On Repeated Squarings in Binary Fields

Kimmo Jarvinen

Department of Information and Computer Science
Helsinki University of Technology

August 14, 2009

Introduction

Repeated squaring

@ Repeated squaring: &°(x) where a(x) € Fom with
polynomial basis

@ Applications in elliptic curve cryptography (e.g., inversions
in the field and scalar multiplications on Koblitz curves)

On Repeated Squarings in Binary Fields

21

Introduction

Repeated squaring

@ Repeated squaring: &°(x) where a(x) € Fom with
polynomial basis

@ Applications in elliptic curve cryptography (e.g., inversions
in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAS)
@ Popular implementation platforms for cryptography
@ Existing repeated squarers iterate squaring for e times
@ How to implement efficient repeated squarers with FPGAs?

On Repeated Squarings in Binary Fields

21

Repeated squaring in binary fields

Squaring is & (x) = 7", aix? mod p(x) where a; € {0,1}
and p(x) is an irreducible polynomial

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Departm

ence
K. Jarvinen

Repeated squaring in binary fields
Squaring is & (x) = 7", aix? mod p(x) where a; € {0,1}
and p(x) is an irreducible polynomial

A linear transformation described by Qa where
a=[aa;...am_1]" and

1 Qo1 Qo2 - Qom—1
Q- 0 C71.,1 Q1.,2 : Q1,f.n_1
0 Gm-11 Om-12 - Qm—1,m—1

A repeated squaring is given by Q®a

a

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

K. Jarvinen

Look-up tables (LUTSs)

@ Basic building block of an FPGA is an n-to-1 bit look-up
table (n-LUT)

@ Typically, n = 4 but contemporary FPGAs have larger n,
e.g., n = 6 (Xilinx Virtex-5) or n = 7 (Altera Stratix-Il, and
beyond)

@ Notice that using only two inputs of an n-LUT costs as
much as using all of its inputs

a

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

K. Jarvinen

Definitions

Definition (Weight and row-weight)

Weight, W(QE), is the number of ones in Q¢; and
Row-weight, W;(Q®), is the number of ones on the i™ row of Q¢

Definition (Area)
Area, A(Q®), is the number of n-LUTs required to implement Q€

Definition (Critical path)
Critical path, D(Q¥®), is the length of the longest path of consecutive
n-LUTs in the circuit computing Q€

X

SINKI UNIVERSITY OF TECHNOLOGY
rmation and Cor

On Repeated Squarings in Binary Fields

51

Weights of the NIST fields

x 10
18 : : T
NIST F,i08
NIST F,235
16 NIST Fooss 1
NIST Fj100
14 H NIST Fys71 -
12 E
[N
o10r B
= 8r — - B
=
o0
ns
A]
0 s — ‘ ' '
0 5 10 15 20 25

Exponent, e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
D of Infe on and Ce

Area and delay

It is possible to implement Q€ with a circuit whose area .4,(Q¢)

satisfies

An(Q°) < Z P/v,n_)1 1}

On Repeated Squarings in Binary Fields

7"

Area and delay

Area

It is possible to implement Q€ with a circuit whose area .4,(Q¢)

satisfies
e wi(Q°) —1
2(Q%) < Z [o w

Critical path, D,(Q¢), is bounded by

Dy(Q%) < max(log, W/(Q°)]

On Repeated Squarings in Binary Fields

7"

Consider computing @ (x) in Fo[x]/x* + x + 1. We have

@ Weights: W(Q?) = 9 and W1(Q?) = 4, W»(Q?) = 2,
W3(Q?) = 2, and W4(Q?) = 1.

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Departi cience

K. Jarvinen

Consider computing @ (x) in Fa[x]/x* + x + 1. We have

@ Weights: W(Q?) = 9 and W1(Q?) = 4, W»(Q?) = 2,
W3(Q?) = 2, and W4(Q?) = 1.

