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ABSTRACT: The LIME Interface Test Bench is a collection of tools that
allow to compile programs in a way such that they monitor interface specifi-
cations at runtime in Java and C programs. Specifications can be made using
the LIME specification language. Another part of the LIME Interface Test
Bench is the LIME Concolic Testing tool (LCT), which uses a combination
of concrete and symbolic execution to explore large number of control flow
paths in a program or parts of a program.

The Java Card technology allows to use a limited subset of Java to develop
applets that run on Smart Cards. These applets communicate with an off-
card application using a simple packet-based protocol.

This report describes a case study, in which the LIME Interface Test
Bench was used to test a Java Card applet. The case study uses the “logi-
cal channels demo” applet, which is part of the Java Card Development Kit
[1]. Ten different specifications were added to this applet. In order to use the
applet in a realistic environment, an off-card application for the applet was
developed. This off-card application was tested using LCT.

KEYWORDS: Testing, runtime monitoring, concolic testing, LIME Interface
Test Bench, Java Card
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1 INTRODUCTION

The LIME Interface Test Bench provides two main functionalities: It allows
to monitor specifications in C and Java programs at runtime and it allows to
systematically test a large number of different control flow paths in a program
using concolic testing. For this report, version 0.3.0 of the LIME Interface
Test Bench was used.

The Java Card technology [1, 4] can be used to develop Java programs
that run on Smart Cards. These programs, called applets, receive commands
from and return values to an off-card application using a simple packet-based
protocol.

This report describes a case study in which the LIME Interface Test Bench
was used to test a Java Card applet. The aim of the case study was to deter-
mina how usable and useful the LIME Interface Test Bench tools are for
testing Java Card applets and to identify potential improvements of the tools.
For the case study, an applet called “logical channels demo”, which is part of
the Java Card Development Kit [1], was used and extended by LIME speci-
fications. In order to be able to test the applet in a realistic environment, an
off-card application for the applet was developed. This off-card application
was tested using LCT.

This report is structered as follows: Section 2 describes the used technolo-
gies and tools, i.e. the LIME Interface Test Bench and Java Card. In partic-
ular, it gives an informal overview over the LIME specification language, a
brief introduction to LCT, a description of the logical channels demo and
an instruction on how to monitor LIME specifications in Java Card applica-
tions. Section 3 describes the actual case study which consists of two main
parts, namely the specifications for the logical channels demo and the devel-
opment and testing of the off-card application. The last section sums up the
experiences that have been made during the case study and suggests some
useful features that could be added to the LIME Interface Test Bench.

2 USED TOOLS AND TECHNOLOGIES

This section introduces the technologies and tools that were used in the case
study. The first two subsections describe two different parts of the LIME
Interface Test Bench. Section 2.1 describes how specifications can be made
using the LIME specification language and how these specifications can be
monitored at runtime. Section 2.2 describes the LIME Concolic Testing tool
(LCT), which tries to explore a large number of different control flow paths
in a program.

The LIME Interface Test Bench was used to test a Java Card applet and
a Java Card off-card application. Section 2.3 describes the Java Card tech-
nology in general and Section 2.4 describes how LIME specifications can
be monitored in Java Card applets despite the fact that they can only use a
limited subset of the Java features. The last subsection, Section 2.5, describes
the applet that was used in this case study.
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2.1 LIME specifications

This section informally describes parts of the LIME specification language.
A more complete description including all features and the exact definition
of the semantics of specifications can be found in [8].

LIME specifications for Java programs are made in the form of annota-
tions to a class or an interface. In principle, there are two types of specifica-
tions: ones that describe the correct use of the class (or classes implementing
the interface if the specifications are made for an interface) and ones that
describe correct behavior of the class itself. These two types of specifications
roughly correspond to two types of specifications existing in the LIME speci-
fication language: call specifications and return specifications. Technically,
call specifications are monitored when methods are called while return spec-
ifications are monitored when methods return. Thus, call specifications are
well-suited for specifying legal behavior of the method callers while return
specifications are well-suited for specifying legal behavior of the methods.
There are however situations in which specifications about the legal behav-
ior of a method caller can not be made as call specifications but only as return
specifications. One example where this is the case is described Section 3.1.

There are three ways to make specifications in the LIME specification
language: linear temporal logic with past (PLTL), regular expressions and
nondeterministic finite automata (NFAs). NFA specifications are not cov-
ered in this report. Regular expression specifications may use the following
operators: concatenation (denoted by “;”), union (“|”) and closure (“*”). In
addition, parentheses can be used and expressions in the form of “a+” can be
used as abbreviation for “a ; a*”.

Figure 1 shows a simple example of an interface with a regular expression
call specification. The interface describes a file object that has methods for
opening and closing a file and reading from and writing to the file. The spe-
cification describes that order in which the methods may be called. First,
open must be called. Then, read and write may be called arbitrarily often
in any order. The method close may be called as well but then open has to
be called again before read and write may be called again. The specifica-
tion describes legal behavior of the method caller and is thus made as a call
specification.

The example in Figure 1 suggests that the LIME specification language
uses regular expressions over method calls. This however is not quite true.
Instead, regular expressions over propositional formulas are used. The propo-
sitional formulas can use common propositional logic operators and three dif-
ferent kinds of propositions: call propositions, value propositions and excep-
tion propositions. Call propositions are denoted by a method name followed
by one opening and one closing parenthesis. In the example, the call propo-
sitions open(), read(), write() and close() are used. Call propositions
are true if the corresponding method is currently executed. Call propositions
however identify a method solely by its name and thus do not differentiate
between overloaded methods.

