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Abstract. Solvers for propositional logic formulas, so called SAT solvers, are
used in many practical applications. As multi-core and multi-processor hard-
ware has become widely available, parallelizations of such solvers are actively
researched. Such research typically ignores the incremental problem specifica-
tion feature that modern SAT solvers possess. This feature is, however, crucial
for many of the real-life applications of SAT solvers. Such applications include
formal verification, equivalence checking, and typical artificial intelligence tasks
such as scheduling, planning and reasoning.
We have developed a multi-core SAT solver called Tarmo, which provides an in-
terface that is compatible with conventional incremental solvers. It enables sub-
stantial performance improvements for many applications, without requiring code
modifications. We present the asynchronous interface, a natural extension to the
conventional solver interface that allows the construction of efficient application
specific parallelizations. Through the asynchronous interface multiple problems
can be given to the solver simultaneously. This enables conceptually simple but
efficient parallelization of the solving process. Moreover, an asynchronous solver
is easier to run in parallel with other independent tasks, simplifying the con-
struction of so called coarse grained parallelizations. We provide an extensive
experimental evaluation to illustrate the performance of the proposed techniques.

1 Introduction

Propositional satisfiability (typically abbreviated SAT) is the problem of finding a sat-
isfying truth assignment for a given propositional logic formula, or determining that no
such assignment exists. This classifies the formula as respectively satisfiable or unsat-
isfiable. SAT is an important theoretical problem as it was the first problem ever to be
proven NP-complete [9].

Despite the theoretical hardness of SAT, current state-of-the-art decision procedures
for SAT, so called SAT solvers, have become surprisingly efficient. Subsequently these
solvers have found many industrial applications. Such applications are rarely limited to
solving just one decision problem. Instead, a single application will typically solve a se-
ries of related problems. Modern SAT solvers handle such problem sequences through
their incremental SAT interface [26,11]. Using incremental SAT solvers avoids load-
ing common subformulas over and over again. Moreover, it allows the solver to reuse
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Fig. 1. Illustration of BMC run time behavior from [27]

the information it has gathered for consecutive problems. The resulting performance
improvements make incremental SAT a crucial feature for modern SAT solvers.

One of the most common industrial uses of SAT solvers is in the area of formal
verification. A particularly well established SAT based technique in this area is Bounded
Model Checking (BMC) [4]. Model checking concerns proving temporal properties of
systems, modelled e.g. as finite state machines. If a property does not hold for a system
then this can be witnessed by a counterexample, which is a single valid execution of the
system in which the property is falsified. Testing the existence of counterexamples of a
bounded length can be easily done using SAT solvers. To achieve this, one defines an
unrolling function which maps a formal system description, a temporal property, and an
integer called the bound to a propositional logic formula. The unrolling function must
encode the formula such that it is satisfiable iff a counterexample no longer than the
given bound exists1. A typical BMC algorithm repeats this process starting from bound
zero, and incrementing it by one as long as no counterexample is found.

Fig. 1 shows two illustrations of BMC run time behavior from [27], demonstrating
the crucial impact of incremental SAT solving on BMC algorithm performance. The
graphs illustrate solving time per bound for two different BMC benchmarks. The height
of a bar in the graphs corresponds to the run time of a SAT solver on the formula for the
corresponding bound without using incremental solving. The thick black curves illus-
trate the behavior of an incremental SAT solver that solved the formulas corresponding
to all bounds sequentially, reporting its total run time each time it proceeded to the next
formula in the sequence. The dotted blue curves are meant to further emphasize the
poor performance of the non-incremental solver, by illustrating the cumulative run time
of solving all formulas sequentially and independently.

Note that for the benchmark eijk.S1238.S illustrated in Fig. 1a the total run time for
solving all bounds sequentially is only half that of solving the largest formula alone.
Here, the gradual introduction of the problem to the solver has helped it to guide its
search process, by “tuning” the solver on the smallest problems. Fig. 1b illustrates the
behavior for benchmark irst.dme6 for which the shortest counterexample is of length

1 Another frequently used semantics is such that the formula is satisfiable iff the counterexample
has a length exactly equal to the bound. This will be discussed in Sec. 3.4



53. The satisfiability of the formulas for bounds larger than or equal to 53 is emphasized
by the hatched bars in the figure. Although solving only one of the satisfiable formulas
using a non-incremental solver would be the fastest way of establishing the existence
of a counterexample there is no way of telling in advance at what bound this “easy”
problem resides. Advanced heuristics [23] for such predictions will be discussed in
Sec. 3. For now, observe that the incremental solver provides a robust way of finding a
counterexample without previous knowledge of its length.

