
Parallel Encodings of Classical Planning as Satisfiability

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee

79110 Freiburg im Breisgau
Germany

Keijo Heljanko
University of Stuttgart

Institute for Formal Methods
in Computer Science

Universitätsstrasse 38, 70569 Stuttgart
Germany

Ilkka Niemelä
Helsinki University of Technology

Laboratory for Theoretical Computer Science
P. O. Box 5400, FIN-02015 HUT

Finland

Abstract

We consider a number of semantics for plans with parallel
operator application. The standard semantics most often used
in earlier work requires that parallel operators are indepen-
dent, and can therefore executed in any order. We consider
a more relaxed definition of parallel plans, first proposed by
Dimopoulos et al., as well as normal forms for parallel plans
that require every operator executed as early as possible, first
proposed outside planning in connection with Petri nets. We
formalize the semantics of parallel plans emerging in this set-
ting, propose effective translations of these semantics to the
classical propositional logic, and show that they yield an ap-
proach to classical planning that is often much more efficient
than the existing SAT-based approaches.

Introduction

Finding paths in transition systems – as in model-checking
(Biere et al. 1999) and AI planning (Kautz & Selman 1996)
– is one of the important applications of satisfiability testing.

Efficiency of satisfiability algorithms in problem solving
is strongly determined by details of the problem represen-
tation. In the case of AI planning, techniques that allow
considering plans with a smaller number of time points –
especially parallel plans (Kautz & Selman 1996; Blum &
Furst 1997) – and thereby representations of the planning
problem with a smaller number of propositional variables,
as well as constraints for reducing the space of incomplete
solutions – like invariants/mutexes (Kautz & Selman 1996;
Blum & Furst 1997) – are of great importance in achieving
efficient planning.

In this paper we address the encoding of parallel plans in
the propositional logic. In the state-based encoding of de-
terministic AI planning (Kautz & Selman 1996), between
two time points the simultaneous application of several op-
erators is allowed provided that the operators are mutually
non-interfering. This non-interference condition guarantees
that any total ordering on the simultaneous operators is a
valid execution and in all cases leads to the same state. The
two benefits of this kind of parallel encodings are that, first,
it is unnecessary to consider all possible orderings of a set
of non-interfering operators, and second, less propositional
variables are needed as the values of the state variables in
the (implicit) intermediate states need not be represented,
reducing the size of formulae.

Heljanko (2001) has applied a stricter semantics for par-
allel transitions/operators for deadlock detection of 1-safe
Petri nets, called process semantics (as opposed to the stan-
dard semantics for parallelism, step semantics), which re-
quires that all transitions take place as early as possible,
that is, no transition could have taken place one time point
earlier. Process semantics allows constraining the set of
allowed transition sequences (plans), and has been shown
to lead to efficiency gains on many types of problems in
bounded model-checking (Heljanko 2001).

Our first goal in this paper is to present a process seman-
tics for deterministic AI planning, consider its representation
in encodings of planning in the propositional logic, and eval-
uate the possible efficiency gains induced by the stronger
constraints on the sets of possible plans.

Another refinement to the idea of parallel plans was sug-
gested by Dimopoulos et al. (1997). They pointed out that it
is not necessary to require that all parallel operators are non-
interfering, as long as there is a guarantee that the parallel
operators can be executed in at least one order. Dimopoulos
et al. discussed this idea in terms of blocks world and lo-
gistics problems encoded as nonmonotonic logic programs
(Dimopoulos, Nebel, & Koehler 1997), and showed that ef-
ficiency gains can be obtained. This more relaxed semantics
allows a further reduction in the number of time points for
which the values of the state variables have to be represented
explicitly. We call this the 1-linearization semantics.

Our second goal is to provide a general formalization for
1-linearization semantics, to provide a general and efficient
translation of 1-linearization semantics to the propositional
logic, and to evaluate its computational behavior.

The structure of the paper is as follows. First in the next
section we discuss those parts of the standard state-based
encoding of AI planning in the classical propositional logic
that are independent of the semantics for parallelism. Then
we introduce the underlying ideas of the process seman-
tics, formally define a process semantics for AI planning,
and discusses the representation of process semantics in the
propositional logic. This is followed by a section on the
more relaxed 1-linearization semantics and its translation to
the propositional logic. The experiments’ section evaluates
the advantages and disadvantages of the different semantics
in terms of some planning problems. The last section con-
cludes the paper by discussing future research directions.

Notation

Definition 1 An operator on a set of state variables P is a
triple 〈p, e, c〉 where

1. p is a propositional formula on P (the precondition),

2. e is a set of literals on P (the effect), and

3. c is a set of pairs f B d (the conditional effects) where f
is a propositional formula on P and d is a set of literals
on P .

For an operator 〈p, e, c〉, its active effects in a state s are

e ∪
⋃

{d|f B d ∈ c, s |= f}.