Value propositions are statements about the values of variables like method
arguments, return values, member variables or static variables. They are sur-
rounded by “<{” and “}>”. For instance, the value proposition <{Some-
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1 @ C a l l S p e c i f i c a t i o n s (
2 r e g e x p = {
3 " F i l e U s a g e : : = ( open ( ) ; ( r e a d ( ) | w r i t e ( ) ) * ;

c l o s e ( ) ) * "
4 }
5 )
6 publ ic i n t e r f a c e LogFi l e {
7 publ ic vo id open ( ) ;
8 publ ic vo id c l o s e ( ) ;
9 publ ic S t r i n g r e a d ( ) ;

10 publ ic vo id w r i t e ( S t r i n g s ) ;
11 publ ic i n t l e n g t h ( ) ;
12 }

Figure 1: A simple interface with a LIME specification. Taken from [9].

class.x != null}> is true iff the static variable x of the class Someclass
is null. Value propositions can refer to arguments of methods by preceding
their name with a “#” and to fields of the current instance by preceding their
name with “#this.”. Furthermore, return specifications, which are moni-
tored when methods return, can refer to the value that a given expression had
when the method was called using the keyword #pre and to the return value
of the method using the keyword #return. For example, the value propo-
sition <{#this.y == #pre(#this.y)}> in a return specification is true iff
the value of the field y did not change during the execution of the method at
which the return specification is monitored.

Like the name suggests, exception propositions refer to an exception type
and are true iff an exception of that type is thrown. Exception propositions
however are not used in this case study.

In the example in Figure 1, the regular expression only uses propositional
formulas that consist of a single call proposition. The specification could be
extended as follows:

1 @ C a l l S p e c i f i c a t i o n s (
2 r e g e x p = {
3 " F i l e U s a g e : : = ( open ( ) ; ( r e a d ( ) | ( w r i t e ( ) &&

<{# s != n u l l } >) ) * ; c l o s e ( ) ) * "
4 }
5 )

Now the propositional formula “write()” has been replaced with the for-
mula “(write() && <#s != null>). While the old propositional formula
was true whenever write was executed, the new formula is only true when
write is executed and in addition the argument s does not equal null. Off
course, much more complex propositional formulas can be used. Table 1
shows some of the propositional logic operators supported by the specifica-
tion language LIME and their notation.

So far, inline notations were used for all propositions. This however
can become rather confusing when more complex value propositions are
used. It is also possible to define value propositions separately using the
valuePropositions field of the specification annotation. For instance, the
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Name Common notation LIME notation
Negation ¬ !

And ∧ &&

Or ∨ ||

Implication ⇒ ->

Equivalence ⇔ <->

Table 1: Some propositional logical operators supported by the LIME speci-
fication language.

Name Notation Description
Globally G p p must be true now and every time the specifica-

tion is monitored in the future.
Yesterday Y p The specification must have been monitored be-

fore and p must have been true the last time the
specification has been monitored.

Once O p Either p is currently true or the specification must
have been monitored before and p must have been
true at some point in the past when the specifica-
tion was monitored.

Since p S q Either q is true now or there must have been a time
in the past when the specification was monitored
and q was true and p has been true at every time
the specification was monitored after that time.

Table 2: Some PLTL operators supported by the LIME specification lan-
guage. p and q can be replaced with arbitrary PLTL formulas.

annotation from the example in could be modified to

1 @ C a l l S p e c i f i c a t i o n s (
2 v a l u e P r o p o s i t i o n s = { " a r g p r o p : : = <{# s != n u l l }> " } ,
3 r e g e x p = {
4 " F i l e U s a g e : : = ( open ( ) ; ( r e a d ( ) | ( w r i t e ( ) &&

a r g p r o p ) ) * ; c l o s e ( ) ) * "
5 }
6 )

A similar mechanism exists for call propositions. As they however tend to be
rather short, it is of less use in practice.

Similar to regular expression specifications, PLTL specifications can use
call and value propositions and a propositional logic operators. They can in
addition use various PLTL operators. Some of these operators are shown in
Table 2. Various PLTL specifications of different complexity are described in
Section 3.1.

Whether or not a specification is observed by a given program execution
may greatly depend on the points in time when it is monitored. For example,
if the call specification from Figure 1 is monitored at any time when neither
of the methods open, close, read and write is executed, it will be violated.
A specification is automatically monitored at every method that is referred
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1 publ ic c l a s s LCTtest {
2 publ ic s t a t i c vo id main ( S t r i n g a r g s [ ] ) {
3 i n t t e s t v a l u e = LCT. g e t I n t e g e r ( ) ;
4 doSomething ( t e s t v a l u e ) ;
5 }
6
7 publ ic vo id doSomething ( i n t a r g ) {
8 i f ( a r g == 42)
9 e r r o r ( ) ;

10 e l s e
11 . . .
12 }
13 }

Figure 2: A simple program using LCT.

to by a call proposition used in the specification. Thus, the specification in
the example in Figure 1 is monitored at the methods open, close, read
and write but not at the method length. Hence, calling length would
not result in a violation of the specification. It is however possible to force
a specification to be monitored at other methods as well using an @Observe

annotation. Thus, if however line 11 was replaced by

@Observe ( s p e c s = { " F i l e U s a g e " } )
publ ic i n t l e n g t h ( ) ;

then the specification would also be observed when length was called and
consequently calling length would result in a violation of the specification.

2.2 The LIME Concolic Testing tool

Part of the LIME Interface Test Bench [8, 2] is the LIME Concolic Testing
tool (LCT) [2, 7]. LCT allows to test a program or parts of a program with
different input values. Figure 2 shows a small program that uses LCT to test
the method doSomething. In line 3, the program retrieves an integer value
from LCT. It then passes that value to the method doSomething. In the
example, calling testedMethod with the argument 42 causes an error while
any other value is fine. If the example program is compiled like an ordinary
Java program, the LCT.getInteger() returns a random value. Thus, the
doSomething method can be tested with various arguments by executing
the program multiple times. As the values however are selected randomly, it
is quite unlikely that the value 42, which causes an error, is picked. Hence,
it is quite unlikely that the error in the doSomething method is discovered
by executing the program a reasonal number of times.

