, when the distortion and probability pa-

rameter values are increased, the distance of the distorted
queries to their originating sequences is increased, too. In
Figures 8(a), 8(b), 8(c) we display how the average distance
value fluctuates for each distance function. On the x-axis we
show the level of distortion imposed to the queries and on
the y-axis the average distance value of all queries to their
originating counterpart. The error-bars above the curves
display the maximum distance of a query to its original se-
quence whereas the error-bars below the curves correspond
to the minimum value.

The results of our main experiment are presented in Fig-
ures 9(a), 9(b), 9(c). These figures display the percentage of
the query searches that were able to return the originating
sequences. Different curves represent different values for the
probability parameter. The Normalized distance function
turns out to be very robust by maintaining a success rate
well over 99.5%. For the other two, the success rate dropped
significantly with an increase of the parameter values.

Figure 10 displays a comparison of the success rates of
the three functions for probability parameter values 0.6 and
1.0 and distortion parameter value 50%. The Normalized
distance function has a clear advantage over the other two.
Throughout our experiments, when using the normalized
distance, only 2 or 3 out of 873 sentences were not matched
correctly and this happened for the very high values of the
distortion and probability parameters. One of the reasons
that the Frobenius and Manhattan Distances yield poor re-
sults compared to the Normalized, is the Nearest-Neighbour
anomaly we described in Section 4.2. While the Normalized
function is a clear winner, among the other two the Frobe-
nius distance performs better.

Another important issue is the rank of the nearest neigh-
bour distribution which, as mentioned earlier, is the total
number of samples in the database that have distance from
the distorted query less than or equal to the distance of the
query to the originating sequence; if a query is matched cor-
rectly, it has a rank of 1. The cumulative histograms of the
ranks can be seen in Figure 11. While these do not provide
any additional insight concerning the Normalized distance
(additional to what is shown in Figure 10), they demon-
strate an overall advantage of the Frobenius distance over
the Manhattan.

6. SUMMARY AND CONCLUSIONS
Sequences of temporal intervals are the basis representa-

tion used in this work. This representation is used for time-
related phenomena, where recorded events in time have a

duration and can not be faithfully represented by an instan-
taneous event in time nor a plain time series representation.

The methodological contribution of our work is to propose
a distance measure for sequences of temporal intervals, in or-
der to quantify similarity between sequences. We propose
transforming the sequence information to relational infor-
mation between all pairs of intervals and counting how often
certain pre-defined relations (such as overlapping, following
etc.) hold for all the pairs. These counts are summarized in
a relation matrix; a distance is calculated as a function of
the relation matrices of the sequences. We use Manhattan
distance, Frobenius distance, and a normalized distance to
quantify the similarity between the matrices. Based on the
experiments the normalized distance is a clear winner among
the three, with the Frobenius distance being the second.

In the experiments, we empirically investigate the noise
robustness of the proposed measure by artificially introduc-
ing distortion to the database queries and see how similar
the original query and corresponding, distorted query are in
the sense of the used distances. The applied contribution
is to use the distance measure for signs from the Amer-
ican Sign Language represented as sequences of temporal
intervals. The notion of similarity quantified by the dis-
tance measure opens up many possibilities, such as devel-
oping translation systems for the American Sign Language
where reference sentences are queried from a large collection
of sign language utterances or developing teaching aids for
those learning the sign language.

Directions for future work include evaluating the general
applicability of the proposed measures by testing their ro-
bustness on other application domains, such as network traf-
fic, body sensor networks, epidemiological studies, etc. In
addition, this novel distance measure enables widening the
applicability of standard machine learning tasks, such as
clustering or classification.
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Figure 8: Fluctuation of distance values for the distorted sequences. The curves correspond to the average
distance of the noisy sequences to their originating counterparts. Error-bars show the minimum and maximum
distance.
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Figure 9: Success ratio of matching the noisy sequences to their originating.
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Figure 10: Comparison of the distance functions with respect to the success ratio of matching the noisy
sequences to their originating.
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Figure 11: Comparison of the cumulative histograms for the rank of nearest neighbour for each distance
measure. Note that ranks are denoted as a ratio of the database size.
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