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ABSTRACT

The amount of suspicious binary executables submitted to
Anti-Virus (AV) companies are in the order of tens of thou-
sands per day. Current hash-based signature methods are
easy to deceive and are inefficient for identifying known mal-
ware that have undergone minor changes. Examining mal-
ware executables using their call graphs view is a suitable
approach for overcoming the weaknesses of hash-based sig-
natures. Unfortunately, many operations on graphs are of
high computational complexity. One of these is the Graph
Edit Distance (GED) between pairs of graphs, which seems a
natural choice for static comparison of malware. We demon-
strate how Simulated Annealing can be used to approximate
the graph edit distance of call graphs, while outperform-
ing previous approaches both in execution time and solution
quality. Additionally, we experiment with opcode mnemonic
vectors to reduce the problem size and examine how Simu-
lated Annealing is affected.
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1. INTRODUCTION

On a daily basis, over tens of thousands of samples with
potentially harmful executable code are submitted for anal-
ysis to Anti-Virus companies. In order to protect against
malware threats, a total of more than 5 million new mali-
cious code signatures were added to a single company’s sig-
nature database in 2009 [9]. To deal with these vast amounts
of malware, autonomous and automated systems for detec-
tion, recognition and classification are required. Further-
more, cyber criminals constantly develop new versions of
their malicious software to evade pattern-based detection by
AV products. The most significant weakness of the current
hash signature-based detection approach is that even minor
changes in the body of the executable would modify its hash
signature thus making it undetectable by the AV-products
[5]. The ability to recognize malware families and in partic-
ular the common components responsible for the malicious
behaviour of the executables within a family would allow AV
products to pro actively detect both known samples as well
as future releases of samples belonging to the same malware
family.

To facilitate the recognition of highly similar executables
or commonalities among multiple executables which have
been subject to modification, a high-level structure, i.e. an
abstraction, of the samples is required. One such abstraction
is the call graph which is a graphical representation of a
binary executable, where functions are modelled as vertices
and calls between those functions as directed edges. Minor
changes in the body of the code are not reflected in the
structure of the graph.

Our work falls under the category of static analysis for de-
tecting malware. Unlike dynamic analysis [1], which concen-
trates on comparing runtime behaviour of malware, we ex-
amine similarity of malware based on their call-graph struc-
ture. So far only a limited amount of research has been pub-
lished on automated malware identification and classifica-
tion through call graphs [8, 6, 4, 3, 13]. Most of the methods
proposed so far were highly based on heuristic or approxima-



tion techniques. Formulating the graph edit distance as an
objective function allows to deploy Simulated annealing to
find the optimal solution. We demonstrate how an adapted
version of Simulated annealing yields better results and per-
forms faster than the approaches presented previously in [13,
23]. We also experiment with opcode mnemonics in an at-
tempt to further improve both the accuracy and runtime of
Simulated annealing by reducing the problem size.

The rest of the paper is organized as follows: Section 2
surveys related work. Section 3 provides the necessary back-
ground and Section 4 contains a description of the methods
that appear in this paper. In Section 5 we demonstrate
experimental results and report on the findings. Finally,
in Section 6 we conclude and propose directions for future
work.

2. RELATED WORK

Flake’s [8] seminal work followed by that jointly with
Rolles [6] describe approaches to find isomorphisms between
call graphs by mapping functions according to the similar-
ity of their control flow graphs. Functions which could not
be reliably mapped from one call graph to the other, have
been subject to change. Via this approach, it is possible to
reveal differences between versions of the same executable
or detect code theft. Additionally, it is suggested that secu-
rity experts could save valuable time by only analysing the
differences among variants of the same malware.

Previous work on call graphs, specifically in the context of
malware analysis, has been performed by Carrera and Erdé-
lyi [4]. To speed up the process of malware analysis, call
graphs are used to reveal similarities among multiple mal-
ware samples. Furthermore, after deriving similarity metrics
to compare call graphs mutually, the metrics are applied to
create a small malware taxonomy using a hierarchical clus-
tering algorithm. Briones and Gomez [3] focus on the de-
sign of a distributed system to compare, analyse and store
call graphs for automated malware classification. The first
large scale experiments on malware comparisons using real
malware samples were recently published [13]. Additionally,
techniques are described for efficient indexing of call graphs
in hierarchical databases to support fast malware lookups
and comparisons.