LCT can use concolic testing [10], a combination of symbolic and con-
crete execution to explore the possible behaviours of the tested code more
systematically. After compilation, LCT adds code that performs symbolic
execution to a program in a step called instrumentation. When the intru-
mented program is executed for the first time, LCT.getInteger returns a
random integer just like in the non-instrumented program. In the further
execution of the program, the code added during the instrumentation keeps
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track of how the program uses the value returned by LCT.getInteger. In
particular, it keeps track of the value’s effects on the control flow. For in-
stance, when the control flow reaches line 11 in the example, the symbolic
execution code determines that the current control flow path is taken iff
LCT.getInteger returns a value other than 42. Analogously, a constraint
is added for every if condition that depends on a value returned by a call to
LCT.getInteger. In subsequent executions, LCT then uses the generated
constraints to make the control flow follow a yet unexplored path by making
LCT.getInteger return according values. In order to find values that make
the program follow a given control flow path, LCT can use either of the SMT
solvers Boolector [3] and Yices [5]. In some cases however, LCT fails to fol-
low the control flow path it intended to follow. If the instrumented program
is executed often enough, LCT explores all control flow paths it can explore.

2.3 Java Card applets

Jave Card [1, 4] applets are Java programs that can be run on smart cards.
There are two substantial differences between Java Card applets and ordinary
Java applications. The first difference is that Java Card Applets can only use
a very limited subset of the Java features. For example, the basic data types
long, float, double, char and String are not supported and the support of
int is optional. Also, multidimensional arrays and most standard Java classes
are not supported. Secondly, Java objects on smart cards can be stored in
permanent memory and thus may exist for quite long time and even for the
entire lifespan of the smart card.

Java Card applications usually consist of two parts: an on-card applet and
an off-card application. The applet and the off-card application communi-
cate through the smart card’s interface by exchanging data packets called AP-
DUs. First, the off-card application sends a command APDU which consists
of a mandatory header and an optional body. The header specifies a class
of instruction, an instruction and two parameter bytes. The optional body
can contain additional data and allows the off-card application to specify the
number of bytes of data that it expects in the reply.

The on-card applet can only become active after receiving a command
APDU. The applet then executes the requested operation and sends a re-
sponse APDU. Like the command APDU, the response APDU can contain
data in an optional body. Analogously to the mandatory header of the com-
mand APDU, the response APDU contains a mandatory two byte status word
which indicates the outcome of the operation. If no errors occur, the sta-
tus word equals the constant ISO7816.SW_NO_ERROR. Otherwise, the status
word can either have one of the error codes defined in the ISO 7816 standard
or a custom error value defined by the applet developer.

Multiple applets can be installed on the same smart card. Before the off-
card application can communicate with one of the applets, that applet must
be selected. Usually, only one applet can be selected at a time. Using so-
called logical channels, it is however also possible to select multiple applets
at once.

Java Card applets are implemented in as subclasses of javacard.fra-
mework.Applet. Typically, a Java Card applet implements the following
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methods:

� install – A static method that is called, when the applet is installed
on the smart card. The install method then creates an instance of
the applet and initializes the applet.

� select – The select method is called when the applet is selected.

� deselect – The deselect method is called when the applet is dese-
lected.

� process – The process method is called when the applet receives a
command APDU from the off-card application.

Java Card applets are compiled in two steps. First, the normal Java com-
piler is used to compile the source code into a class file. Then, the class files
are converted into a CAP file using a converter tool which is part of the Java
Card Development Kit. This converter also ensures that only the limited
supported subset of the Java features is used.

2.4 Monitoring LIME specifications in Java Card applets

Part of the Java Card Development Kit [1, 4] are two simulators that allow
to run Java Card applets on an ordinary PC. The first simulator is called the
C-language Java Card Reference Implementation (cref), which can load and
execute CAP files. However, only applets that use only the restricted subset
of Java features supported by Java Card can be converted into CAP files. As
programs that monitor LIME specifications use Java features not supported
by Java Card, they not be converted into CAP files and thus not be run in the
cref.

The second simulator is called Java Card WDE (jcwde) and is imple-
mented in Java. Unlike cref, jcwde use class files instead of CAP files. Thus,
it is possible to also use language features that are not supported by Java Card
in applets run in the jcwde. This makes it possible to run applets that monitor
LIME specifications in jcwde.

Without an off-card application, a Java Card applet does nothing. Thus, it
is necessary to also simulate the off-card application when simulating the ap-
plet. This can e.g. be done using the apdutool, which is part of the Java Card
Development Kit. The apdutool connects to either simulator using TCP/IP.
Then, it loads a sequence of command APDUs from a file specified by the
user and sends them to the simulator. The simulator hands the command
APDUs to the applet and sends the returned response APDUs back to the
apdutool. Both command and response APDUs are printed to the command
line by the apdutool.

One difficulty when running applets with LIME specifications in jcwde is
that jcwde catches all exceptions and simply returns the status word 0x6F00

(“SW_UNKNOWN”) without giving any indication which exception was thrown
or where it was thrown. Thus, when the status word is SW_UNKNOWN, it is
difficult to determine whether this was caused by the violation of a specifi-
cation or by any other exception like e.g. a NullPointerException caused
by a programming error. This problem can be solved by running jcwde in

2 USED TOOLS AND TECHNOLOGIES 13



the Java command line debugger jdb and instructing jdb to break whenever
an exception of type fi.hut.ics.lime.aspectmonitor.SpecException

is thrown.
Another difficulty arises from the fact that specification monitoring code is

added at every call site of a method for which a LIME specification has been
made. This implies that the specifications only work correctly if all parts
of the code from which relevant methods are called are compiled with the
LIME Interface Test Bench. However, as the source code of jcwde is not pub-
licly available, it is not possible to compile jcwde with the LIME Interface
Test Bench. Thus, specifications on the methods called from within the sim-
ulator like install, select, deselect and process do not work correctly.
This difficulty can be circumvented by implementing all such methods as
wrapper methods for other methods that do the actual work and on which
specifications can be made.