Despite the importance of incremental solving for practical applications SAT solvers
are typically benchmarked only on single formulas, both in research publications and
during SAT solver competitions2. The community researching a different type of con-
straint solvers, called SMT solvers (Satisfiability Modulo Theories), has acknowledged
the importance of incremental solving, by introducing the application track to their
annual competition3. In that track solvers are tested on incremental problems [8].

Now that multi-core and multi-processor hardware has become widely available,
parallelization of SAT solvers is actively researched [5,18,31,14,15,17]. Two major ap-
proaches can be distinguished. The first is the classic divide-and-conquer approach,
which aims to partition the formula to divide the total workload evenly over multiple
SAT solver instances [5,24,31]. The second approach is the so called portfolio approach
[14]. Rather than partitioning the formula, portfolio systems run multiple solvers in par-
allel each of which attempt to solve the same formula. The system finishes whenever the
fastest solver is done. Many such portfolios consist simply of multiple instances of the
same CDCL solver, as such solvers can be made to all traverse the search space in dif-
ferent orders by as little as using different random seeds. Portfolio solvers thus mostly
exploit the run time variance of different SAT solver runs on a single formula. This ap-
proach can be surprisingly effective. Parallel SAT solvers of both types can be extended
with exchange of learnt clauses between SAT solver instances, which can greatly im-
prove the efficiency, even enabling occasional super-linear speed-ups. Both techniques
are evaluated in detail in [16] and elements from both techniques are used in a recently
published new technique [17,18].

To the best of our knowledge, none of the work on parallelizing SAT solvers consid-
ered maintaining the incremental features, making these parallelizations hard to apply
in many practical applications. In [29] we introduced Tarmo, which at the time was only
envisioned to be a special purpose parallel solver for BMC. In 2011 Tarmo competed in
the Hardware Model Checking Competition (HWMCC11), where it won the new exper-
imental multi-property and satisfiable liveness property tracks. The competing version
can be seen as a parallelization of the minimalistic BMC algorithm implementation
aigbmc4. The latest Tarmo version, released in October 2012, is the first version that is
easy to integrate into existing applications. It can provide such applications with sub-
stantial performance improvements, without requiring them to be modified.

This work makes explicit the notion of asynchronous incremental SAT, a simple but
crucial concept for combining incremental SAT and parallelism. It allows more efficient
parallelizations of the solving process, and simplifies the construction of multi-engined

2 http://www.satcompetition.org
3 http://smtcomp.sourceforge.net
4 Part of the AIGER 1.9 toolset, http://fmv.jku.at/aiger

http://www.satcompetition.org
http://smtcomp.sourceforge.net
http://fmv.jku.at/aiger


tools. Multi-engined designs are commonly found amongst applications of SAT solvers.
For example, the majority of model checkers5 that competed at HWMCC11 fall in this
category [25]. Such tools include implementations of several different algorithms (en-
gines) over which the available computation resources are divided. Although this di-
vision can be implemented using a sequential interleaving of execution steps of the
different algorithms, nowadays such tools often employ so called coarse grained par-
allelization. This means that the tools perform largely independent tasks in parallel.

A related work is Simultaneous SAT [19]. The interface of a simultaneous SAT
solver is different from a conventional solver as for each formula in the input sequence
a set of proof objectives can be given. This type of solver aims to prove or disprove
all of these proof objectives simultaneously, i.e. in a single backtracking search. The
developers of simultaneous SAT intended it to be used for BMC algorithms that check
multiple safety properties per bound. Unlike our approach simultaneous SAT requires
modifying the search process of the solver. Using our asynchronous interface the be-
havior of a simultaneous solver can be simulated, and even parallelized. A simultaneous
solver with an asynchronous interface can be envisioned, but has not been investigated.

