Subsequence Search in Event-Interval Sequences

Orestis Kostakis
Aalto University
Espoo, Finland

orestis.kostakis@aalto.fi

ABSTRACT

We study the problem of subsequence search in databases of
event-interval sequences, or e-sequences. In contrast to se-
quences of instantaneous events, e-sequences contain events
that have a duration. In Information Retrieval applications,
e-sequences are used for American Sign Language. We show
that the subsequence-search problem is NP-hard and pro-
vide an exact (worst-case exponential) algorithm. We ex-
tend our algorithm to handle different cases of subsequence
matching with errors. We then propose the Relation Indez, a
scheme for speeding up exact retrieval, which we benchmark
against several indexing schemes.

1. INTRODUCTION

Event-interval sequences, or e-sequences, are used in a
plethora of real-world application domains, such as linguis-
tics [2], sensor networks [6], and health informatics [7]. They
are also used in information-retrieval applications for the
American Sign Language (ASL) [5]. As a result, e-sequences
have lately attracted considerable attention in both the data-
base and knowledge-discovery communities.

An example of an e-sequence is shown in Figure 1. In con-
trast to instantaneous event sequences, events in e-sequences
have a duration. Hence, e-sequences convey richer informa-
tion than instantaneous event sequences. It can be shown
that information contained in e-sequences cannot be repre-
sented by instantaneous event sequences. Such an example
is shown in Figure 2, where mapping e-sequences to sym-
bolic sequences of instantaneous events creates ambiguity.
Our experiments demonstrate that this type of representa-
tion error occurs in practice.

In this paper we study the following problem: given a
database D of e-sequences and a query e-sequence @, find
the e-sequences in D that contain Q.

This problem applies, among others, to searching for spe-
cific phrases or grammatical constructions, among transcrip-
tions of American Sign Language. Similarly, in Heath Infor-
matics, a professional needs to search among medical records

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGIR ’15, August 09 - 13, 2015, Santiago, Chile

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3621-5/15/08 ...$15.00.
http://dx.doi.org/10.1145/2766462.2767778

851

Aristides Gionis
Aalto University
Espoo, Finland

aristides.gionis@aalto.fi

time

17 20 26 30

Figure 1: An event-interval sequence with 5 intervals.

(a)

Figure 2: Event-interval sequences describe richer scenarios
than symbolic sequences. Mapping event-interval sequences
to symbolic sequences creates ambiguities.

for patients that exhibited symptoms in a specific combina-
tion; here we assume that event intervals are used to model
conditions or medication states of patients.

In this paper we make the following contributions:

We define the problem of subsequence matching, we prove
that it is NP-hard, and we provide an exact algorithm.
We extend our algorithm to handle different cases of ap-
proximate subsequence matching.

We propose the Relation Index, a scheme for speeding
up exact retrieval, which we benchmark against several
indexing schemes.

2. BACKGROUND

An event-interval sequence, or e-sequence, S = {S1,...,
S|s|} is a sequence of triples denoted S; = (Si.E, tstart, tend)-
The coordinates of each triple denote the label, the start-
time and end-time of each interval, respectively. For the
example in Figure 1, the representation is S = {(4, 1, 10),
(B,5,13), (C,17,30), (A,20,26), (D,24,30)}. We denote
by |S| the length of S, which is the number of its intervals.
Note that it is also possible to have overlapping intervals
with the same label.

Any pair of intervals in an e-sequence is characterized by
a relation. The set of possible relations, based on Allen’s
model [1], are shown in Figure 3.

We only consider relations among intervals and ignore the
absolute time durations. In American Sign Language, sen-
tences are formed based on the combination of gestures not
their duration: as with speaking, people may spend differ-

A
A
B Ameet B B A left-contain B
- A ~ —
B Amatch B 8 Aright-contain B
A A
B Aoverlap B B A contain B
A B Afollow B

Figure 3: The 7 temporal relations between event-intervals
that are considered in this paper.