Graph Edit Distance is a very fundamental problem with
application in many fields [10]. Since exact solutions for
GED are still computationally expensive to calculate, a large
amount of research is devoted to approximation algorithms.
A survey of three different approaches to perform GED cal-
culations is conducted by Neuhaus, Riesen, et al. in [18, 19,
20]. They first give an exact GED algorithm using A* search
algorithm, but this algorithm is only suitable for small graph
instances [18]. Next, A*-Beamsearch, a variant of A* search
which prunes the search tree more rigidly, is tested. The last
algorithm they survey uses Munkre’s bipartite graph match-
ing algorithm as an underlying scheme. This approach, com-
pared to the A*-search variations, handles large graphs well,
without greatly affecting the accuracy. The GED problem
is formulated as a Binary Linear Program [14], but the ap-
proach is not suitable for large graphs. Nevertheless, algo-
rithms are derived to calculate the lower and upper bounds
of the GED in polynomial time. These bounds can be de-
ployed for large graph instances as estimators of the exact
GED. The authors of [23] developed new polynomial algo-
rithms which find tighter upper and lower bounds for the
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Figure 1: Example of a call graph generated from a
real malware sample.

GED problem.

Because in the last part we experiment with function op-
codes sequences we must state that it is not something new.
Hu et al. describe how they use opcode sequences for find-
ing similar functions [13]. Kolter et al. have used n-grams
of byte sequences extracted from malicious files to classify
files [16]. Walenstein et al. [22] suggest n-gram frequency
vectors and consider their cosine similarity. Finally, Bilar
examined the use of opcodes to distinguish malware from
benign software [2].

3. BACKGROUND

This section provides a short overview of the terminology
and notation used in this paper, along with the appropriate
background.

A graph G = (V, E) is composed of a set of vertices V
and a set of edges E C V x V. The order of a graph G
is the number of vertices |[V(G)| in G. In this paper, we
will only be dealing with directed graphs; an edge (or arc)
is denoted by its endpoints as an ordered pair of vertices.
Vertex v is said to be a direct predecessor of u if (v,u) € E.
In this case, u is called a direct successor of v. The out-
degree d*(v) of vertex v is the number of direct successors
of v. Similarly, the in-degree d~(v) is the number of direct
predecessors of v. Finally, the degree d(v) of vertex v equals
d*(v)+d~ (v). The out-neighbourhood (direct successor set)
N7 (v) of vertex v consists of the vertices {w|(v,w) € E},
and the in-neighbourhood (direct predecessor set) N~ (v) is
the set {w|(w,v) € E}.

A call graph is a directed graph G with a set of vertices
V = V(Q), representing the functions, and a set of edges
E = E(G), where E(G) C V(G) x V(G) representing the
function calls. An example can be seen in Figure 1. A
vertex can represent either one of the following two types of
functions: a local function, i.e. a function implemented by
the program author or an external function, i.e. a system or
library function. Given a vertex v € V, we denote its name
by Vi (v) and by Vj(v) the type of the function represented
by v. Vy(v) € {0, 1}, where Vy(v) = 0 if it is a local function
and Vy(v) = 1 if it is an external function.

Detecting malware through the use of call graphs requires
means to compare call graphs mutually.

Definition (Graph matching): For two graphs, G and H, of
equal order, the graph matching problem consists of finding
a bijective mapping ¢ : V(G) — V(H) of optimal value
w.r.t. a cost function.

Definition (Isomorphic graphs): Two graphs G, H are iso-
morphic if there exists a bijective function ¢ that maps the
vertices V(G) to V(H) such that Vi, j € V(G), (,7) € E(G),
if and only if (¢(3), ¢(j)) € E(H).

Graphs are hardly ever isomorphic, so there is a need to

define a metric for determining how ”far” away they are from
being isomorphic.



Definition (Graph Edit Distance): The graph edit distance
(GED) of two graphs G, H is the minimum cost induced by
elementary edit operations required to transform a graph G
into graph H. A cost is defined for each elementary edit
operation.