The operator is applicable in s if s |= p and its active effects
are consistent. We define appo(s) = s′ to be the unique
state that is obtained by applying the operator o in state s.
The state s′ is obtained from s by setting the operator’s ac-
tive effects true, and retaining the truth-values of state vari-
ables not mentioned in the active effects. For sequences
o1; o2; . . . ; on of operators we define appo1;o2;...;on

(s) as

appon
(· · · appo2

(appo1
(s)) · · ·). For sets S of operators and

states s we define appS(s): the result of simultaneously ap-
plying all operators o ∈ S. We require that appo(s) is de-
fined for every o ∈ S, and the set of active effects of all op-
erators in S is consistent. In later sections we impose further
restrictions on operators that are applied simultaneously, be-
cause we want to interpret simultaneous application for ex-
ample as applying operators in S in any order reaching the
same state in all cases.

Planning as Satisfiability

The idea of representing planning as a propositional satisfi-
ability problem was proposed by Kautz and Selman (1996).
Several different encodings of planning have been presented
(Kautz & Selman 1996), and in this section we present a
variant of one of the more important ones which Kautz and
Selman call the state-based encoding. The encodings of
planning for the different semantics for parallelism differ
only on a small number of axioms that restrict the simultane-
ous application of operators. Next we describe the common
part of the encodings that is independent of the semantics
for parallelism.

The state variables in a problem instance are P =
{a1, . . . , an}. The operators in a problem instance are
O = {o1, . . . , om}.

For a state variable a we have the propositional variable at

that expresses the truth-value of a at time point t. Similarly,
for an operator o we have the propositional variable ot for
expressing whether the operator is applied at time point t.
For formulae φ, we denote the formula with all propositional
variables subscripted with the index to a time point t by φt.

A formula is generated to answer the following ques-
tion. Is there a transition sequence taking l time points that
reaches a goal state satisfying G from the initial state?

The formula is conjunction of I0, Gl and the formulae
described below, instantiated for all t ∈ {0, . . . , l − 1}.

First, for every operator o = 〈p, e, c〉, o ∈ O there are
axioms for stating what the preconditions and effects of the

operator are. The preconditions have to be true when the
operator is applied.

ot→pt (1)

If the operator is applied, then its (unconditional) effects are
true at the next time point,

ot→et+1. (2)

Here we view the effect e (a set of literals) as a conjunction
of literals. The conditional effects are true whenever the an-
tecedents of the conditionals are true in the preceding time
point:

(ot ∧ ft)→dt+1 (3)

for every f B d ∈ c.
Second, the values of state variables can be determined

by the fact that no operator that could change them has been
applied. They known as frame axioms for historical rea-
sons. For every state variable a we have two formulae, one
expressing the conditions for the change of a to false from
true, and the other from true to false. The formulae are anal-
ogous, and we only describe the change from true to false,
which is simply by

(at ∧ ¬at+1)→((o1
t ∧ φ1

t) ∨ · · · ∨ (om
t ∧ φm

t)) (4)

where formula φi expresses the condition under which op-
erator oi changes a from true to false. So let oi = 〈p, e, c〉.
If a is a negative effect in e, then simply

φi = >.

Otherwise, the change takes place if one of the conditional
effects is active. Let f1 B d1, . . . , fk B dk be the condi-
tional effects with a as a negative effect in dj . Here k ≥ 0.
Then

φi = f1 ∨ . . . ∨ fk.

For k = 0 the empty disjunction is the constant false ⊥.
Finally, we need axioms for restricting the parallel appli-

cation of operators: we will describe them in the next sec-
tions for each semantics of parallelism. The resulting formu-
lae are satisfiable if and only if there is a transition sequence
taking l time points that reaches a goal state from the unique
initial state.

In addition to the above axioms which are necessary to
guarantee that the set of satisfying assignments exactly cor-
responds to the set of plans with l time points, it is often
useful to add further constraints that do not affect the set of
satisfying assignments, but help in pruning the set of incom-
plete solutions need to be looked at, and thereby speed up
plan search 1.

The most important type of such constraints for many
planning problems is invariants, which are formulae that are
true in all states reachable from the initial state. Typically,
one uses only some restricted class of invariants that are effi-
cient (polynomial time) to identify. There are efficient algo-
rithms for finding many invariants that are clauses consist-
ing of two literals (Rintanen 1998; Blum & Furst 1997). We
simply include the formulae

lt ∨ l′t (5)

1There are further constraints that can speed plan search, like
those derived from symmetries. They reduce the set of possible
plans, but allow at least one plan whenever at least one plan exists.

for invariants l ∨ l′. Notice that invariants are in many
cases needed because the problem encodings produced from
PDDL or similar input languages are often not very eco-
nomical in terms of the number of state variables. For ex-
ample, typical benchmarks encode what is essentially an n-
valued state variable by n Boolean state variables, instead of
dlog2 ne Boolean state variables.