A
7N B

[]
v

[SEERERERRED

v

Figure 4: S is a subsequence of T'.

ent time for gesturing the same phrase. Similarly, in robot
sensor data, a high-level description of a situation is derived
from the combination of relations of underlying events.

3. SUBSEQUENCE MATCHING

Problem definition: An e-sequence S = {S1,...,S,} is a
subsequence of T = {T\,...,T)n} if S is contained in T. S
is contained in T if and only if there exists a sequence T’
of intervals, 7" C T, T' = {T4,...,T,}, such that T;.F =
Si.E,1 <i<nandR(S,S,) =RT,T),1<i<j<n,
where R(-,-) returns the relation between two intervals.

Problem complexity: The subsequence matching prob-
lem (ssM) is NP-hard. This follows by a reduction from
CLIQUE to sSM. The proof is omitted for space limitations.

THEOREM 1. Subsequence matching is NP-hard.

Note that in the special case that there is no overlap be-
tween intervals, the ssM problem can be solved in polynomial
time, as it reduces to subsequence matching in strings.

Another special case is to require that, for a query Q,
the matched intervals in S are contiguous. This is also a
polynomial variant, which can be solved in time O(|S]|Q|?).

Algorithm: We present an exact algorithm, Algorithm 1,
for determining if an e-sequence @ is a subsequence of S.
The algorithm also returns the matching positions. It main-
tains a partial list that is used for backtracking.

The algorithm scans the larger e-sequence S to find the
first interval that shares the same label with the first in-
terval in @ (lines 4,5). If such an interval is never found,
the procedure will terminate. Suppose that an interval is
found. As it is the first pair matched, no further checks are
needed. Then, another interval with the same label as that
of the second interval in @ is searched for in S. Searching
for succeeding intervals happens recursively (line 13), for the
remainders of the S and @Q. A variable list solSoFar keeps

852

Algorithm 1 SubsequenceMatch
1: procedure SSM(Q, qPtr, S, sPtr, solSoFar)

2: if IS or !Q or sPtr > S.length() then

3: return false, solSoFar

4: for interval € S[sPtr,...] do

5: if Q[gPtr].label() = interval.label() then

6: compatible < check relations(Q, qPtr, solSo-
Far, interval)

7 if !lcompatible then

continue

9: solSoFar.append (interval)

10: if gPtr = Q.length()—1 then

11: return true, solSoFar

12: else

13: (success,solSoFar) « SSM(Q, gPtr, S, in-
terval, solSoFar)

14: if success then

15: return true, solSoFar

16: else

17: solSoFar.pop()

18: return false, solSoFar

the partial solution and is appended a new interval (line 9)
or has an interval removed from the end (line 17); if Q is
found in S, then upon termination solSoFar contains the
corresponding intervals of S. Using this variable facilitates
backtracking. Line 6 contains a check as to whether an in-
terval in S, which has been found to have the same label as
the next in @, forms the same relations as those that are
required by Q.

There exist (Ilg‘\) possible matchings between @ and S;
when all interval labels are the same. However, different la-
bels and the backtracking due to interval relations eliminate
a large number of candidates and reduce the running time.

Problem variations: Algorithm 1 solves the problem of
exact subsequence matching. However it can easily be mod-
ified to handle a number of variations, such as:

e The sets of labels are considered equivalent. In other
words, we do not require strict matching of labels, but in-
stead we allow substitutions. This is easily implemented
by replacing the equality condition of line 5 with the de-
sired equivalence function.

e A number of non-identical interval-relations are tolerated.
In addition to solSoFar, we may use a second variable list
that denotes how many relations with preceding intervals
in solSoFar are violated when choosing solSoFar[i].

e A number of non-identical labels are tolerated. As above,
we may use a variable list to maintain the errors.

e Pathological matchings are avoided. As with the Sakoe-
Chiba Band [8] and the Itakura Parallelogram [4] for Dyn-
amic Time Warping, we can force limits on the distance
between consecutive intervals in S that get matched to Q.
This is achieved by changing the limits of line 4.