2.5 The logical channels demo

The logical channels demo is one of several demos that are part of the Java
Card Development Kit. The idea behind the logical channels demo is that
the smart card is part of a device that allows the user to connect to a network
for a certain fee. The network is divided into several areas and the user has
a home area, in which the fee is lower than in the rest of the network. The
smart card on which the logical channels demo is installed keeps track of the
user’s account’s balance.

The logical channels demo consists of two applets: the AccountAcces-

sor, which manages the user’s account and the ConnectionManager, which
receives the state of the network connection from the off-card application and
debits the account accordingly. The main purpose of the logical channels
demo is to illustrate how these two applets can be active at the same time
and how the off-card application can use logical channels in order to specify,
which of the applets it wants to address.

Writing LIME specifications for the original version of the logical chan-
nels demo is difficult mainly due to the fact that Java Card Applets use special
Java Card mechanisms to receive arguments from and return values to the of-
fcard application.

Figure 3 shows an example of how arguments are received from the off-
card application in the logical channels demo. The figure shows the credit
method of the AccountAccessor. This method is called by the process

method of the AccountAccessor and receives an APDU object, which pro-
vides several methods related to receiving and sending APDUs. In lines 2
to 4, the credit method receives the argument bytes from the command
APDU. It then checks that two bytes of data were received and throws an ex-
ception if this is not the case. In line 9 the two bytes of data are combined to
to one short which indicates the amount by which the user’s balance will be
increased. Then, it is checked whether the resulting amount the is too large
and if this is the case, one of two exceptions is thrown. Otherwise, credit
method increases the user’s balance by the specified amount. Due to the fact
that the argument of the credit method is received in it’s body, it can not be
referenced the usual way in value propositions in LIME specifications.
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1 p r i v a t e vo id c r e d i t (APDU apdu ) {
2 by te [ ] b u f f e r = apdu . g e t B u f f e r ( ) ;
3 by te numBytes = b u f f e r [ ISO7816 . OFFSET_LC ] ;
4 by te by teRead = ( by te ) apdu . se t IncomingAndRece ive ( ) ;
5
6 i f ( ( numBytes != 2 ) | | ( by teRead != 2) )
7 ISOExcept ion . t h r o w I t ( ISO7816 .SW_WRONG_LENGTH) ;
8
9 s h o r t cred i tAmount = ( s h o r t ) ( ( s h o r t )

( b u f f e r [ ISO7816 .OFFSET_CDATA] << ( s h o r t ) 8 ) |
( s h o r t ) ( b u f f e r [ ISO7816 .OFFSET_CDATA + 1 ] ) ) ;

10
11 i f ( ( c red i tAmount > MAX_BALANCE)
12 | | ( c red i tAmount < ( s h o r t ) 0 ) ) {
13 ISOExcept ion . t h r o w I t (

SW_INVALID_TRANSACTION_AMOUNT) ;
14 }
15
16 i f ( ( s h o r t ) ( b a l a n c e + cred i tAmount ) > MAX_BALANCE
17 | | ( s h o r t ) ( b a l a n c e + cred i tAmount ) < ( s h o r t ) 0 ) {
18 ISOExcept ion . t h r o w I t (SW_MAX_BALANCE_EXCEEDED) ;
19 }
20
21 JCSystem . b e g i n T r a n s a c t i o n ( ) ;
22 b a l a n c e = ( s h o r t ) ( b a l a n c e + cred i tAmount ) ;
23 JCSystem . commi tTransac t ion ( ) ;
24 }

Figure 3: The original code of the credit method.

2 USED TOOLS AND TECHNOLOGIES 15



1 p r i v a t e s h o r t c r e d i t ( s h o r t cred i tAmount ) {
2 i f ( ( c red i tAmount > MAX_BALANCE) | | ( c red i tAmount <

( s h o r t ) 0 ) ) {
3 r e t u r n SW_INVALID_TRANSACTION_AMOUNT;
4 }
5
6 i f ( ( s h o r t ) ( b a l a n c e + cred i tAmount ) > MAX_BALANCE

| | ( s h o r t ) ( b a l a n c e + cred i tAmount ) < ( s h o r t ) 0 ) {
7 r e t u r n SW_MAX_BALANCE_EXCEEDED;
8 }
9

10 JCSystem . b e g i n T r a n s a c t i o n ( ) ;
11 b a l a n c e = ( s h o r t ) ( b a l a n c e + cred i tAmount ) ;
12 JCSystem . commi tTransac t ion ( ) ;
13
14 r e t u r n ISO7816 .SW_NO_ERROR;
15 }

Figure 4: The credit method after having been rewritten in a way that
makes it easier to make specifications.

Another difficulty is caused by the way exceptions are thrown in Java Card
applications. Instead of using the standard throw keyword, the Java Card
API provides its own exception throwing mechanism. Instead of real excep-
tions, Java Card applications use two-byte error codes, which are passed to
the off-card application as status words. Exceptions are thrown by calling the
method ISOException.throwIt. Thus, Java Card exceptions can not be
referenced by exception propositions in LIME specifications.

