
Data Min Knowl Disc
DOI 10.1007/s10618-016-0489-3

On searching and indexing sequences of temporal
intervals

Orestis Kostakis1 · Panagotis Papapetrou2

Received: 28 December 2015 / Accepted: 28 November 2016
© The Author(s) 2017

Abstract In several application domains, including sign language, sensor networks,
and medicine, events are not necessarily instantaneous but they may have a time dura-
tion. Such events build sequences of temporal intervals, which may convey useful
domain knowledge; thus, searching and indexing these sequences is crucial. We for-
mulate the problemof comparing sequences of labeled temporal intervals and present a
distance measure that can be computed in polynomial time.We prove that the distance
measure is metric and satisfies the triangle inequality. For speeding up search in large
databases of sequences of temporal intervals, we propose an approximate indexing
method that is based on embeddings. The proposed indexing framework is shown to
be contractive and can guarantee no false dismissal. The distance measure is tested
and benchmarked through rigorous experimentation on real data taken from several
application domains, including: American Sign Language annotated video record-
ings, robot sensor data, and Hepatitis patient data. In addition, the indexing scheme
is tested on a large synthetic dataset. Our experiments show that speedups of over an
order of magnitude can be achieved while maintaining high levels of accuracy. As a
result of our work, it becomes possible to implement recommender systems, search
engines and assistive applications for the fields that employ sequences of temporal
intervals.

Responsible editor: Eamonn Keogh.

B Orestis Kostakis
orestis.kostakis@aalto.fi

Panagotis Papapetrou
panagiotis@dsv.su.se

1 Aalto University, Espoo, Finland

2 Stockholm University, Stockholm, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-016-0489-3&domain=pdf

O. Kostakis, P. Papapetrou

Keywords Temporal intervals ·Event-interval sequences · Indexing temporal interval
sequences · Embeddings

1 Introduction

Sequences of event-intervals exist inmany application domains, such as humanmotion
databases, sign language data, human activity monitoring, and medical data. Their
main advantageover traditional sequences,whichmodel series of instantaneous events,
is that they incorporate the notion of duration in their event representation. Due to this,
they are used in a broad range of research fields such as geo-informatics (Pissinou
et al. 2001), cognitive science (Berendt 1996), linguistic analysis (Bergen and Chang
2005),music informatics (Pachet et al. 1996), andmedicine (Kosara andMiksch 2001).
Essentially, sequences of temporal intervals can be encoded as a collection of labeled
events accompanied by their start and end time values. An example of a sequence of
five labeled temporal intervals is presented in Fig. 1.

So far, most studies on sequences of temporal intervals have been focusing on the
aspect of knowledge discovery, such asmining patterns and association rules thatmight
be of interest to domain experts (Kam and Fu 2000; Ale and Rossi 2000). Surpris-
ingly, very limited work has been performed on comparing event-interval sequences
(Kostakis et al. 2011a, b; Kotsifakos et al. 2013).

Many data mining algorithms and application domains require similarity compar-
isons as a subroutine (Rakthanmanon et al. 2012), and the need for fast and accurate
similarity search becomes more imminent when the data is characterized by more
complex structure, such as for the case of sequences of temporal intervals. Once a
framework for comparing temporal-interval sequences is defined, it will enable many
types of clustering and classification algorithms, and will facilitate the implementa-
tion of crucial solutions, such as recommender systems, phylogenies, and assistive
applications.
Examples In the biomedical domain, e-sequences are used to encode the health records
of patients; the duration of their symptoms and prescribed medication (Patel et al.
2008). A direct application of distance functions of event-interval sequences is the
search of similar patient histories among large databases of health records. The aim is to
facilitate physicians and medical researchers. Employing an interval sequence-based
temporal abstraction on multi-variate time series representing the medical history
of patients (Moskovitch and Shahar 2014a) has shown substantial improvement in

Fig. 1 Example of a sequence of 5 temporal intervals

123

On searching and indexing sequences of temporal intervals

terms of predictive performance against traditional classifiers on real datasets from the
domains of diabetes, intensive care, and infectious hepatitis. Similar temporal abstrac-
tions have been employed for the exploration and classification of renal-damage risk
factors in patients with diabetes type II (Klimov et al. 2015). Furthermore, consider
the domain of Sign Language (Papapetrou et al. 2009b), where sequences of temporal
intervals can be formed by events corresponding to facial gestures, e.g., “raised eye-
brows”, syntactic notations, e.g., “wh-question”, or part-of-speech identifications of
manual signs, e.g., “wh-word”. Since events may occur concurrently, pairwise tem-
poral relations can emerge. Similarity search in this domain is critical for supporting
(deaf) people who use Sign Language and for creating relevant assistive applications.
Subsequence search has proven useful for detecting specific language expresssions
(Kostakis and Papapetrou 2015).

Several distance functions for computing the dissimilarity of pairs of instances have
been proposed for most common data structures; Dynamic Time Warping (DTW)
(Itakura 1975) and Euclidean distance (Faloutsos et al. 1994) for time series, variants
of graph matching for graphs (Umeyama 1988; Bunke 2000), etc. Our work attempts
to address similar needs in the field of sequences of temporal intervals.

Converting event-interval sequences to symbolic sequences (strings) and applying
existing similarity measures is not an applicable approach; especially when temporal
relations such as overlaps or contains occur between event-intervals of the same label.
This has also has been demonstrated and argued extensively in several existing works,
e.g., byKostakis et al. (2011a) andPapapetrou et al. (2009b). In such setting, converting
these sequences to a symbolic sequence representation may result in loss of temporal
information.

In the simplest example, one could convert a sequence of event-intervals to a
sequence of instantaneous events by only considering the start and end points of each
event-interval, and associating each of the two points with the event label that corre-
sponds to that event-interval. This would result in a simplification of the representation
of these sequences; they would be mapped to traditional sequences of instantaneous
events without the need for keeping track of the pair-wise interval relations. Nonethe-
less, the size of the alphabet (i.e., set of all possible event labels) would double since
each interval label would be mapped to two labels, each corresponding to an instanta-
neous event. Then, the solution to the problem would reduce to applying an existing
distance or similaritymeasure for sequencematching, such as the Levenshtein distance
(Levenshtein 1966). The aforementioned solution, although simple, is not correct, as
it may lead to a large number of false matches and can produce arbitrarily bad scores
irrespective of the similarity measure used.

To illustrate why a mapping to symbolic sequences and the application of a string-
matching algorithm would introduce ambiguities when event-intervals of the same
label are present, consider the two examples shown in Fig. 2. In these examples, each
event-interval sequence consists of three intervals with the same label. In the first case
(Fig. 2a), each event-interval is fully contained within the other (in terms of duration),
while in the second case (Fig. 2b) each event-interval overlaps with all the previous.
Obviously, the mapping for both sequences is the same, i.e., {As, As, As, Ae, Ae, Ae}.
This suggests that traditional methods for discrete event sequences may fail to capture

123

O. Kostakis, P. Papapetrou

Fig. 2 An example where mapping event-interval sequences to discrete event sequences may cause ambi-
guities

the inherent temporal structure of such sequences, and more importantly, they may
produce arbitrarily bad results especially as the number of event labels increases.

Other approaches for mapping event-interval sequences to strings augment the
original alphabet with symbols, such as brackets, plus and minus signs, or numbers
corresponding to counts of interval-relations [(we refer the readers to the discussion
by Patel et al. (2008)]. Again, if we would apply string algorithms out-of-the-box to
such strings the results would not be valid. In most cases, the matchings would not
even be valid in the intervals domain (brackets would remain open, intervals would
begin but not end, etc.).

In this paper we study the problem of efficient similarity search under full-sequence
matching in databases containing sequences of event-intervals. We first present
Artemis, a robust distance metric for sequences of event-intervals. Artemis has
appeared in our preliminary work (Kostakis et al. 2011a), while in this work we extend
Artemis by providing additional theoretical properties and bounds. Our main focus
in this paper is, however, to enable practical and industrial-scale applications of sim-
ilarity search under Artemis. It is, hence, imperative to be able to quickly and
efficiently search through very large datasets of temporal interval sequences. This
can be achieved by devising efficient indexing schemes that can provide significant
speedups against brute-for-search without sacrificing nearest-neighbor retrieval accu-
racy.1 A suitable indexing scheme should also take into consideration the underlying
properties and peculiarities of the studied data types. Thus, we propose EBESM (short-
hand for Embedding-based E-sequence Matching), an approximate embedding-based
indexing scheme. This is the first indexing scheme for sequences of event-intervals
under a distance function; recently several methods such as Relation Index (Kostakis
and Gionis 2015) andKarmaLego (Moskovitch and Shahar 2015) have been proposed
for speeding up the task of subsequence search.

Hence, the main contributions of this line of work are summarized as follows:

• We formulate the problem of assessing the dissimilarity of sequences of event-
intervals and present a method to solve it. The method, called Artemis (Kostakis
et al. 2011a), takes into account the temporal relations that may occur between the
events in the sequence and employs bipartite maximal matching to compute their

1 For the remainder of this paper we will refer to nearest-neighbor retrieval accuracy (Papapetrou et al.
2011) as “retrieval accuracy”. For clarity, we note that in this paper this term is used within the context
of nearest neighbor similarity search and not in the context of information retrieval. A formal definition is
provided in Sect. 6.

123

On searching and indexing sequences of temporal intervals

distance. We extend our previous work (Kostakis et al. 2011a) by proving that
Artemis is a metric under our problem setting and propose a linear-time lower
bound for Artemis that achieves significant speedups during similarity search.

• The performance of Artemis is tested and benchmarked through rigorous exper-
imentation on eight real datasets, including American Sign Language annotated
video recordings, robot sensor data, and Hepatitis patient data.

• We further propose an approximate embedding-based indexing method, called
EBESM for approximate similarity search under Artemis, and prove that EBESM
is an embedding that satisfies the contractiveness property.

• The performance of EBESM is evaluated on a large synthetic dataset, where it is
shown that speedups of over an order of magnitude can be achieved. In addition,
we confirm empirically that vector-based indexing methods are inefficient for
searching in databases of event-interval sequences.

2 Problem setting

Let Σ = {E1, . . . , Em} be an alphabet of m event labels. An event that occurs over
a time interval defines an event-interval and an ordered multiset of event-intervals
defines an event-interval sequence. Next, we provide a more formal definition for
these two concepts.

Definition 1 (event-interval) An event-interval is defined as a triple S =
(E, tstart , tend), where S.E ∈ Σ and S.tstart , S.tend correspond to the start and end
time of S, respectively. In general, S.tstart ≤ S.tend , where the equality holds when
the event is instantaneous.

Definition 2 (e-sequence) A sequence of event-intervals, or event-interval sequence,
or e-sequence, S = {S1, . . . , Sn} is an ordered multiset of n event-intervals. The tem-
poral order of the event-intervals in S is ascending based on their start time and in the
case of ties it is descending based on their end time. If ties still exist, the event-intervals
are sorted alphabetically.

The length of an e-sequence S is defined as the number of event-intervals in the
e-sequence (denoted as |S|), while its size is the number of temporal relations in S.

For example, the event-interval sequence shown in Fig. 1 has length |S| = 5, and
is encoded as:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

It becomes apparent that in an e-sequence there exist temporal relations between the
event-intervals. We base our work on Allen’s model for event-interval relations (Allen
1983). Allen’s algebra defined 13 relations, that form 6 pairs of inverse relations, and
the remaining is the ‘equal’ relation.Wekeep only one relation out of every pair.Hence,
given two event-intervals A and B, we consider the following seven relations (shown
in Fig. 3): before(A,B),meets(A,B), equal(A,B), overlaps(A,B), contains(A,B), start-
edby(A,B), finishedby(A,B). For the remainder of this paper, we denote as R(A, B) the

123

O. Kostakis, P. Papapetrou

Fig. 3 The seven temporal relations between two event-intervals that are considered in this paper

temporal relation between A and B. More details about these relations can be found in
Papapetrou et al. (2009b). We define the set of valid temporal relations between two
event-intervals as I = {meets, equal, overlaps, contains, started-by, f inished-
by, be f ore}, with |I| = 7.

Definition 3 (labeled relation) Given two event-intervals S and T , a labeled relation
LR(S, T) denotes the combination of both the temporal relation R(S, T) between S
and T and the ordered pair of their labels (S.E, T .E); for example, follow(E2, E1),
with E1,E2 ∈ Σ . For a pair of labeled relations LR(S, T) and LR(U, V), it holds
that LR(S, T) = LR(U, V) if and only if R(S, T) = R(U, V), S.E = U.E , and
T .E = V .E .

In this paper, we study two problems:

Problem 1 Define a distance measure D for e-sequences, that satisfies the following
two properties:

• Metric property D should be a metric. That is: (i) D(S, T) ≥ 0, ∀S, T , (ii)
D(S, T) = 0, iff S = T , ∀S, T , (iii) D(S, T) = D(T ,S), ∀S, T , and (iv)
D(S1,S3) ≤ D(S1,S2) + D(S2,S3), ∀S1,S2,S3, where S, T ,S1,S2,S3 are
e-sequences.

• Temporal relations D should capture and reflect combinations of event-intervals
and their temporal relations. Hence, the distance between two e-sequences should
depend on the number of event-interval relations in which they agree, or disagree.

Problem 2 Devise an indexing method for efficient e-sequence similarity search
under distance measure D. More particularly, we are interested in developing an index
structure that will exploit the metric property of a given measure D, and hence achieve
search speedups of at least an order of magnitude compared to brute-force search.