In our case, the elementary edit operations considered are:
vertex insertion/deletion, edge insertion/deletion and vertex
relabelling. We assign unit cost to all operations. Unfortu-
nately, calculating the GED of pairs of graphs is NP-hard
[18, 11] and its decision version is NP-complete.

To find a bijection which maps the vertex set V(G) to
V(H), the graphs G and H have to be of the same or-
der. However, the latter is rarely the case when comparing
call graphs. To circumvent this problem, the smaller of the
vertex sets V(G) and V(H) can be supplemented with dis-
connected (dummy) vertices € such that the resulting sets
V'(@), V'(H) are of equal size. A mapping of a vertex v in
graph G to a dummy vertex € is then interpreted as deleting
vertex v from graph G, whereas the opposite mapping im-
plies a vertex insertion into graph H. Now, for a given graph
matching, we can define three cost functions: VertexCost,
EdgeCost and RelabelCost.

VertexCost The number of deleted/inserted vertices: |{
viv € [VI(G) UV (H)]Alp(v) =€V () = v]}|

EdgeCost The number of unpreserved edges: |E(G)| +
[E(H)[=2x[{(i,4) : [(i,4) € BE(G)A(¢(i), ¢(5)) € E(H)]}.

RelabelCost The number of mismatched functions. A
function is mismatched if it is either a local function and
is matched to any external function, or if it is an external
function matched to a local function or an external function
with a different name.

The sum of these cost functions results in the graph edit
distance Ay (G, H):

Ao (G, H) = VertexCost + EdgeCost + RelabelCost (1)

Definition (Graph dissimilarity): The dissimilarity § (G,
H) between two graphs G and H is a real value on the inter-
val [0,1], where 0 indicates that graphs G and H are identical
whereas a value near 1 implies that the pair is highly dissim-
ilar. In addition, the following constraints hold: §(G, H) =
0(H,G) (symmetry), §(G,G) = 0, and §(G, Ko) = 1 where
Ky is the null graph, G # K.

Finally, the dissimilarity §(G, H) of two graphs is obtained
from the graph edit distance Ay (G, H):

)‘¢>(G7 H)
V(@) + [V(H)| + |E(G)| + |E(H)|

6(G,H) = (2

As mentioned before, finding the minimum GED, i.e. ming
X¢(G, H), is a NP-hard problem but can be approximated
(see Section 4).

3.1 Acquiringthecall graphs

The call graphs used in the analysis are extracted from
binary executable objects, using static methods (similar to
those in [12]). The extraction method produces a function
call graph and an additional graph representing basic block
relationships. Function-level graphs are built from the sub-
routines represented as nodes and their call references as

edges. Basic block call graphs represent the relationships of
basic blocks inside a single subroutine.

Static extraction of call graphs starts with a full disas-
sembly of the binary object to assembly language. The dis-
assembled object is then split into individual functions and
the functions to basic blocks. Using code analysis, the ex-
traction tool maps the call references between functions and
adds them as edges to the graph. A similar operation is
performed to map the code references between basic blocks.
The type of each function, whether local or external, can
be identified and for external functions their name is also
retrieved. The latter allows for easy comparison of external
functions simply by comparing their names.

While the extraction of call graphs from a proper disas-
sembly is relatively easy, there are a number of obstacles in
the real-world implementation. The most common of these
are executable packing and obfuscation, which are found in
executable objects. Before the call graph can be extracted,
the obfuscation or packer envelope must be removed, which
can be very difficult and in some cases impossible. An-
other typical problem arises from inner workings of com-
plex, object-oriented languages, for example C++4, Delphi
and Visual Basic, which implement a portion of code calls
through data references which are very challenging to follow
with static analysis.

4. DESCRIPTION OF METHODS

In this section we describe the two main methods men-
tioned in this paper. These are an approximation using Bi-
partite matching, which is the main competitor, and Simu-
lated annealing, an adapted version of which we deploy to
achieve better results. In 4.3 we also provide an overview
of the experimental method by which we attempt to iden-
tify similar local functions and reduce the problem size for
simulated annealing