As only a few rather simple specifications could be made for the logical
channels demo without referencing arguments or exceptions, the code of
the logical channels demo was modified in a way such that the Java Card
specific mechanisms for receiving arguments and throwing exceptions were
only used in the process methods of the applets. After the modifications,
all other methods receveived their arguments through the standard Java ar-
gument passing mechanism and return status words rather than throwing the
exceptions themselves.

Figure 4 shows the code from Figure 3 after the modification. The entire
argument receiving code has been moved to the process method and thus
lines 2 to 9 have been removed. Also, the return type has been changed
from void to short and the uses of the Java Card exception mechanism in
lines 13 and 18 have been replaced with return statements.

Another property of the channels demo that makes it difficult to add spec-
ifications is that all fields of both applets are private and thus can not be
accessed in specifications. As it was tried to add specifications while chang-
ing the source code as little as possible, only the field that stores the user’s
balance was given package visibility in order to make it visible to specifica-
tions.
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3 THE CASE STUDY

This section describes the actual case study, which consists of two main parts.
The first part was the development of ten specifications for the logical chan-
nels demo. This part is described in Section 3.1. The second part of the case
study was the development of an off-card application for the logical channels
demo. The off-card application was tested using the LIME Concolic Testing
tool. The off-card application and the LCT test are described in Section 3.2.

3.1 LIME specifications for the logical channels demo

After modifying the code logical channels demo, several LIME specifica-
tions were added. The aim of this process was to make specifications that
would have been difficult to monitor without using the LIME Interface Test
Bench. In particular, no specifications that could also easily be monitored
using simple assert statements were made. Another case study in which
LIME specifications are made to the logical channels demo can be found
in [6].

The original code of the channels demo neither contains any specifica-
tions in natural language nor in any other form. Therefore, specifications
had to be “made up”. The main purpose of the specifications was to illus-
trate the capabilities of the LIME specification language and not to capture
the behavior of the logical channels demo as precisely as possible. Thus, the
specifications are in some cases stricter than they would have to be and forbid
behavior that would not result in any error.

As described in Section 2.1 there are two main types of specifications:
ones that specify the correct usage of a method and ones that specify what
the method does. In course of the case study five specifications of each type
were made.

Specifying the correct usage of methods
Five specifications about the correct usage of methods were made. All of
these specifications were made for methods in the ConnectionManager ap-
plet. Usually, specifications about the correct usage of methods are made as
call specifications. This however was only possible for four of the specifica-
tion.

Some methods of ConnectionManager applet may only be called when
an AccountAccessor instance exists on the same smart card. If there is an
AccountAccessor instance on the smart card, it can be retrieved using the
static method AccountAccessor.getAccount(). If there is no Account-

Accessor instance, that methods returns null. Thus, the following specifi-
cation is violated iff no AccountAccessor instance exists:

p l t l = {
" A c c o u n t E x i s t s : : = G( <{ A c c o u n t A c c e s s o r . ge tAccoun t ( )

!= n u l l } >) " ,
. . .

}

As the specification does not contain any call propositions, it is never mon-
itored automatically. Instead, an @Observe annotation for the AccountEx-

3 THE CASE STUDY 17



ists specification was added to all methods that require the existence of an
AccountAccessor.

The methods setConnection, resetConnection and timeTick may
only be called when the ConnectionManager applet is selected. The ap-
plet is selected iff select has been called at least once and deselect has not
been called since the last time select has been called. Thus, whether or not
the applet is selected could be determined using the formula !deselect()

S select(). As described in Section 2.3, using the select and deselect

methods in specifications does however not work due to the fact that they are
called from within the jcwde simulator. The ConnectionManager applet
however has methods called initState and clearState, which are exclu-
sively called by select and deselect. Thus, they can be used as replacement
for select and deselect in specifications.

Unlike in the first example, the methods at which the specification should
be monitored were not specified using an @Observe annotation but in the
specification itself:

p l t l = {
. . .
" A c t i v e : : = G( ( s e t C o n n e c t i o n ( )

| | r e s e t C o n n e c t i o n ( )
| | t imeTick ( ) )

−> ( ! c l e a r S t a t e ( ) S i n i t S t a t e ( ) ) ) " ,
. . .

}

This specification is violated iff one of the methods setConnection, re-
setConnection and timeTick is executed at a time when the applet is
not selected. In addition to these three methods, the specification is also
monitored when clearState or initState() is executed. This is neces-
sary in order to keep track of whether or not the “since” subformula is cur-
rently true. However, this implies that using @Observe annotations like for
the AccountExists specification would not work. If (!clearState() S

initState()) and @Observe annotations for setConnection, resetCon-
nection and timeTick was used instead, the specification would be violated
whenever clearState() is executed.

The methods timeTick(short newAreaCode) of the ConnectionMa-

nager applet is triggered by the off-card application every time unit. It re-
ceives one argument which contains the ID of the network area the user
is currently in. This area code can be any short except for the constant
ConnectionManager.INACTIVE_AREA which is reserved for other uses. This
can be specified as follows:

p l t l = {
. . .
" TimeTickValidArgument : : = G( t imeTick ( ) −>

<{# newAreaCode !=
ConnectionManager . INACTIVE_AREA} >) " ,

. . .
}

The setConnection method is called, when the network connection is
activated. When the setConnection method is called, the user already has
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to pay for the current time unit. In order to determine the price, the Con-

nectionManager however needs to know in which area of the network the
user currently is. Thus, setConnection may only be called if the Connec-

tionManager knows about the area the user is currently in.
The off-card application sends the current area’s code every time it triggers

timeTick. Thus, setConnection may only be called if timeTick has been
called before. If the ConnectionManager applet is deselected, the code of
the current area is discarded. Hence, setConnection may be called if the
applet was not deselected since the last time timeTick was called. This can
be specified as follows:

p l t l = {
. . .
" AreaCodeSet : : = G( s e t C o n n e c t i o n ( ) −>

( ! c l e a r S t a t e ( ) S t imeTick ( ) ) ) "
}

Dually to the setConnection method, there is a resetConnection me-
thod in the ConnectionManager applet, which is called when the network
connection is deactivated. Although the requirements in the original Con-
nectionManager applet are less strict, it might make sense to require that
the setConnection method may only be called when the network is inactive
and the resetConnection method may only be called, when the network
connection is active. Furthermore, both methods may only be called when
the ConnectionManager applet is selected and the applet may not be dese-
lected while the network connection is active. These requirements could be
specified using a regular expression as follows:

r e g e x p = {
" Connec t ionCal lOrder : : = ( i n i t S t a t e ( ) ;