We explain the rationale behind the two properties of Problem 1. First, being metric
is a highly favorable property for any distance measure, since this can facilitate sev-
eral data mining tasks efficiently, such as clustering, or indexing (Hjaltason and Samet
2003). In addition, it can be used to provide exact indexing with theoretical guar-
antees on the trade-offs between nearest-neighbor retrieval accuracy and efficiency

123

On searching and indexing sequences of temporal intervals

(see for example RBSA(Papapetrou et al. 2009a)) as opposed to accurate though only
empirically efficient speedup techniques (Keogh 2002; Papapetrou et al. 2011). Sec-
ondly, taking into account the types of temporal relations is in line with previous work
(Kostakis et al. 2011a; Papapetrou et al. 2009b; Patel et al. 2008) and based on the
motivating example applications and discussion presented in Sect. 1.

Finally, in our model, we are not concerned with the actual duration of the event-
intervals nor with the time separating any pair of event-intervals. This makes our
measure robust to any time warping. So, the two sequences {(A, 1, 2), (B, 3, 4)} and
{(A, 10, 20), (B, 50, 100)} are considered the same. The motivation and rationale
for this is that we should expect from people who practice Sign Language, when
repeating a phrase, to consume different amounts of time for each word and the whole
utterance between different attempts; similarly when pronouncing a long sentence in
spoken language. In other words, the semantic information is contained in the relations
among the event-intervals. In the same manner, we assume that in robot sensor data
a high-level description of a situation is derived from the combination of underlying
events. For example, the gripping mechanism was enabled throughout the whole time
the robot’s wheels were active so the object was transferred successfully to the target
location, in contrast to releasing at any time point half-way through which would
indicate a drop.

2.1 Prior distance functions for e-sequences

In this Section we provide a brief description of the existing methods for comparing
e-sequences. None of the existing methods solve Problem 1; they all fail to satisfy the
required property: D(S, T) = 0 ⇐⇒ S = T .
Relation Matrix (Kostakis et al. 2011b) For each of the two e-sequences given as
input, Matrix enumerates their

(|S|
2

)
labelled relations. The counts of each labelled

relation are stored in a matrix with dimensions 7 × |Σ |2; note that |I| = 7. Rows
correspond to relation types (i.e. equal, overlaps, before), while columns correspond
to ordered pairs of event-interval labels. Each matrix cell contains the count of each
labeled relation in a given e-sequence. Comparing e-sequences reduces to comparing
the matrices. The distance of two matrices is the L1 norm over all cells, normalized

by the sum of the e-sequences’ sizes; d(S, T) = ∑|I|
i

∑|Σ |2
j

|MS(i, j)−MT (i, j)|
MS(i, j)+MT (i, j) , where

MS and MT are the matrices of e-sequences S and T respectively. Populating the
matrices requires O(n2 +m2) time, where n = |S| and m = |T |, for enumerating the
relations. Comparing the two matrices requires O(|Σ |2) time; hence inducing a total
complexity of O(n2 + m2 + |Σ |2).

This is a straightforward measure that simply compares the sets of all event-interval
relations between two e-sequences. Nonetheless, this approach is not at all sufficient,
since it fails to solve Problem 1. In particular, there exist infinitely many pairs of e-
sequences that are different but Matrix returns zero distance score. Figure4 depicts
such examples of movements in a network of binary proximity sensors; in each case
Matrix is unable to distinguish between the scenarios of an object following dif-
ferent paths; the corresponding e-sequences are depicted in Fig. 5 and the instance of
Relation Matrix in Table1.

123

O. Kostakis, P. Papapetrou

Sensor_A Sensor_B

X Y
Z

X’
Y’ Z’

Sensor_A Sensor_A

X

Y Z

(a) (b)

Fig. 4 Two examples for which Matrix is unable to distinguish between scenarios of an object following
different paths; a XYZ versus X′Y′Z′ (different label sensors), b XYZ versus ZYX (same label sensors)

�me

A A
B B

�me

A A
B B

time

A

A

A

time

A A
A

(a) (b)

Fig. 5 The corresponding e-sequences for the scenarios of Fig. 4. Matrix is unable to identify the differ-
ences between each pair, and returns a zero distance score. There is an infinite number of e-sequence pairs
that Matrix is unable to distinguish. a Different label sensors, b same label sensors

Table 1 The Relation
Matrix instance for the
e-sequences in Fig. 5a

(A,A) (A,B) (B,A) (B,B)

Before 1 1 1 1

Overlap 0 1 1 0

Equal 0 0 0 0

Overlaps 0 0 0 0

Started-by 0 0 0 0

Finished-by 0 0 0 0

Contains 0 0 0 0

Vector-DTW (Kostakis et al. 2011a) As discussed already, it is impossible to map
e-sequences to strings of symbols without introducing ambiguity. For example, how
should we order the symbols to differentiate the relative position of the end-points of
two event-intervals, when their relation is ‘contains’, ‘equal’, or ‘overlaps’? In other
words, the ambiguity is created when we attempt to define an order for symbolic
events that happen concurrently (e.g. both event-intervals begin at the same time).
No matter the ordering we decide, there will exist another event-interval relation that
cannot be represented correctly. A work-around approach is to map e-sequences to
vectors based on the number of event-intervals that are active at certain time points.
Vector-DTW, or simply DTW, creates a vector for each start- or end-point of any

123

On searching and indexing sequences of temporal intervals

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

⎞
⎟⎟⎠

Fig. 6 The sequence of vectors created by Vector-DTW for the e-sequence in Fig. 1; the coordinates
correspond to labels A, B, C, and D respectively. IBSM would create similar vectors for each time-point of
the sequence; 30 vectors

event-interval. For the example in Fig. 1, it would create 9 vectors, one for each of the
indicated time-points on the image; these are depicted in Fig. 6.

Then, the problem of comparing e-sequences reduces to comparing the sequences
of vectors. The sequences of vectors are compared using the multi-variate extension
of the Dynamic TimeWarping distance function; requiring O(m ·n · |Σ |) time, where
n = |S| and m = |T |. While the use of vectors enables to avoid certain types of
ambiguity, it still suffers in cases like the one in Fig. 2.
IBSM (Kotsifakos et al. 2013) The rationale is similar to that of Vector-DTW, but
instead of creating a vector each time an event begins or ends, in IBSM a vec-
tor is created for each time point. Then, all the vectors are concatenated to create
a matrix. Similar to Matrix, the IBSM distance is computed over the matrices.

I BSM(S, T) =
√∑

t
∑|Σ |

i (VS(t, i) − VT (t, i))2,whereVS(t, i) andVT (t, i) denote
the number of active events with label j ∈ Σ at time point t for e-esquences S and T
respectively. This requires e-sequences to have the same time-duration. To account for
e-sequences that do not have the same time-duration, all e-sequences are scaled using
linear interpolation to match the duration of the longest e-sequence in the dataset. The
running time of IBSM is O(|Σ | · γ), where γ is the maximum time duration of an
e-sequence in the whole dataset.

IBSM, likeDTW, does not consider the relations between event-intervals. As a result,
it cannot differentiate between the two e-sequences of Fig. 2. This is the only method
in this paper where the final result is affected by the “sampling rate”; all else remaining
the same, if we simply have more time-points due to increased time granularity, the
IBSM distance of two e-sequences will increase linearly with respect to the increase in
the number of time-points. Furthermore, due to the temporal scaling of the e-sequences
to match the maximum duration of an e-sequence γ in the whole dataset, this results
in various inconsistencies: the distance of two e-sequences, under IBSM, changes as
a function of γ , even if none of the two e-sequences’ duration is equal to γ .

3 A bipartite matching-based approach

Wepresent a distancemeasure, calledArtemis (Kostakis et al. 2011a), for comparing
e-sequences, as well as a method to compute it. We theoretically (in this Section) and
experimentally (in Sect. 6) demonstrate the superiority of Artemis against the three
existing state-of-the-art measures. In summary, Artemis is superior with respect to
the following three aspects:

123

O. Kostakis, P. Papapetrou

• Artemis is a metric One major shortcoming of these three competitors is that
they are not metric. More importantly they all violate the identity of indiscernibles
(or Leibniz’s Law). This suggests that sequences that highly differ in terms of
temporal relations may be assigned with a distance of 0. Hence, competitors are
not guaranteed to always provide the correct result as opposed to Artemis.
Furthermore, as described by Fig. 2, DTW and IBSM may provide arbitrarily bad
results; there is no bound on the number of relations that may differ, between two
sequences, while the two methods identify them as identical. Similarly, Matrix
is unable to distinguish between pairs of sequences that may contain even very
few event-intervals. It becomes, hence, a necessity when using DTW, Matrix, and
IBSM even under linear scan, to post-filter the results for removing false matches.

• Artemis is robust to noise In modern database systems, noise-tolerant retrieval
of structured data is a necessity; the queries are usually noisy versions of the objects
contained in the database. Hence, our retrieval method should tolerate noise. This
is clearly demonstrated in the noise robustness experiments (Sect. 6.2.2), where
Artemis outperforms all the other methods.

• The run-time of Artemis depends only on the size of the e-sequences
Artemis is the only method whose run-time complexity is a function only of the
size of the two e-sequences and does not depend on the size of the alphabet of the
whole dataset or other factors. The other methods become slow when the alphabet
size increases. Our experimental evaluation shows that Artemis is faster than
the competitors in 3 out of 8 real datasets and better than Matrix and IBSM in
5 out of 8 datasets. Nonetheless, when applying EBESM and scaling the database
size in a synthetic experiment (Sect. 6.3), speedups of over an order of magnitude
can be achieved against brute-force serial scan using Artemis.

3.1 Defining Artemis

Given two e-sequences S and T , the requirement for Artemis is to define their
distance by taking into account the temporal relations among the event-intervals while
satisfying the metric property. The overall similarity of two e-sequences is inferred
by determining an equivalence between pairs of event-intervals. The equivalence of a
pair of event-intervals belonging to different e-sequences is determined by the fraction
of common event-interval relations they are involved in. We use this to quantify the
distance between event-intervals. The goal, then, is to find the matching that yields the
minimum distance over all paired intervals. Thus, the objective of Artemis reduces
to finding the matching that induces the minimum sum of scores, which is the optimal
perfect matching. That score is the Artemis distance of the two e-sequences.

3.2 Computing Artemis

The computation of Artemis can be broken down to two steps: (a) the mapping step
and (b) the matching step. The procedure for calculating the Artemis distance of two
e-sequences is described in Algorithm 1.

123

On searching and indexing sequences of temporal intervals

The mapping step The first step is to map each e-sequence S to a sequence of multi-
sets of temporal relations between event-intervals. More specifically, for each event-
interval Si ∈ S we record the set of labeled relations of Si with S j ∈ S,∀ j 	= i in the
same e-sequence. Three multi-sets of labeled relations are computed as follows:

• Rl(Si) = {LR(S j , Si)|1 ≤ j < i}, which contains the labeled temporal relations
of Si with all event-intervals preceding Si in S.

• Rr (Si) = {LR(Si , S j)|i < j ≤ |S|}, which contains the labeled temporal rela-
tions of Si with all event-intervals succeeding Si in S, and

• R∅(Si) = {LR(∅, Si)}, which is a singleton with a labeled follow relation
between Si and ∅—an extra symbol such that ∅ /∈ Σ .

We additionally denote: R∅l(Si) = Rl(Si) ∪ R∅(Si).

Definition 4 (event-interval relation set) Given an e-sequence S, for each event-
interval Si ∈ S, the event-interval relation set of Si is defined as follows:

R(Si) = Rl(Si) ∪ Rr (Si) ∪ R∅(Si). (1)

Note that ∅ is introduced so that event-interval labels are also taken into account.
Specifically, e-sequences that differ in event-interval relations but share similar event
labels will be assigned with smaller distance values than e-sequences that differ in
both event labels and event-interval relations.
The matching step Given two e-sequences S and T , the matching step of Artemis
computes a distance value dm(Si , Tj) for each pair of event-intervals Si ∈ S and
Tj ∈ T as defined in Eq.2.

dm(Si , Tj)=
⎧
⎨

⎩

max{|S|, |T |} − |R∅l(Si) ∩ R∅l(Tj)| − |Rr (Si) ∩ Rr (Tj)|
max{|S|, |T |} , if Si .E=Tj .E

1, if Si .E 	=Tj .E
(2)

If in Eq.2 we would subtract |R(Si) ∩ R(Tj)| instead of the two intersections,
Artemis would violate the metric property in some instances; such a case are the
pair of Fig. 5b.

To handle the case of e-sequences of different size, “dummy” event-intervals, with
distance 1 from all other event-intervals, are added to the smaller e-sequence. We
denote the potentially augmented e-sequences by S ′ and T ′. In addition, |S ′| = |T ′| =
max{|S|, |T |}.

Let DS ′,T ′ be a |S ′| × |T ′| matrix, with DS ′,T ′(i, j) = dm(S′
i , T

′
j), S

′
i ∈ S ′ and

T ′
j ∈ T ′. We call DS ′,T ′ the event-interval distance matrix of S ′ and T ′. Given

DS ′,T ′ , Artemis reduces to computing the minimum score induced over all perfect
matchings, i.e., matchings that assign each and every event-interval in S ′ to exactly
one event-interval in T ′.

The optimal perfect matching can be found by the Hungarian algorithm (Munkres
1957); this is denoted by MinCostMaxBiparti teMatching(DistM) in Algorithm
1. The Hungarian algorithm operates on complete bipartite graphs with weighted
edges; in our case the vertices correspond to intervals in each e-sequence and the
weights on the edges are their interval-distances dm(S′

i , T
′
j). The algorithm returns a

123

O. Kostakis, P. Papapetrou

Algorithm 1 Computing Artemis
Input: Two Event-Interval Sequences S,T
Output: The distance score: Artemis(S,T)

for all intervals Si ∈ S do
compute R∅(Si),Rl (Si),Rr (Si)

end for
for all intervals Ti ∈ T do
compute R∅(Ti),Rl (Ti),Rr (Ti)

end for
S ′,T ′ = Augment(S,T)
// Compute all event-interval distances dm (S′

i , T
′
j)

for all S′
i ∈ S ′ do

for all T ′
j ∈ T ′ do

//update distance matrix
DistM(i, j) = dm (S′

i , T
′
j)

end for
end for
H(S ′,T ′) = MinCostMaxBipartiteMatching(DistM)

return
∑|S ′|

i=1 dm (S′
i , h(S′

i))

Fig. 7 Two e-sequences (time points are omitted) S and T used as an example for Artemis

set of edges so that each vertex is uniquely connected to another vertex, and the sum
of the edges’ weight is minimised.