2 Incremental SAT

In order to define and discuss incremental SAT in detail this section starts with some
basic definitions. A literal l is either a Boolean variable x or its negation ¬x, and double
negations cancel out, hence ¬¬l = l. An assignment is a set of literals A such that if
l ∈ A then ¬l /∈ A. The assignment A should be interpreted such that l ∈ A means that
l is assigned the truth value true, and ¬l ∈ A means that l is assigned the truth value
false. A clause c is a set of literals c = {l0, l1, · · · , ln} representing the disjunction∨
c = l0 ∨ l1 · · · ∨ ln. Hence, clause c is satisfied by assignment A iff l ∈ A for

some l ∈ c. Moreover, a clause consisting of exactly one literal is called a unit clause.
A cube d is a set of literals d = {l0, l1, · · · , ln} representing the conjunction

∧
d =

l0 ∧ l1 · · · ∧ ln. Hence, cube d is satisfied by assignment A iff d ⊆ A.
A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunc-

tions, i.e. a set of clauses. A CNF formula is satisfied by an assignment that satisfies
all of its clauses. A formula for which such a satisfying assignment exists is satisfiable,
other formulas are unsatisfiable. Conventional SAT solvers handle only CNF formulas.

The most commonly used SAT solvers are of the Conflict Driven Clause Learning
(CDCL) type [21]. Such solvers derive new clauses, called learnt clauses, during their
solving process. These learnt clauses are logical consequences of the clauses in the
input formula, and their derivation is intended to help the solver avoid parts of the search
space that are without satisfying assignments. In this work the term solver always refers
to a CDCL SAT solver for CNF formulas.

A general definition for the incremental satisfiability problem is given in [26], where
it is defined as solving each formula in a finite sequence of formulas. The transformation
from a formula to its successor in the sequence is defined by two sets, a set of clauses
to be added and a set of clauses to be removed. Although it is possible to implement

5 e.g. ABC [7] http://www.eecs.berkeley.edu/˜alanmi/abc
and PdTRAV http://fmgroup.polito.it/quer/research/tool/tool.htm
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a SAT solver that allows arbitrary removal of clauses between consecutive formulas,
there is a complication in that when a clause is removed also all learnt clauses whose
derivation depends on that clause must be removed. Maintaining sufficient information
in the solver to achieve this has significant drawbacks on its performance and thus
arbitrary clause removal is not implemented in any state-of-the-art solver.

Multiple solutions exists. For example, in the interface of the SAT solver zChaff 6,
an implementation of the chaff algorithm [22], it is possible to assign clauses to groups,
and those groups can be removed as a whole. The SMT-LIB standard [3] for SMT solver
input defines the so called push- and pop-interface. In this approach the subproblems
are maintained on a stack and the solver aims to solve the union of the problems on that
stack. The simplest and most commonly used interface for incremental SAT solvers
however is the one defined in [11] and first used in the solver MiniSAT [10]. This solver
interface does not contain a function for removing clauses. Instead, a solver with this
interface can determine the existence of satisfying assignments that include a specified
set of assumptions. The interface is defined by two functions:

– addClause(Clause clause)
– solve(Cube assumptions)

Using this interface clause removal can be simulated as follows: Instead of adding
clause c to the solver the clause c ∪ {x} where x is a free variable is added. As long as
the solver is asked to perform its solving task under a set of assumptions that includes
literal ¬x it will only consider assignments A such that ¬x ∈ A, hence it must satisfy c
in order to satisfy clause c ∪ {x}. However, without the assumption ¬x the solver can
assign x to true and ignore c.

Note that the addClause and solve function define part of the interface of a
SAT solver, hence they control the execution of this particular computer program. The
solve function is blocking, in the sense that the call to this function will not return to
the calling application until the SAT solver determines the satisfiability of the loaded
problem. In this work the input for an incremental SAT solver is defined separately
from the execution of such a solver. Here, an instance of the incremental SAT problem
is defined as a sequence of jobs 〈φ0, φ1, · · · 〉. A job φi is characterized by a set of
clauses CLS(φi) and a single cube assumps(φi). Each job φi induces a CNF formula
F(φi) consisting of all its clauses and all clauses in previous jobs, and one unit clause
for each literal in its cube of assumptions.

