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Abstract—We present an LTS-based (Labelled Transition tion that is known or proved to be correct and then analyse
System) CSP-like (Communicating Sequential Processes) for- the correctness of the whole system. This is possible if
malism for expressing parametrised systems. The parameters iha correctness relation ispecongruencea reflexive and

are process types, which determine the number of replicated o . L .
components, and data types, which enable components with transitive relation which is preserved under the applaati

a parametrised state space. We prove that the formalism is  Of compo;itionj operators. ' o

compositional and show how to combine two existing results Contribution: As the first contribution, we present a
for parametrised verification in order to check trace refinement formalism which enables expressing parametrised systems
between parametrised processes. The combined approach gives 5.4 specifications and allows foompositionaknalysis and

upper bounds, i.e., cut-offs, for types such that a parametrisd . A -
verification task collapses into finitely many checks solvable by design. The formalism is based on an LTS-based (Labelled

using existing finite state refinement checking tools. We have Transition System) CSP-like [2], [3] (Communicating Se-
implemented the approach and applied it to prove mutual quential Processes) process calculus with hiding andlphkral

exclusion properties of network protocols and systems with  composition operators, which we parametrise with types and
shared resources. To the best our knowledge, our technique is 5 iaples of two kinds. Process types enable parametrising
the only one that combines compositionality and completeness the structure of a system by controlling the number of repli-
with support for multiple parametric process and data types. -
cated concurrent parts. Data types allow for parametrising
the state space of components by controlling the number of
similar transitions acting on different data. Process aatta d
Concurrent and object-oriented software systems haveariables refer to individual components and data values,
many natural parameters which can take infinitely manyrespectively, and their values can be tested for (in)etyuali
values. Such parameters are the number of replicated partdence, the formalism is like the one in [4] but significantly
like processes and objects, and the size of data types, likextended with data parametrisation features. It allows for
message domains and address spaces. Consequently, #xpressing interesting and practically important classes
guestion on the correctness of a software system is naturalkystems and specifications, like the mutual exclusion prope
expressed as thparametrised verification problengiven  ties of network protocols and systems with shared resources
a parametrised system implementation and specificatiorhut increasing its expressiveness further quickly leads to
determine whether the implementation is correct with respe undecidability [5].
to the specification for all parameter values. As the main contribution, we show how to compute cut-
In practice, we can automatically verify only the smallestoffs for trace refinement checking between parametrised
instances of a parametrised system in order to detect bugsocesses. This is done by combining two existing results on
in the implementation. Sometimes, we can also establisparametrised verification: therecongruence reduction (PR)
upper bounds, i.ecut-offs for the parameters such that the method of Siirtola and Kortelainen [6], [7], [5], [4] and the
system implementation is correct for all parameter valfies idata independence (Desults of Lazt and Novak [8], [9].
and only if it is correct for all values up to the cut-offs. In It is not obvious that the combination of the results leads to
other words, if there is a bug in an implementation instancesomething useful since the PR technique applies to systems
with a parameter value greater than the cut-off, then there iwith process types but does not allow for components with
an analogous bug in an implementation instance where tha parametrised state space, whereas the DI results apply to
values of the parameters are within the cut-offs. Althoughsystems with data types but do not allow for systems with
such cut-offs always exist, determining them algorithrifyca a parametric number of replicated components.
is undecidable in the most general case [1]. Here, we solve the problem by bounding the process types
Another practical challenge is that some subsystems (e.gwith the PR technique first. Basically, we should fix the
external software packages and subsystems concurrentfalues of data types before we can apply the PR technique,
under construction) can be available only in interface spec which means that we ought to apply the technique infinitely
fication form. Hence, there is a need to perform parametrisethany times in order to determine cut-offs for process types.
verification in acompositionalway, where we first substitute However, since the data types can affect the structure of
the subsystem specification for each subsystem implement#he system only finitely many ways, it turns out that we
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can compute rough structural cut-offs for process types as encoded as a single infinite state well-structured ttemsi
before without paying attention to data types. After thag, w system (WSTS) [13]. The technique allows for two levels
can basically substitute the parallel composition of figite of parametrisation, the number and the state space of pro-
many parametrised processes for a replicated parametrisedsses, but since the formalism is not compositional, isdoe
parallel composition and apply the DI results to bound thenot allow for an arbitrary number of nested parametrised
size of data types. For each tyfig the cut-off size can be substructures like ours. The completeness of the apprsach i
computed easily based on the structure of the parametrisdzhsed on the fact that there is an order on the set of states
system implementation and specification and the number afompatible with the transition relation [13]. In our case,
variables of the typ&. After that, the cut-offs can be further there is no such a criterion nor an (obvious) way to define a
improved by analysing the instances up to the cut-offs at theompatible order among the states of all the instances. That
operational level. Finally, the verification can be comgtet is because our processes communicate through alphabet-
by solving the remaining finitely many finite state refinementbased synchronisation, where increasing the number aof repl
checking tasks by using existing tools. cated components may block some transitions and hence
As a running example, we consider a host configuratiorbreak compatibility.
protocol (HCP) with an arbitrary number of hosts (process Other methods that enable multi-parametrised verification
type) and an arbitrary number of network addresses (datare by Emerson & Kahlon [14], Yang & Li [15] and
type). Since the protocol involves types of both kinds, itHanna et al. [16]. Their approaches apply to systems with
cannot be handled by either technique alone. However, iguarded broadcasts [14], shared actions [16] or rendezvous
can be treated with our combined result, which implies thatommunication [15]. The methods are cut-off-based and
the result presented here is more powerful than either of thaellow for an arbitrary number of parameters which specify
approaches alone. We have implemented the technique anghe number of replicated processes. However, none of them
in addition to HCP, applied it to establish mutual exclusionsupports compositional analysis nor parametrised datstyp
properties for systems with shared resources. Since our Other complete parametrised verification methods, in turn,
formalism is compositional, it means that the specifica&ion are based on either cut-offs [17], [18], [19], [20], [21] or
of these systems can be used in place of the implementationgSTSs [22], which covers counter abstraction and Petri
in further verification efforts. nets [23]. WSTSs are already discussed earlier and the other
Except for some small differences in formalism and thecut-off results are only for closed systems with a single
definition of cut-offs, our DI results are semantically dami  parameter determining the number of replicated processes.
to those of Lazt and Novak [8], [9]. Additionally, our DI Moreover, some of the results can be obtained in
proof technique is simpler than in [8], [9]: we use only the gur approach, too. At least the systems with conjunctive
bijective mapplng of transitions and avoid the constructio guards []_4] and homogeneous processes Communicating
of intermediate structures, like exploration graphs [8H an through prioritised queue policy [21] can be modelled in our
quotient LTSs [9], altogether. This leads to a more acckssib formalism [5]. On the one hand, most cut-off results includ-
and concise theory of data independence, which is the thirghg [14], [21] allow for the analysis of liveness, too, whase
contribution of the paper. However, unlike [8], [9], we con- our result as well as WSTS-based approaches are restricted
sider only safety properties, since the PR technique canngy safety properties. On the other hand, parametrised sys-
be extended to deadlock preserving semantics directly [Skems where replicated processes communicate through ren-
On the other hand, extending the DI part of our results tajezvous events are difficult to model in our formalism,
such semantics should be easy, since all the key DI lemmaghereas they can often be modelled as WSTSs.
are formulated at the operational level. Outline: In Section Il, we introduce our process model.
Related Work:The distinctive features of our approach afer that, we parametrise it while preserving composition
are compositionality, completeness and support for the mulyjity 1n Section IV, we present the cut-off results and fipal
tiple parameters of two fundamentally different types. the paper concludes with discussion on future work. For the