The Hungarian algorithm takes as input the event-interval distance matrix DS ′,T ′ .
Let the output of the algorithm be the following matching H(S ′, T ′) = (h(S′

1), . . . ,
h(S′

|S ′|)) with an assignment cost C(S ′, T ′). By h(S′
i) ∈ H(S ′, T ′) we simply denote

the event-interval in T ′ that S′
i ∈ S ′ is matched to by the Hungarian algorithm.

Hence, the assignment costC(S ′, T ′) corresponds to the Artemis distance between
the original e-sequences S and T . Based on the above, given S ′, T ′, and H(S ′, T ′),
the Artemis distance of S and T is computed as follows:

Artemis(S, T) =
|S ′|∑

i=1

dm(S′
i , h(S′

i)). (3)

Example Fig. 7 shows two e-sequences S and T . Themapping step first computes the
event-interval relation multi-sets. For S, these are:
R∅l(S1) = {be f ore(∅, A)} and Rr (S1) = {overlaps(A, B), be f ore(A,C)}
R∅l(S2) = {be f ore(∅, B), overlaps(A, B)}, and Rr (S2) = {overlaps(B,C)}
R∅l(S3) = {be f ore(∅,C), be f ore(A,C), overlap(B,C)}, and Rr (S3) = ∅.

123

On searching and indexing sequences of temporal intervals

For T , these sets are:
R∅l(T1) = {be f ore(∅, A)} and Rr (T1) = {be f ore(A, B), be f ore(A, D)}
R∅l(T2) = {be f ore(∅, B), be f ore(A, B)}, and Rr (T2) = {overlaps(B, D)}
R∅l(T3) = {be f ore(∅, D), be f ore(A, D), overlaps(B, D)}, and Rr (T3) = ∅.
At the matching step the Hungarian algorithm would return H(S, T) = (T1, T2, T3),
hence the pairs, based on their labels, are (A, A), (B, B), and (C, D). Finally,
Artemis(S, T) = (2/3 + 2/3 + 1) = 7/3.

IfS contained an additional event, thenR∅l (Si) andRr (Si),∀i , would be appropri-
atelly augmented, whileR∅l(Tj) andRr (Tj), ∀ j , would remain the same. A dummy
interval would be added in T for the purpose of the Hungarian algorithm.

Complexity Let m = max(|S|, |T |). Then, at the mapping step, O(m2) relations are
enumerated, while the complexity of computing D(S, T) using hashing is O(m3).
The cost of applying the Hungarian algorithm to the two event-interval relation sets
results in a total time complexity of O(m3).

3.3 Lower bounding Artemis

We propose a lower bound to speed up similarity search using Artemis. The lower
bound can be computed in linear time and is based on the comparison of event label
counts. By knowing the number of labels in which two e-sequences differ, we can
determine a lower bound for their Artemis distance.

Given an e-sequence S, we define a |Σ |-dimensional vector vS , that stores, for
each event label in Σ , the count of event-intervals in S that share that label.

Theorem 1 Given S,T ,a lower bound for Artemis(S, T) is given by:

ArtemisLB(S, T) = k

2
+

(
m − k

2

) (
k

2m

)
= k − k2

4m
, (4)

where k = ||vS − vT ||1 and m = max(|S|, |T |).
Proof Under Artemis, when an interval is matched to another interval with a dif-
ferent label, or to a dummy interval when |S| 	= |T |, it induces a partial score of
1. Knowing that ||vS − vT ||1 = k we can be sure that Artemis(S, T) ≥ k/2; in
the worst case, those k event-intervals are divided into k/2 in each e-sequence, and
matched with each other contributing a score of dm(Si , Tj) = 1 for each of the k/2
pairs.

If |S| = |T | = k
2 , then Artemis(S, T) = k/2. If not, then the fact that ||vS −

vT ||1 = k is reflected in the matching scores of the rest of the event-intervals (due to
differences in Rl(Si), Rl(Tj), Rr (Si), and Rr (Tj)). So, given m = max(|S|, |T |),
with m > k

2 , the rest of the m − k/2 event-intervals of each e-sequence would have
at least k/2 non-common relations with their matched counterparts. Thus, increasing
Artemis(S, T) by an additional (m − k/2) · (k/2m). �

The proposed lower bound focuses on label counts and not on relations of event-
intervals. When the differences of two e-sequences are restricted to event-interval

123

O. Kostakis, P. Papapetrou

labels, the lower bound is equal to the distance obtained by Artemis. On the other
hand, when the e-sequences share the same event labels and differ only in the type of
event-interval relations, then the lower bound is inefficient and yields zero score. The
tightness and pruning power of the lower bound is studied on eight datasets in Sect. 6.

3.4 Metric property

In this sectionwe show thatArtemis is ametric. Specifically,we prove that it satisfies
the triangle inequality.

Theorem 2 Artemis satisfies the triangle inequality.

Proof For any three e-sequences A, B, and C we will show that

Artemis(A, C) ≤ Artemis(A,B) + Artemis(B, C).

Weprove this by showing a stronger statement. Consider the following threematch-
ings: h1 = H(A,B),with h1(Ai) = Bj , Ai ∈ A, Bj ∈ B and h2 = H(B, C), with
h2(Bj) = Ck , with Bj ∈ B, Ck ∈ C, given by the Hungarian Algorithm for the two
pairs of e-sequences, we construct a matching h3 so that h3 = h2 ◦h1. In other words,
if Ai ∈ A is matched to Bj ∈ B by h1, and Bj is matched to Ck ∈ C by h2, then h3
matches Ai to Ck .

We prove that even under thesematchings, the cost induced by h3 is always less than
or equal to the sum of the costs induced by h1 and h2. Since h3 induces a score greater
or equal to that of the matching returned by the Hungarian algorithm the triangle
inequality holds for Artemis.

We can formulate Artemis(A,B) as

|B′|∑

i=1

dm(Ai , h(Ai)) =
∑

i

(
1 − (pi j + qi j)

max{|A|, |B|}
)

,

with pi j = |R∅l(Ai) ∩ R∅l(Bj)| and qi j = |Rr (Ai) ∩ Rr (Bj)|.
Our proof is based on showing that the inequality holds on an interval-pair level

(dm(Ai ,Ck) ≤ dm(Ai , Bj) + dm(Bj ,Ck)) for all triples Ai , Bj ,Ck where h1(Ai) =
Bj and h2(Bj) = Ck . Thus, the inequality will also hold under the summation. We
have two cases:
Case INot all three event labels are the same: In this case the triangle inequality holds,
trivially. For example, if Ai .E = Bj .E and Ai .E 	= Ck .E , then we have

dm(Ai ,Ck) = 1 ≤ dm(Ai , Bj) + 1 = dm(Ai , Bj) + dm(Bj ,Ck). (5)

Case II All three event labels are the same: In this case we first have to prove that the
inequality holds when |A| = |B| = |C|.

123

On searching and indexing sequences of temporal intervals

Suppose that the triangle inequality does not hold for a triple of matched intervals.
Then, we have:

dm(Ai , Bj) + dm(Bj ,Ck) < dm(Ai ,Ck)

⇒ 1 − (pi j + qi j)/|A| + 1 − (p jk + q jk)/|A| < 1 − (pik + qik)/|A|
⇒ |A| + (pik + qik) < (pi j + qi j) + (p jk + q jk) (6)

Since all the three intervals have the same labels, pik ,pi j ,p jk ≥ 1 due to the R∅

relations. Theminimum possible value for pik+qik is 1, and in that case themaximum
possible value of (pi j +qi j)+ (p jk +q jk) is |A|+1, i.e. the |A|−1 common labeled
relations excluding the twoR∅, can be divided in all possible combinations between
(pi j + qi j) and (p jk + q jk) so that none appears in both of the sets. This last part is
important since if a labeled relation appears in both (pi j + qi j) and (p jk + q jk), that
would imply that it also appears between Ai and Ck , so it would be pik + qik > 1.
Hence, even in this extreme case, we get that |A|+1 < |A|+1, Inequality 6 does not
hold since the inequality should be strict. For the general case, due to the pigeonhole
principle, each additional common labeled relation in (pi j +qi j)+ (p jk +q jk)would
be identical to an existing common labeled relation and thus, signifying the existence
of this labeled relation in (pik + qik). So, the above inequality would never hold and
the triangle inequality is always satisfied.

The above proof addressed the case where |A| = |B| = |C|. For example if |A| ≤
|B| < |C|, the added dummy intervals for the matching between |B| and |C| are
not paired with any interval, or exist at all, in the matching between A and B. For
the general case, the above proof is not sufficient, since it can be applied to only
min{|A|, |B|, |C|} intervals of each e-sequence. Thus we apply the technique to only
the possible subset of intervals. The generalization uses the same technique.

We identify three cases: (a) |A| ≤ |B| < |C|, (b) |B| < |A| < |C|, and
(c) |A| < |C| < |B|. The remaining may be derived by swapping A and C.

For this, the Artemis distance can be broken down into two coefficients; one for
the cost induced by the intervals participating in all three matchings and the other for
the cost induced by the extra (the rest of the) intervals. However, for costs induced by
the extra intervals the triangle inequality holds, i.e. the sums of unit costs of interval
additions and deletions satisfy the triangle inequality since they correspond to the
space of non-negative integers which is metric.

We still have to prove that for the first coefficient the triangle inequality still holds.
The logic remains the same as before but the equations change slightly.
Case a The triangle inequality on the interval-pair level can be written as follows:

dm(Ai ,Ck) ≤ dm(Ai , Bj) + dm(Bj ,Ck)

⇒ 1 − (pik + qik)/|C| ≤ 1 − (pi j + qi j)/|B| + 1 − (p jk + q jk)/|C |
⇒ |C|(pi j + qi j)/|B| + (p jk + q jk) ≤ |C| + (pik + qik).

Again, using the same reasoning as before, for (pik + qik) to be equal to 1, ((pi j +
qi j) + (p jk + q jk)) can be at most |B| + 1. Even when (pi j + qi j) = |B| (so that the
|C|/|B| factor is preferred) the triangle inequality is not violated since both parts are

123

O. Kostakis, P. Papapetrou

equal. From the pigeonhole principle, additional common relations on the lhs would
be common on the rhs too. Thus the triangle inequality could not be violated.
Case b Similarly, supposing the triangle inequality does not hold, this case can be
reduced to: |C|(pi j +qi j)/|A|+ (p jk +q jk) > |C|+ (pik +qik) but (pi j +qi j),(pi j +
qi j), (p jk + q jk) are greater or equal to 1 and less than or equal to |A| − 1. The same
approach is applicable.
Case c Same as above.

Hence, Artemis satisfies the triangle inequality. �
In addition, we can show thatArtemis satisfies Leibniz’s law. Assume d(S, T) =

0,we provide an overviewof the proof thatS is identical toT . First, for a zero-distance,
it means that |S| = |T |, otherwise the dummy vertices would induce positive score. In
addition, the labels of the i-th intervals should be the same;Si .E = Ti .E,∀i , otherwise
R∅(Si) 	= R∅(Ti). Starting from left to right, the first two intervals should have the
same interval-relation in both e-sequences, RL(S1,S2) = RL(T1, T2); otherwise
positive distance would be induced by the clause |R∅l(Si) ∩ R∅l(Tj)|. Inductively,
due to the same reason, all corresponding relations in S and T should be the same.

Since the maximum matching produced by the Hungarian algorithm is symmetric,
for any two e-sequences S and T , it holds that Artemis(S, T) = Artemis(T ,S).
Finally, by definition Artemis(S,S) = 0, for any e-sequence, and Artemis(S, T) ≥
0, for any pair of e-sequences. Consequently, Artemis is a metric.

4 Indexing Artemis

Let D = (X1, . . . , X |D|) be an e-sequence database, where each Xi is an e-sequence.
Note that each Xi can be of arbitrary size and length. Given a query e-sequence Q,
we want to find the e-sequence Xi in D, that is closer to Q under Artemis.

Onewayof solving the aboveproblem is to applyArtemis in a brute-forcemanner.
That is, we compute theArtemis(Xi , Q) distance score for each e-sequence Xi ∈ D
against Q, and report that e-sequence Xi with the smallest score, which effectively
is the nearest neighbor of Q. We may additionally speedup this brute-force search
by applying ArtemisLB at each step during the search. It is apparent that the brute-
force approach can be prohibitive for very large e-sequence databases. So, an indexing
scheme is needed for fast e-sequence retrieval.

We propose an embedding-based framework for indexing e-sequences under
the Artemis distance measure. We call this framework EBESM; an acronym for
Embedding-Based E-Sequence Matching. Our approach has many similarities with
existing embedding-based methods for indexing large database sequences under non-
metric and metric spaces (Papapetrou et al. 2009a, 2011; Venkateswaran et al. 2006;
Athitsos et al. 2007).

The key differences of EBESM against embedding-based indexing methods are:

• It does not require any training as opposed toEBSM (Papapetrou et al. 2011),RBSA
(Papapetrou et al. 2009a), Athitsos et al. (2007), and Venkateswaran et al. (2006),
where the pre-processing time is prohibitive for very large datasets. The first three
employ time consuming cross-validation based on query samples, while the last

123

On searching and indexing sequences of temporal intervals

one selects reference sequences based on two heuristics, but still is cubic to the
number of database sequences.