F(φi) =

 ⋃
0≤j≤i

CLS(φj)


︸ ︷︷ ︸

CLAUSES(φi)

∪

 ⋃
l∈assumps(φi)

{l}



In the rest of this work “solving a job” refers to the process of determining the
satisfiability of the CNF formula induced by that job. Note that these definitions have
been chosen to match solvers using the interface of [11]. Calling addClause(c) for

6 http://www.princeton.edu/˜chaff/zchaff.html
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all c ∈ CLAUSES(φi) followed by a call to solve(assumps(φi)) will make such
solver solve F(φi) (assumptions are handled as truth assignments in the solver).

Without enforcing the blocking semantics of the solve function it is possible to
think of the solver as a reactive system. The system is given jobs as input and as output
it reports the result of solving those jobs. The communication between the application
and the solver is asynchronous: The application may proceed to submit more jobs while
the solver has not yet reported the result for a previously submitted job. Moreover, the
results may be reported by the solver out-of-order with respect to the order of the jobs
in the input sequence.

3 Employing asynchronicity and parallelism

To motivate the asynchronous communication between application and solver proposed
in the previous section let us take another look at Fig. 1b. Note that the largest unsat-
isfiable formulas, those for bounds just below 53, are much harder to solver than the
smallest satisfiable ones. It was observed in [27] that this type of run time profile is typ-
ical for formula sequences from BMC that contain satisfiable formulas. This matched
earlier observations [23] for a different application of SAT solvers called automated
planning. In automated planning the satisfiability of a formula in the sequence corre-
sponds to the existence of a plan of a certain length. The two applications are similar in
nature: Either all formulas in the sequence are unsatisfiable, or the sequence has a finite
prefix of formulas that are unsatisfiable, followed by only satisfiable formulas.

The authors of [23] did not consider incremental solving, but rather aimed to im-
prove the speed at which the existence of a satisfiable formula in the sequence can be
established using a non-incremental solver. They suggested that instead of always aim-
ing to solve the first unsolved formula in the sequence, the total solving effort can be
divided over a prefix of the unsolved formulas in the sequence. Under the observed
typical run time profile this would then allow solving a satisfiable formula before the
solving of the hardest unsatisfiable formulas has been completed. This is an interest-
ing idea, but without the use of an incremental solver it is handicapped especially on
long subsequences of unsatisfiable formulas. Although dividing the effort over multi-
ple formulas can be beneficial, it is not useful if the extra performance provided by the
incremental solver is lost. Asynchronicity provides a way to give an incremental solver
any prefix of the formula sequence rather than just one formula at the time.

3.1 Parallelizing incremental SAT

The algorithms used in parallel SAT solvers for doing the actual solving are often iden-
tical to those used in sequential solvers. A typical parallel SAT solver’s architecture uses
multiple conventional sequential solvers in parallel. In portfolio solvers these parallel
operating solvers are all given the same input, whereas in other approaches each solver
instance is restricted to a portion of the search space. The basic building block in our
parallel incremental SAT solver called Tarmo is a conventional incremental SAT solver
using the assumptions interface, currently MiniSAT 2.27. During its execution Tarmo

7 http://www.minisat.se
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spawns multiple solver threads, and each of these threads has access to its own instance
of the conventional solver. Tarmo’s interface is similar to that of any other SAT solver,
except that it provides two extra non-blocking functions called addCube and cancel.
The addCube function enters an assumptions cube, and thereby induces a new job in
the sequence of jobs stored inside Tarmo. Each of its solver threads repeatedly reads a
job from the sequence and solves it. The cancel function can be used to cancel the
solving of a specific job.

If all of the solver threads always read the first unsolved job from the sequence
then Tarmo becomes a portfolio of incremental solvers, e.g. each solver thread tries to
solve all of the jobs in the input sequence. We refer to this strategy as distribution mode
multiconv (multiple conventional). In a different distribution mode of Tarmo, called
multijob, each of the solver threads always proceeds to solve the first unsolved job
from the sequence that has not yet been assigned to another solver thread. This matches
the natural idea that for an efficient parallelization the work performed by the separate
threads should be different. This strategy was also used by a parallel solver specifically
designed around one BMC unrolling function [1]. The multijob strategy does have
a downside: Each solver thread individually no longer solves all of the jobs, hence the
individual benefit of incremental solving is reduced.