4. INDEXING

When searching a very large dataset, sequential scan is
prohibitive. An indexing scheme is required to improve the
retrieval speed. We experiment with several approaches,
each providing different trade-offs. We begin by describing
the proposed indexing scheme, named Relation Index, while

B > (A,B,overlap)
B B
C

C

> (B,C,overlap)

> (A,C follow)

Figure 5: A query using Relation Index decomposes an e-
sequence into 2-interval structures. Linear variation enu-
merates only the top two, Quadratic enumerates all of them.

the rest serve as baseline methods. All schemes guarantee a
100% recall rate: they return a superset of the valid result.

Relation Index: this approach decomposes each e-sequence

into a set of 2-interval e-sequences. Then it relies on an

inverted index for performing look-ups. The keys in this
inverted index are triples of the form (X;, X;,rely), with

3,35 € ¥ and rely a type of relation. Each index key is

associated with the list of e-sequence IDs that contain that

specific combination.

In the index-construction phase, for each e-sequence S €
D, we enumerate all (lg‘) pairs of intervals and obtain their
relation. For each formed triple (3;, X;, rel), the ID of that
e-sequence is appended to the appropriate list in the index.

In the retrieval phase, a set of interval pairs of the query e-
sequence @ is enumerated, and the set of triples (3;, X;, rely)
is produced. There are two approaches for choosing the set
of interval pairs, as illustrated also in Figure 5:

1. Quadratic: all (I%?\) pairs are enumerated.

2. Linear: only |Q| — 1 pairs are enumerated; those are ex-
tracted serially by examining only pairs of consecutive in-
tervals, i.e. (@i, Qit1),1 <7 <|Q|—1.

Given the set of produced triples, we first retrieve the car-
dinality of the index list of IDs for each key and we sort
the keys in ascending order. The sorting helps speed-up the
remainder of the process. Note that the set of values corre-
sponding to the first key (the one with the fewer e-sequences
containing that particular structure), is already a superset of
the valid results for |@|. Then, starting from the two smaller
sets, we compute their intersection and then the intersection
of the result with the third smallest set, etc. The process
terminates when all intersections have been computed, or
when the intersection contains at most one element.

Label Index: This approach is similar to the above, but
it differs in the type of keys. Instead of having an inverted
index for sub-structures of two intervals, we simply create
an inverted index for the interval labels. The two afore-
mentioned approaches demonstrate a trade-off between the
size of the structures used as keys in the inverted index (the
labels correspond to single intervals) and the index size.

Bitmap Index: E-sequences are represented only by the
count of each label of the intervals they contain. In order for
a query e-sequence () to be a subsequence of an e-sequence
S, it is a necessary, but not sufficient, requirement for S
to contain at least as many intervals of each label as those
contained in). In order to provide fast lookup for each label
count, we use hash tables. When searching in the Bitmap
Index, each hash table needs to be examined.

String Index: This is the baseline for indexing methods
that map e-sequences to strings; each e-sequence in D is
represented as a string. The tokens of the strings are the

853

Table 1: Dataset Summary.

Dataset # of max e-seq. length # of
e-seq. e-seq time min max classes
ASL 873 5957 4 41 9
Sensor Net 240 284 47 149 5
Hepatitis 498 7555 15 592 2

interval-labels, ordered in the same way as the intervals. For
a query e-sequence @ to be a subsequence of an e-sequence
S, it is a necessary, but not sufficient, requirement for the
string representation of @) to be a subsequence of the string
representation of S (easy proof omitted). All strings need
to be examined, and the time complexity of each operation
is O(|S]), hence the total time required for a single search is
O(|D||S|). We may also transform e-sequences into strings
as in Figure 2, but it creates sequences of double length. We
refer to this scheme as Cpoint Index.

Graph Indexing: We convert e-sequences to graphs, as
described by Kostakis and Papapetrou [5], and then apply
graph indexing techniques. We experimented with gIndex
and FG-Index implementations provided by Han et al. [3].