• It is query-sensitive, i.e., reference sequences are chosen based on the query. The
key difference from the query-sensitive embeddings proposed by Athitsos et al.
(2007) is that in our case the reference sequence selection is performed in an online
manner based on the query size, without requiring any training, such as boosting.

• Furthermore, in Athitsos et al. (2007) prior knowledge of the query domain is
required in order to perform the training step, as opposed to EBSM, which is
query-independent.

Compared to alternative existing indexing structures and techniques for multi-
dimensional data, EBESM is the only robust index applicable to event-interval
sequences. More specifically:

• Existing multi-dimensional vector-indexing structures (Gaede and Günther 1998),
such as R-trees (Guttman 1984), KD-trees (Bentley and Friedman 1979), or Quad-
trees (Finkel and Bentley 1974)) are not directly applicable to our setting, since
they require the data to be defined in a vector space, which is not the case for
event-interval sequences. Even if we considered a vector-based representation
similar to the one used by Artemis_LB, the dimensionality would be based on the
alphabet size, which can be arbitrarily large (e.g., 254 for ASL2); hence yielding
these techniques inapplicable, since it has been shown that their performance
rapidly deteriorates as the data dimensionality increases (Orlandic and Yu 2002).
In particular, it has been shown that when the vector dimensionality becomes
higher than 15–20, sequential scan becomes faster than using any vector indexing
structure to answer most of the queries (Weber et al. 1998). We confirm this in our
experiments, in Sect. 6.3.3.

• Locality Sensitive Hashing (LSH) (Gionis et al. 1999) is a hash-based indexing
technique typically applicable to high-dimensional data. A major requirement for
the LSH framework to work is that the underlying distance function (in our case,
Artemis) should be LSH-able, i.e., locality sensitive. While being a metric is a
required condition for this property to hold, it is not sufficient. Hence, deriving
an LSH scheme for Artemis is still a non-trivial task. Furthermore, and to the
best of our knowledge, even for simpler distance functions such as the string edit
distance, there is no LSH indexing method with theoretical guarantees.

• Recently presented indexing methods, Relation Index (Kostakis and Gionis 2015)
and Karmalego (Moskovitch and Shahar 2015) were devised for subsequence
matching in databases of event-interval sequences. Similarly to Artemis, they
both focus on the relations between intervals. However, subsequence matching
is orthogonal to full-sequence matching, which is the focus of this paper. More
importantly, they have been devised for exact subsequence matching, and cannot
be retrofitted for solving our problem.

123

O. Kostakis, P. Papapetrou

4.1 Defining the embedding function

The embedding function F used by our proposed indexing scheme is defined as a
mapping of an e-sequence X to a real vector space. Each dimension of the vector
space is linked to a specific e-sequence, which we call reference e-sequence.

Given a reference e-sequence R and a target e-sequence X , we define a 1-
dimensional embedding FR , that maps X into a real number FR(X), such that

FR(X) = Artemis(R, X) . (7)

The proposed embedding functionF is based on the extension of the above formulation
by using a set of reference e-sequencesR = {R1, . . . , Rd} instead of one. Effectively,
this constructs a d-dimensional embedding F such that:

F(Q,R) = (FR1(Q)/d, . . . , FRd (Q)/d) . (8)

F(Xi ,R) = (FR1(Xi)/d, . . . , FRd (Xi)/d) . (9)

This embedding can be seen as a variant of the basic Lipschitz embedding. The set
of reference e-sequences R is crucial to the performance of F in terms of nearest
neighbor retrieval, and hence it needs to be properly selected.

4.2 Selecting the reference e-sequences

We initially select a set U ⊆ D of k e-sequences from D, where k is relatively larger
than the target size d of R. Set U contains those k e-sequences in D that have the
maximum variance in their pairwise Artemis distance, and will be used to construct
set R during the query-embedding step. This guarantees that the selected reference
e-sequences will be as different from each other as possible, which strengthens the
quality of the embedding index: if two reference e-sequences R1 and R2 are highly
similar to each other, then their embedding values FR1(Xi) and FR2(Xi) for any
database e-sequence Xi will also be highly similar. Hence, using both R1 and R2 for
the construction of F will not be that beneficial.

After selecting U , we record the sizes of all e-sequences in U and insert them into
a B+-tree. This is used later during the online construction of the query embedding
(Sect. 4.4) to facilitate efficient nearest neighbor queries on the e-sequence sizes in U .

4.3 Constructing the database embedding

Using the above formulation, we can now construct the database embedding index,
given a set U of k reference e-sequences and an e-sequence database D.

More concretely, each e-sequence Xi ∈ D is mapped to an embedding vector
F(Xi ,U) using all reference e-sequences in U . Note that this is done by applying
Artemis for eachpair (Xi , R j),∀ j ∈ [1, k]. This results in a set of |D| k-dimensional
vectors that constitute the database embedding index.

123

On searching and indexing sequences of temporal intervals

Complexity The offline computation of the embedding index F takes

O

⎛

⎝
|D|∑

i=1

k∑

j=1

C(Artemis(Xi , R j))

⎞

⎠ ,

where C(Artemis(Xi , R j)) is the computational cost of Artemis between Xi and
R j . Hence, the total offline computational cost is

O

⎛

⎝
|D|∑

i=1

k∑

j=1

(max{|Xi |, |R j |})3
⎞

⎠ = O(|D|km3),

where m = max(|Xi |, |R j |).

4.4 Constructing the query-sensitive embedding

The construction of the query embedding is an online process and its key novelty
is that it is “query-sensitive”. Effectively, this means that the selection of reference
e-sequences for creating the query embedding depends on the query’s size and it is
performed in an online manner. The intuition behind this approach is that reference
e-sequences of size “closer” to that of the query will provide more “informative”
Artemis distance values. Hence, we want to construct R so that it includes the top
d e-sequences (d ≤ k) of U that are most similar to the query in terms of size.

Specifically, given a query e-sequence Q, we perform a d-nearest neighbor query
on the B+-tree used to index the sizes of the e-sequences in U , and retrieve the set of d
most similar, in terms of size, e-sequences to |Q|. This set of d reference e-sequences
will be considered as our R for the filter-and-refine search process.

Finally, the query-sensitive embedding vector F(Q,R) is computed online, by
applying Artemis d times, for each Ri ∈ R.
Complexity The computational time for the query-sensitive embedding construction
is

O

(

logk + O

(
d∑

i=1

C(Artemis(Ri , Q))

))

,

as it depends on the NN search on the B+-tree index and the embedding construction.
This time is typically negligible compared to the total running time of Artemis
between Q and all e-sequences in D.

4.5 Contractiveness

Contractiveness is an important property of some types of embeddings. When it holds,
contractiveness can be used to guarantee that filter-and-refine retrieval will always

123

O. Kostakis, P. Papapetrou

return the true k-NNs, for any query (Hjaltason and Samet 2003; Athitsos et al. 2007).
We show that embedding F is contractive, which is a result of the metric property of
Artemis.

Consider two e-sequences X1, X2 and a set of d reference sequences R =
{R1, . . . , Rd}. LetD(X1, X2) denote the Artemis distance between X1 and X2, and
DE (X1, X2) denote their distance in the embedding space. By the triangle inequality
it holds that:

|D(X1, R j) − D(X2, R j)| ≤ D(X1, X2),∀R j ∈ R .

Or, equivalently,

|FRj (X1) − FRj (X2)| ≤ D(X1, X2),∀R j ∈ R .

Hence, computing the sum for all reference objects R j ∈ R, we get

d∑

j=1

|FRj (X1) − FRj (X2)| ≤ dD(X1, X2) (10)

⇒
d∑

j=1

|FRj (X1) − FRj (X2)|
d

≤ D(X1, X2) (11)

⇒ |F(X1,R) − F(X2,R)| ≤ D(X1, X2) (12)

⇒ DE (X1, X2) ≤ D(X1, X2) . (13)

Hence, F is contractive.

5 Filter-and-refine retrieval

5.1 The filter step

Given a query Q we identify the d closest in size to the query reference e-sequences.
These e-sequences form the final set of reference e-sequences R. We then use R to
construct the query embedding vector F(Q,R) as described in Sect. 4.4.

We need to identify the part of the database embedding that will be used for the
given Q. Recall that the database embedding was constructed using the initial set of k
reference e-sequences, thus resulting in a set of |D| k-dimensional vectors. For each
vector F(Xi ,U) we useR to convert it to F(Xi ,R). Since R ⊆ U , this can be done
simply by selecting the coordinates of F(Xi ,U) that correspond to R.

Next, we identify the l most similar database embedding vectors F(X j ,R) by
performing an l-nearest neighbor search in the vector space ofF . Equivalently, the set
of l e-sequencesL ⊆ D forwhichF(X j ,R) has the smallest distance toF(Q,R)will
be identified. During this step, we exploit the metric property of Artemis in order
to decrease the number of comparisons of F(Q,R) against the database embedding.

123

On searching and indexing sequences of temporal intervals

Note that l is a parameter that is set by the user. Different values for l can provide
trade-offs between accuracy and runtime cost.

Given a query Q, an e-sequence Xi ∈ D, and a reference e-sequence R j ∈ R,
based on the triangle inequality, ∀Q, Xi , R j it holds that

|Artemis(Xi , R j) − Artemis(Q, R j)| ≤ Artemis(Q, Xi) .

Or, equivalently,

|FRj (Xi) − FRj (Q)| ≤ Artemis(Q, Xi) . (14)

Hence, Eq.14 can be used to “skip” parts of the vector comparisons in the embed-
ding space. We achieve that by performing an additional step during the construction
of the embedding index. Specifically, after computing each vector F(Xi ,R) we sort
the values of the coordinates in ascending order.

Then, at query time, we start by computing F(Q,R) as follows: each time we
compute F(Q, R j), we apply the inequality of Eq.14. We prune Xi from the set of
candidate nearest neighbour solutions if for some coordinate j it holds that

|FRj (Xi) − FRj (Q)| > upperNN .

Note that upperNN denotes the l-th largest distance of the e-sequences in L to the
query Q. In other words, if Xi is guaranteed not to be in L we eliminate it from the
filter step.

5.2 The refine step

The goal is to find the nearest neighbor of Q among the e-sequences inL. This is done
via standard lower-bound pre-filtering search(Keogh 2002). Alternatively, speedups
can be achieved at this step by parallellizing the individual distance computations.

We note that selecting appropriate values for l increases the chance that the true
nearest neighbor, i.e., the one given by the brute-force Artemis search, would be
among the l selected candidates of the filter step. In other words, the accuracy of
EBESM highly depends on l. On the other hand, a greater value for l imposes a higher
computation cost since the number of candidate e-sequences, for which Artemis
will be computed, increases. Hence, there is a trade-off between accuracy and retrieval
run-time, which is tuned by the value of l.

To recap, the following three parameters are involved in the index construction and
in the filter-and-refine framework (Fig. 8):

• k number of reference e-sequences used to construct the database embedding index,
and are chosen from D using the maximum variance heuristic; these e-sequences
form set U ;

• d number of reference e-sequences used to construct the query embedding index,
and are chosen from U based on how similar they are to the query in terms of
length; these e-sequences form setR;

123

O. Kostakis, P. Papapetrou

• l number of database embedding vectors that are chosen to be compared to the
query embedding vector during the filter step; the e-sequences corresponding to
these l vectors form set L.

6 Experiments

We have benchmarked and evaluated the methods presented in this paper. First, we
provide anoverviewof the useddatasets inSect. 6.1. Section6.2 contains the evaluation
of Artemis, while Sect. 6.3 contains the experimental evaluation of EBESM.

In summary, we benchmarked the performance of Artemis in terms of classifica-
tion, clustering purity, noise robustness, and scalability, on eight real datasets, against
three state-of-the-art methods: Matrix (Kostakis et al. 2011b), DTW (Kostakis et al.
2011a), and IBSM (Kotsifakos et al. 2013). The implementations of these methods
have beenmade publicly available.2 In addition,we studied the performance ofEBESM
on a large synthetic dataset as well as on a real dataset.We also practically demonstrate
how other indexing methods, such as R-trees, are unable to provide any benefits.

6.1 Datasets

We used the following eight real datasets:

• ASL (Papapetrou et al. 2009b) Event labels correspond to grammatical or syntactic
forms (e.g., wh-word, wh-question, verb, noun, etc.) as well as facial or gestural
expressions (e.g., head tilt right, rapid head shake, eyebrow raise, etc.). An e-
sequence is an expression of a sentence using sign language.

• ASL2 This is a new dataset of American Sign Language, with a larger number of
e-sequences and additional event labels.

• Auslan (Mörchen and Fradkin 2010) The e-sequences were derived from the Aus-
tralian Sign Language dataset available in the UCI repository.3 Each event-interval
represents a word like girl or right.

• Blocks (Mörchen and Fradkin 2010) Event labels correspond to visual primitives
obtained from videos of a human hand stacking colored blocks describing which
blocks are touched and the actions of the hand (e.g., contacts blue or red, attached
hand red, etc.). E-sequences represent scenarios such as atomic actions (pickup)
or complete scenarios (assemble).

• Context (Mörchen and Fradkin 2010) Event labels were derived from categorical
and numerical data describing the context of a mobile device carried by humans
in different situations. Each e-sequence represents one of five different scenarios
such as street or meeting.

• Hepatitis (Patel et al. 2008) The dataset contains information about patients who
have either Hepatitis B or Hepatitis C. The event-intervals represent the results of
63 regular tests. Each e-sequence describes a series of tests taken by a patient.