As the solver threads use conventional incremental solvers no clauses can be re-
moved by the solver threads. As a consequence, Tarmo can only use distribution modes
which are defined such that a thread which just solved φi can only proceed to solve
φj if CLAUSES(φi) ⊆ CLAUSES(φj). Note that it is possible that CLAUSES(φi) =
CLAUSES(φj) for i 6= j because applications may test the same set of clauses under
different sets of assumptions. In such cases there are jobs φj such that CLS(φj) = ∅.
For example, in Cube-And-Conquer [15], one set of clauses is tested under many thou-
sands of different sets of assumptions.

3.2 Clause sharing

Sharing of learnt clauses is an important building block in any parallel SAT solver.
Although sharing learnt clauses between different solver threads can allow those threads
to help each other, sharing too many clauses harms performance. Even conventional
sequential solvers do not store all the learnt clauses they derive forever, but rather they
clean up their learnt clause database regularly during the solving process. Restricting
the number of learnt clauses shared between solving threads is therefore an important
aspect of parallel SAT solving (see, e.g. [13]). It was stated in the introduction that
incremental SAT solving “allows the solver to reuse the information it has gathered for
consecutive problems”. The learnt clauses are an important part of this information,
although some heuristics measures kept in the solver are also important [27].

The asynchronous interface allows solving multiple jobs in any order. In particular,
in Tarmo, multiple solver threads may not be solving the same job at the same time.
Hence, care must be taken when employing sharing of learnt clauses between those
solver threads. Note that in general a clause c derived while solving a job φi can be
used in the solving process of any job φj such that CLAUSES(φi) ⊆ CLAUSES(φj).

To achieve correct clause sharing with low overhead the database in Tarmo is orga-
nized as a set of queues. There is one queue for each unique clause set, i.e. one queue



q(φi) for each job φi such that CLS(φi) 6= ∅. For jobs φj such that CLS(φj) = ∅ we
have q(φj) = q(φi) for the largest i such that i < j and CLS(φi) 6= ∅. If a solver
thread wants to share a learnt clause it derived while working at job φi it pushes it in
the corresponding queue q(φi). A solver thread that is solving φj can now safely read
and enter any foreign learnt clause that it can find in the queues q(φi) for all i ≤ j.

The number of learnt clauses stored in each of the solver threads, and thus nom-
inated for sharing with others, is not as massive in Tarmo as in conventional parallel
SAT solvers for three different reasons. In Tarmo the solver threads only read and write
to the queues in the shared clause database at the start and end of a job, and during
restarts [12]. Some conventional solvers use a much more eager strategy. Sharing only
at restarts however has the nice property that the introduction of new learnt clauses
does not interfere with active search processes. The second reason is that the formulas
used to test conventional parallelizations of SAT solvers are usually amongst the hard-
est its developer can find. Tarmo instead deals with sequences of problems for which
the difficulty is typically more in the length of the sequence than in the hardness of
individual formulas. The third reason is more implementation specific, but related to
the second one. SAT solvers use a limit on the number of learnt clauses they store in
their databases, and as the search continuous they increase this limit. A specific feature
of MiniSAT, and thus also of the solving threads in Tarmo, is that when incremental
solving is used this limit is reset for every consecutive call to solve. Hence, compared
to solving a single hard instance for the same amount of time the clause database grows
less large on an incremental problem sequence. During experiments for [15] this was
found to be a crucial element in MiniSAT’s incremental solving performance.

Unlike the common wisdom regarding conventional parallel SAT solvers, a version
of Tarmo that shares all learnt clauses performs substantially better than the version
that shares no clauses at all. Limiting the throughput of learnt clauses does improve
its performance further, especially for harder problems. Tarmo limits the sharing of
learnt clauses on the sending side only, i.e. clauses that are not considered of sufficient
“quality” are not placed into the queues of the shared clause database. Two measures of
clause quality that can be determined quickly are their length, and their Literals Blocks
Distance (LBD) [2]. Because shorter clauses represent stronger constraints limiting the
length of shared clauses by a constant (8 in [14]) would be a reasonable and very simple
heuristic. The problem is that as the search continues the length of the clauses tends to
increase, reducing the throughput of shared clauses [13]. Tarmo therefore by default
shares all clauses whose length is below the running average, and this default is used in
all results presented in this work. It is possible to configure Tarmo to share clauses below
the average (or a constant) LBD, but this does not improve the average performance
for the experiments presented here. The result of the experiments for different clause
sharing heuristics can be found from the authors’ webpage8.