S. EXPERIMENTS

We evaluate the exact ssM algorithm and two of its vari-
ations on three real datasets, detailed in Table 1.

The variations of sSM that we evaluated are the following:
(i) a number of non-identical interval relations are tolerated,
and (ii) a number of non-identical interval labels are toler-
ated. The number of allowed errors takes values in [0, (Ig‘)]
for the case of relations, and in [0, |Q|] for the case of labels.
In comparison to the exact ssM algorithm, these variations
investigate more branches of the recursion tree, hence re-
quire longer run time. In addition, we expect a higher run
time when we increase the number of allowed mismatches.
Simply due to the fact that when the algorithm backtracks,
this happens at a deeper stage. The expected size of the
candidate set increases, too.

We employ a synthetic dataset generator to create very
large datasets for benchmarking the indexing methods. We
create datasets of one million e-sequences and alphabet size,
|3, equal to 5, 50 and 500. Each e-sequence has length 100.
The indexing methods are benchmarked in terms of retrieval
time and size of returned candidate set.

For all experiments, for each e-sequence in the dataset, we
randomly select a number of intervals and query the dataset
for the induced subsequence. The selected size ratios for
|Q|/|S], are 0.1, 0.2, 0.3, 0.5 and 0.99.

Results on matching variations: Approximate match-
ing with allowed relation errors was faster than the one with
allowed label errors; by several orders of magnitude in some
cases. Both were slower than the exact algorithm. As ex-
pected, the approximate e-sequence matching variations re-
turned larger candidate sets than the exact version. In ad-
dition, the size increased with the allowed error rate. The
same holds for the run times. Figure 6 depicts the results
for the ASL dataset. For the Hepatitis and sensor network
datasets the increase in run times was more significant.

Indexing results: We witnessed that both gIndex and FG-
Index are inefficient for the task at hand. Even for indexing
a small dataset of 100 e-sequences with 100 intervals, both
methods require over 1.5GB of memory. This is detrimental

w— Exact

=® = Relation Error 0.1

=¥ = Relation Error 0.5

=4 = Relation Error 0.99

== Label Error 0.1
Label Error 0.5

== Label Error 0.99

Mean query time (s)

e,
.
.

Candidates - ratio of DB

3
°
S o
g 2
»
3
.
e
-"‘
\’,
.

.
S

0 02 08 1 o 02 08]

0.4 06
Query length

(b) Candidates

0.4 0.6
Query length
(a) Query runtimes

Figure 6: Benchmark of ssM algorithm and variations for differ-
ent values of allowed errors; ASL dataset. Same legend applies.

10? 102 == Relation (linear)
= ® = Relaton (quadratic)
. ; Bitmap
P @ String K
~ V0. 0 G GRSy 10° | = == Label =
= [[1 a [L e Dot
2 = -
] 2
9 10 g
c
§ §
() (o)
= =
» 107

0 0.2 0.8 1

10° 10* 10° 10°
Database Size

O?.i?ery Ier?gﬁh
(a) Database size: 10° (b) Query length: 0.1

Figure 7: Mean query run time for synthetic dataset, |3| = 500,
for variable (a) query e-sequence length and (b) database size.

for scaling up to one million e-sequences. The reason is that
an e-sequence of 100 intervals corresponds to a complete
graph of 100 vertices, and % = 4950 edges. The number
of edges is at least two orders of magnitude larger than those
used by Han et al. [3]. Thus, we were unable to acquire any
results for the datasets we experimented with.

In general, the query times for String, Cpoint and Bitmap
Index increase linearly with respect to the size of the data-
base. As expected, this is due to the fact that they perform
a linear scan and need to check all instances in D.

For |X| = 500, all methods managed to find the single
correct counterparts in all cases; precision 100%. Figure 7
shows the run times. Relation Index is two orders of magni-
tude faster than Bitmap Index and three orders faster than
String Index. Due to the large alphabet size, each combina-
tion of interval labels appears few times, hence few lookups
in the inverted index suffice to identify the unique candidate.