4.1 Bipartite Matching

Finding a graph matching ¢ which minimizes the number
of edit operations is proven to be an NP-Complete prob-
lem [23]. Indeed, empirical results show that finding such
a matching is only feasible for low order graphs, due to the
time complexity [18]. To overcome this issue, Riesen and
Bunke introduced an approximation algorithm which has a
good trade-off between accuracy and speed [20, 19]. Their
algorithm uses a ([V(G)| + |[V(H)|) x ([V(H)| + |[V(G)|)
cost matrix C, which gives the cost of mapping a vertex
v € V/(G) to a vertex v € V'(H). Next, Munkre’s algo-
rithm [17] (also known as the Hungarian algorithm), which
runs in polynomial time, is applied to find an exact one-to-
one vertex assignment which minimizes the total mapping
cost. Each entry in this cost matrix C' represents the cost of
matching vertex v € V'(G) to a vertex u € V'(H). Clearly,
more accurate cost estimation allows one to find better graph
matchings and hence more accurate edit distances. The cost
of matching a pair of nodes, C; ; could equal the relabel cost
as defined for the graph edit distance in Equation 1:

l 0 if Vi(i) =Vs(j)=0
C™(i,5) =q 0 if Vp(i) =Vi(G) =1 A Va(i) = Valj)
1 otherwise
(3)

Using this relabel cost function, Munkres’ algorithm is ca-
pable of matching identical external functions in a pair of



graphs, but the local functions pose a problem because the
relabel cost function yields no information about the differ-
ent local functions. As a solution, the authors of [13, 23]
independently suggest to embed structural information in
the matching cost of two functions. The following equation
achieves the latter by also taking the neighborhoods of the
vertices (functions) ¢ and j into consideration:

Ci,j :CTEZ(Z',]')+
d7 (i) +d" () =2 x (NT@) ANTG)+  (4)
d”(i) +d"(j) =2 x (N~ (i) AN~ (7))
where the notation NAM denotes the similarity of the neigh-
borhoods N and M, defined as follows:

N AM = mazx{ Z(l - C”’(i,P(i))l

P : N — M (injective)}

In short, the above equation makes the assumption that
if two functions ¢, and j are identical, then they should also
invoke the same functions. Similarly, if 4 and j indeed rep-
resent the same function, it is likely that they are also called
upon by functions with a high mutual similarity.

4.2 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic method
that was first proposed in 1983 by Kirkpatrick et al. [15] to
solve hard combinatorial optimization problems. No spe-
cific knowledge about the way to approach the problem is
required for implementing SA. This allows the use of SA in
a variety of problems without changing the basic structure
of the algorithm. SA aims at finding the global optimum of
a cost function over a set of feasible solutions.

In the call graph matching problem the search space is
defined over all the possible bijective mappings ¢ between
two graphs. The SA process starts from an arbitrary bi-
jective mapping as an initial state. Then a neighbouring
state in the search space is selected randomly. Neighbour-
ing states are created by choosing a pair of vertices in one of
the graphs and swapping their matching vertices. The dif-
ference in the cost function (Equation 1) for the two states
determines whether the current state must be replaced by
the new state or not. We denote the difference in the cost
function evaluated for two states by A(Xg,,Ag,, ). If the
new state (bijective mapping) gives a lower value for the cost
function, it replaces the current state. Otherwise the move
is accepted with probability e PACe e 1) A s allowed
to run for a predefined number of steps before the value of
[ is increased.

The annealed parameter (3 is the inverse temperature used
in statistical physics. For small values of 8 almost any move
is accepted in the process. For 8 — oo the process is essen-
tially a downhill move in which the SA state will be replaced
by the new bijective mapping only if the new state gives a
lower cost. The reason to introduce the annealed parameter
is to overcome the problem of getting stuck in local minima
by allowing non preferential moves.

The sequence of 8 can be considered an annealing sched-
ule. The annealing schedule contains the initial and final val-
ues of the annealed parameter, denoted by Go and Banai, to-
gether with the cooling rate, €, which determines the changes
in 8. In our implementation we chose the cooling rate to be

a multiplier factor in 8 which takes values on the interval
[0,1]. Then the sequence of the values of 3 is determined
by Bi+1 = Bt/e. We will refer to the number of times that
B changes with the term relazation iterations. The process
terminates either when (3 reaches Bgnai or when the rate
of improving the best solution so far drops below a certain
threshold. Upon termination the best encountered solution
is returned. The annealing schedule is usually determined
empirically.