3.3 The synchronous interface: A drop-in replacement for MiniSAT

The aim of our work is to provide performance improvements for applications of in-
cremental SAT solvers, without requiring extensive rewriting of those applications. To

8 http://users.ics.aalto.fi/swiering/tacas13
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Fig. 2. Replacing MiniSAT by Tarmo without further modifications

illustrate that this can be achieved we took the latest version of the model checker TIP9

and replaced the MiniSAT solver with Tarmo. Tarmo’s interface provides a blocking
solve call for full source-code compatibility with MiniSAT. Because of this compati-
ble interface the modification of the source code of TIP was limited to just changing the
name of the type of the solver. Although an application that uses Tarmo as a drop-in re-
placement for MiniSAT does not benefit from asynchronicity directly, it can still benefit
from parallelism. Through Tarmo, and the multiconv distribution mode it provides,
the application now has access to a portfolio of incremental solvers that are perform-
ing learnt clause sharing. Because most popular SAT solvers other than MiniSAT also
use MiniSAT-like interfaces, replacing such solvers by Tarmo in existing applications
should not be much harder.

All experiments in this work were performed in a computing cluster in which each
node has two six core Intel Xeon X5650 processors. A memory limit of 3500MB per
solver thread was employed. Fig. 2 is a logarithmic-scale scatterplot that shows the
performance of the proposed straightforward use of Tarmo for the BMC algorithm in-
side TIP. This experiment was performed using the 95 benchmarks from the single
safety property track of HWMCC11 for which during the competition at least one
model checker found a counterexample. The version of TIP using the original Min-
iSAT solver solved 84 of those benchmarks within 900 seconds. By using Tarmo with
4 solver threads instead the performance of TIP is improved enough to make it solve
86 benchmarks. For the 24 benchmarks that were solved by the unmodified version of
TIP in more than 10 seconds, an average speed-up of 2.1 is obtained by using Tarmo.
A two time speed-up using four times the number of solver threads is not bad, consid-
ering that each of the solver threads are solving the exact same sequence of problems.
During this experiment each of the solver threads used the exact same settings, except
for the random seed. It should be possible to further increase the performance by using
a variety of different settings for each solver thread, but this would require an extensive
empirical evaluation that is outside the scope of this paper. The surprising strength of
this approach matches observations for conventional parallel SAT solvers [14,18].

9 http://github.com/niklasso
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3.4 The asynchronous interface: Exploiting application specific knowledge

The asynchronous incremental solver interface is a natural extension to a basic incre-
mental solver and can prove useful for many applications. Exploiting it effectively does
however require some knowledge of the application.

The sequence of formulas generated from applications like BMC or automated plan-
ning can be generated up to any arbitrary length in advance. This does not hold for many
other applications of incremental solvers in which the encoding of formulas depends on
the results of solving previous formulas.

The main loop of a conventional BMC algorithm, as found in TIP, is given in Fig. 3a.
The BMC unrolling function, providing the transition relation of a system for a bounded
number of steps in propositional logic, is named unroll in the pseudocode. For this
work it suffices to understand unroll as a function that makes repeated calls to the
solver’s addClause function and then returns a set of assumption literals. Once this
has been done the solve function is called to establish the satisfiability of all clauses
under the set of assumptions. If the solver finds this satisfiable then a counterexample of
length k has been found, otherwise the value of k is incremented and the next iteration
of the loop starts.

Fig. 3b illustrates a BMC loop exploiting the asynchronous solver interface. The
non-blocking function addCube is called after unroll, inducing job φk for the solver.
Note that F(φk) is exactly the same formula that would have been solved in iteration
k of the conventional algorithm. On the Lines I-III the actions that must be executed
when a result is received from the solver are stated. This result handling code can be
executed in a thread concurrent to the thread executing the main loop, or alternatively
it can be handled by the same thread if a poll to the solver for new results is included
in the loop. In either case, Tarmo reports a result for each job φi at most once. For all
but the most trivial benchmarks the encoding of a formula using the unroll function
can be performed much faster than solving that formula. Hence, to avoid wasting large
amounts of memory, in practice it is necessary to limit the number of unsolved jobs in
the solver to a small constant. To illustrate this in Fig. 3b on Line 7 the job generation
is paused until the value of shared variable p falls below constant value max pending.
Alternatively, such limits can be implemented using functions provided by the interface
of Tarmo, avoiding the need to handle potential concurrency issues in the application.