Parametrised verification in a compositional setting isggke of readability and the lack of space, proofs are found
previously considered by Valmari & Tienari [10] and i, the online appendix [24].

Creese [11]. In both works, induction is exploited to deter-

mine an abstract process which can be used in verification 1

in place of the parametrised subsystem. The methods scale

to the multi-parametrised case, too, but they involve the In this section, we define a fairly standard notation used

discovery of an invariant process which is a task that cannathroughout the paper and a CSP- and LTS-based process

be automated in general. model with parallel composition and hiding operators. The
Ghilardi and Ranise present a complete parametrisethain difference with the standard LTSs is that in our model,

verification technique [12], where the infinite family of fimi  states and events have an explicit data part which makes

state systems arising from a parametrised system descripti adding parametrisation convenient.

. PROCESSES



Notation: For any setA, A* denotes the set of all
finite tuples overA, especially the empty tuplé) is in
A*. Whenevera := (ay,...,a,) andb := (by,...,b;) are
tuples overA, then |a| denotes thdengthn of a, andab
the concatenation(ay, . .., ay,b1,...,b;) of a andb. For
any functionf : A — B, dom(f) is thedomain A of f,
andim(f) the image {f(a) | a € A} of f. The tuplea
can be regarded as a functign {1,...,n} — A such that
f(@i) =a; forallie {1,...,n}, so we can definem(a) as
the set{a; | i = 1,...,n}. For any setC, f|c denotes the
restrictionof f to ANC, i.e., a functionf’: ANC — B
such thatf’(a) = f(a) for all a € AN C. For any function
g such thatim(f) C dom(g), g o f is the compositionof
g and f, i.e., a functionh : dom(f) — im(g) such that
h(a) = g(f(a)) for all a € A.

Obviously, (P; || P) is a process, wheré’, and P,
execute a visible event jointly if and only if both agree
on its execution, whereas the visible events only in the
alphabet of one process and the invisible events are exkcute
individually. This is essentially the parallel compositio
operator of CSP [2], [3] where the synchronisation alphabet
is alph(Py;) N alph(P,). Note that the third component in
the control states ofP; || P-) tells which part of the data
vector comes fromP;. Without the third component, the
composition of states;(a) and so() and statess; () and
s2(a) would be the same, which is not what we want.

