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Introduction 2/17

We present a lightweight coprocessor for the 283-bit Koblitz curve

The �rst lightweight implementation of a high security curve

The �rst to include on-the-�y lightweight conversion

One of the smallest ECC coprocessors

A large set of side-channel countermeasures
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Point multiplication Q = kP :

CPU RAM

ECC
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Koblitz Curves 4/17

Binary curves which are included in many standards (e.g., NIST)

Point doublings can be replaced with cheap Frobenius maps:
φ : (x, y) 7→ (x2, y2)

. . . but �rst the integer k needs to be converted to a τ -adic
expansion k =

∑`−1
i=0 kiτ

i where τ = (µ+
√
−7)/2 ∈ C

Example (Point multiplication Q = kP )

add dbl dbl add dbl add dbl dbl · · · add dbl add

add add add · · · add

Z F2m
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Conversions Algorithms 6/17

Our conversion algorithms are based on:

(1) the lazy reduction by Brumley and Järvinen
(2) the zero-free expansion by Okeya, Takagi, and Vuillaume

⇒ Only (multiprecision) additions and subtractions

(1): Integer k to ρ = b0 + b1τ

(a0, a1)← (1, 0), (b0, b1)← (0, 0),
(d0, d1)← (k, 0)
for i = 0 to m− 1 do

u← d0 mod 2
d0 ← d0 − u
(b0, b1)← (b0 + u · a0, b1 + u · a1)
(d0, d1)← (d1 − d0/2,−d0/2)
(a0, a1)← (−2a1, a0 − a1)

ρ = (b0, b1)← (b0 + d0, b1 + d1)

(2): ρ to τ -adic exp.

i← 0
while |b0| 6= 1 or b1 6= 0 do

u← Ψ(b0 + b1τ)
b0 ← b0 − u
(b0, b1)← (b1 − b0/2,−b0/2)
ti ← u
i← i+ 1

ti ← b0
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Modi�cations for E�ciency and Improved Security 7/17

a

b

c

m

m

m±

1 Negations (e.g., −d0/2) take about 1/3 of cycles

⇒ We use the modi�cation (d0/2− d1, d0/2)
instead of (d1 − d0/2,−d0/2)

⇒ The signs will be incorrect but can be corrected
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Modi�cations for E�ciency and Improved Security (cont.) 8/17

bi + u · ai, where u = d0 mod 2 ∈ {0, 1}

d0

u = 1⇒ b0 + a0 and b1 + a1
u = 0⇒ do nothing

Bad SPA leakage!

2 We select u ∈ {−1, 1} by using Ψ(d0 + d1τ)

u = +1⇒ b0 + a0 and b1 + a1
u = −1⇒ b0 − a0 and b1 − a1
Similar operations ⇒ Increased SPA resistance!
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Point Multiplication with Zero-free Expansions 10/17

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with ki ∈ {−1, 1}

Combined with w-bit windows and precomputations

⇒ Fast point multiplication of only `/w point additions
⇒ Constant pattern of point operations

Example

11̄1̄11111̄1111̄1̄1̄ . . . 11̄11
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−
P
−
1

+
P
+
1

+
P
−
1

+
P
+
1

+
P
−
1

−
P
+
1

+
P
−
1

+
P
+
1

φ2 φ2 φ2 φ2 φ2 φ2 φ2 w = 2:
P+1 = φ(P ) + P

P−1 = φ(P )− P
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Additional Side-channel Countermeasures 11/17

Point additions and subtractions are computed in two phases:

(1) To add (x, y) set (xp, yp, ym)← (x, y, x+ y),
to subtract (x, y) set (xp, ym, yp)← (x, y, x+ y)

(2) Add (xp, yp, ym)

The accumulator point is randomized as shown by Coron:
(X, Y, Z) = (xr, yr2, r), where r is random

The expansion is expanded up to (almost) constant length

The attacker can obtain only a single trace from the conversion
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Architecture of the ALU 13/17
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Results and Comparisons 14/17

We synthesized the design (coprocessor, not RAM) for UMC 130 nm
CMOS with Synopsys Design Compiler

4,323 GE

1,566,000 clock cycles (incl. conversion)

97.89ms (@16MHz)

97.70µW (@16MHz)

9.56µJ (@16MHz)
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Results and Comparisons (Cont.) 15/17

Work Curve RAM
Area Latency Latency Power
(GE) (cycles) (ms) (µW)

Batina'06 B-163 no 9,926 95,159 190.32 <60
Bock'08 B-163 yes 12,876 � 95 93
Hein'08 B-163 yes 13,250 296,299 2,792 80.85
Kumar'06 B-163 yes 16,207 376,864 27.90 n/a
Lee'08 B-163 yes 12,506 275,816 244.08 32.42
Wegner'11 B-163 yes 8,958 286,000 2,860 32.34
Wegner'13 B-163 no 4,114 467,370 467.37 66.1
Pessl'14 P-160 yes 12,448 139,930 139.93 42.42
Azarderakhsh'14 K-163 yes 11,571 106,700 7.87 5.7
Our, est. B-163 no ≈3,773 ≈485,000 ≈30.31 ≈6.11
Our, est. K-163 no ≈4,323 ≈420,900 ≈26.30 ≈6.11
Our, est. B-283 no ≈3,773 ≈1,934,000 ≈120.89 ≈6.11
Our, est. K-283 yes? 10,204? 1,566,000 97.89 >6.11
Our K-283 no 4,323 1,566,000 97.89 6.11
? Estimate for a 256× 16-bit RAM, space needed for 252 16-bit words (4032 bits)
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Thank you! Questions?
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