Step Semantics

For giving a definition of parallel plans under step seman-
tics, we need to define when operators interfere in a way
that makes their simultaneous application unwanted.

Definition 2 (Interference) Operators o1 = 〈p1, e1, c1〉
and o2 = 〈p2, e2, c2〉 interfere in state s (a valuation of all
state variables) if

1. s |= p1 ∧ p2,

2. the set e1 ∪
⋃
{d|f B d ∈ c1, s |= f} ∪ e2 ∪

⋃
{d|f B

d ∈ c2, s |= f} is consistent, and

3. the operators are not applicable in both orders, or apply-
ing them in different orders leads to different results:

(a) appo1
(s) 6|= p2,

(b) appo2
(s) 6|= p1, or

(c) active effects of o2 are different in s and in appo1
(s) or

active effects of o1 are different in s and in appo2
(s).

The first two conditions are the applicability conditions for
parallel operators: preconditions have to be satisfied and the
effects may not contradict each other. The third condition
says that interference is impossibility to interpret parallel ap-
plication as application in any order, o1 followed by o2, or
o2 followed by o1, leading to the same state in both cases:
one execution order is impossible, or the resulting states are
different.

The conditions guarantee that any two consecutive non-
interfering operators may be interchanged without affecting
the states that are visited thereafter.

Notice that some earlier work – contrary to the above def-
inition – has considered contradicting preconditions or ef-
fects as one form of interference. We do not consider this as
interference, because simultaneous application of the opera-
tors with contradicting preconditions or effects is prevented
by the precondition and effect axioms 1, 2 and 3.

Definition 3 (Step plans) For a set of operators O and an
initial state I , a plan is a sequence P = S1, . . . , Sl of sets of
operators such that there is a sequence of states s0, . . . , sl

(the execution of P) such that

1. the operators in Si are applicable in si−1 for all i ∈
{1, . . . , l}, that is, si−1 |= p for every 〈p, e, c〉 ∈ Si,

2. the set
⋃

〈p,e,c〉∈Si
{e ∪

⋃
{d|f B d ∈ c, si−1 |= f} is

consistent for every i ∈ {1, . . . , l},

3. s0 = I ,

4. si = appSi
(si−1) for i ∈ {1, . . . , l}, and

5. for all i ∈ {1, . . . , l} and o, o′ ∈ Si, o and o′ do not
interfere in appS(si−1) for any S ⊆ Si\{o, o

′}.

Theorem 4 Let P1 = S1, . . . , Sk, . . . , Sl be a step plan
with initial state s0. Let P2 = S1, . . . , S

0
k, S1

k, . . . , Sl be
a step plan that is obtained from P1 by splitting the step Sk

into two steps S0
k and S1

k such that Sk = S0
k ∪ S1

k .

If s0, . . . , sk−1, sk, . . . , sl is the execution of P1, then
s0, . . . , sk−1, s

′
k, sk, . . . , sl for some state s′k is the execu-

tion of P2.

Corollary 5 Any sequence of operators that is a total or-
dering of the operators in a step plan is a plan and has the
same terminal state.

Proof: One can repeatedly split non-singleton steps until all
steps are singleton. �

Encoding in the Propositional Logic

The application of two operators must be prevented in states
in which they interfere. In practice, most work on satisfi-
ability planning has tested a counterpart of Condition 3 in
Definition 2 by a simple syntactic test. For example, prevent
the simultaneous application of two operators whenever one
of the state variables affected by one operator occur in the
precondition or in the antecedents of conditional effects of
the other with a different polarity. Then for any such pair of
operators o and o′, include the axioms

¬ot ∨ ¬o′t. (6)

Notice that for STRIPS operators, that is operators with un-
conditional effects only and with a precondition that is a con-
junction of literals, these constraints allow all the parallelism
that is possible.

Process Semantics

The idea of process semantics is that operators are always
applied as early as possible. Assume that no two operators
in set S interfere, have no contradicting effects, and all are
applicable in state s. If we have time points 0 and 1, we can
apply each operator alternatively at 0 or at 1. The resulting
state at time point 2 will be the same in all cases. So, under
step semantics the number of equivalent plans on two time

points is 2|S|. Process semantics would in this case say that
no operator that is applicable at 0 may be applied later than

at 0. So, instead of the 2|S| plans as in step semantics, under
process semantics there is only one plan.

The important property of process semantics is that even
though the additional conditions reduce the number of ac-
ceptable plans, whenever there exists a plan with t time steps
under step semantics, there is also a plan with t time steps
under process semantics. The plan satisfying the process
conditions is obtained from the step plan by repeatedly mov-
ing operators violating the conditions one step earlier.

Encoding in the Propositional Logic

The encoding of process semantics is an extension of the
encoding of step semantics, so we take all the axioms from
the preceding section, and have further axioms specific to
process semantics.