Definition 3 (Hiding). Let P be the proces$sd, R) and
E a set of visible channels. The proceBsafter hiding £,
denoted by(P\ E), is a pair(3d, R\), whereR, is the set
of (i) all triples (sd, ce, s'd’) € R such thatc ¢ E and (ii)

Processes:A process is basically an LTS [3] where all triples (sd, 7e, s'd’) such that(sd, ce,s'd’) € R for

states have a control and data part and events have a changslﬂ

and data part. Le§, C andV be mutually disjoint count-
ably infinite sets ofcontrol stateschannelsand constants

ece k.

In other words,(P \ E) is a process obtained frof? by

respectively, such tha&t contains the natural numbers and is substitutingr for the channelsg in E.
closed under the Cartesian product. We assume that there isa Semantics: For verification purposes, a process is
singleinvisible channelr € C which represents the internal interpreted as a set of traces, which enables us to

activity of a process. The other channels are callsible

and they are used for communication among processes arido do, c1 €1, s1dy, ..

environment. A structure d, wheres € S andd € V*, is
a stateand a structure e, wherec € C ande € V*, is an
event If ¢ # 7, the event isvisible, otherwise it isinvisible

Definition 1 (Process)A processP is a pair(s d, R), where
sd is a state andR is a set of triples(sd, ce, s'd’) such
that sd, s’d’ are states ande is an event.

The first component oP is called thenitial state denoted
by init(P), and the second one is the set tedinsitions
denoted bytran(P). The set of all thevisible events
occurring in P, the alphabetof P, is denoted bylph(P).
P is (in)finite if and only if tran(P) is. P is (strongly)
deterministicif (i) it does not involve invisible events and
(II) whenever (S d,cieq, s dl) and (S d,cs ey, s dg) are
transitions ofP such thats; d; # s3 da, thenc; e # c; e5.

Operators: In our formalism, both a system implemen-

tation and specification are modelled as proce$3gs; and

Pyec, respectively. Since the implementation often consist

of several components;,,,,,; is typically a parallel compo-
sition of smaller processes, and befdrg,,; is compared
againstPs,.., the channels irrelevant tB,.. are hidden.

Definition 2 (Parallel Composition) Let P; be the pro-
cess (3;d;, R;) for both i e {1,2}. The parallel com-
position (of P, and P,), denoted by(P;, || P), is a
pair (51,52, |d1|)dids, R))), where R is the set of all
triples ((s1, s2, |d1|) di1da, ce, (1, s5, |d}]) djd5) such that
(i) ¢ # 7 and(s; d;, ce,s;d}) € R; for bothi € {1,2}, or
(i) (s;d;,ce,s;d]) € R;, ce ¢ alph(P;), s;d; is a state
of P; ands; d; = s} dj for different elements, j € {1, 2}.

consider safety properties. A finite alternating sequence
.y Cn€n, sy, d,) Of states and events
of P is a path of P (from sydg) (to s,d,) if
(si—1d;—1,c; €4, 8;d;) is a transition of P for everyi €
{1,...,n}. A path from the initial state is called axecu-
tion (of P). A finite sequence of visible events igrace (of

P), if there is an execution oP such that the sequence is
obtained from the execution by erasing all the states and the
invisible events. The set of all the tracesfis denoted by
tr(P). A processP; is atrace refinemenbf a processP,
denoted byP; =<y, P», if and only if alph(P;) = alph(P,)
andtr(P;) C tr(P) [2]. The processe®; and P, aretrace
equivalent denoted byP; =, P, if and only if P, <, P

and P, =<y, P1. Piyyp; is considered correct with respect to
Pypec it and only if Pipppi =tr Pspec-

Calculus: The operators and the trace relations have
many useful properties from the viewpoint of synthesis and
analysis. First, the parallel composition is commutatind a
associative with respect te;, and a single state process
Fia = (s(),0) without transitions is an identity element of
the parallel composition. That is why for every finite set
I = {é,...,i,} and any processeB;,,..., P, , we can
define thel-indexed version of| as follows: (||;.; P;) :=
Py, || (liegis.....iny Pi), whenn >0, and (||,c; Pi) := Pia,
whenn = 0. Secondly,<;, is a preorder (i.e., a reflexive
and transitive relation) angt, an equivalence on the set of
processes. Moreovers,, is compositional i.e., preserved
under the application of the operators:f =, P, then
P | P2 P || P,P || P =4 P PandP\E =< P\

E for all processe®;, P», P and setsF of visible channels.
Hence,=;, is a compositional preorder,gecongruenceon
the set of processes.