( s e t C o n n e c t i o n ( ) ; r e s e t C o n n e c t i o n ( ) ) * ;
c l e a r S t a t e ( ) ) * "

}

This specification however does not take into account that the setConnec-

tion method is not guaranteed to succeed. For instance, if the user’s bal-
ance is too low to pay for the connection, a special status word indicating the
failure is returned nothing else is done. In particular, the network connec-
tion remains inactive. In order to take this into account in the specification,
it is necessary to differentiate between successful and unsuccessful calls to
setConnection. This can be done using the following value proposition:

v a l u e P r o p o s i t i o n s = {
" s u c c e s s : : = (# r e s u l t ==

j a v a c a r d . f ramework . ISO7816 .SW_NO_ERROR) " ,
. . .

}

The value proposition success is true iff the current method returned java-

card.framework.ISO7816.SW_NO_ERROR, which indicates that the method
was executed successfully. Using the value proposition, the Connection-

CallOrder specification can be corrected as follows:

r e g e x p = {
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" Connec t ionCal lOrder : : = ( i n i t S t a t e ( ) ;
( ( s e t C o n n e c t i o n ( ) && ! s u c c e s s ) * ;
( s e t C o n n e c t i o n ( ) && s u c c e s s ) ;
r e s e t C o n n e c t i o n ( ) ) * ; c l e a r S t a t e ( ) ) * "

}

Now, an arbitrary number of unsuccessful executions of setConnection is
possible when the applet is selected and the connection is in inactive state.

The ConnectionCallOrder specification describes, in which order the
methods of the ConnectionManager applet may be called, i.e. it describes
how it should be used. As described in Section 2.1, the idea behind call and
return specifications is that call specifications describe how a class or object
should be used while return specifications describe the behavior of class or
object. Hence, the ConnectionCallOrder specification should be imple-
mented as a call specification. This however is not possible due to the fact
that it uses the return value of the setConnection which can only be used in
return specifications. Thus, the ConnectionCallOrder specification is an
example of a specification that describes how a class or object may be used
but which can only be implemented as return specification.

All specifications described so far can be violated by a faulty off-card appli-
cation. If e.g. the off-card application uses ConnectionManager.INACTI-
VE_AREA as argument when sending a time tick command, the TimeTickVa-
lidArgument specification is violated. Thus, the specifications described so
far do not only specify legal behaviour of the applet but also legal behaviour
of the off-card application.

Specifying the effects of methods
Five different specifications that describe what methods should do were made.
Unlike the specifications that describe correct usage of methods, these spec-
ifications only specify legal behaviour of the logical channels demo and can
not be violated by a faulty off-card application. Two of the method effects
specifications were made for the AccountAccessor applet and three for the
ConnectionManager applet. All of these specifications were made as return
specifications.

The first AccountAccessor specification describes the expected behavior
of the debit method. As the name suggests, this method is used to debit the
user’s account. It receives two arguments which indicate the area the user is
currently in and whether or not he uses the smart card’s contactless interface.
Based on these arguments, the debit method computes the price the user has
to pay for one time unit. If the user’s balance is high enough to pay the price,
the account is debited and the method returns true. Otherwise, nothing is
done and the method returns false. Part of this behavior was specified as
follows:

p l t l = {
" Debi t : : = G( d e b i t ( ) −>

( ( < { # r e s u l t == t r u e }>
&& <{# pre (# t h i s . b a l a n c e ) > # t h i s . b a l a n c e } >)

| | ( <{# r e s u l t == f a l s e }>
&& <{# pre (# t h i s . b a l a n c e ) == # t h i s . b a l a n c e } >) ) ) " ,

. . .
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This specification is satisfied iff the debit method either returns true and
reduces the user’s balance or returns false and does nothing.

It would also be possible to specify exactly under which circumstances the
debit method should return false and do nothing. This would however
require the LIME specification to be able to access the prices, which is not
possible due to the fact that they are stored in private fields.

Immediately after the AccountAccessor applet is initialized, the user’s
account is empty. The only way to increase the user’s balance is to execute
the credit method. Thus, it should not be possible to debit the user’s ac-
count before credit is called the first time. One might try to specify this as
follows:

" F i r s t C r e d i t T h e n D e b i t : : = G ( ( d e b i t ( ) && ! (O
c r e d i t ( ) ) ) −> <{# r e s u l t == f a l s e } >) "

This specification would be monitored whenever the debit method or the
credit method return. Whenever a specification is monitored, all of its
propositions are evaluated. For this specification, this in particular means
that the value proposition <{#result == false}> is evaluated every time
debit or credit return. This however does not work due to the fact that the
credit method returns a short and not a boolean. Thus, the specification
shown above results in a compile error.