The axioms for process semantics allow the application of
operator o at time t + 1 only if one of the operators at time
t interferes with o according to Definition 2, the effects of o
contradict with the effects of an operator at time point t, or
o is not enabled at time t.

Other possibilities, like operator o disabling or changing
the active effects of operators at t+1 do not have to be tested
separately, because this is already forbidden by the axioms
we have from step semantics.

So let {o1, . . . , on} be the operators interfering with o,
having conflicting effects with o, or having possibly enabled
o. Then we have the following axioms for guaranteeing that
the application of o is not unnecessarily delayed.

ot+1→(o1
t ∨ o2

t ∨ · · · ∨ on
t)

These disjunctions may be long. Instead of using them for
implementing the process semantics exactly, it may be use-
ful to use only the shortest of these constraints, as they are
most likely to help speeding up plan search. In the experi-
ments reported later, we allowed only those constraints con-
sisting of 6 literals or less. We tried full process semantics,
but the high number of long disjunctions led to poor perfor-
mance.

1-Linearization Semantics

Dimopoulos et al. (1997) adapted the idea of satisfiabil-
ity planning for answer set programming, and presented an
interesting idea. The requirement that parallel operators
are executable in any order can be relaxed: only require
that one ordering is executable. They called this idea post-
serializability, and showed how to transform operators for
blocks world problems to make them post-serializable. The
resulting nonmonotonic logic programs were shown to be
more efficient due to shorter parallel plan length. Rintanen
(1998) implemented this idea in a constraint-based planner
and Cayrol et al. in an implementation of the GraphPlan al-
gorithm (Cayrol, Régnier, & Vidal 2001), but otherwise it
has received surprisingly little attention, in particular, there
have been no attempts to utilize it in satisfiability planning.

We will present a semantics and general-purpose domain-
independent translations of this more relaxed semantics to
propositional logic. Our approach does not require trans-
forming the problem. Instead, we synthesize contraints that
guarantee that sets of operators applied simultaneously can
be ordered to an executable plan.

Definition 6 (1-linearization plans) For a set of operators
O and an initial state I , a 1-linearization plan is a sequence
P = S1, . . . , Sl of sets of operators such that there is a
sequence of states s0, . . . , sl (the execution of P) such that

1. the operators in Si are applicable in si−1 for all i ∈
{1, . . . , l}, that is, si−1 |= p for every 〈p, e, c〉 ∈ Si,

2. the set
⋃

〈p,e,c〉∈Si
(e ∪

⋃
{d|f B d ∈ c, si−1 |= f}) is

consistent for every i ∈ {1, . . . , l},

3. s0 = I ,

4. si = appSi
(si−1) for i ∈ {1, . . . , l}, and

5. for all i ∈ {1, . . . , l}, there is a total ordering o1 <
o2 < . . . < on of Si such that for all operators oj =
〈pj , ej , cj〉 ∈ Si

(a) appo1;o2;...;oj−1
(si−1) |= pj , and

(b) for all f B d ∈ cj , si−1 |= f if and only if
appo1;o2;...;oj−1

(si−1) |= f .

The difference to step semantics is that we have replaced the
non-interference condition with a weaker condition. From
an implementations point of view the main difficulty here is
finding appropriate total orderings <.

Encoding in the Propositional Logic

The problem to be solved by the encoding of 1-linearization
semantics in the propositional logic is preventing the simul-
taneous application of a set of operators that cannot be ap-
plied sequantially in any order. Given the precondition and
effect axioms (1), (2) and (3), the problem is to guarantee
that there is a total ordering of the operators so that no op-
erator application disables the operators to be applied later,
and no operator application changes the set of active (condi-
tional) effects of later operators.

Essentially, this is a question of topologically sorting the
set of operators with respect to the disables-or-affects rela-
tion between the operators. Dimopoulos et al. (1997) de-
fined the preconditions-effects graph for determining when
such a total ordering exists for sets of STRIPS operators.
The problem of using this graph directly as a basis of SAT
encoding is that acyclicity testing seems to require a cubic
number of clauses, and this makes it rather impractical for
all but the smallest problem instances.

We define a new class of graphs that we call disabling
graphs in order to provide compact and effective encodings
of 1-linearization semantics in the propositional logic. By
means of these graphs we can identify sets of operators that
might not be possible to execute in any total ordering.

The motivation for using disabling graphs is the follow-
ing. Any set S of operators that could be applied simul-
taneously (“could be applied” means that the operators are
all applicable in one state and the effects do not conflict)
and cannot be totally ordered to an executable operator se-
quence, and is a set-inclusion minimal set having the pre-
ceding properties, is a subset of a strong component of the
disabling graph.