2 http://users.ics.aalto.fi/kostakis/software/ArtemisJournal.
3 http://www.ics.uci.edu/~mlearn/MLRepository.html.

123

http://users.ics.aalto.fi/kostakis/software/ArtemisJournal
http://www.ics.uci.edu/~mlearn/MLRepository.html

On searching and indexing sequences of temporal intervals

Table 2 Dataset summary

Dataset # of e-seq. Max e-seq time e-seq. length # of labels

Min Max Mean

ASL 873 5957 4 41 18 216

ASL2 1839 14968 4 93 23 254

Auslan2 200 30 9 20 12 12

Blocks 210 123 3 12 6 8

Context 240 284 47 149 81 54

Hepatitis 498 7555 15 592 108 147

Pioneer 160 80 36 89 56 92

Skating 530 6829 27 143 44 41

• Pioneer (Mörchen and Fradkin 2010) This dataset was constructed from the
Pioneer-1 dataset available in the UCI repository. event-intervals correspond to
the input provided by the robot sensors. Each e-sequence in the dataset describes
one of three moving scenarios of the robot: gripper, move, turn.

• Skating (Mörchen and Fradkin 2010) event-intervals describe muscle activity and
leg position of 6 professional In-Line Speed Skaters during controlled tests at 7
different speeds on a treadmill. Each e-sequence represents a complete movement
cycle.

Further details regarding these datasets are displayed in Table2.
In order to acquire large enough datasets, we have implemented a generator, called

INT-GEN, of artificial e-sequences. The main characteristic of our generator is to
produce large datasets with statistical properties similar to those of the real datasets.
Data Generator INT-GEN The generator takes the following seven inputs:

• M the number of e-sequences to be produced,
• [Nmin, Nmax] a lower and upper limit for the number of event-intervals per e-
sequence,

• maxtime the maximum length of a sequence, which corresponds to the maximum
possible start point of an event-interval in the e-sequence,

• |Σ | the alphabet size,
• {μ, std} the mean and standard deviation of the length of the event-intervals.

We select the number n of temporal intervals with uniform probability within
[Nmin, Nmax]. We then proceed to select an equal number of event-interval starting
points. The points are selected uniformly from [0,maxtime]. By selecting the duration
of each interval from a Gaussian distribution and adding it to the starting point, we
acquire the ending point. Finally, the label of each interval is also chosen with uniform
probability from the alphabet.

A Python implementation of INT-GEN can be found online.4

4 http://users.ics.aalto.fi/kostakis/software/INT-GEN.zip.

123

http://users.ics.aalto.fi/kostakis/software/INT-GEN.zip

O. Kostakis, P. Papapetrou

6.2 Benchmarking Artemis

In this section we benchmark Artemis against the other methods; VectorDTW,
Relation Matrix, and IBSM. In Sect. 6.2.1 we examine the performance of the
methods in the task of NN classiciation, while in Sect. 6.2.2 we evaluate their robust-
ness to noise, under 1-NN queries. In Sect. 6.2.3 we investigate the run-time and
scalability of the methods, and finally in Sect. 6.2.4 we examine the achieved speedups
when using ArtemisLB .

6.2.1 k-NN classification and clustering purity

We explored the applicability of Artemis against state-of-the-art measures for the
tasks of classification and clustering. More precisely, we studied the performance of
Artemis in terms of the following two metrics:

• k-NN classification accuracy corresponding to the fraction of correctly classified
samples using the k-NN classifier under Artemis;

• Clustering purity defined as the ratio of all samples that agree in class label with
the majority element of their cluster under k-medoids.

In terms of k-NN classification, previous work (Kotsifakos et al. 2013) has demon-
strated that IBSM performs better for most of the datasets used in this paper. However,
evaluating full-matching distance measures based on their k-NN classification per-
formance is not meaningful for all of the datasets. For example, the class-labels for
the ASL and ASL2 datasets are determined by the presence of single interval-labels
that attribute a particular label to a sequence (e.g., wh-word). Thus, one should just
examine the presence of any of those intervals in the e-sequence, instead of performing
k-NN classification using a full-sequence distance measure. Similar arguments hold
for cases where a class-label is attributed by a small combination of intervals, where
subsequence methods (Kostakis and Papapetrou 2015; Kostakis and Gionis 2015) are
suitable.

The only datasets used in this paper and in (Kotsifakos et al. 2013), for which k-NN
classification is meaningful using full-sequence distance measures, are the Blocks and
Pioneer datasets. The class-labels are derived by describing high-level actions. For the
Blocks dataset, all methods provide classification accuracy of more than 99%, and
Artemis is close second in purity. For the Pioneer dataset, Artemis achieves the
best performance together with Matrix. However, Artemis provides significantly
higher clustering purity. The results are depicted in Table3; the purity is derived from
executing 100 times the k-medoids algorithm and taking the mean, while the k-NN
classification results are derived by applying tenfold cross validation.

6.2.2 Noise robustness

In modern database systems, noise-tolerant retrieval of structured data is a necessity;
the queries are usually noisy versions of the objects contained in the database. Hence,
our retrieval method should tolerate noise. Artemis has been shown to be highly
robust to noise, superior to Matrix and DTW when noise is present in the form of

123

On searching and indexing sequences of temporal intervals

Table 3 1-NN classification
and clustering purity

Dataset Artemis DTW IBSM Matrix

Blocks 1NN 99 100 100 99

Blocks Purity 98.3 84.9 100 92

Pioneer 1NN 97.2 93.5 93.5 97.2

Pioneer Purity 79.4 65 63.8 63.8

temporally shifted intervals; detailed results can be found in our earlier work (Kostakis
et al. 2011a). Here, we demonstrate the superiority of Artemis against all discussed
methods, including the recently published competitor method IBSM. The methods are
benchmarked against two types of artificial noise; the first one is induced by temporally
shifting the intervals by an offset, while the second is induced by swapping their labels.
In all cases, the noise was added off-line and all methods were tested on exactly the
same distorted e-sequences, in order to rule out differences in score caused by the
randomness factor.

For the first type of noise, each event in an e-sequence has probability p of being
shifted; with equal probability of being shifted ahead or back in time. An additional
distortion parameter d, as a ratio of the total time-duration of the e-sequence, denotes
maximum allowed temporal shift of the intervals. The actual offset values are selected
with uniform probability from (0, d · l], where l is the duration of e-sequence S.

The second type of noise is based on swaps of event-interval labels, while maintain-
ing the original durations and the relations of the event-intervals. Given an e-sequence,
the swap probability parameter determines if an event-interval will have its label
swapped with that of another event-interval; every interval in the e-sequence is con-
sidered independently. The other event-interval is chosen uniformly at random from
the whole e-sequence. The tested swap probability parameters values were 0.2 to 1,
with step 0.2.

Noise was imputed into e-sequences that then served as the queries in 1-NN search
tasks. Given a database of e-sequences, a copy of an e-sequence is distorted, based on
the parameter values, and then its nearest neighbor is found by scanning the database
and using a distance function to calculate the distances. This is performed for each
and every e-sequence in the database. Ideally, we would like each noisy e-sequence
(query) to be matched to the e-sequence from which it originated. This procedure is
evaluated by using two metrics: retrieval accuracy and rank of nearest neighbour.

Before presenting the results, we provide a more general definition of the term
retrieval accuracy in the context of similarity search, which is used in this paper.
Consider an e-sequence database D and a set of query e-sequences Q. Let I define a
set of indices I, such that there is a one-to-one mapping between Q and I, i.e., each
query Q j ∈ Q is associated with an index in I j ∈ I and vice-versa. In addition, each
index I jI is pointing to a target database e-sequence in D. Given a distance function
D and a query Q j we denote as NND(Q j) the nearest neighbour e-sequence found
by function D. Using the above, we define nearest neighbour retrieval accuracy or
simply retrieval accuracy as the fraction of queries inQ forwhich their corresponding
nearest neighbour e-sequences determined by function D, are the same as the target
e-sequences defined in the set of indices I. More formally:

123

O. Kostakis, P. Papapetrou

∈

Fig. 8 The main steps of the EBESM framework

retrieval accuracy = |{ j ∈ [1, |Q|] : NND(Q j) = I j }|
|Q| (15)

Hence, the noise robustness benchmark is evaluated using the following metrics:

• Retrieval accuracy for noise robustness defined by Eq.15, where |Q| is the set of
noisy queries and I is the set of indices, such that I j is referring to the originating
counterpart of Q j in D, for each Q j ∈ Q and I j ∈ I. In other words, for this
experiment, it is the fraction of noisy queries for which the originating e-sequence
is retrieved;

• Rank of nearest neighbor for each query, the number of database e-sequences with
distance less than or equal to that of the originating counterpart.

Figures9 and 10 show indicative results for the label-swap type of noise the perfor-
mance of Artemis against IBSM, DTW and Matrix in terms of retrieval accuracy
(Figs. 9a, 10a) and rank of nearest neighbor. In 6 out of 8 datasets, the order of per-
formance is similar to that in Fig. 9. Artemis is superior against all other methods.
Matrix came second and IBSM only performed better than DTW. Figure9b denotes
the ranks of the nearest neighbor.

For the cases of the Auslan2 (Fig. 10) and Blocks datasets, IBSM provides better
accuracy than the other methods. This is due to the fact that these datasets cotain
multiple e-sequences that describe the same scenarios, but the durations of the events
differ. Due to that, Artemis, DTW and Matrix correctly identify those scenarios
as identical, which distorts their scores in this experiment, while IBSM identifies the
correct counterpart simply due to the absolute time durations of each interval. Instead,

123

On searching and indexing sequences of temporal intervals

Swap Probability

C
or

re
ct

 M
at

ch
es

0

0.2

0.4

0.6

0.8

1

Matrix
DTW
Artemis
IBSM

Rank of nearest neighbor ratio
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

D
at

ab
as

e
ra

tio

0

0.2

0.4

0.6

0.8

1

Matrix
DTW
Artemis
IBSM

(a) (b)

Fig. 9 Swaps-noise robustness, ASL. a ASL: retrieval accuracy, b ASL: ranks of NN. Swap probability
1.0.

Swap Probability

C
or

re
ct

 M
at

ch
es

0

0.2

0.4

0.6

0.8

1
Matrix
DTW
Artemis
IBSM

Rank of nearest neighbor ratio
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

D
at

ab
as

e
ra

tio

0

0.2

0.4

0.6

0.8

1

Matrix
DTW
Artemis
IBSM

(a) (b)

Fig. 10 Swaps-noise robustness, Auslan2. a Auslan2: retrieval accuracy, b Auslan2: ranks of NN. Swap
probability 1.0.

in the presence of noise, the performance of IBSM deteriorates to the same or worse
levels compared to the other methods. However, we see in Fig. 10b that even for those
datasets Artemis still provides better overall Nearest Neighbor ranks, as it does for
all datasets.

Similar findings apply to the interval-offset type of noise. Figure11a depicts the
retrieval accuracy for the fourmethods over theASLdataset, as a function ofmaximum
allowed distortion d, for p = 0.6. Figure11b depicts the ranks of the nearest neighbors,
for d = 0.6 and p = 0.6. Overall, the two methods that rely on the interval-relations
are more robust than the two other methods that rely on transforming e-sequences to
strings. Artemis performs best, and Matrix is marginally wosre.

6.2.3 Scalability

We benchmark the four methods in terms of scalability. For each method, we count the
total time it takes to compute the whole |D|× |D| distance matrix of each real dataset.
The results are depicted in Table4. No speedup technique has been applied for any

123

O. Kostakis, P. Papapetrou

Distortion

0

0.2

0.4

0.6

0.8

1
C

or
re

ct
 M

at
ch

es

Matrix
DTW
Artemis
IBSM

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Rank of nearest neighbor ratio

0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e
ra

tio

DTW
Artemis
Matrix
IBSM

(a) (b)

Fig. 11 Offset-noise robustness, ASL. a ASL: retrieval accuracy, offset probability p = 0.6, bASL: ranks
of NN. Offset probability p = 0.6, max distortion d = 0.6

Table 4 Total run-time for
computing distance matrices

Dataset Artemis DTW Matrix IBSM

ASL 24′′ 1′21′′ 18′57′′ 103′55′′
ASL2 3′49′′ 10′2′′ 126′32′′ 1263′23′′
Auslan2 2′′ 0.9′′ 2.8′′ 0.9′′
Blocks 0.4′′ 0.4′′ 0.9′′ 3.8′′
Context 3′40′′ 9′′ 1′53′′ 25′′
Hepatitis 156′57′′ 2′27′′ 31′29′′ 13′55′′
Pioneer 14′′ 3′′ 45′′ 20′′
Skating 3′37′′ 51′′ 2′21′′ 9′37′′

The values in bold are the ones
that are better for each
experiment (for each row)

of the methods. Artemis, DTW, and Relation Matrix have been implemented
in Java. The code of IBSM, provided by the authors of (Kotsifakos et al. 2013), is
in Matlab, hence direct comparison of wall-clock run-times may not be applicable
between IBSM and the other three methods. Nevertheless, we witness explicit trends
in the run-times that are in accordance with the asymptotic complexity. We witness
that Atremis is faster than all other methods on the ASL and ASL2 datasets, and
ties in first place with DTW for the Blocks dataset. Artemis compared to IBSM
and Matrix is better on two more datasets; 5 out of 8 in total. DTW performs faster
for the rest of the datasets, which is expected since it solves an easier problem. Our
experiments were performed on a PC running Ubuntu Linux, equipped with Intel Core
i5-3470 CPU (3.20GHz).