It has been proven that the probability of reaching the
global minimum by simulated annealing approaches 1 in a
properly chosen annealing schedule [21]. However, the time
needed to reach this global minimum is not guaranteed to
be polynomial. In fact in many combinatorial problems it
diverges exponentially for large systems and therefore SA
becomes inefficient. Interestingly for the graph matching
problem it scales efficiently w.r.t. the system size and that
allows us to perform SA on very large call graphs.

4.3 Function Code comparison

When call graphs are extracted, the names of the exter-
nal functions can be identified, allowing external functions
to be easily compared using their name. The same does not
hold for local functions. Furthermore, local functions can be
modified by the malware author. Determining correspon-
dence among local functions requires comparing their code.
We attempt to identify similarity among local functions by
using the opcode mnemonics of their code.

A simple change in the source code can make the result-
ing machine code very different, i.e. register allocations may
change and cause extended changes to the generated binary.
Furthermore, inserting new code may change most of the
reference offsets. Instead of just using the byte sequence
of the file, using a disassembler to generate structured out-
put of the binary can be used to eliminate some of these
changes. Thus, comparison of the binaries can be done with
much more detailed information about their structure.

Concentrating on plain opcode mnemonics and ignoring
the arguments can overcome the problem of register alloca-
tion and offset changes. Reordering of the mnemonics can be
eliminated by instead calculating their frequencies. Neigh-
bouring mnemonics can also be treated as n-grams. Those
n-grams can be handled either ordered or unordered.

Two functions can be considered similar if they produce
identical sequences. A score in the scale of [0, 1] is used to
express the similarity of two functions. To compute such
a score, the number of occurrences of each mnemonic in
pairs of functions is calculated and a vector for each function
is generated. The similarity of two functions u € Gi1,v €
G2 based on their frequency vectors, is calculated using the
Jaccard index as follows:

> min(ug, vy) 5)

olwv) = > iy max(ui, vi)

The above methodology is applied in order to reduce the
problem size before SA is applied. The similarity scores for
all pairs of functions are calculated in an attempt to detect
identical or highly similar functions. Pairs that yield high
scores are matched in advance and simulated annealing is
used to find a matching for the remaining vertices.
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Figure 2: Comparing Simulated annealing and Bi-
partite matching. 1000 graph comparisons ordered
based on the green line.

5. EXPERIMENTS

5.1 Datasets

Our datasets consist of 5 different batches of call graphs.
The first batch (we call this dataset D1) is made up of 340
call graphs classified into 24 labelled families, each one con-
taining 3 to 20 samples. The sizes of the graphs range from
14 to 1087 nodes and from 8 to 2194 edges. D2, D3, D4 are
sets of cardinality 675 to 1807 containing graphs of order
50 to 500. These are graphs of executables submitted to
F-Secure Corporation on 3 different (close, but not contin-
uous) days respectively. They are a portion of the executa-
bles that did not match against any of the existing malware
residing in the company’s database by using their current
methods, potentially a mixture of both malware and benign
binary executables. Ds consists of call graphs belonging to
3 other families, 68 to 137 graphs each. All the mentioned
samples have different hash signatures so there is no prior
information regarding their similarity. Although many were
classified by a human analyst as being in the same family,
we do not know the criteria on which the decision was made
and even if these criteria are reflected somehow in the call
graph structure.

5.2 Experiments & Results

Our experiments include tests to decide upon the anneal-
ing schedule and a benchmark for the two competing meth-
ods. We also present the results of the comparison of un-
classified graphs against an existing library of families using
SA. SA is also applied to detect isomorphic graphs.

Initial experiments are needed to determine the anneal-
ing schedule of SA. As described earlier, for very low values
of 3, worse solutions are accepted with great probability
which results to steering away from the optimal solution in
the search space. On the other hand, setting a high value
for B, very few worse solutions are accepted and the method
converges more aggressively towards the potentially local
extrema. Determining a value for € is equally important.
After experimenting with a range of values for the param-
eters By and € over a set of pairs of graphs, we come to
the conclusion that values should be selected from [3.5,4.5]
and [0.87,0.93] for By and € respectively in order to be able
to achieve the best score, not far from the minimum num-
ber of overall steps. All the experiments presented here are
performed with By = 4,e = 0.9.