Definition 7 (Disabling graph) A graph 〈N,E〉 is a dis-
abling graph of a set of operators O if N = O is the set of
nodes, and E is a set of directed edges so that 〈o1, o2〉 ∈ E
if for o1 = 〈p1, e1, c1〉 and o2 = 〈p2, e2, c2〉 there is at least
one state s (valuation of all state variables)2 such that

1. s |= p1 ∧ p2, and

2. F1 ∪ F2 is consistent where F1 = e1 ∪
⋃
{d|f B d ∈

c1, s |= f} and F2 = e2 ∪
⋃
{d|f B d ∈ c2, s |= f}, and

2Clearly, this could be restricted to states that are reachable
from the initial state, but testing reachability is PSPACE-hard. In-
stead, one can use some subclass of invariants identifiable in poly-
nomial time to ignore some of the unreachable states, like we have
done in our implementation of disabling graphs.

3. applying o1 may make o2 inapplicable or may change the
active effects of o2:

(a) appo1
(s) 6|= p2, or

(b) there is f B d ∈ c2 such that either s |= f and
appo1

(s) 6|= f , or s 6|= f and appo1
(s) |= f .

Notice that for a given set of operators there are typically
several disabling graphs, because the graph obtained by
adding an edge to a disabling graph is also a disabling graph.
There is exactly one set-inclusion minimal disabling graph,
but the use of non-minimal disabling graphs does not com-
promise the correctness of our translations, it may just make
them less efficient or lead to plans with more time points.
Non-minimal graphs may be useful because they may be
much cheaper to compute than the minimal ones. Testing
the condition for having an edge between o1 and o2 in the
minimal disabling graph is clearly NP-hard. For operators
of very simple syntactic form, like STRIPS operators, com-
puting minimal disabling graphs is polynomial time.

Disabling graphs have less edges than precondition-effect
graphs because there are never edges between operators
that are not simultaneously applicable. Consequently, dis-
abling graphs have smaller strong components, allowing
much more effective handling of parallelism.

So, now we have an effective means of identifying which
sets of simultaneous operators might not be possible to order
to a valid plan, and as importantly, which operators are not
problematic in this respect. The strong components of the
disabling graph can be efficiently computed by the strong
components algorithm of Tarjan (1972).

Interestingly, disabling graphs often have very small
strong components. For example, in the well-known logis-
tics problems all the strong components have 1 or n + 1
operators, where n is the number of airplanes3.

This means that encoding the constraints that guarantee
that simultaneous operators indeed can be linearized will be
rather efficient, as only cycles of rather small length have
to be considered. Notice that operators in different strong
components cannot be part of the same cycle, and therefore
no constraints on their simultaneous application are needed.
Hence when every strong component has cardinality 1, no
contraints whatsoever are needed.

Next we discuss three strategies for synthesizing con-
straints that guarantee that simultaneous operators can be
ordered to a valid totally ordered plan.

General Solution

A general solution for guaranteeing that the intersection of
one SCC and the set of operators applied at a given time
point do not form a cycle is to exactly test this. The en-
coding we present here guarantees the maximum possible
parallelism, but it is very expensive in terms of the size of
the resulting formulae.

Let operators oi and oi′ belong to the same SCC of the
disabling graph and let there be at least one state in which

3The refinement to disabling graphs involving invariants and
mentioned in the previous footnote makes all SCCs for the logistics
problems singleton sets.

oi disables or changes the active effects of oi′ . Let φi,i′ be a

formula such that oi disables oi′ or changes its set of active

effects only in states that satisfy φi,i′ . Again, for guarantee-

ing maximal parallelism, φi,i′ should be false in states where

oi does not disable nor affect the effects of oi′ , but φi,i′ may
be weaker without sacrificing correctness, at the cost of re-

duced parallelism. One strategy is to always use φi,i′ = >,
which is of course the best in terms of encoding size.

We introduce auxiliary propositions ci,j for all operators
with indices i and j, indicating that there is a set of applied
operators oi, o1, o2, . . . , on, oj such that every operator dis-
ables or changes the effects of its immediate successor in the
sequence. Then we produce the following formulae, for all
i, i′ and j such that i 6= i′ 6= j 6= i.

(oi
t ∧ φ

i,i′

t ∧ c
i′,j
t)→c

i,j
t

Further we have formulae

¬(oi
t ∧ φ

i,i′

t ∧ c
i′,i
t)

for preventing the completion of a cycle.
The size of the encoding is cubic in the number of oper-

ators in an SCC, and the number of new propositional vari-
ables is quadratic in the number of operators in an SCC.
Some problems have SCCs of dozens or hundreds of op-
erators, and this O(n3) means thousands or millions of for-
mulae, which makes this encoding in general infeasible.

Fixed Ordering

The simplest and possibly most effective encoding does not
allow all the parallelism that would be possible by the pre-
ceding encoding, but it minimizes the formula size. With
this encoding, the number of constraints on parallel applica-
tion is smaller than with the less permissive step semantics,
as the set of contraints on parallelism is a subset of the con-
traints for step semantics. One therefore gets two benefits
simultaneously, potentially much shorter parallel plans, and
formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering
on the operators o1, . . . , on in an SCC and to disallow par-
allel application of two operators oi and oj such that oi may
disable or change the effects of oj only if i < j. Hence, in
comparison to step semantics, part of the parallelism axioms
on operators within one SCC are just left out. The total re-
duction in the number of constraints in comparison to step
semantics can be significant because none of the inter-SCC
parallelism contraints are needed.