I1l. PARAMETRISED PROCESSES Intuitively, T denotes a guard which is always true and
In this section, we equip our process calculus with pa_symbols with a hat on tqp are mtgrpreted as connectives
\glthout one; the hat is included just to mark operators

rameters. Our parametrised formalism is based on the on

which is presented in [4] and which allows for parametrisingwhICh act on parametrised structures. Formally, a guard is

the structure of a system. Here, we extend that formalisrﬁnSt_"]lntiatecj by using a function called a valuation which

with data parameters which allow for components with a2ssI9ns values to parameters.

parametrised state space, too. Definition 5 (Valuation) A valuationis a function¢ whose
Running ExampleAs a running example, we consider domain is a finite set of types and variables such that (i) for

a host configuration protocol (HCP), where each host repeatach typeT’ € dom(¢), ¢(T) is a finite non-empty subset

edly picks a network address until it finds one that is not use@f I and (i) for every variable: € dom(¢), T, € dom(¢)

by other hosts. This is done by broadcasting address queriesd ¢(z) € ¢(T).

and rephes to other hosts in th_e style of ARP (Address A valuation is compatiblewith a guardc if and only if

Resolution Protocol). Our goal is to formally model the ST

protocol with an arbitrary number of hosts and an arbityaril par(C) € dom(¢), i.e., par(C) € dom(¢).

large address space and prove that in our construction, ea@efinition 6 (Instance of Guard)Let C be a guard and

address is possessed by at most one host. a compatible valuation. Thép-)instance ofC, denoted by
Parameters: In order to model HCP, we parametrise [C]4, is determined inductively as follows:

processes and operators with four kinds of variab{pmo- 1) [Tl is true,

cess and data) typeand (process and data) variable#\ 2) [z =y], equalsp(z) = ¢(y),

data type denotes a finite non-empty set of data values 3) [= ('], is - [C']4 and
and a process type represents a finite non-empty set of 4) [C; A Ca]s = [Ci]g A [Calo-
the identifiers of replicated components of a certain kind
whereas a process variable refers to the identifier of an
individual component and a data variable to a data value.
(concurrent) parametrised system is composed of seqlenti
parametrised processes each of which represents the systém
from the viewpoint of finitely many replicated components.

Formally, we assume that for each tyge there is a
countably infinite sef C V of constants such thdi, and
I, are disjoint whenevet/ and V' are different types, and
for each process and data variabiethere is respectively
a unique process or data tyfgé. The possible values of Definition 7 (SPP) A sequential parametrised process (SPP)
a type T are the finite non-empty subsets 6f and the isapairS := (§%,A), wheresx is a parametrised state and
possible values of a variable are the elements af,,.. We A is a finite set of five-tupleésx, X,C, cy, s'x’) such that
assume that the sets of process types, data types, process and s’x’ are parametrised statesy is a parametrised
variables and data variables, denotedTty, Tp, Xp and  event,C is a guard and{ C im(yx’') N Xp is a choice set.
Xp, respectively, are disjoint and countably infinite. We
write T andX short forTpUTp andXpUXp, respectively.

In HCP, there are two kinds of replicated objects: host
and addresses. Hence, we pick a process Typédo repre-
sent the set of the identifiers of hosts and a data fjpd¢o
denote the set of available addresses.

Guards: In our parametrised formalism, (in)equality
tests between variables are represented as guards.

Parametrised Processed\ structuresx, wheres € S
nd x is a tuple of data variables, is aparametrised
gtate Respectively, a structurey, wherec¢ € C and
is a tuple of any variables, is aparametrised event
sequential parametrised process is basically a process
where parametrised states and events are substitutedefor th
ordinary ones and transitions are equipped with a guard and
a choice seti.e., a set ofdata variables whose values are
fixed during the execution of the transition.

The first component af is called theparametrised initial
state and the elements oA are parametrised transitions
SLet = be a variable that occurs in a parametrised transition

(sx,X,C,cy,s'x'). If z € im(x) U X, thenz and all
its occurrences ardound in the parametrised transition,
otherwise they aréree A variable isfreein an SPPRS, if it
occurs in the parametrised initial state ®for it is free in
some parametrised transition §f Respectively, a variable
Definition 4 (Guard) GuardsC are given by the grammar is boundin S, if it is bound in some parametrised transition
N of S. Hence, if a variable occurs twice i, it can be both
Co=Tla=y|(=C) | (CAC), free and bound. Thparametersof S are thefree variables
and the types oboundvariables occurring ir§. Like in the
case of guardgar(S) denotes the set of all the parameters
The parametersof a guardC are the variables occurring in of S, par(S) is the setpar(S) U{T, | = € par(S) N X} of
C. The set of all the parameters 6fis denoted bypar(C) all the parameters of plus the types of the parameters,
and the separ(C)U{T, | = € par(C)} of all the parameters and a valuation¢ is compatiblewith S if and only if
of C plus the types of the parameters is denoted®d§(C).  par(S) C dom(¢), i.e., par(S) C dom(¢).

wherex andy range over variables.



Analogously to predicate logic, the free occurrences ofotion of compatibility are defined like for SPPs. We can

variables are initialised (instantiated) in the beginnamyl

also writeP(x1,...,xm,T1,...,T,) to point out thatP is

preserve their value throughout the computation whereas tha CPP the parameters of which are variables . ., x,,, and

values of the bound occurrences are determined at run timéypesTy, ...