Having decided on the annealing schedule of SA, we test it
independently over each one of the 23 families in D;. Many

isomorphisms among pairs of graphs are identified. By keep-
ing only a single graph from sets of isomorphic within the
same family we reduced D; to 194 distinct samples (D).

The most important experiment in this paper is the com-
parison of our SA implementation against the approxima-
tion that uses the Hungarian algorithm ([13]). In Figure
2 we present the scores achieved by each method for 1000
randomly chosen comparisons out of all possible pairwise
comparisons for Dj. In Figure 2 lower values are better.
The reason is that a shorter edit path is discovered and the
GED is better approximated.

A clear advantage of SA can be observed based on the
score achieved. For almost all the comparisons it succeeds
in finding a mapping closer to the optimal. For the vast
majority the improvement is significant.

A note on complexity (speed comparison)

The Hungarian Algorithm has complexity O(|V|?) [7]. When
used to decide a mapping among vertices of two graphs G1 =
(Vi, E1), G2 = (Va, E2) the complexity becomes O((|V1] +
V2])%) = O([Vinaz|*), where [Vinaz| = max{|V1],|V2[}. On
the other hand, our implementation of Simulated Annealing
has complexity equal to O(k - |mec|2 - dmax), where k is the
number of relaxation iterations and dma. is the maximum
degree value taken over all vertices appearing in the two
graphs. That is because each relaxation iteration is allowed
to run for |me\2 steps and during each of these steps at
most O(dmaz) vertices have to be examined to determine the
change in the score. The change in the score A(Ag,, A, ;)
can be determined by examining only the local changes in-
duced by the swap. When SA is allowed to run only for
a predetermined number of cooling iterations, k becomes a
constant and the complexity is then O(|Vinaz \2 “dmagz). Even
when SA is allowed as many cooling iterations as necessary,
the value of k£ does not exceed 16, based on our experi-
ments. In the extreme case where the maximum value of
degree (dmaz) for any node in the graphs is bounded and
does not increase w.r.t. the size of the graph then the over-
all complexity becomes O(|Vinaz|?).

An additional advantage of SA is the overhead required
to produce the data structures and calculate their values.
SA only requires the adjacency matrix and adjacency list
of the graphs (for fast retrieval of both edges and neigh-
bouring nodes). Given any of the two, the other can be
calculated within O(|Vimae |2) steps. For the bipartite match-
ing approach, calculating the matching costs for each pair
of vertices requires at least O(|me\2 - dmaz) steps since
neighbours of vertices must be examined.

We chose to argue in terms of asymptotic notation in or-
der to avoid results biased by our own implementations for
the approximations that use the Hungarian algorithm. In
practice, the running times we experience during our ex-
periments are in accordance with the complexity analysis,
Simulated Annealing does execute significantly faster and
manages to produce better results than all the methods pre-
sented so far in this paper.

SA turns out to be consistent in the quality of solutions
it outputs and good solutions are achieved on almost all of
the attempts. We compare the same pair of graphs (order
790, Edit distance: 1 node & 7 edge insertions/deletions)
for a total of 1000 times. The results can be seen in Fig-
ure 3. For most of the runs the final score achieved is very
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Figure 3: 1000 executions of SA on a pair of highly
similar graphs, ~790 nodes, ~1402 edges.

600 500
500 400
3400 3
c <300
S 300 g
g $200
(T 200 i
100 100
0 0 1 1
001 . 002 0.03 6 7 8 910111213
Dissimilarity Relaxation Iterations
(a) Histogram of dissimilarity(b) Histogram of relaxation
scores iterations

Figure 4: 1000 executions of SA on another pair of
highly similar graphs, ~1084 nodes, ~2191 edges.

close to the ground truth (Figure 3(a)). There exist a few
outliers, though. Such cases are caused by the randomness
factor that is involved. The same applies for the distribution
of relaxation iterations which exhibits high resemblance to
the Gaussian distribution (Figure 3(b)). The same experi-
ment of 1000 comparisons is repeated with another pair of
highly similar, but not isomorphic, graphs (GED: 4 nodes,
16 edges, 1 relabel, Dissimilarity: 0.003). The results are
depicted in Figure 4. These graphs are of larger order (1087
vertices) and more outliers can be observed. Taking into
consideration the size of the graphs and the total execution
time, such deviations are acceptable. Outliers can be sta-
tistically reduced by repeating the SA procedure; the data
structures have already been constructed and and it is only
required to start from the same or a different initial solution.
SA is also versatile in the sense that if seen as an anytime
algorithm [24], the user may opt to interrupt the method
when a specific score threshold has been achieved, in con-
trast to the bipartite matching in which results are yielded
only when the algorithm has finished executing.