Additionally, we study the run-times of our methods as a function of the e-
sequences’ size (number of event intervals), and the size of the dataset’s alphabet
Σ . We are only interested in how the methods scale as a function of each parameter.
We normalize the results for each method based on its own run-time value when the
parameter we examine has the lowest value; i.e. for sequence sizes equal to 10, and
alphabet size |Σ | = 10, respectively. We do this in order to eliminate any discrimina-
tion of anymethod, positive or negative, due to specific implementations. Furthermore,
as explained already, the run-time of IBSM also changes linearly as function of the

123

On searching and indexing sequences of temporal intervals

10 1 10 2 10 3 10 4

Sequences size

10 0

10 2

10 4

10 6

10 8
N

or
m

al
iz

ed
 ru

nn
in

g
tim

e

Matrix
DTW
Artemis
IBSM

10 1 10 2 10 3 10 4

Alphabet size

10 -2

10 -1

10 0

10 1

10 2

10 3

N
or

m
al

iz
ed

 ru
nn

in
g

tim
e

Matrix
DTW
Artemis
IBSM

(a) (b)

Fig. 12 Scalability experiments over synthetic datasets. a (log–log) varying e-sequence size |S|,b (log–log)
varying alphabet size |Σ |

“sampling rate” and the maximum time-duration of any e-sequence in the dataset; the
rest of the methods are immune to any scaling of the time axis. As a result, there is no
fair way to compare absolute run-time values. We used INT-GEN to create datasets
of 200 e-sequences (hence we perform 40000 comparisons), each containing 1000
intervals, and the alphabet size is |Σ | = 1000. The maximum time-duration of the
e-sequences was restricted to 400.

Overall, the results are in line with each method’s asymptotic complexity. The
run-times as a function of the e-sequences’ size are depicted in Fig. 12a. IBSM is
affected by the number of event intervals in an e-sequence only when processing
the e-sequence in order to create the vectors for the appropriate time-points; hence
the increase in running-time is sub-linear. For DTW, the running time depends on the
number of time-points that an event starts or ends; the duration of the e-sequences is
an upper bound of that. Hence, DTW’s quadratic complexity is evident only when the
ammount of distinct points increases significantly (from 10 to 102 and from 102 to 103

intervals). As expected, for Matrix the increase in running time is almost quadratic
due to the enumeration of all the relations, when creating the matrices. For Artemis
the running time increases almost with cubic rate.

Figure12b depicts the results for varying alphabet size. IBSM and DTW scale lin-
early, as the size of the vectors at each time point increases linearly. Matrix scales
quadratically for large sizes of |Σ |. Finally, for Artemis we witness that the total
running time decreases as a function of the alphabet-size. This is an implementation
side-effect when computing the intersections in dm(Si , Tj) (Eq. 2); we can avoid com-
puting the set-intersections when then labels are different and, instead, return ‘1’ in
constant time. Thus speeding up the comparison of e-sequences when two intervals
have low probability of having the same label. The naive implementation of simply
computing the intersections achieves constant running-time as a function of |Σ |.

123

O. Kostakis, P. Papapetrou

Table 5 ArtemisLB tightness
and pruning power

Dataset LB Tightness 1-NN pruning power

ASL 0.8837 0.7931

ASL2 0.8653 0.7393

Auslan2 0.5216 0.8619

Blocks 0.5513 0.8835

Context 0.6444 0.6370

Hepatitis 0.7166 0.4599

Pioneer 0.6189 0.4855

Skating 0.6202 0.6106

6.2.4 Lower-bounding

To assess the quality of ArtemisLB , we compute its pruning power for 1-NN queries
in the database and its tightness. The pruning power is defined as the ratio of pruned
comparisons, using Artemis, over the total number of comparisons that would have
been required if the database were serially scanned. The tightness is defined as the
average ratio of the lower bound distance over the distance given by Artemis.

The assessment of ArtemisLB is summarized in Table5. The higher values are
observed on ASL and Blocks, for tightness and pruning power respectively, contrary
toAuslan2 andHepatitis which yield the lowest scores for tightness and pruning power
respectively.

6.3 Benchmarking EBESM

The performance of EBESM has been evaluated both on synthetic and real data. In
Sect. 6.3.1 we benchmark the performance of EBESM in terms of accuracy and prun-
ing power using synthetic data, varying the index size (number of reference sequences).
In Sect. 6.3.2 we demonstrate the applicability of EBESM on the largest of our real
datasets, ASL2, and show that similar trade-offs between accuracy and pruning power
can be achieved even for smaller index sizes. Finally, in Sect. 6.3.3 we show the infe-
riority of existing vector-indexing structures, as the number of dimensions increases.

For the synthetic data experiment, we used INT-GEN to create a database of
100, 000 e-sequences. The rest of the input parameters were set as follows: Nmin =
50, Nmax = 100,maxtime = 1000, |Σ | = 50,μ = 500, std = 500. These parameters
were set based on the corresponding statistics of the real datasets used in Sect. 6.1. For
the real data experiment, we used the largest real dataset of our collection, i.e., ASL2.
For both experiments, we used the brute-force linear scan under Artemis, which is
described in Sect. 4, as our baseline method. Lower-bounding using ArtemisLB was
employed for pruning. We evaluated EBESM in terms of the following two metrics:

• Retrieval accuracy for NN search for this experiment, it is the fraction of queries
for which the nearest neighbor retrieved by EBESM agrees with the true nearest
neighbor (given by linear scan). More formally, defined by Eq.15, |Q| is the set

123

On searching and indexing sequences of temporal intervals

of queries and, in this case, each index I j ∈ I is the true nearest neighbour of Q j

in D.
• Retrieval efficiencywhich is quantified in two ways: (1) retrieval run-time, defined
for each query as the ratio of the run-time of EBESM over the run-time of the
brute-force approach, i.e., linear scan using Artemis:

retrieval run-time = run-time of EBESM

run-time of brute-force linear scan
,

and (2) pruning power, which, similar to lower-bounding, corresponds to the per-
centage l of e-sequences that have been filtered by the embedding index ofEBESM.

6.3.1 Evaluation on synthetic data

We first studied the performance of EBESM on a synthetic dataset. More precisely, we
benchmarked the method on a synthetic dataset two orders of magnitude larger than
our largest real dataset (i.e., ASL2). For our experiments, we selected 100 queries,
uniformly at random, from the database, and repeated the experiment 10 times. In our
results we report the average retrieval accuracy and efficiency.

We should note that the tightness of ArtemisLB on the synthetic dataset was
0.71 and the pruning power was 0.60. Effectively, this suggests that for performing a
nearest neighbor query,we should expect (on average) to compute the actualArtemis
distance for approximately 40% of the database, hence achieving a speedup of up to
a factor of 2.5.

For determining the collection of reference e-sequences, we initially selected the
1000 e-sequences with the highest variance, i.e., we set k=1000. Note that this set was
disjoint from the query set.We then experimented with different sizes ofR and studied
trade-offs between l and |R|. Note that |R| defines the size of the embedding index,
while l regulates the fraction of the e-sequence database thatwill be passed to the refine-
step for computing the actual Artemis distance. Hence, trade-offs between accuracy
and retrieval efficiency can be obtained while varying l, for different embedding index
sizes.

Table6 depicts the performance in terms of retrieval run-time ofEBESM for different
number of reference e-sequences in R. The best performance was obtained when 20
e-sequences were chosen. We can see that EBESM can achieve an accuracy of 100%
with a retrieval run-time of 8.91%. This means that by using 20 reference e-sequences,
EBESM retrieves the correct nearest neighbour with 100% probability, while requiring
only 8.91% of the brute-force run-time. The actual run-time when using 20 reference
e-sequences was on average 34.03 s per query, using a single CPU.

As the number of reference e-sequences increases, the retrieval run-time also
increases due to the required time for the embedding step, while still maintaining
at least an order of magnitude speedup with respect to the brute-force.

In addition, Table7 depicts the pruning power in terms of percentages of database
e-sequences, l, that were filtered during the filter step of EBESM. As expected, when
20 reference e-sequences are selected, the filter step of EBESM can eliminate over
93% of the database e-sequences, while maintaing an accuracy of 100%, and finally

123

O. Kostakis, P. Papapetrou

Table 6 Trade-offs between retrieval runtime versus accuracy of EBESM on the synthetic dataset: 100
queries, 100,000 e-sequences, Nmin = 50, Nmax = 100,maxtime = 1000, |Σ | = 50, μ = 500, and
std = 500

Accuracy 20 10 40 80 160

100% 8.91% 12.23% 13.32% 14.40% 15.57%

99% 5.89% 9.57% 9.89% 10.12% 11.42%

98% 4.21% 8.25% 8.12% 8.83% 9.32%

95% 3.16% 7.56% 7.68% 7.18% 8.18%

90% 2.89% 6.19% 7.08% 6.32% 7.92%

85% 2.58% 5.57% 6.33% 5.45% 6.67%

80% 2.05% 4.53% 4.96% 5.02% 5.79%

Each column corresponds to parameter d, i.e., the number of reference e-sequences used by EBESM
The values in bold are the ones that are better for each experiment (for each row)

Table 7 Trade-offs between pruning power (percentage of filtered e-sequences l), versus accuracy of
EBESMon the synthetic dataset: 100 queries, 100,000 e-sequences, Nmin = 50, Nmax = 100,maxtime =
1000, |Σ | = 50, μ = 500, and std = 500

Accuracy 20 10 40 80 160

100% 6.98% 10.12% 11.22% 12.15% 12.79%

99% 4.23% 7.17% 7.45% 8.87% 9.19%

98% 3.56% 5.78% 6.12% 6.98% 7.87%

95% 2.25% 5.12% 5.57% 5.96% 6.85%

90% 2.02% 4.01% 5.17% 5.75% 6.12%

85% 1.87% 3.37% 4.02% 5.21% 5.89%

80% 1.18% 2.44% 2.58% 2.87% 3.88%

Each column corresponds to parameter d, i.e., the number of reference e-sequences used by EBESM
The values in bold are the ones that are better for each experiment (for each row)

pass over to the computationally expensive refine step only a small fraction (6.98%)
of the database e-sequences.

The reader may wonder whether these parameters are optimal for every dataset.
The answer to this question is not that straightforward. As it has been shown in sim-
ilar approaches, e.g., by Papapetrou et al. (2011), the size and contents (reference
e-sequences) of the embedding highly depend on the database to be indexed. Hence,
in order to achieve the best trade-offs between accuracy and retrieval run-time or l,
the proper reference e-sequences should be chosen. This can be achieved by using
a sample of the expected queries and determining the appropriate set of reference
e-sequences, just as demonstrated in this paper.

6.3.2 Evaluation on real data

Next, we evaluated EBESM on real data. For this experiment we used the largest real
dataset of our collection, i.e., ASL2. In addition, we used a set of 100 queries selected

123

On searching and indexing sequences of temporal intervals

Table 8 Trade-offs between pruning power (percentage of filtered e-sequences l) versus accuracy ofEBESM
on ASL2

Accuracy 5 10 20 40

100% 11.86% 13.98% 15.50% 17.71%

99% 7.99% 10.46% 11.56% 12.11%

98% 6.78% 8.90% 9.89% 11.55%

95% 5.55% 8.10% 8.87% 9.56%

90% 3.61% 5.56% 6.88% 8.12%

85% 2.91% 4.47% 5.50% 6.88%

80% 2.62% 4.11% 4.89% 5.81%

Each column corresponds to parameter d, i.e., the number of reference e-sequences used by EBESM
The values in bold are the ones that are better for each experiment (for each row)

uniformly at random from the database. Again, we repeated the experiments for 10
random query sets.

The selection of reference e-sequences for EBESMwas performed by first selecting
a set of 100 e-sequences with the highest variance, i.e., we set k=100. Table8 depicts
the performance in terms of pruning power of EBESM on ASL2, for different number
of reference e-sequences in R. In this case, the best performance was obtained when
5 e-sequences were chosen.

We can see that EBESM can achieve an accuracy of 100% when the percentage
of filtered e-sequences is 11.86% of the database size. Again, this suggests that by
using 5 reference e-sequences, EBESM retrieves the correct nearest neighbour with
100% probability, while requiring only 11.86% of the brute-force. The actual run-
time when using 5 reference e-sequences was on average 10ms per query. As opposed
to the synthetic dataset case, the best performance was achieved at a lower number of
reference e-sequences, and it monotonically deteriorates as the number of reference
e-sequences increases.

6.3.3 Benchmarking against R-trees

As discussed earlier, multi-dimensional vector-indexing structures are hampered by
the curse of dimensionality, and hence are unable to handle efficiently vector spaces
with more than 15–20 dimensions (Orlandic and Yu 2002). To experimentally confirm
this claim, we benchmarked the performance of an R-tree (Guttman 1984) on all
eight real datasets in terms of 1-NN search. Since R-trees (like all vector-indexing
techniques) require the data to be in a vector form, loading the e-sequences directly to
the R-tree at their original form was not possible and had to be converted to vectors.
We considered two vector-based representations. In the first case (we call this CASE
I), each e-sequence was converted to a vector of size equal to the alphabet size of
the dataset. Each value in the vector was equal to the number of occurrences of the
corresponding alphabet label in that e-sequence. In the second case (CASE II), we
considered all pairs of relation types that can occur between the event labels in the
dataset; hence, producing a total of 7 × |Σ |2 dimensions (|Σ | is the alphabet’s size),

123

O. Kostakis, P. Papapetrou

Table 9 R-tree benchmark;
average ratio of pruned
leaf-nodes

Dataset CASE I (%) CASE II (%)

ASL 0 0

ASL2 0 0

Auslan2 28 0

Blocks 25 0

Context 0 0

Hepatitis 0 0

Pioneer 0 0

Skating 0 0

since there are seven possible relations that can occur between any pair of event
labels. The reader might notice that these two representations are already employed
by Artemis_LB and Matrix, respectively.