® Area: if n = 2, we get Ax(Q?) < 5 (minimum Ax(Q?) = 4). If
n =4, we get A4(Q?) =3

\ HELSINKI UNIVERSITY OF TECHNOLOGY

K. Jarvinen

Consider computing @ (x) in Fa[x]/x* + x + 1. We have

@ Weights: W(Q?) = 9 and W1(Q?) = 4, W»(Q?) = 2,
W3(Q?) = 2, and W4(Q?) = 1.

® Area: if n = 2, we get Ax(Q?) < 5 (minimum Ax(Q?) = 4). If
n =4, we get A4(Q?) =3

@ Delay: if n = 2, we get Do(Q?) = 2 and D4(Q?) = 1.

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Departi

K. Jarvinen

Table: Areas and delays for NIST F.zss with different n

An(Q°) Dn(Q°)
n 2 3 4 5 6 7 2 3 4 5 6 7
e=1 153 153 153 153153153 1 1 1 1 1 1
e=2 361 245 230 230230230 2 2 2 1 1 1
e=3 0676 385 349 238233233 3 2 2 2 1 1
e=4 1141 616 466 358349291 4 3 2 2 2 2
e=5 1844 973 699 55046639 4 3 2 2 2 2
e=6 289215111035812663580 5 3 3 2 2 2

\ HELSINKI UNIVERSITY OF TECHNOLOGY
ne

900

800 |

700
600
500
S
300
200

100

Exponent, é

Implementation: Idea

Rather than
@ iterating a squarer for e clock cycles,

Implementation: Idea

Rather than
@ iterating a squarer for e clock cycles,
@ computing Q€ directly, or
@ using unrolled squarers (Q||Q]|...||Q, e times)

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Depa o

Implementation: Idea

Rather than
@ iterating a squarer for e clock cycles,
@ computing Q€ directly, or
@ using unrolled squarers (Q||Q]|...||Q, e times)

we search a concatenation Q°'||Q®||... ||Q°®" with e = Z,’L e
minimizing the metric under optimization (area, delay, etc.)

a

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Department 1 Science

K. Jarvinen

Implementation: Idea

Rather than
@ iterating a squarer for e clock cycles,
@ computing Q€ directly, or
@ using unrolled squarers (Q||Q]|...||Q, e times)

we search a concatenation Q°'||Q®||... ||Q°®" with e = Z,’L e
minimizing the metric under optimization (area, delay, etc.)

If € = 9 and n = B, the setup minimizing area is Q%||Q3||Q3 which
has an area estimate of 699 LUTs and a critical path of 3 LUTs.
(Iterative: 153 LUTs + 233 regs /9 cycles, Direct: 1944 /3 LUTs,
Square chain: 1377 /9 LUTs)

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Department 1 Science

K. Jarvinen

Implementation: Varying exponent

Solution 1 (Distinct exponents, {ei, ..., e/})

o Let A= — €j_4
@ Find the optimal circuits for each A; and concatenate them
@ Select results using a multiplexer

IfE={1,2,4,8,16} and n = 6, we get the repeated squarer shown
below with an area estimate of 1600 LUTs.

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Depart ne

K. Jarvinen

Implementation: Varying exponent
Solution 2 (Range, 0 < € < émax)
@ Let e, be the exponent that minimizes An(Q%)/8
@ Concatenate | émax/€opt| Q%*t blocks
@ Compute the remaining squarings with a square chain

If0 < e < 14 and n = 6, we get the repeated squarer shown below
with an area estimate of 1238 LUTs.