When an AV company receives a suspicious binary exe-
cutable, it will be compared against the library of known
malware to determine if it has been encountered in the past.
To simulate this we try to match unlabelled and unclassi-
fied samples against a predefined library. All the samples of
D5 and D3 are compared against our labelled library (D7).
Pairs with dissimilarity lower than 0.2 (value determined
empirically) are treated as belonging to the same family or
group. In case of multiple matches the most similar is cho-
sen (nearest-neighbour approach). Taking into considera-
tion the relatively limited number of families in our library
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Figure 5: Matches from D, against D; (log-scale)
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Figure 6: Matches from D3 against D; (log-scale)

and the age difference between D; and D3, D3 the antici-
pated number of hits must be very low. Furthermore, the
call graphs of D2 and D3 have at most 500 vertices but those
in D] range up to 1087, meaning that for some classes (fam-
ilies) appearing in D] no matches can be expected. The
results are presented in Figures 5 and 6.

When a batch of new suspicious graphs arrive in queue to
be compared against candidate characteristic graphs in the
database (DB), it would be sensible to check whether there
exist duplicates in the queue. Performing a single compar-
ison query in the DB for each set of duplicates would, in
many cases, greatly reduce the total time required to decide
for all the samples of the batch. The reason is that for each
DB query multiple graph comparisons must be performed.
For this scenario, the sets Da, D3, D4, D5 and (D3 U Dy)
were tested for isomorphic function-level graphs using SA.
D; can be reduced from 675 to 513 unique graphs, which
would result to 23.85% fewer queries. For D3 the reduction
is from 1060 to 465 (56.13% fewer queries) and for D4 from
1807 to 644 (64.36% fewer queries). When combining two
daily sets (D3 and Dy), from a total of (1060+1807=) 2867
samples we managed to reduce them to 1028 unique graphs.
This is less than the sum of the unique graphs for those
sets individually. This shows that that across different days
it is possible to witness binary executables with isomorphic
function-level call graphs but which produce different hash
signatures and go undetected by current methods.

Ds is a set of 3 families of malware ( Vedio, Turkojan, My-
doom.A) that are still active in the wild and get flagged by
AV-products. For Vedio the set reduces from 139 graphs to
63 unique. For Turkojan, 68 reduce to 46 unique but for My-
doom.A 107 graphs of different hash signatures correspond
to only 2 unique graphs. This result clearly demonstrates
the inefficiency of hash signatures and the great advantage
of call graphs on that matter.



5.3 Optimizations. Opcode mnemonic vectors

As described earlier, when attempting to find a mapping
between the vertices of two graphs, equivalence between ex-
ternal functions is straight-forward to determine by com-
paring their function names. That allows to reduce the ac-
tual size of the problem by having to find a mapping only
among local functions and non-common external functions.
Examining the internals of local functions, i.e basic block
graphs, would allow to determine equivalence among them
and thereby further reduce the search space of the problem.
Such hypothesis is supported by the fact that malware which
are characterised by an evolutionary relationship have high
probability of sharing large portions of common assembly
code since in such cases source code is often reused.

We aim at finding highly similar local functions among
pairs of graphs by calculating the mnemonic vectors for each
function and its pairwise similarity with functions of the
other graph. If pairs of functions are found to be similar,
they are considered a permanent match and their vertices
will not be considered for the swapping process of SA. In
this stage it is very important not to create false-positives.
The error of matching functions that are not identical or
equivalent propagates until the final solution and cannot be
corrected since the function pairings are ’anchored’ in ad-
vance. According to [2] in both malware and goodware the
top 14 most frequent opcodes account for more than 90%
of total opcodes that appear and for the 5 most frequent
the amount is ~65%. Consequently, we must be sure that
functions do not appear to be similar only because they are
of the same size and their body consists of the highly com-
mon opcodes. Since the decision for the matches must be
made with high confidence, we impose two criterion param-
eters, one regarding the size of the functions (number of
n-grams),t,, and the other regarding the similarity thresh-
old by which to determine function similarity (Jaccard index
value),ts.