To put it more formally, letp be a valuation and a set of
variables such thaf, € dom(¢) for everyz € X. We write
ext(4, X) for the set of all valuationg’ with the domain
dom(¢) U X such that¢ and ¢’ agree on the values of
parameters outsid&(, i.e., ¢'[qom(¢)\x = Pldom(s)\x and
¢'(z) € ¢(T,,) for all z € X.

Definition 8 (Instance of SPP)Let S be an SPRsx, A)
and¢ a compatible valuation. Th@-)instance ofS, denoted
by [S]e, is a pair (3(¢ o x),R), where R is the set
of all triples (s(¢’ o x),¢(¢’ oy),s' (¢’ o x’)) such that
(sx,X,C,cy,s'x') € A, ¢ € ext(¢,im(x)UX) and[C]y
is true.

T,

Intuitively, each CPP represents (infinitely) many pro-
cesses obtained by fixing the values of the parameters
and evaluating the operators. Especially,P" denotes the
parallel composition of all structurgB’ obtained by letting
the variablex to range over its domain.

Definition 10 (Instance of CPP)Let P be a CPP and
a compatible valuation. Thép-)instance ofP, denoted by
[P]s. is determined inductively as follows:

1) [[ﬂj%]]as = [Puls | [Pale,
2) [P'\E]y = P']o \ E.
3 feplo={ Bl

if [C]y is true,

"\ P, if [C]y is false, and

In order to formalise the specification of HCP, we first 4) [[ﬂx Py = ||¢,€ext(¢ {x})ﬂpl]]aﬁ“

capture it from the viewpoint of two hosts in an SPR 2 in
Figure 1, where a parametrised evéifzy,, z,) denotes that
a hostz;, has an address,, guards other than are written
in brackets, and non-empty choice sdts;,...,z,} are
expressed in the forl x4, ..., z, separated by a colon. In
UAZ2, variablest;, andy;, of the typeTy representing hosts
are free and variables, andy, of the typeT'4 representing
addresses are bound. That is wiy (UA2) = {zp, yn, Ta}
andpar(UA2) = {xp,yn,Ta, Ty }. Initially, UA2 allows
the hosty,, to report having any address but after the hgst
has picked an address,, the hosty;, is no longer allowed
to report havingz,,.

l Ova : [5 (Ya = za)] h(Yn, ya)

Oxg : ih(zp, x
50() a (h a)

51(2a)
Oya : #h(Yn, Ya) ih(xh, Ta)

Figure 1. SPPUAZ2 representing the specification of HCP from the
viewpoint of two hosts

The ¢-instance of a CPPP(x1,...,xm,T1,...,T,) is de-
noted byp(¢($1), AR ¢(x7n)7 ¢(T1)a ey ¢(Tn))' too. Nev-
ertheless,[P], is obviously a process with finitely many
transitions and[P], = [P], whenevery is a valuation
such thatw|par(73) = ¢|par(7’)'

The model of the full specification is obtained by letting
xp, andyy, to range over all pairs of different host identifiers
and by composing all the resulting instances @2 in
parallel. Hence, the formal specification is a CPP

UngAdr(Ty,Ta) = /||\zh ﬂyh [5 (xp = yn)|UA2Z

which allows for each host to report only a single unique
address. To see this, consider a valuatipnsuch that
¢(Tr) = {h1, ho} and¢(Ta) = Az, where Ay = {ay, as}.
Obviously,¢ is compatible withUngqAdr and theg-instance

of UngAdr is the process

Pig || (UA2(hy, ha, A2) || (UA2(hg, hi, A2) || Pia))

which is equal toUA2(hy, ho, As) || UA2(hg, h1, As) In
Figure 2, modulo the structure of control states.

Concurrent parametrised processes are constructed fromThe protocol itself is modelled in a similar way and
SPPs, guards and parametrised versions of the operators.captured in a CPP

Definition 9 (CPP) Concurrent parametrised processes

(CPPs)P are determined by the grammar:
Pu=S|(CP) | (PP) | (P\E) | (I,P)

whereS ranges over SPPE, over guards/ over the finite
sets of visible channels andover process variables.

A process variabler is boundin a CPPP if it occurs

in P and its every occurrence is within a structure of the

form ||, P" such thaty = z. A data variablex is bound
in P if it occurs in P and it is not free in any SPP within
P. The other variables occurring iR are free in P. The
parametersof P, the setspar(P) and par(P), and the

HCP(Ty,Ta) := (ﬂzh ﬂyh [5 (xp = yh)]Host) /\\IC,

where Host is an SPP (in Figure 3 in [24]) anfl” is the

set of all visible channels occurring iHost, except forih.
Refinement:We complete our parametrised formalism

by defining a trace refinement relation on the set of CPPs.

Definition 11 (Parametrised Trace Refinemenf) CPP P,

is atrace refinemenof a CPPP,, denoted byP, Etr P, if

and only if [P1]4 =< [P2]4 for all valuationsy compatible
with both P; and Ps.