We modified TIP to use asynchronous BMC. TIP is a complex piece of software,
which provides several different verification algorithms and performs non-trivial re-
ductions on its input models. The modifications to the existing code of TIP made to
introduce asynchronous BMC were, however, not more complicated than those given
in Fig. 3. The performance is illustrated using a cactus plot in Fig. 4. The benchmarks
used for the illustrated experiment are the same as discussed in Sec. 3.2. The two syn-
chronous versions ’Sync. 1’ and ’Sync. 4’ correspond to the two algorithm versions
compared in Fig. 2. Observe that using 4 solver threads and Tarmo’s multijob dis-
tribution mode, asynchronous BMC is able to solve 88 of the benchmarks. Using 6
threads this further increases to 89, but it then goes back to 88 for the version that uses
8 threads.

Earlier in this work, and in the related work on automated planning [23], only se-
quences were considered that either consist only of unsatisfiable formulas, or of a finite



Conventional BMC Asynchronous BMC

1. k = 0
2. forever do
3. A = unroll(k)
4. r = solve(A)
5. if r = unsatisfiable then
6. k ++
7. else
8. return cex of length k

1. k = 0; p = 0
2. while cex not found
3. p++
4. A = unroll(k)
5. addCube(A)
6. k ++
7. wait until p < max pending

On result for job φi:
I. p−−

II. if result for φi is satisfiable then
III. return cex of length i

(a) (b)

Fig. 3. Pseudocode for usage of incremental SAT in BMC

prefix of unsatisfiable formulas followed by only satisfiable formulas. This means that
the result handling functions of Fig. 3b can be extended with an extra application spe-
cific improvement: If the result unsatisfiable is reported then the solver may be asked
to abort solving all unsolved older jobs, as these are now known to be unsatisfiable.
The cancel function in Tarmo’s interface is provided for this purpose. Unfortunately
there is a problem when applying this idea in TIP, which is that for safety properties it
encodes the k-th formula with the semantics that it is satisfiable iff a counterexample of
exactly length k exists. Hence, in TIP, the unsatisfiability of a job does not necessarily
imply that all older jobs are also unsatisfiable.

This problem was resolved by making a small modification to each of the bench-
marks before giving them as input to our asynchronous BMC version of TIP. The bench-
marks are encoded in the AIGER-format10, a representation of Boolean circuits using
and-gates, inverters and latches. Here, a counterexample is a sequence of truth assign-
ments to the inputs of the circuit that makes the output attain the value true. For each
benchmark a new circuit was created by extending the original circuit with a small
amount of extra logic, including one latch. The added logic makes sure that, iff the
output of the original circuit attains the value true, then the output of the new circuit at-
tains the value true and remains in this state regardless of changes to the input signals.
By using these modified circuits, instead of the original models, older jobs can now
be safely cancelled by the asynchronous BMC result handling function. The resulting
performance is shown in Fig. 5. Clearly, cancelling of older unsatisfiable jobs improves
the performance and especially the scaling of the parallelization.

3.5 Coarse grained parallelization

For computationally hard problems, such as SAT solving or model checking, there are
no “one size fits all” solutions. Because different algorithms work well for different
10 http://fmv.jku.at/aiger

http://fmv.jku.at/aiger
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Fig. 4. TIP BMC using asynchronous solving

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 70  72  74  76  78  80  82  84  86  88  90

ru
n 

tim
e 

(s
)

instances solved

Sync. 1 (solved 85)
Sync. 4 (solved 87)

Async. 4 (solved 88)
Async. 6 (solved 89)
Async. 8 (solved 89)

Fig. 5. TIP BMC using asynchronous solving on modified circuits

problems, tools implementing more than one algorithm, so called algorithm portfolios,
or multi-engined tools, are common practice (e.g. [30,25]). Although the asynchronous
interface was developed to allow parallelization of incremental SAT solving, it can also
aid the development of multi-engine tools. Once again, we use TIP to illustrate our
point. TIP includes an implementation of the IC3 algorithm [6] which is called the
Recursive Induction Prover (RIP). In contrary to the basic BMC implementation this
algorithm can prove that a property holds. Although IC3/RIP can also find counterex-
amples it can typically not match the performance of BMC at this task, thus executing
both algorithms in a portfolio should provide better average performance.