Large functions usually have high degree values in the
graph. Pairs of large functions, when considered for a match,
yield more matched edges in the objective function so they
tend to get matched by SA eventually. So in order for SA to
benefit, the set of pre-matched nodes would have to include
functions of smaller size as well. Setting t,, = 75,ts = 0.95
and using 3-grams hardly any matches are observed when
comparing non-identical samples of the same family. For
t, = 50 more hits are observed but still not enough to have
any impact on the SA procedure. Lowering also ts to 0.9
gives a rise of matched functions by ~15% but only helps in
a limited number of cases. Lowering the values of t,,,ts even
further would match functions with lower confidence. On
the other hand, if vertices have different out-degree values,
then the source code should be different at the parts where
the function calls are placed; which makes the use of 3-grams
seem very strict. Using 2-grams yields more matches among
local functions. For example, in graphs of order 200 con-
taining 80 local functions, up to 20 functions are matched
and thus the problem size is reduced significantly.

We demonstrate an example of two graphs of order 352,
representing malware from the Boazzre family, which are iso-
morphic but have different hash signatures. 1000 executions
of both SA and SA preceded by mnemonic vector match-
ing are performed. The results regarding the dissimilarity
scores achieved and relaxation iterations required can be
seen in Figure 7. Out of 173 local functions, 26 get matched.
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Figure 7: Comparison of plain SA vs SA enhanced
with opcode vectors, 1000 executions

There is significant increase in the number of attempts that
managed to find the optimal solution when the vectors were
used (Figure 7(a)). The number of relaxation iterations also
dropped (in average, from 4.877 to 4.66). In this case we can
be sure that there were no erroneous matches that affected
negatively the final result, when comparing mnemonic vec-
tor similarities, since the isomorphism of the graphs could
be detected. It becomes clear that if there is a significant
reduction in the problem size, with lack of erroneous perma-
nent matchings, SA becomes more successful in finding the
optimal solution within fewer steps.

When performed on-line, the benefits of using such a pro-
cedure should be worth the added time that is required. or
should not significantly slow down the whole process when
no local functions are matched. One of the advantages of us-
ing mnemonic vectors is that the vectors can be calculated
on-the-fly and appended to the files encoding the graphs,
during the call graphs extraction. Since SA only benefits
when there is significant problem size reduction, mnemonic
vectors should be used only when there is reason to antici-
pate the existance similar local functions, e.g. when trying to
identify the exact malware variant within a specific family.

6. CONCLUSIONS & FUTURE WORK

We demonstrated how Simulated Annealing can be used
to approximate the graph edit distance of call graphs. SA
outperformed previous approaches both in execution time
and solution quality. SA performed very well in various real-
world scenarios. This allows us to argue that it should be the
preferred method when it comes to implementing very large
scale systems based on performing call graph comparisons
for the detection of malware. Attempts to reduce the prob-
lem size of GED but also experiments on how SA responds to
that were carried out by calculating and comparing opcode
mnemonic vectors by using the Jaccard index. Simulated
annealing benefits in both time and accuracy only when the
reduction of the problem size is significant.

In the future, it would be interesting to investigate more



complex edit operations that resemble actual source-code
editing, e.g. function merging or spliting, duplication, re-
ordering. In order to achieve that it seems necessary to
perform further experiments on the mnemonic vectors, i.e
to be able to determine merged functions. We would like
to examine the performance of our method implemented on
a live system and the performance gain in comparison to
existing systems. In the direct future we plan to study the
similarities but mostly the differences on the results yielded
by call graph comparison against those by dynamic analysis
of malware. Furthermore, it would be interesting to exam-
ine whether it is possible to distinguish malware from benign
software based on the structure of the callgraphs. Effective-
ness of call graph comparison-based systems is limited by
the inability to extract call graphs from all of the binary
executables. Work on tackling the obfuscation techniques
would directly benefit large scale call graph comparison.
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