We quantify the performance (pruning power) of an R-tree as the average ratio of
pruned visits to the R-tree leaf-nodes during the queries. The leaf-nodes store data
elements, i.e., e-sequences; visiting all leaf-nodes corresponds to linear scan. Table9
depicts the results over all the datasets. For CASE I, the R-tree avoids visiting some
leaf-nodes only for Blocks and Auslan2, since their dimensionality is rather low, 12
and 8 respectively. The performance for all other datasets is equivalent to linear scan
(in practical run-time much worse), due to their very high dimensionality. For CASE
II, all datasets performed similar to linear scan (again in practice much worse) due to
the high number of dimensions.

In practice the actual performance values in terms of retrieval runtime is much
worse than linear scan. In our experiments, we witnessed instances performing up to
100 times slower than linear scan, which is in accordance with the results presented in
Orlandic andYu (2002). In addition,we need to point out thatwhen considering vector-
based indexing methods (and the transformation of e-sequences to vectors happens
like in cases I or II), one should expect to experience one or more of the limitations
exhibited by Artemis_LB and Matrix.

6.4 Lessons learned

Solution to Problem 1 Artemis is the only one that satisfies the metric property,
and solves Problem 1. IBSM and DTW do not consider interval relations. Hence, as
described using Fig. 2, pair-comparison results by IBSM and DTW can be arbitrarily
bad. While Relation Matrix enumerates interval relations, it fails to distinguish
scenarios such as those in Fig. 4. Since DTW, IBSM and Matrix violate the metric
property, and in particular sub-property (ii) as described in Problem 1, even under
linear-scan the returned results would require a post-query filtering step to verify
them against false matches. For the same reason, when devising indexing methods,
theoretical guarantees for trade-offs between retrieval accuracy and efficiency cannot
be easily provided, while in some cases approximate solutions are inevitable.

123

On searching and indexing sequences of temporal intervals

Noise robustness In our evaluation, Artemis proved to be the most robust method
to two types of noise. The reason is not only the focus on the relations of the event-
intervals, which is commonwithRelation Matrix, but also the underlying nature
of the method that attempts to find correspondence between event-intervals. The later
allows Artemis to easily identify the originating counterpart of noisy e-sequences;
e-sequences with the same number of each label yield overall lower distance scores
than others with different labels and size. In addition, Artemis provides better NN
rank values. Furthermore, Artemis is the only one of the 4 methods that does not
produce false matches. On the other hand, DTW examines the e-sequences point-by-
point and the event-intervals out of context. This makes it more sensitive to minor
edit operations. Consequently, DTW displayed a decline in performance in accordance
with the increase of noise. IBSM suffers from the same problem as DTW, since it also
ignores the temporal relations between events.

The examined types of artificial noise retained the same number of event intervals
and labels. If the noise is in the form of removing intervals, the problem becomes that
of subsequence search. In this case, existing work (Kostakis and Gionis 2015) has
demonstrated that methods focusing on the relations between intervals provide better
search accuracy and recall.
Time complexity Artemis is the only measure whose complexity is a function of
only the number of event-intervals. The other methods explicitly depend also on the
size of the dataset alphabet. In addition, IBSM depends on the absolute time duration
of e-sequences as well as on the time duration of the largest e-sequence of the dataset.
We noticed that DTW was in the majority of cases faster than the rest of the methods.
This is expected since DTW solves an easier problem. Still, it performed slower than
Artemis for ASL and ASL2, due to the alphabet size; for those datasets Artemis
performs best. For Artemis, IBSM, and Matrix, Artemis performs better in 5
out 8 datasets compared to the other two methods.

For the scenario of querying a database, Artemis has an important advantage. IBSM
requires pre-processing the whole dataset and normalizing the e-sequences based on
the time duration of the longest one. As a result, the score of any pair of e-sequences
changes depending on the length of the longest one in the dataset. More importantly,
IBSM requires a-priori knowledge of the length of the longest possible time duration of
a query sequence, otherwise the whole database needs to be pre-processed. Consider a
scenario where we receive consecutive queries of increasing length and all of them are
longer than any sequence in the database. In this case, we would need to pre-process
the whole database once for each query. The same applies toIBSM,DTW, andMatrix
for the case of the alphabet. If the whole alphabet of the dataset is not a-priori known,
then no vectors or matrices can be precomputed, and hence the whole database would
need to be processed for every query. Instead, for Artemis, it is possible to perform
the mapping step (described in Sect. 3.2) offline for the e-sequences of the database.
Lower-bounding To speed up search using Artemis, our lower bound technique
ArtemisLB proved to be significantly tight; the average tightness ranged from 52.1%
(Auslan2 dataset) up to 88% (ASL dataset). This translates to a pruning power of
45.9% to 88.3% over the brute-force sequential search of the database. Overall, the
lower bound is tight enough tofilter outmost irrelevant candidates, still not tight enough

123

O. Kostakis, P. Papapetrou

to render useless the information provided by Artemis. For searching through large
databases, an indexing scheme is still needed.
Indexing In terms of indexing, EBESM can achieve a speedup of over an order of mag-
nitude compared to the brute-force approach. The synthetic data experiment suggests
that using only 20 reference e-sequences for the embedding construction, EBESM
retrieves the correct nearest neighbour with 100% probability, while requiring only
8.91% of the brute-force run-time. Similar conclusions are drawn from the real data
experiment. The only requirement ofEBESM is to have prior knowledge of the expected
query sizes in order to optimize the performance of the query-sensitive embedding.
Finally, we confirmed the inefficiency of vector-based indexing methods, since they
are suffer from the curse of dimensionality.
Overall Artemis is highly robust versus the two types of noise and that allows to
find the originating counterparts of noisy queries. In certain cases Artemis can be
used out-of-the-box for classification purposes. While Artemis’ expected run-time
might appear to be the highest, it performs better than the baseline methods when
the alphabet size grows large. Its asymptotic complexity can be circumvented by the
use of lower bounding and indexing techniques such as the ones we presented. For
identifying exact similarity of e-sequences, Artemis is the only one that does not
violate the identity of indiscernibles. As a result, Artemis is the only reliable method
for searching and retrieving similar event-interval sequences.

7 Related work

The vast amount of existingwork on sequences of event-intervals has been focusing on
pattern and association rulemining, while limited attention has been given to similarity
and indexing.

Within the area of mining sequences of event-intervals, several approaches (Lin
2003; Villafane et al. 2000) consider the extraction of patterns, where event-intervals
appear sequentially and are not labeled, while others (Giannotti et al. 2006) consider
temporally annotated sequential patterns where transitions from one event to another
have a time duration. A graph-based approach (Hwang et al. 2004) represents each
temporal pattern by considering only two types of relations between event-intervals
(follow and overlap), while in (Ale andRossi 2000), the lifetime of an item is defined as
the time between its first and the last occurrence and the temporal support is calculated
with respect to this event-interval.

A large variety of Apriori-based techniques (Kam and Fu 2000; Abraham and
Roddick 1999; Chen and Petrounias 1999; Höppner 2001; Höppner and Klawonn
2001; Mooney and Roddick 2004; Laxman et al. 2007) for finding temporal pat-
terns, episodes, and association rules on interval-based event sequences have been
proposed. In addition, more advanced candidate generation techniques and tree-based
structures have been employed by various methods (Sacchi et al. 2007; Moskovitch
and Shahar 2015; Winarko and Roddick 2007; Papapetrou et al. 2005, 2006, 2009b;
Moskovitch and Shahar 2009) which apply efficient pruning techniques, thus reducing
the inherent exponential complexity of the mining problem, while a non-ambiguous
event-interval representation is defined by Wu and Chen (2007) that considers start

123

On searching and indexing sequences of temporal intervals

and end points of event sequences and converts them to a sequential representation.
The main weakness of performing such mapping is the fact that the candidate gener-
ation process becomes more cumbersome while introducing redundant patterns. An
alternative approach (Chen et al. 2010) that extends Allen’s relations and employs
a sequence-based representation that takes into account the co-occurrences of labels
over time (referred to as “co-incidence representation”). This representation results
in a more compact mapping. Nonetheless, as we also demonstrated in Sect. 1, such
sequential representations cannot handle temporal relations between event-intervals
of the same label.

Another line of research has studied the problem of mining semi-partial orders of
time intervals (Mörchen and Fradkin 2010). Such patterns have been shown to be
more flexible than patterns over full intervals, as well as more useful as features for
classification.Moreover, several pattern reduction approaches have been developed for
event-interval sequences.One approach is to look formargin-closed patterns (Mörchen
2010; Mörchen and Fradkin 2010), which can significantly reduce the number of
reported patterns by favoring longer patterns and suppressing shorter patterns with
similar frequencies. Furthermore, an efficient method for mining closed patterns of
interval-based events has been proposed (Chen et al. 2011). For a more thorough
review of recent work in this particular area the reader may refer to Chen et al. (2015).
Finally, a unifying view of temporal concepts and data models has been formulated
in (Mörchen 2007) to enable categorization of existing approaches to unsupervised
pattern mining from symbolic temporal data; time point-based methods and interval-
based methods as well as univariate and multivariate methods are considered.

As far as supervised learning methods are concerned, several methods have been
proposedwithin the context ofmulti-variate time series classification (Batal et al. 2009,
2012; Moskovitch and Shahar 2014b; Fradkin and Mörchen 2015). These approaches
first map each time series channel to a set of event-intervals, and then extract patterns
(e.g., frequent or closed) of event-intervals. The intuition is that such patterns convey
the dominant temporal dependencies across the time series channels. Next, the time
series are mapped to feature vectors using the most important features given by, e.g.,
the chi-square test. These vectors are then passed to traditional classifiers, such as
an SVM. The usefulness of these methods has been demonstrated extensively within
healthcare and more particularly for classifying electronic health records (Batal et al.
2013) and for prediction of renal damage in patients with diabetes (Klimov et al.
2015). A novel multi-variate time series discretization method has been proposed
for identifying the cutoffs that will best discriminate among classes using the interval
distribution (Moskovitch and Shahar 2014a). Despite their applicability and efficiency
the problems studied by these methods are orthogonal to ours.

Similarity matching for sequences of event-intervals has been given limited atten-
tion in the literature. Several metrics have been proposed, such as Relation Matrix
(Kostakis et al. 2011b), Artemis (Kostakis et al. 2011a), and IBSM (Kotsifakos et al.
2013). The first method simply enumerates all event-interval relations in the two
e-sequences and compares them as bags-of-words, the second one attempts to find cor-
responding pairs between the two e-sequences, while the third maps the e-sequences
to vectors and employs the Euclidean distance.

123

O. Kostakis, P. Papapetrou

Intervals provide greater encoding power over distinct values. As a result, they
may be employed in different scenarios, which however are orthogonal to ours. For
example, Yi and Roh (2004) examine events where the observations are intervals
and the observation values have upper and lower limits; despite that, the events are
instantaneous. In our case, the observations are ‘precise’ in the sense that the labels
are clearly defined, but the duration of the events are time intervals.

Similarity matching is crucial for other types of sequences and data structures. For
the case of time series, standard measures include the Euclidean distance (Faloutsos
et al. 1994) and several dynamic programming-based methods, such as Dynamic Time
Warping (DTW) (Kruskall and Liberman 1983) and variants (e.g., cDTW (Sakoe and
Chiba 1978), EDR (Chen and Özsu 2005), ERP (Chen and Ng 2004)) that are robust
to misalignments and warps in the time axis. Alternative methods allowing for gaps
in the alignment include, e.g., LCSS (Maier 1978) and variants (Han et al. 2007).
Moreover, similar methods have been proposed for strings, such as the Edit distance
and the Needleman-Wunch method (Needleman and Wunsch 1970), methods based
on q-grams (Yang et al. 2008; Li et al. 2008), as well as methods for subsequence
matching and local alignment, such as Smith-Waterman (Smith and Waterman 1981),
the Burrows-Wheeler Transforms (BWT) (Burrows and Wheeler 1994), or WHAM
(Li et al. 2012), which have highly applicability in biological sequences. Finally,
variants of graphmatching for graphs exist in the literature, such as those of Umeyama
(1988); Bunke (2000); Kostakis (2014). An extensive discussion on these methods is
far beyond the scope of this paper. The competitor methods ofVectorDTW andIBSM
are adaptations of some of the above methods in the context of sequences of temporal
intervals.

Finally, several indexingmethods have been proposed for sequential data. One fam-
ily of methods includes embedding-based schemes where reference objects are used
for mapping the original complex space to a vector space. Such indexing mechanisms
have been proposed for time series (Papapetrou et al. 2011) and biological sequences
(Venkateswaran et al. 2006; Papapetrou et al. 2009a). Alternative vector indexing
techniques, such as R-trees (Guttman 1984), KD-trees (Bentley and Friedman 1979),
Quad-trees (Finkel and Bentley 1974), and LSH (Gionis et al. 1999) are not directly
applicable to our problem setting. The diversion ad advantages of EBESM compared
to these schemes are extensively discussed in Sect. 4.

8 Conclusions

We studied the problem of comparing sequences of event-intervals and presented
Artemis, a robust and efficient distance measure for solving the problem. We
proved that Artemis is metric under our problem-setting and provided a linear-time
lower-bound for speeding up its computation. In addition, we introduced an indexing
method, EBESM, for nearest neighbour search under Artemis. The method is based
on embeddings and it can achieve speedups of over an order of magnitude compared to
brute-force search. The proposed methods were tested on real datasets from multiple
different domains as well as a large synthetic dataset.

Directions for future work include the study of the problem of subsequence match-
ing in sequences of interval-based events as well as devising on-line algorithms, where

123

On searching and indexing sequences of temporal intervals

the active intervals are given in a streaming or bursty fashion. Furthermore, the dis-
tance functions that we presented required at least quadratic time with respect to the
the length of the e-sequences. It would be interesting to study the use of randomized
algorithms in an effort to provide faster solutions.