Given a system implementation CFPand a system spec-
ification CPPQ, we considerP to becorrect (with respect



th(hz, a1) th(hy, az) A. Cut-Offs for Process Types

(s0,51,0)(a1) (s0,s1,0)(az) In order to determine cut-offs for process types, we first
‘ _ _ ‘ show that if a big instance of the system specificat@n
th(h1, a2)| ih(hs, a1) ih(hz,az)  |ih(h1,01) is composed of the same components as a set of small
(i a ih(ho. instances, then the big instance can be represented as the
( 1, 2) (S s O)O ( 2y 2) . )
0750 parallel composition of the small ones. (Here, big and small
(51,51, 1)(az,a1) (s1,s1,1)(a1,a2) are in terms of the size of the values of process types.)
_ g Similarly, if a big instance of the system implementation
th(h2,a1) th(h1,a1) .
ih(h1,az) ih(h1,a1) P is composed of the same components as a set of small
ih(h2,a1) ih(h2,az) instances, the big instance can be over-approximated as the
. . parallel composition of the small ones (Lemma 13).
(51,50, 1)(a2) (51, 50,1)(a1) Second, if each of the small instances ®fis a trace
ih(hr,as) ih(h1, a1) refinement of the corresponding instance @f then by

the compositionality of the trace refinement, the parallel
Figure 2. The specification of HCP with two hosts and two asske composition of the small instancesBfis a trace refinement

of the parallel composition of the small instances @f

By above and the transitivity of the trace refinement, it
to Q) if and only if P <, Q. Now, the question on the cor- implies that the big instance @ is a trace refinement of
rectness of HCP can be formalised as the problem whethehe corresponding instance ¢f, too (Proposition 14).
HCP =, UngAdr. Like the original trace refinement, also  Finally, since there is an upper limit for the size of small
its parametrised version allows for compositional analysi instances which is obtained by simply counting the number
of free and nested bound variables for each process type
(Lemma 15), a parametrised trace refinement checking task
reduces to the refinement checking of the instances, where
IV. CUT-OFF THEOREMS the size of the process types is bounded (Theorem 16).

In order to present the technique formally, we need to

clarify some concepts. IR is a CPP and) a compatible
valuation,the set of the processes (of thhénstance ofR),

Proposition 12. The relation=,, is a precongruence on the
set of CPPs.

Next, we present the main result of the paper, Corol-
lary 21, which provides cut-offs for checking trace refine-
ment between CPPs. However, we need to assume that ty
specification does not involve hiding and that idistermin- enoted bypre(R, ¢), is defined inductively as follows:
istic, i.e., all its instances are deterministic. That is because ) Pre(S:¢) = {[Sls} for an SPPS,
giving up either of the assumptions renders parametrised 2) Pre(Ri IR, 0) = Uieqr.2y ({i} x pre(Ri, ),
verification undecidablé. Fortunately, in practice, many 3) prc(R\E @) = pre(R, ¢>)
safety specifications are deterministic and hiding is tgibjc 4) pre([CIR!, ¢) = pre(R’, ¢), if [C]s ?S true,
applied only on the implementation side. ’ 0, if [C]y is false, and

The proof consists of two main parts, Theorems 16 and 5) prc(|| R, 0)=Ugy cext(o.{a}) ({¢( )} xpre(R’, ¢')).
20, which give cut-offs for process types and data typesfFor example, iff is a valuation such thafy;, T4y € dom(6)
respectively. Theorem 16 is similar to the ones provedandd(Ty) = {hi,...,h,}, thenprc(UngAdr,6) equals
in [7], [5] but allows for data parameters, too, whereas o o
Theorem 20 is semantically similar to the DI results [8], [9] { (i (hy, UA2(hi, by, 6(Ta))) | € {1, ,n},i # 5}
but technically more elegant. Consequently, the predentat  If ¢, and ¢, are valuations and” is a set of types, we
is more accessible and concise here than in [8], [9]. say thatg, is a(7-)subvaluationof ¢, if

Finally, we provide cut-offs for checking the determinism 1) 4, and¢, have the same domain,
of a CPP in the form of Theorem 22. Previously, a semanti- ) $1(T) C ¢o(T) for all typesT € T N dom(¢:) and

cally similar result is presented in [25] in the context of.[8 3) b1 ldom(éi)\T = D2|dom(s.)\7 (the valuations agree on

o S ) the values of parameters outsi@g.
1To see why allowing hiding on the specification side makesrpatased h . f . I h |
verification undecidable, we refer to [5]. The undecidapilior non-  1he ¢1-instance of a CPFR is smaller than (or equal to)

deterministic specifications follows from the fact that thegn detect the ¢s-instance of R if ¢; is a subvaluation ofp,. For

whether an implementation uses data constants for countingo#g as example, if© is the set of all subvaluation® of 6 such
the implementation maintains the initial order for any (notedministically !