This is the encoding we have very successfully applied
to a wide range of planning problems, as discussed in the
experiments’ section. Clearly, how the fixed ordering is se-
lected could have a big effect on planning efficiency. In our
experiments we always ordered the operators exactly in the
order they came out of our PDDL front-end. To maximize
parallelism, better orderings could presumably be produced
by some sophisticated heuristic method.

Enumeration of Cycles

A third encoding that for small SCCs may be a more feasible
alternative to the first encoding, would be to explicitly enu-
merate all possible cycles in an SCC containing operators C

such that there is no set C ′ ⊂ C that forms a cycle, and then
use the clause ∨

{¬ot|o ∈ C}

to prevent the cycle from emerging during planning. For
small SCCs the number of cycles may be smaller than the
worst-case quadratic number of constraints needed in the
preceding encoding. And unlike in the general encoding,
no new propositions are needed.

Experiments

We evaluated the different semantics on a number of bench-
marks from the AIPS planning competitions. In addition
to the runtimes reported here, we ran further benchmarks
from the competitions, the Freecell, Schedule, Mystery and
Movie benchmarks, but do not report results because of lack
of space. On Freecell and Schedule 1-linearization does not
decrease plan length, and runtimes are comparable to step
semantics. Process semantics fares worse than step seman-
tics on Schedule. Mystery is trivial for 1-linearization se-
mantics. Movie is trivial for all.

In Tables 1, 2, 3, 4 and 5 we report the name of the prob-
lem instance, and the runtimes under the three semantics for
the formulae corresponding to the highest number(s) of time
points not having a plan (truth value F), and the first satis-
fiable formula corresponding to a plan (truth value T). The
runtimes for the 1-linearization semantics are reported on
their own line because its shortest plan lengths differ from
the other semantics.

The experiments were run on a 3.6 GHz Intel Xeon pro-
cessor with a 512 KB internal cache and the Siege SAT
solver version 3 by Lawrence Ryan of the Simon Fraser Uni-
versity. This solver is often much faster than for example
zChaff. Because Siege randomizes some of the decisions it
makes, the runtimes on a given formula vary across execu-
tions. We ran Siege 40 times on each formula and report the
average. When not all of the runs finished within a time limit
of 3 to 4 minutes (we terminated every 60 seconds those pro-
cesses that had consumed over 180 seconds of CPU), we re-
port the average time t of the finished runs as > n. This then
very imprecisely means that the average runtime on Siege is
somewhat higher than n seconds. When none of the runs
finished within the time limit, we indicate this with a dash
−.

Notice that problems with a bigger index are in general
not necessarily more difficult than those with a smaller in-
dex. Typically, the number of objects increases as the index
grows, but for example increasing the number of airplanes
in the logistics problems actually makes the problems much
easier. So, there is not always a direct connection between
the index and the difficulty, as is often apparent from the
runtimes.

1-linearization semantics is usually better than the other
semantics, often one order of magnitude better, sometimes
two. This always goes back to the shorter parallel plan
length: formulae are smaller and therefore in general eas-
ier to evaluate. However, smaller formula size alone is not
the complete explanation, and we should do more work on
determining how strongly constrained these formulae are in

instance len val 1-lin step proc

depot-10-7654 7 F 0.01
depot-10-7654 8 T 0.02

depot-10-7654 9 F 0.28 0.30
depot-10-7654 10 T 0.29 0.34

depot-11-8765 13 F 0.04
depot-11-8765 14 T 0.44

depot-11-8765 17 F 69.56 70.29
depot-11-8765 18 ? - -
depot-11-8765 19 ? - -
depot-11-8765 20 T > 154.43 > 157.28

depot-12-9876 19 F 0.24
depot-12-9876 20 T > 143.73

depot-12-9876 21 F 142.12 > 140.75
depot-12-9876 22 ? - -

depot-13-5646 7 F 0.01
depot-13-5646 8 T 0.01

depot-13-5646 8 F 0.01 0.01
depot-13-5646 9 T 0.04 0.05

depot-14-7654 9 F 0.05
depot-14-7654 10 T 0.11

depot-14-7654 11 F 1.25 1.28
depot-14-7654 12 T 2.97 2.89

depot-15-4534 17 F 0.15
depot-15-4534 18 T 41.78

depot-15-4534 19 F > 120.55 > 117.82
depot-15-4534 20 ? - -
depot-15-4534 21 ? - -
depot-15-4534 22 ? - -
depot-15-4534 23 T > 193.58 -