Creating such a portfolio inside TIP was easy, as we had asynchronous BMC al-
ready in place. We simply added calls to the BMC algorithm functions unroll and
addCube (recall Fig. 3b) inside the main loop of the RIP algorithm. As a result, the
RIP algorithm ensures the concurrent execution of the completely independent asyn-
chronous BMC algorithm. In this set-up Tarmo is only used for BMC. Using the RIP
algorithm 346 out of the 465 single safety property benchmarks from HWMCC11 can
be solved within 900 seconds. By executing BMC concurrently with RIP this increases
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Fig. 6. Tarmo for concurrent BMC and RIP, and Tarmo for MUS Finding

to 352, with Tarmo configured to use one solving thread for BMC. Using 4 solving
threads 357 benchmarks are solved. The impressive and consistent speed-up for coun-
terexample finding is illustrated in Fig. 6a for the version using 4 solving threads.

It must be noted that simultaneous execution of two completely separated imple-
mentations of BMC and RIP as two different processes will give roughly the same
performance. This experiment is only meant to illustrate that an asynchronous solver
is easy to run “on the side”. This clearly can have advantages over execution in sepa-
rate processes. For example, one could implement a tool in which the BMC and RIP
algorithms share derived system invariants, or lower-bounds on counterexample length.

3.6 Asynchronous solving outside BMC

Some applications of incremental solvers, such as Cube-And-Conquer [15] parallelize
naturally, whereas others are very challenging. Dependencies between the generation of
jobs and the result of previous jobs can make running multiple jobs concurrently harder.
In this section we discuss a particularly challenging application.

An unsatisfiable CNF formula is minimal unsatisfiable if removing any of its clauses
makes it satisfiable. Algorithms that find Minimal Unsatisfiable Subsets (MUSes) of un-
satisfiable formulas have received a lot of research interest in recent years. An impor-
tant recent contribution is model rotation [20]. The performance of that algorithm was
studied in [28], which also proposed parallelization using Tarmo. This a challenging
application because the concurrently executed jobs are not independent. In this paral-
lelization the result of a job can imply that the result of concurrently solved jobs is
no longer interesting. Fig. 6b shows results for a new implementation of the existing
parallelization from [28]. The new implementation is based on the same ideas but ben-
efits from Tarmo’s recent interface improvements, as well as from better MUS finding
heuristics. The set of benchmarks used were the 178 benchmarks also used in [28] and
34 from [4]. The single threaded version solved in total 168 benchmarks, requiring on
average 2468 jobs per benchmark. The versions using 4 and 8 threads both solve 174
benchmarks. However, the 4 threaded version opportunistically generates an average of
3610 jobs per benchmark out of which only 2499 (69%) have a result that progresses
the MUS finding. For the 8 threaded version only 2535 (52%) out of 4842 jobs per



benchmark are effective. Despite the large amount of unnecessary work performed, this
parallelization improves the performance of a state-of-the-art MUS finding algorithm.

4 Conclusions

In this paper we discussed the asynchronous interface for incremental SAT solvers. The
incremental feature of modern SAT solvers is crucial for their performance in practical
applications. Nevertheless, it is often overlooked in research aiming at improving or
parallelizing such solvers. By extending the most commonly used incremental solver
interface our parallelizations are directly applicable in many different contexts. As a
result, substantial performance gains can be obtained by simply replacing a sequen-
tial incremental solver by our source-code compatible multi-core solver. In many cases
further improvements are possible by using the asynchronous interface to create an ap-
plication specific parallelization. The minimal nature of the proposed extension to the
standard interface means that asynchronicity does not have to be limited to our Tarmo
solver. Instead, it can prove useful to any solver developer interested in combining in-
cremental SAT solving and parallelism.
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The Tarmo solver, the modified versions of TIP, and more experimental data can be
found from http://users.ics.aalto.fi/swiering/tacas13.
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17. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Grid-based SAT solving with iterative parti-
tioning and clause learning. In: Lee, J.H.M. (ed.) CP. Lecture Notes in Computer Science,
vol. 6876, pp. 385–399. Springer (2011)
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