) . - .
chosen) pair of data constants, the specification does loot fr an extra  that|0'(Tr)| < 2, then@ is a finite set of p-subvaluations
behaviour, especially executing a halting event is foreiddHowever, if a  of 6 and [UnqAdr]e is smaller than][UngAdr]y for all
pair of data constants does not respect the order in whighvikee seenfor g/ = @

the first time, the specification allows the implementation toadgthing. Si h ificati d . | hidi h
This way, the implementation can simulate a Turing machine aftthpa ince the _SpeCI icatio does not m_V_O ve hi m_g, eac
can be detected as the violation of the specification. instance ofQ is just the parallel composition of the instances



of SPPs occurrin@®. Hence, if the set of the processes of athe variables of the typ€ that are free ifR andpbnd(R)
(big) instance 0Q equals the set of the processes of smalleiis defined inductively as follows:

instances oL, then by the commutativity, associativity and 1) pbnd,((§%,A)) =0,

idempotence of the parallel composition, it is evident that 2) pbnd4([C]R) = pbnd(R'),

big instance is trace equivalent to the parallel compasitio  3) phnd;.(R, || Rs) = max(pbndy(Ry), phndy(Rs)),
of t_he srr_1a|| mstam:_es. For |mplementatlon CHRswhich 4) pbud,(R'\ E) = pbnd,(R’) and

typically involve hiding, trace equivalence does not haid i ~ pbnd,(R') +1, if T, =T,
general. However, since distributing hiding over the gartal 5) pbudp([|, R') = { pbnd,(R/), if T, #T.
composition results in a process with more traces, we can For example, as the specification CRRgAdr involves
still establish a trace refinement between the big instafice qwo subprocesses of the for/m P’ such thatT, = Ty, we
P and the parallel composition of the small ones. see thatpbnd, (UngAdr) = 2. Moreover, sincelUngAdr

Lemma 13. Let R be a CPP» a compatible valuation, has no free variable, it implies thabr, (UngAdr) = 2.
T € dom(t)) a process type an@ a finite set of the{7}-  Similarly, we can show thatp;,, (HCP) = 2, too.

subvaluations ofy such thatprc(R, ) = Ugeq Pre(R,¢).  Lemma 15. If R is a CPP,¢ a compatible valuation,
Then[R]y = [l4cq[R]s, and ifR does notinvolve hiding, 7 ¢ dom(y) a process typek > |im(¢|x) N Ir| +
[Rly =t lpealR]y, too. pbnd,(R) a positive integer andb the set of all{7T'}-

Considering our running example, 16t and © be as Subvaluationss of ¢ such that|¢(T)| = min(k, [¢(T)]),
above. Since every element gfic(UngAdr,0) depends thenpre(R,v) = Ugeqs pre(R, 0).

on the identifiers of two hosts, it is easy to see that By Combining the results above, we get cut-offs for
pre(UngAdr, ) equals|Jy g pre(UngAdr, 0'), which im- process types for parametrised trace refinement checking.
plies that [UngAdrle = [lgco[UngAdr]e . Similarly,

we can check thapre(HCP,0) = Uy .o pre(HCP, '), Theorem 16 (Cut-Offs for Pr_ocess Ty_pgs).etP and Q be
which implies that[HCP]y = |lycolHCP]or. Now, if CPPs_such t_haQ does nqt involve hidingp the set of all
[HCPly = [UngAdr]y for all @ € ©, then by the valuat!ons with the domaipar(P || Q) and ¥ the set of all
compositionality of<.,, we know that||, .o [HCP]e <,  Valuations¢ € & such that|¢(T)| < cpr(P || Q) for every
llgco[UngAdr]e:, too. By the transitivity of<,, it follows ~ process typdl’ € par(P || Q). Then[P]y =i [Q], for all

that [HCP]y = [UngAdr]y. Hence, the lemma implies ¢ € @, if and only if [P], =< [Q] for all ¢ € V.

that we can derive the correct_ness of a big system instance \yjhen we apply the theorem to HCP, we see that to prove
from the correctness of small instances. HCP correct for any number of hosts and network addresses,

Proposition 14. Let P and Q be CPPs such tha@ does it is sufficient to consider instances with an arbitrary nemb
not involve hiding;) a compatible valuation] € dom(¢))  of addresses but at most two hosts.
a process type an@® a set of the{T}-subvaluations of) B. Cut-Offs for Data Types

such thatprc(P, ¢) = Uzeq pre(P, ¢) and pre(Q, 1) = To determine cut-offs for data types, we first show that