depot-16-4398 7 F 0.01
depot-16-4398 8 T 0.01

depot-16-4398 7 F 0.01 0.01
depot-16-4398 8 T 0.07 0.08

depot-17-6587 5 F 0.01
depot-17-6587 6 T 0.01

depot-17-6587 6 F 0.02 0.02
depot-17-6587 7 T 0.10 0.10

depot-18-1916 11 F 0.26
depot-18-1916 12 T 4.95

depot-18-1916 11 F 0.15 0.15
depot-18-1916 12 T 58.00 57.98

depot-19-6178 9 F 0.05
depot-19-6178 10 T 0.05

depot-19-6178 9 F 0.09 0.09
depot-19-6178 10 T 0.80 0.74

Table 1: Runtimes of Depot problems in seconds

instance len val 1-lin step proc

driver-2-3-6d 12 F 0.40
driver-2-3-6d 13 T 0.64

driver-2-3-6d 15 F 17.79 17.78
driver-2-3-6d 16 T 5.96 8.71

driver-2-3-6e 7 F 0.01
driver-2-3-6e 8 T 0.03

driver-2-3-6e 11 F 0.94 1.12
driver-2-3-6e 12 T 1.04 1.04

driver-3-3-6b 8 F 0.14
driver-3-3-6b 9 T 0.09

driver-3-3-6b 10 F 0.80 0.83
driver-3-3-6b 11 T 0.84 0.78

driver-4-4-8 8 F 0.12
driver-4-4-8 9 T 0.12

driver-4-4-8 10 F 1.27 1.29
driver-4-4-8 11 T 6.12 5.80

driver-5-5-10 13 F 37.61
driver-5-5-10 14 ? -
driver-5-5-10 15 T > 132.17

driver-5-5-10 15 F > 124.34 128.73
driver-5-5-10 16 ? - -
driver-5-5-10 17 ? - -
driver-5-5-10 18 T - > 178.07

Table 2: Runtimes of DriverLog problems in seconds

instance len val 1-lin step proc

log-20-0 8 F 0.22
log-20-0 9 T 0.83

log-20-0 14 F 9.39 9.38
log-20-0 15 T 49.53 38.59

log-20-1 8 F 0.53
log-20-1 9 T 0.10

log-20-1 14 F 49.73 25.80
log-20-1 15 ? - -
log-20-1 16 T 22.49 26.75

log-21-0 8 F 0.27
log-21-0 9 T 0.93

log-21-0 14 F 32.79 15.08
log-21-0 15 ? - -
log-21-0 16 T > 103.42 > 76.14

log-21-1 7 F 0.02
log-21-1 8 T 0.36

log-21-1 13 F 5.39 5.65
log-21-1 14 T 21.81 17.42

log-22-0 8 F 0.33
log-22-0 9 T 0.77

log-22-0 15 F > 164.23 > 156.26
log-22-0 16 T 58.17 39.53

log-22-1 8 F 22.25
log-22-1 9 T 5.82

log-22-1 13 F > 37.30 42.80
log-22-1 14 ? - -
log-22-1 15 ? - -
log-22-1 16 T > 119.27 > 122.94

Table 3: Runtimes of Logistics problems in seconds

instance len val 1-lin step proc

satell-11 4 F 0.01
satell-11 5 T 0.06

satell-11 7 F 0.20 0.20
satell-11 8 T 0.18 0.24

satell-12 7 F 28.42
satell-12 8 T 3.02

satell-12 13 F 104.84 > 88.59
satell-12 14 T 5.35 6.75

satell-13 6 F 9.03
satell-13 7 T 6.43

satell-13 12 F 30.58 38.54
satell-13 13 T 44.19 39.38

satell-14 4 F 9.53
satell-14 5 T 1.90

satell-14 7 F 27.39 22.52
satell-14 8 T 4.23 3.65

satell-15 4 F 8.86
satell-15 5 T 1.65

satell-15 7 F 24.15 21.91
satell-15 8 T 3.61 3.50

satell-16 3 F 2.27
satell-16 4 T 3.91

satell-16 5 F 9.17 8.24
satell-16 6 ? - -
satell-16 7 T 6.57 6.85

satell-17 3 F 0.22
satell-17 4 T 2.48

satell-17 5 F 1.12 1.31
satell-17 6 T 1.86 1.96

satell-18 4 F 0.06
satell-18 5 T 0.23

satell-18 7 F 0.24 0.27
satell-18 8 T 0.48 0.57

satell-19 6 F 46.26
satell-19 7 T 25.78

satell-19 10 F > 225.50 -
satell-19 11 ? - -
satell-19 12 T > 170.69 -

Table 4: Runtimes of Satellite problems in seconds

instance len val 1-lin step proc

zeno-3-10 4 F 0.05
zeno-3-10 5 T 0.06

zeno-3-10 6 F 0.54 0.54
zeno-3-10 7 T 0.61 0.50

zeno-5-10 3 F 0.10
zeno-5-10 4 T 0.26

zeno-5-10 5 F 1.54 1.42
zeno-5-10 6 T 2.76 2.59

zeno-5-15 5 F > 144.02
zeno-5-15 6 T 23.70

zeno-5-15 5 F 1.96 1.88
zeno-5-15 6 ? - -
zeno-5-15 7 T 42.38 45.34

Table 5: Runtimes of Zeno problems in seconds

comparison to the formulae for step semantics in order to
offer a full explanation of the efficiency gains.