ESLIL

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Depart Science

K. Jarvinen

Results

@ Several repeated squarers were synthesized for
Spartan-3A and Virtex-5 FPGAs (see the paper)

@ The results show that repeated squarers are small and fast
enough to be included in existing finite field processors

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Departr Science

K. Jarvinen

Results

@ Several repeated squarers were synthesized for
Spartan-3A and Virtex-5 FPGAs (see the paper)

@ The results show that repeated squarers are small and fast
enough to be included in existing finite field processors

Example (NIST Fyess, Virtex-5)

Solution 1 with {1,2,4,8,16}: area 1823 LUTs and delay 8.23 ns
Solution 2 with 0 < e < 11: area 1809 LUTs and delay 8.10ns

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Depart Science

K. Jarvinen

Inversions in binary fields

@ Fermat’s Little Theorem = a~'(x) = 8" 2(x)

@ Computed with a series of multiplications and (repeated)
squarings

@ ltoh and Tsujii: [logo(m—1)] + w(m—1) —1
multiplications and m — 1 squarings

\ HELSINKI UNIVERSITY OF TECHNOLOGY
ment of Sompy cience
K. Jarvinen

Inversions in binary fields

@ Fermat’s Little Theorem = a'(x) = &" ~2(x)

@ Computed with a series of multiplications and (repeated)
squarings

@ ltoh and Tsujii: [logo(m—1)] + w(m—1) —1
multiplications and m — 1 squarings

Example (Inversion in Foess)

Computed with 10 multiplications and 232 squarings

A repeated squarer (solution 1) with e € {1,2,4,8,16} gives the
following speedups with different multiplier latencies:
M=18=52% M =6 =73%, and M =1 = 88%

(19 repeated squarings instead of 232 squarings)

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Departr Sciens

ce
K. Jarvinen

Scalar multiplication on Koblitz curves

@ Scalar multiplication on Koblitz curves, kP where
k = >"i=4 kir', computed with the binary algorithm:
w(k) point additions and ¢ — 1 Frobenius maps

@ Frobenius map: (x,y) — (x2, y?)

@ e successive Frobenius maps can be computed with two
repeated squarings: (x2°, y%°)

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Comp

K. Jarvinen

Scalar multiplication on Koblitz curves

@ Scalar multiplication on Koblitz curves, kP where
k = >"i=4 kir', computed with the binary algorithm:
w(k) point additions and ¢ — 1 Frobenius maps

@ Frobenius map: (x,y) — (x2, y?)

@ e successive Frobenius maps can be computed with two
repeated squarings: (x2°, y%°)

Example (Scalar multiplication on NIST K-233)

k given in width-2 TNAF = w(k) ~ m/3
Point addition takes 8M + 13 clock cycles (based on existing work)

and we have a repeated squarer (solution 2) with 0 < e < 11:
Speedups: M =17 = 3.8%, M =8 =7.0%, and M =5 = 9.7 %

a

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Comp

K. Jarvinen

Side-channel resistivity

Problem

Computing e Frobenius maps takes 2e clock cycles which can
be distinguished simply by counting clock cycles from the power
trace (confer, weaknesses of the normal binary algorithm).

= Leaks the positions of nonzero k;

On Repeated Squarings in Binary Fields 171

Side-channel resistivity

Problem

Computing e Frobenius maps takes 2e clock cycles which can
be distinguished simply by counting clock cycles from the power
trace (confer, weaknesses of the normal binary algorithm).

= Leaks the positions of nonzero k;

Solution

Use repeated squarers

= the attacker sees only a series of point additions and (two)
repeated squarings

= the attacker must be able to disinguish e from the power
trace of the repeated squarer (one clock cycle)

On Repeated Squarings in Binary Fields 171

Summary

A new component called repeated squarer computing aze(x)
directly in one clock cycle was introduced

@ Small and fast enough to be used in existing finite field
processors on FPGAs

@ Improves the speed of inversion and scalar multiplication
on Koblitz curves

@ Enhances resistivity against side-channel attacks

HELSINKI UNIV

é |
Departn Seience

Thank you.
Questions?

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Information and Computer Science

	Background
	Introduction
	Repeated squarings
	FPGAs

	Repeated squarers
	Analysis of repeated squarings
	Implementation
	Results

	Conclusions
	Inversions
	Koblitz curves
	Summary