For |¥| = 5, for small query lengths the candidate sets are
not singletons. In Figure 8 we notice that for query length
ratio of 0.1, Bitmap and Label index compete in runtime
with Relation Index but, including String and Cpoint In-
dex, they are practically useless since they return the whole
database. Only Relation Index is able to provide moderate
pruning of the candidate set. The true candidate set is 27%
of D, while Relation Index returns 60% of the DB.

For |X| = 50, Relation Index remains at least an order of
magnitude faster than the rest; Figure 9. Surprisingly, for
small query lengths, it returns marginally more candidates
than String Index. This is due to the fact that Relation
Index retains no information on the location in the original
e-sequence of the intervals involved in the relation. Hence, it
may consider relations that do not correspond to the query’s
location in the e-sequence. On the other hand, its query time
decreases significantly for larger query lengths, because it
performs fewer intersections.

854

10° | == Relation (linear)
« = ® = Relation (quadratic)
3 . = o Bimap
5 - e Stiing
o . 2 10 || = Label di
~<.§ . = Cpoint
! g
o s [= Relation (inear) =
go4 * | =®= Relation (quacratic) ST
5 \ simap g
5 : Sting 3
g 0.2 o | ¥ Label =3
S 0 Cpoint 4
|
o ——— =% ¥ e ° °
(] 0.2 0.4 0.6 0.8 10 10

n
1
Database Size

(b) Query length: 0.1

Query length
(a) Database size: 10°

Figure 8: Synthetic dataset |X| = 5. (a) Candidates size for
variable query length, (b) run times for variable database size.

== Relation (linear)
=@+ Relation (quadratic) LB LY :_'_'_*_'_ BremLIIso A
B Bitmap 100} Rymecg a d
il '
& suing) = eition inoa)
abel . =@ = Relation (quadratic)
Cpoint - Q3 & Bitmap

Candidates - ratio of DB
Mean Query time (s)
3

0.2 08 1

Q0.4 I O?h
uery leng
(a) Database size: 10° (b) Database size: 10°

Figure 9: Synthetic dataset |X| = 50. (a) Candidates and (b)
run times for variable query e-sequence length.

6. CONCLUSIONS

We studied the problem of subsequence search in data-
bases of event-interval sequences, or e-sequences. We showed
that the problem is NP-hard and provided an exact algo-
rithm. We showed how to extend the exact algorithm to
handle different cases of subsequence matching with errors.
Finally, we proposed the Relation Index, a scheme that relies
on decomposing e-sequences into pairs of intervals, for speed-
ing up retrieval time. We benchmarked the proposed index
against several baselines, including graph indexing schemes.

We witness that Relation Index is superior in terms of run
time compared to the other methods. While string indexing
methods can be applied, they are inefficient for cases of small
alphabet size. Between the linear and quadratic variants of
Relation Index, the first is usually faster but the later is
more efficient in pruning, when the alphabet size is small.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832-843, 1983.

[2] B. Bergen and N. Chang. Embodied construction grammar

in simulation-based language understanding. Construction

grammars, pages 147-190, 2005.

W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. iGraph: a

framework for comparisons of disk-based graph indexing tech-

niques. PVLDB, 3(1-2):449-459, 2010.

F. Itakura. Minimum prediction residual principle applied to

speech recognition. IEEE Transactions on Acoustics, Speech

& Signal Processing, 23(1):67-72, 1975.

O. Kostakis and P. Papapetrou. Finding the longest common

sub-pattern in sequences of temporal intervals. Data Mining

and Knowledge Discovery, pages 1-33, 2015.

F. Moerchen and D. Fradkin. Robust mining of time intervals

with semi-interval partial order patterns. In SDM, 2010.

D. Patel, W. Hsu, and M. Lee. Mining relationships among

interval-based events for classification. In SIGMOD, 2008.

H. Sakoe and S. Chiba. Dynamic programming algorithm

optimization for spoken word recognition. IEEE Transactions

on Signal Processing, 26(1):43-49, 1978.

(3]

(4]

(5]