Currently, the LIME specification language does not provide any mecha-
nisms to circumvent this difficulty. It is however possible to work around this
difficulty using overloaded methods like the following ones:

publ ic s t a t i c boolean e q u a l s F a l s e ( boolean b ) {
r e t u r n b == f a l s e ;

}
publ ic s t a t i c boolean e q u a l s F a l s e ( s h o r t i ) {

r e t u r n f a l s e ;
}

Using these methods, the value proposition <{equalsFalse(#result)}>

returns true if the most recent return value is of type boolean and equals
false and returns false if the return value is true or of type short. Thus,
the specification can be made as follows:

. . .
" F i r s t C r e d i t T h e n D e b i t : : = G ( ( d e b i t ( ) && ! (O

c r e d i t ( ) ) ) −> <{ e q u a l s F a l s e (# r e s u l t ) } >) "
}

If the timeTick method is used correctly, it can have three different out-
comes. One possibility is that the network connection currently is not ac-
tive. In this case, timeTick should do nothing and return the status word
ISO7816.SW_NO_ERROR to indicate that no problems occurred. If the net-
work connection is active, the timeTick method should try to debit the
user’s account. If this fails due to the fact that the balance is too low, time-
Tick should call resetConnection and return the status word SW_NEGATI-

VE_BALANCE. Otherwise, ISO7816.SW_NO_ERROR should be returned. This
behavior was specified in three return specifications. These three specifica-
tions use the success value proposition and three other value propositions:
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v a l u e P r o p o s i t i o n s = {
" s u c c e s s : : = (# r e s u l t ==

j a v a c a r d . f ramework . ISO7816 .SW_NO_ERROR) " ,
" n e g a t i v e B a l a n c e : : = (# r e s u l t ==

ConnectionManager .SW_NEGATIVE_BALANCE) " ,
" b a l a n c e D e c r e a s e d : : =

(# pre ( A c c o u n t A c c e s s o r . ge tAccoun t ( ) . b a l a n c e ) >
A c c o u n t A c c e s s o r . ge tAccoun t ( ) . b a l a n c e ) " ,

" balanceUnchanged : : =
(# pre ( A c c o u n t A c c e s s o r . ge tAccoun t ( ) . b a l a n c e ) ==
A c c o u n t A c c e s s o r . ge tAccoun t ( ) . b a l a n c e ) "

}

The success proposition is the one that has also been used in the Connec-

tionCallOrder specification. It is true iff the current method’s return value
indicates that nothing unusual happened during its execution. Similarly, the
proposition negativeBalance holds, if the return value indicates that deb-
iting the user’s account failed. The value propositions balanceDecreased
holds if the user’s account’s balance did not change during the execution
of the current method and balanceUnchanged holds if the user’s account’s
balance decreased.

The first specification for the timeTick method describes that the method
either decreases or does not change the user’s balance and that the returned
status word is either SW_NEGATIVE_BALANCE or ISO7816. SW_NO_ERROR.

p l t l = {
. . .
" TimeTick : : = G( t imeTick ( ) −> ( ( b a l a n c e D e c r e a s e d | |

balanceUnchanged ) && ( s u c c e s s | |
n e g a t i v e B a l a n c e ) ) ) " ,

Alternatively, “timeTick() ->” could have been omitted if the specification
was added to the timeTick method using an @Observe annotation.

The second timeTick annotation defines the behavior of the timeTick

method if it succeeds. In this case, the account should be debited if and only
if the network connection is active. Whether or not the network is active can
be determined by keeping track of the executions of setConnection and
resetConnection. The network is active iff setConnection was success-
fully called at least once and resetConnection was not called since the last
time setConnection was called successfully, i.e. if !resetConnection()
S (setConnection() && success) holds. This leads to the following spe-
cification:

. . .
" P a y I f f C o n n e c t e d : : = G( ( t imeTick ( ) && s u c c e s s ) −>

( b a l a n c e D e c r e a s e d <−> ( ! r e s e t C o n n e c t i o n ( ) S
( s e t C o n n e c t i o n ( ) && s u c c e s s ) ) ) ) " ,

. . .

The last timeTick specification describes situations in which the time-

Tick method tries to debit the user’s account but the balance is to low, i.e.
the situations in which the value proposition negativeBalance holds. In
these situations, the user’s balance should remain unchanged. Also, the
timeTick method should call resetConnection. Last but not least, the
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1© timeTick called
...

2© timeTick tries to debit account but balance is to low
...

3© timeTick calls resetConnection
...

4© resetConnection returns
...

5© timeTick returns ConnectionManager.SW_NEGATIVE_BALANCE

Figure 5: Execution of the timeTick method in case the network connec-
tion is active but the user’s balance is too low to pay the fee.

timeTick method should only try to debit the user’s account if the network
connection is active. Thus, the network connection should have been ac-
tive before the timeTick method called resetConnection. This can be
specified as follows:

. . .
" N e g a t i v e B a l a n c e : : = G( ( t imeTick ( ) &&

n e g a t i v e B a l a n c e ) −> ( balanceUnchanged && Y
( r e s e t C o n n e c t i o n ( ) && t imeTick ( ) ) && Y Y
( ! r e s e t C o n n e c t i o n ( ) S ( s e t C o n n e c t i o n ( ) &&
s u c c e s s ) ) ) ) "

}

The formula Y (resetConnection() && timeTick()) specifies that the
timeTick method should have called resetConnection if it returns Con-
nectionManager.SW_NEGATIVE_BALANCE. This can be illustrated using Fig-
ure 5, which shows what happens during the execution of the timeTick

method if the connection is active and the user does not have enough money
left to pay the current time unit. After it has been found out that the user’s
balance is to low in step 2©, timeTick calls resetConnection in step 3©.
As the specification is a return specification, it is monitored in steps 4© and
5©. In step 5©, (timeTick() && negativeBalance) holds. At step 4© (i.e.

“yesterday” in step 5), both the call proposition timeTick() and the call
proposition resetConnection() are true.