Acknowledgements The work of Orestis Kostakis was supported in party by the Helsinki Doctoral Educa-
tion Network in Information and Communications Technology (HICT). The work of Panagiotis Papapetrou
was supported in part by the Stockholm City Council (Stockholms Läns Landsting).

References

Abraham T, Roddick JF (1999) Incremental meta-mining from large temporal data sets. In: ER ’98: Pro-
ceedings of the Workshops on Data Warehousing and Data Mining, pp 1–37

Ale JM, Rossi GH (2000) An approach to discovering temporal association rules. In: Proceedings of the
ACM Symposium On Applied Computing, pp 294–300

Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843
Athitsos V, Hadjieleftheriou M, Kollios G, Sclaroff S (2007) Query-sensitive embeddings. ACM Trans

Database Syst 32(2). doi:10.1145/1242524.1242525
Batal I, Sacchi L, Bellazzi R, Hauskrecht M (2009) Multivariate time series classification with temporal

abstractions. In: FLAIRS
Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M (2012)Mining recent temporal patterns for event

detection in multivariate time series data. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, pp 280–288

Batal I,ValizadeganH,CooperGF,HauskrechtM (2013)A temporal patternmining approach for classifying
electronic health record data. ACM Trans Intell Syst Technol 4(4):63:1–63:22

Bentley JL, Friedman JH (1979) Data structures for range searching. ACM Comput Surv 11(4):397–409.
doi:10.1145/356789.356797

Berendt B (1996) Explaining preferred mental models in Allen inferences with a metrical model of imagery.
In: Proceedings of the Conference of the Cognitive Science Society, pp 489–494

Bergen B, Chang N (2005) Embodied construction grammar in simulation-based language understanding.
In: Construction grammars: cognitive grounding and theoretical extensions, vol 3, pp 147–190

BunkeH (2000) Recent developments in graphmatching. In: IEEE 15th International Conference on Pattern
Recognition, vol 2, pp 117–124

Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm. Tech. Rep. 124,
Systems Research Center, Palo Alto. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.
6774

Chen X, Petrounias I (1999) Mining temporal features in association rules. In: Proceedings of the 3rd
European Conference on Principles and Practice of Knowledge Discovery in Databases, Springer, pp
295–300

Chen L, Ng R (2004) On the marriage of l p-norms and edit distance. In: VLDB, pp 792–803
Chen L, Özsu MT (2005) Robust and fast similarity search for moving object trajectories. In: SIGMOD,

pp 491–502
Chen YC, Jiang JC, Peng WC, Lee SY (2010) An efficient algorithm for mining time interval-based

patterns in large database. In: Proceedings of the 19th ACM International Conference on Information
and Knowledge Management, CIKM ’10, pp 49–58

Chen YC, Peng WC, Le SY (2011) CEMiner- an effcient algorithms for mining closed patterns from
interval-based data. In: Proceedings of the IEEE International Conference on Data Mining (ICDM)

Chen YC, Weng JTY, Hui L (2015) A novel algorithm for mining closed temporal patterns from interval-
based data. KAIS 46(1):151–183

Faloutsos C, RanganathanM,Manolopoulos Y (1994) Fast subsequence matching in time-series databases.
In: Proceedings of the 1994 ACMSIGMOD International Conference onManagement of Data, ACM,
New York, NY, USA, SIGMOD ’94, pp 419–429

Finkel RA, Bentley JL (1974) Quad trees: a data structure for retrieval on composite keys. Acta Inf 4:1–9.
doi:10.1007/BF00288933

Fradkin D, Mörchen F (2015) Mining sequential patterns for classification. Knowl Inf Syst 45(3):731–749

123

http://dx.doi.org/10.1145/1242524.1242525
http://dx.doi.org/10.1145/356789.356797
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://dx.doi.org/10.1007/BF00288933

O. Kostakis, P. Papapetrou

Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2):170–231
Giannotti F, Nanni M, Pedreschi D (2006) Efficient mining of temporally annotated sequences. In: Pro-

ceedings of the 6th SIAM Data Mining Conference, vol 124, pp 348–359
Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of

the 25th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, VLDB ’99, pp 518–529. http://dl.acm.org/citation.cfm?id=645925.671516

GuttmanA (1984)R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984ACM
SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, SIGMOD
’84, pp 47–57. doi:10.1145/602259.602266

Han TS, Ko SK, Kang J (2007) Efficient subsequence matching using the longest common subsequence
with a dual match index. In: International Workshop onMachine Learning and Data Mining in Pattern
Recognition, Springer, pp 585–600

Hjaltason G, Samet H (2003) Properties of embedding methods for similarity searching in metric spaces.
IEEE Trans Pattern Anal Mach Intell 25(5):530–549

Höppner F (2001) Discovery of temporal patterns: learning rules about the qualitative behaviour of
time series. In: Proceedings of the European Conference on Principles of Knowledge Discovery in
Databases, pp 192–203

Höppner F, Klawonn F (2001) Finding informative rules in interval sequences. In: Proceedings of the
International Symposium on Advances in Intelligent Data Analysis, pp 123–132

Hwang SY, Wei CP, Yang WS (2004) Discovery of temporal patterns from process instances. Comput Ind
53(3):345–364

Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust
Speech and Signal Process 23(1):67–72

Kam P, Fu AW (2000) Discovering temporal patterns for interval-based events. In: Proceedings of the 2nd
International Conference on Data Warehousing and Knowledge Discovery, pp 317–326

Keogh E (2002) Exact indexing of dynamic time warping. In: Proceedings of the 28th International Con-
ference on Very Large Data Bases (VLDB), pp 406–417

Klimov D, Shknevsky A, Shahar Y (2015) Exploration of patterns predicting renal damage in patients with
diabetes type II using a visual temporal analysis laboratory. J Am Med Inform Assoc 22(2):275–289

Kosara R, Miksch S (2001) Visualizing complex notions of time. Stud Health Technol Inform 1:211–215
Kostakis O (2014) Classy: fast clustering streams of call-graphs. Data Min Knowl Discov 28(5–6):1554–

1585
Kostakis O, Gionis A (2015) Subsequence search in event-interval sequences. In: Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM,
pp 851–854

KostakisO, PapapetrouP (2015) Finding the longest common sub-pattern in sequences of temporal intervals.
Data Min Knowl Discov 29(5):1178–1210

Kostakis O, Papapetrou P, Hollmén J (2011a) Artemis: assessing the similarity of event-interval sequences.
In: Proceedings of the Conference on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD 2011), pp 229–244

Kostakis O, Papapetrou P, Hollmén J (2011b) Distance measure for querying arrangements of temporal
intervals. In: Proceedings of Pervasive Technologies Related to Assistive Environments

Kotsifakos A, Papapetrou P, Athitsos V (2013) IBSM: Interval-based sequence matching. In: Proceedings
of SIAM Conference on Data Mining, pp 596–604

Kruskall JB, Liberman M (1983) The symmetric time warping algorithm: from continuous to discrete. In:
Time warps, Addison-Wesley

Laxman S, Sastry P, Unnikrishnan K (2007) Discovering frequent generalized episodes when events persist
for different durations. IEEE Trans Knowl Data Eng 19(9):1188–1201

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys
10(8):707–710

Li C, Lu J, Lu Y (2008) Efficient merging and filtering algorithms for approximate string searches. In:
International Conference on data Engineering (ICDE)

LiY,Patel JM,TerrellA (2012)Wham: ahigh-throughput sequence alignmentmethod.ACMTransDatabase
Syst (TODS) 37(4):28

Lin JL (2003) Mining maximal frequent intervals. In: Proceedings of the ACM Symposium On Applied
Computing, pp 624–629

123

http://dl.acm.org/citation.cfm?id=645925.671516
http://dx.doi.org/10.1145/602259.602266

On searching and indexing sequences of temporal intervals

MaierD (1978)The complexity of someproblemson subse- quences and supersequences. JACM25(2):322–
336

Mooney C, Roddick JF (2004) Mining relationships between interacting episodes. In: Proceedings of the
4th SIAM International Conference on Data Mining

Mörchen F (2007) Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor Newsl
9:41–55

Mörchen F (2010) Temporal patternmining in symbolic time point and time interval data. In: Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, ACM,
KDD ’10, pp 2:1–2:1

Mörchen F, Fradkin D (2010) Robust mining of time intervals with semi-interval partial order patterns. In:
Proceedings of the SIAM International Conference on Data Mining, pp 315–326

Moskovitch R, Shahar Y (2009)Medical temporal-knowledge discovery via temporal abstraction. Proceed-
ings of the AMIA Annual Symposium 2009:452–456

Moskovitch R, Shahar Y (2014a) Classification-driven temporal discretization of multivariate time series.
Data Min Knowl Discov 29(4):871–913

Moskovitch R, Shahar Y (2014b) Classification of multivariate time series via temporal abstraction and
time intervals mining. Knowl Inf Syst 45(1):35–74

Moskovitch R, Shahar Y (2015) Fast time intervals mining using the transitivity of temporal relations.
Knowl Inf Syst 42(1):21–48

Munkres J (1957)Algorithms for the assignment and transportation problems. J Soc IndApplMath 5(1):32–
38

Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino
acid sequence of two proteins. J Mol Biol 48(3):443–453

Orlandic R, Yu B (2002) A retrieval technique for high-dimensional data and partially specified queries.
Data Knowl Eng 42(1):1–21. doi:10.1016/S0169-023X(02)00023-X

Pachet F, Ramalho G, Carrive J (1996) Representing temporal musical objects and reasoning in the MusES
system. J New Music Res 25(3):252–275

Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2005) Discovering frequent arrangements of temporal
intervals. In: Proceedings of IEEE International Conference on Data Mining, pp 354–361

Papapetrou P, Benson G, Kollios G (2006) Discovering frequent poly-regions in DNA sequences. In: Pro-
ceedings of the IEEE ICDM Workshop on Data Mining in Bioinformatics

Papapetrou P, Athitsos V, Kollios G, Gunopulos D (2009a) Reference-based alignment in large sequence
databases. Proc VLDB Endow 2(1):205–216

Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009b) Mining frequent arrangements of temporal
intervals. Knowl Inf Syst 21:133–171

Papapetrou P, Athitsos V, Potamias M, Kollios G, Gunopulos D (2011) Embedding-based subsequence
matching in time-series databases. ACM Trans Database Syst 36(3):17:1–17:39

Patel D, Hsu W, Lee M (2008) Mining relationships among interval-based events for classification. In:
Proceedings of the 28th ACM SIGMOD International Conference on Management of Data, ACM, pp
393–404

Pissinou N, Radev I, Makki K (2001) Spatio-temporal modeling in video and multimedia geographic
information systems. GeoInformatica 5(4):375–409

RakthanmanonT,CampanaB,MueenA,BatistaG,WestoverB,ZhuQ,Zakaria J,KeoghE (2012) Searching
and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12,
pp 262–270

Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with temporal abstractions: learning rules
from time series. Data Min Knowl Discov 15(2):217–247

SakoeH, Chiba S (1978)Dynamic programming algorithm optimization for spokenword recognition. Trans
ASSP 26:43–49

Smith TF,WatermanMS (1981) Identification of commonmolecular subsequences. JMol Biol 147(1):195–
197

Umeyama S (1988) An eigendecomposition approach to weighted graph matching problems. IEEE Trans
Pattern Anal Mach Intell 10(5):695–703

Venkateswaran J, Lachwani D, Kahveci T, Jermaine C (2006) Reference-based indexing of sequence
databases. In: International Conference on Very Large Databases (VLDB), pp 906–917

123

http://dx.doi.org/10.1016/S0169-023X(02)00023-X

O. Kostakis, P. Papapetrou

Villafane R, Hua KA, Tran D, Maulik B (2000) Knowledge discovery from series of interval events. Intell
Inf Syst 15(1):71–89

Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search
methods in high-dimensional spaces. In: Proceedings of the 24rd International Conference on Very
Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, VLDB ’98, pp 194–
205. http://dl.acm.org/citation.cfm?id=645924.671192

Winarko E, Roddick JF (2007) Armada: an algorithm for discovering richer relative temporal association
rules from interval-based data. Data Knowl Eng 63(1):76–90

Wu SY, Chen YL (2007) Mining nonambiguous temporal patterns for interval-based events. IEEE Trans
Knowl Data Eng 19(6):742–758

Yang X, Wang B, Li C (2008) Cost-based variable-length-gram selection for string collections to support
approximate queries efficiently. In: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, ACM, pp 353–364

Yi BK, Roh JW (2004) Similarity search for interval time sequences. In: International Conference on
Database Systems for Advanced Applications, Springer, pp 232–243

123

http://dl.acm.org/citation.cfm?id=645924.671192

	On searching and indexing sequences of temporal intervals
	Abstract
	1 Introduction
	2 Problem setting
	2.1 Prior distance functions for e-sequences

	3 A bipartite matching-based approach
	3.1 Defining Artemis
	3.2 Computing Artemis
	3.3 Lower bounding Artemis
	3.4 Metric property

	4 Indexing Artemis
	4.1 Defining the embedding function
	4.2 Selecting the reference e-sequences
	4.3 Constructing the database embedding
	4.4 Constructing the query-sensitive embedding
	4.5 Contractiveness

	5 Filter-and-refine retrieval
	5.1 The filter step
	5.2 The refine step

	6 Experiments
	6.1 Datasets
	6.2 Benchmarking Artemis
	6.2.1 k-NN classification and clustering purity
	6.2.2 Noise robustness
	6.2.3 Scalability
	6.2.4 Lower-bounding

	6.3 Benchmarking EBESM
	6.3.1 Evaluation on synthetic data
	6.3.2 Evaluation on real data
	6.3.3 Benchmarking against R-trees

	6.4 Lessons learned

	7 Related work
	8 Conclusions
	Acknowledgements
	References