Constraints derived from process semantics usually do not
– surprisingly and contrary to our expectations – provide an
advantage over step semantics although there are often many
fewer potential plans to consider. In few cases, like for the
last unsatisfiable formulae for log-20-1 and log-21-0, pro-
cess constraints halve the runtimes. The reason for the in-
effectiveness of process semantics may lie in the nature of
these benchmarks: there are often many operators poten-
tially preventing the earlier application of an operator, and
the constraints start pruning the search space only very late
in the search when all or almost all operators have been cho-
sen not to be applied. We plan to extend our experiments to
other types of problems to see how process semantics more
generally behaves.

Related Work

Kautz and Selman (1996; 1999) developed the planning as
satisfiability approach and were the first to use the step se-
mantics. Later work has addressed different problem rep-
resentations (Kautz & Selman 1996) and implemented the
same ideas in different computational frameworks like inte-
ger programming (Vossen et al. 1999) and nonmonotonic
logic programs (Dimopoulos, Nebel, & Koehler 1997).

The BLACKBOX planner of Kautz and Selman (1999) is
the best-known planner implementing the satisfiability plan-
ning paradigm, and its encodings are close to those of ours
for the step semantics. There is a bug in the currently dis-
tributed version of BLACKBOX and we were not able to
make a broader comparison to BLACKBOX, but we will do
this as soon as a working version of the planner is available.
It seems that formulae produced by BLACKBOX are sev-
eral times bigger than our formulae for step semantics, and
solution times are of the same order of magnitude.

The process semantics discussed in this paper was first
considered in connection with Petri nets; for an overview
see (Best & Devillers 1987).

Conclusions

We have presented efficient translations of parallel planning
to SAT, and shown that some of these semantics are very
effective, often one or two orders of magnitude faster, than
the standard semantics of parallelism used by the main al-
gorithms utilizing the inherent parallelism in planning prob-
lems. The best semantics for many of these problems turned
out to be the 1-linearization semantics, which provides the
most compact problem encodings in terms of number of time
steps and number of constraints related to parallelism. Inter-
estingly, the process semantics, a refinement of the standard
step semantics imposing a further condition on plans, did
not significantly improve planning efficiency. One topic for
future research would be to combine process semantics and
1-linearization semantics.

The constraints on parallel application of operators have
in general a quadratic size, and on many problems these
dominate the size of the formulae, presumably worsening

planning efficiency. More compact encodings, preferably
having linear size, should be investigated.

Acknowledgements

We thank Lawrence Ryan for assistance with the Siege
solver.

References

Best, E., and Devillers, R. 1987. Sequential and concurrent
behavior in Petri net theory. Theoretical Computer Science
55(1):87–136.

Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In Cleaveland,
W. R., ed., Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Con-
ference, TACAS’99, volume 1579 of Lecture Notes in Com-
puter Science, 193–207. Springer-Verlag.

Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1-2):281–300.

Cayrol, M.; Régnier, P.; and Vidal, V. 2001. Least commit-
ment in Graphplan. Artificial Intelligence 130(1):85–118.

Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning. Fourth European Conference on Planning (ECP’97),
number 1348 in Lecture Notes in Computer Science, 169–
181. Springer-Verlag.

Heljanko, K. 2001. Bounded reachability checking with
process semantics. In Proceedings of the 12th Interna-
tional Conference on Concurrency Theory (Concur’2001),
volume 2154 of Lecture Notes in Computer Science, 218–
232. Springer-Verlag.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and the Eighth Innovative Applications
of Artificial Intelligence Conference, 1194–1201. Menlo
Park, California: AAAI Press.

Kautz, H., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Dean, T., ed., Proceedings of
the 16th International Joint Conference on Artificial Intel-
ligence, 318–325. Morgan Kaufmann Publishers.

Rintanen, J. 1998. A planning algorithm not based on
directional search. In Cohn, A. G.; Schubert, L. K.; and
Shapiro, S. C., eds., Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Sixth International
Conference (KR ’98), 617–624. Morgan Kaufmann Pub-
lishers.

Tarjan, R. E. 1972. Depth first search and linear graph
algorithms. SIAM Journal on Computing 1(2):146–160.

Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On
the use of integer programming models in AI planning. In
Dean, T., ed., Proceedings of the 16th International Joint
Conference on Artificial Intelligence, volume I, 304–309.
Morgan Kaufmann Publishers.