After timeTick has called resetConnection, the network connection is
not active any more. If timeTick tried to debit the user’s account, the con-
nection should have been active before resetConnection was called. This
is specified by the subformula Y Y (!resetConnection() S (setConnection()

&& success)).
After adding the specifications, it was verified that violations of the speci-

fications result in exceptions. While some specifications can be violated by
simulating a faulty off-card application, others can only be violated by modi-
fying the applets’ source code.

3.2 An off-card application for the logical channels demo

The logical channels demo does not contain any off-card application. For
testing the demo, a program called apdutool, which is part of the Java Card
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Development Kit, can be used. The apdutool allows to send a sequence of
APDUs to a Java Card applet. In order to examine the logical channels demo
in a more realistic environment however, a small off-card application for the
logical channels demo was developed for the case study. The off-card appli-
cation simulates a part of a larger application that receives commands from
other parts of the program. Every command is translated into one or multiple
command APDUs for the applet. The off-card application ensures that the
smart card is initialized properly and that afterwards commands can be exe-
cuted in arbitrary order without causing errors in the applet. In particular,
APDUs send by the off-card application should not cause any violations of
specifications in the applet.

The off-card application supports the following four commands:
Name arguments description
credit amount Increases the user’s balance by the

specified amount.
getbalance - Returns the user’s current balance.
tick current area and

up or down
Indicates that one time unit has
passed. Receives as arguments the
current network area and whether
the network connection is currently
active.

contactless start or stop The off-card application starts or
stops using the contactless interface
of the smart card.

The off-card application was tested using LCT. First, a LCT test program
was developed. The test program first initializes the logical channels applet
with values received from LCT. Then, it asks LCT for an integer in the range
from zero to three. This integer decides which command is sent to the off-
card application, e.g. if LCT returns zero, the credit command is sent to
the off-card application. Furthermore, the test program asks LCT for the
arguments for the selected command. Asking LIME for an command and
arguments for that command is repeated N times for a given N .

First, the test program was only compiled but not instrumented and exe-
cuted several times. In these executions, the test program simply executed N
commands with random arguments. Then, the program was instrumented
using LCT.

If the test program is instrumented by LCT, it can be executed much
more systematically. In the first execution, LCT still returns random values.
The instrumented program however keeps track off the path the control flow
takes and in particular of how the values returned by LCT influence the
control flow. Then, in the second execution, LCT tries to return values that
make the control flow follow a yet unexplored path. This is repeated until
LCT explored all paths. It may however happen that LCT fails to make the
program follow some paths. In this case, these paths are ignored.

In case of logical channels off-card application, LCT tries to execute ev-
ery possible sequence of N commands. Also, LCT tries the same sequence
of commands with different arguments if the arguments make the control
flow follow different paths in the off-card application. LCT however can
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not observe the control flow in the applet. Thus, the test program does not
necessarily try all possible control flow paths in the applet.

The LCT test for the off-card application was run for N = 3. Running
the LCT test for the first time revealed a flaw in the PayIffConnected and
the NegativeBalance specifications. Originally, the subformula for deter-
mining whether the connection is active did not differentiate between suc-
cessful and unsuccessful calls to setConnection, i.e. the subformula was
(!resetConnection() S setConnection()) instead of (!resetConnec-
tion() S (setConnection() && success)). As a result, the PayIff-

Connected specification erroneously assumed that the user also has to pay
for every time unit after an unsuccessful attempt to activate the network con-
nection. This error was not found using manual testing but was discovered
after the LCT test tried a combination of events that violated the erroneous
PayIffConnected specification. After the mistake was discovered, the speci-
fications were corrected and LCT was run again. This time, no further errors
were found. LCT explored 494 control flow paths and failed to explore 284
control flow paths. In total, running the tests took almost 30 minutes.

4 CONCLUSIONS AND SUGGESTIONS FOR FUTURE FEATURES

Using a suiting simulator and the jdb debugger, it was possible to use the
LIME Interface Test Bench to monitor specifications in Java Card applica-
tions. The LIME Interface Test Bench proved to be very useful for monitor-
ing complex specifications that would have been very difficult to monitor by
hand. The following small additions could even improve the usefulness of
the LIME Interface Test Bench:

� As was illustrated using the FirstCreditThenDebit specification de-
scribed in Section 3.1, specifications about return values currently only
work if all methods at which the specification is monitored have return
types for which the used value specifications are legal expression. This
makes it difficult to use return values in specifications about methods
of different return types. It is even impossible to use return values in
specifications that refer to a method that does not return anything. It
would be very helpful to have a way to deal with the issue. For exam-
ple, it would be much easier to make such specifications if there was
a way to ensure that some value specifications are only evaluated for
some methods and treated as false for all other methods.

� If specifications become to lengthy, it can become quite difficult to
understand their meaning. Therefore, a feature that allows to split up
large specifications into smaller chunks would be helpful. The speci-
fications PayIffConnected and NegativeBalance described in Sec-
tion 3.1 for instance both use the subformula !resetConnection()

S (setConnection() && success) in order to determine whether
the network is currently active. These specifications would be much
easier to read if it was possible to define a shortcut for the subformula
and to use that shortcut in the actual specifications.
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� There is no way to define at which points the program may be termi-
nate. One might e.g. want to ensure that a file is closed before the
program terminates. Currently, this can not be specified using the
LIME specification language. A solution might be to introduce an
“exit” proposition which is true when the program terminates and to
monitor all specifications that use that proposition when the program
exists. Then, it could be specified that every file must be closed using
e.g. using the regular expression specification (open(); close())*;

exit.

During the case study, an off-card application for the logical channels
demo was developed. The off-card application was tested using LCT. LCT
revealed a flaw in one of the specifications and thus proved to be useful. As
LCT still is at a very earlier development stage, no suggestions for improving
LCT are given in this case study.
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