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Introduction

Repeated squaring

Repeated squaring: a2e
(x) where a(x) ∈ F2m with

polynomial basis
Applications in elliptic curve cryptography (e.g., inversions
in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAs)
Popular implementation platforms for cryptography
Existing repeated squarers iterate squaring for e times
How to implement efficient repeated squarers with FPGAs?
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Repeated squaring in binary fields

Squaring is a2(x) =
∑m−1

i=0 aix2i mod p(x) where ai ∈ {0,1}
and p(x) is an irreducible polynomial

A linear transformation described by Qa where
a = [a0a1 . . . am−1]T and

Q =


1 q0,1 q0,2 · · · q0,m−1
0 q1,1 q1,2 · · · q1,m−1
...

...
...

. . .
...

0 qm−1,1 qm−1,2 · · · qm−1,m−1


A repeated squaring is given by Qea
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Look-up tables (LUTs)

Basic building block of an FPGA is an n-to-1 bit look-up
table (n-LUT)
Typically, n = 4 but contemporary FPGAs have larger n,
e.g., n = 6 (Xilinx Virtex-5) or n = 7 (Altera Stratix-II, and
beyond)
Notice that using only two inputs of an n-LUT costs as
much as using all of its inputs
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Definitions

Definition (Weight and row-weight)
Weight,W(Qe), is the number of ones in Qe; and
Row-weight,Wi(Qe), is the number of ones on the i th row of Qe

Definition (Area)
Area, A(Qe), is the number of n-LUTs required to implement Qe

Definition (Critical path)
Critical path, D(Qe), is the length of the longest path of consecutive
n-LUTs in the circuit computing Qe
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Weights of the NIST fields
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Area and delay

Area
It is possible to implement Qe with a circuit whose area An(Qe)
satisfies

An(Qe) ≤
m∑

i=1

⌈
Wi(Qe)− 1

n − 1

⌉

Delay
Critical path, Dn(Qe), is bounded by

Dn(Qe) ≤ max
i
dlognWi(Qe)e
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Example

Consider computing a22
(x) in F2[x ]/x4 + x + 1. We have

Q2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .
Weights: W(Q2) = 9 andW1(Q2) = 4,W2(Q2) = 2,
W3(Q2) = 2, andW4(Q2) = 1.

Area: if n = 2, we get A2(Q2) ≤ 5 (minimum A2(Q2) = 4). If
n = 4, we get A4(Q2) = 3
Delay: if n = 2, we get D2(Q2) = 2 and D4(Q2) = 1.
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Example

Table: Areas and delays for NIST F2233 with different n

An(Qe) Dn(Qe)
n 2 3 4 5 6 7 2 3 4 5 6 7

e = 1 153 153 153 153 153 153 1 1 1 1 1 1
e = 2 361 245 230 230 230 230 2 2 2 1 1 1
e = 3 676 385 349 238 233 233 3 2 2 2 1 1
e = 4 1141 616 466 358 349 291 4 3 2 2 2 2
e = 5 1844 973 699 550 466 396 4 3 2 2 2 2
e = 6 2892 1511 1035 812 663 580 5 3 3 2 2 2
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Implementation: Idea

Rather than
iterating a squarer for e clock cycles,
computing Qe directly, or
using unrolled squarers (Q||Q|| . . . ||Q, e times)

we search a concatenation Qe1 ||Qe2 || . . . ||QeN with e =
∑N

i=1 ei
minimizing the metric under optimization (area, delay, etc.)

Example

If e = 9 and n = 6, the setup minimizing area is Q3||Q3||Q3 which
has an area estimate of 699 LUTs and a critical path of 3 LUTs.
(Iterative: 153 LUTs + 233 regs / 9 cycles, Direct: 1944 / 3 LUTs,
Square chain: 1377 / 9 LUTs)
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Implementation: Varying exponent
Solution 1 (Distinct exponents, {e1, . . . , e`})

Let ∆i = ei − ei−1

Find the optimal circuits for each ∆i and concatenate them
Select results using a multiplexer

Example
If E = {1,2,4,8,16} and n = 6, we get the repeated squarer shown
below with an area estimate of 1600 LUTs.
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Implementation: Varying exponent
Solution 2 (Range, 0 ≤ e ≤ emax)

Let eopt be the exponent that minimizes An(Qê)/ê
Concatenate bemax/eoptc Qeopt blocks
Compute the remaining squarings with a square chain

Example
If 0 ≤ e ≤ 14 and n = 6, we get the repeated squarer shown below
with an area estimate of 1238 LUTs.
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Results

Several repeated squarers were synthesized for
Spartan-3A and Virtex-5 FPGAs (see the paper)
The results show that repeated squarers are small and fast
enough to be included in existing finite field processors

Example (NIST F2233, Virtex-5)
Solution 1 with {1,2,4,8,16}: area 1823 LUTs and delay 8.23 ns
Solution 2 with 0 ≤ e ≤ 11: area 1809 LUTs and delay 8.10 ns
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Inversions in binary fields

Fermat’s Little Theorem⇒ a−1(x) = a2m−2(x)

Computed with a series of multiplications and (repeated)
squarings
Itoh and Tsujii: blog2(m − 1)c+ w(m − 1)− 1
multiplications and m − 1 squarings

Example (Inversion in F2233)
Computed with 10 multiplications and 232 squarings
A repeated squarer (solution 1) with e ∈ {1,2,4,8,16} gives the
following speedups with different multiplier latencies:
M = 18⇒ 52 %, M = 6⇒ 73 %, and M = 1⇒ 88 %
(19 repeated squarings instead of 232 squarings)
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Scalar multiplication on Koblitz curves

Scalar multiplication on Koblitz curves, kP where
k =

∑`−1
i=0 kiτ

i , computed with the binary algorithm:
w(k) point additions and `− 1 Frobenius maps
Frobenius map: (x , y) 7→ (x2, y2)

e successive Frobenius maps can be computed with two
repeated squarings: (x2e

, y2e
)

Example (Scalar multiplication on NIST K-233)
k given in width-2 τNAF⇒ w(k) ≈ m/3
Point addition takes 8M + 13 clock cycles (based on existing work)
and we have a repeated squarer (solution 2) with 0 ≤ e ≤ 11:
Speedups: M = 17⇒ 3.8 %, M = 8⇒ 7.0 %, and M = 5⇒ 9.7 %
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Side-channel resistivity

Problem
Computing e Frobenius maps takes 2e clock cycles which can
be distinguished simply by counting clock cycles from the power
trace (confer, weaknesses of the normal binary algorithm).
⇒ Leaks the positions of nonzero ki

Solution
Use repeated squarers
⇒ the attacker sees only a series of point additions and (two)
repeated squarings
⇒ the attacker must be able to disinguish e from the power
trace of the repeated squarer (one clock cycle)
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Summary

A new component called repeated squarer computing a2e
(x)

directly in one clock cycle was introduced
Small and fast enough to be used in existing finite field
processors on FPGAs
Improves the speed of inversion and scalar multiplication
on Koblitz curves
Enhances resistivity against side-channel attacks
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Thank you.
Questions?
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