tUhéﬁT[gﬁC(% QSEQI]E [Pls = [Q, for all valuationse € &, an execution of a big instance of a system implementation
v —tr v P can be bijectively mapped to an execution of a small
The proposition allows us to discard (big) instances buinstance ofP transition by transition. (Here, big and small
it does not explicitly say which instances we should keepare in terms of the size of the values of data types.)
This piece of information is hidden in the condition of the If the small instance ofP is a trace refinement of the
form pre(R, ) = Uycq Pre(R, ¢) which requires the set  small instance of the system specificati@nthen the small
of the processes of the big instance to be the same as tlpecification instance has a corresponding execution which
set of the processes of the small ones. Since each elemesdn be projected back to the execution of the big instance of
in prc(R,) is completely determined by the values of Q by using the inverse mappings, provided the specification
finitely many variables and data types, thg-off (size)for  is deterministic (Lemma 17). This implies that if the small
a process typd’ and R, denoted bycp(R), depends on instance ofP is a trace refinement of the small instan@e
the maximum number of constants I that occur in an then the big instance dP is a trace refinement of the big
element inprc(R, ). In other words,cp,-(R) is obtained instanceQ, too (Prop. 18).
by simply counting the number of the free variables of the Since we can compute an upper limit for the size of small
typeT and adding the maximum number of the nested boundhstances based on the cut-offs of process types and the
variables of the typd'. More formally, number of data variables occurringfandQ (Lemma 19),
a parametrised trace refinement checking task reduces to
opr(R) = max(1, [freer(R)] + pbndp(R)) , the refinement checking of the instances of bounded size
wherefreer(R) is the sef{x € XNpar(R) | T, =T} ofall  (Theorem 20).



The bijective mapping of executions between big and Like in the case of process types, the proposition allows
small instances presumes that the small instance is bigs to discard (big) instances but it does not explicitly say
enough. The sufficient size for the small instance depends awhich instances we should keep. This time, the cut-off size
the number of constants occurring in a transition or théahit of a data typeT’ depends on the number of constants in
state of the big instance, which motivates the followingIr that occur in a state or transition of an implementation

definition. Let P be a process andl a set of constants.
We write idc(P, A) for the maximum number of constants
in A that occur in a state or transition &f, i.e.,

ide(P, A) := max{|im(d) N A], [im(ded’) N 4] |
§d = init(P), (sd, ce,s'd’) € tran(P)} .

For example, lef; be a valuation with the domaif¥'s, T }
such that91<TH) = {hl,hg} and HI(TA) = {al, Ce ,an}.

If n = 2, then [UnqAdr]e, is the process in Figure 2,
where obviouslyidc([ UngAdr]e,, IT,) = 2. More gener-
ally, since [UngAdr]e, = Pia || UA2(h1,h2,61(Ta)) |
UA2(ha, h1,01(T4)) || P;q and each parametrised transi-
tion and state ofUA2 involves at most two variables of
the typeT, we can see thatdc([UngAdr]e,, Ir,) < 4.
Similarly, we get thatdc([HCP]o,,Ir,) < 4.

Lemma 17. Let P and Q be CPPs,y) a compatible
valuation, T € dom(vy) a data type and¢ a {T}-
subvaluation ofty such that|4(T)| > |im(¢|x) N Ir| +
ide([Ply, It \ im(v]x))+ide([Q]y, I \ im(¥|x)). More-
over, let[Q], be deterministic[P], a trace refinement of
[Q]s and (sodo,c1e1,51d1,...,¢nep,s,dy) an execu-
tion of [P], such thatn = 0 or ¢, e, is a visible event,

instance and a specification instance. If the size of process
types is already bounded using Theorem 16, thenctite

off (size)for T' and a CPPR, denoted bycdr(R), can be
over-approximated as follows. First, count the number of
the free variables of the typE. Then, go through all SPPs

S occurring inR and in each round, add the product of
two figures: the maximum number of the bound variables
of the typeT" occurring in a parametrised transition and the
maximum number of the instances &fwithin an instance

of R. To put it more formally,

cdr(R) := max(1, |freer(R)| + dbndy = (R)) ,

wheredbndr z (R) is defined inductively as follows:
1) dbndrz((5§%,A)) is the maximum of
{zr eim(x)UX | T, =T}
when (sx, X,C, cy, s'x’) ranges over\,
2) dbndyz([CJR') = dbndy,z (R'),
3) dbndez (Rl/“ Rg) = dbndT,R(Rl) —‘rdeldT”R (Rg),
4) dbndng (ZQ,/ \ E) = dbndng (R/) and
5) dbndfnn(”z R/) = CpTw (R) . dbl’ldTﬂg (R/)
For example, letHU := HCP || UngAdr. By above,
we know thatcpp, (HU) = 2. Moreover, since every

indices in{1,...,n} such thatc; # 7.

Then, (i) there are bijectionsy,...,g9, : V — V
which move only constants iti(T") \ im(¢|x) such that
(sodo,c1(gioer),s1(grod1),- .., cn(gnoen), sn(gnody))
is an execution of[P],, (i) and there is an execu-
tion (sp df, ) €,s1dy, ..., ¢, e, sk d},) of [Q]4 such that
(s0d0, ¢ (g7, 0€1), 51 (g7, 0d1), .-, ¢ (g5, 5ef ), s (g5, )
is an execution ofQ], and ¢ (g;1 oe}) = c;, e for all
je{l,....k}.

Regarding HCP, let, be a {T4}-subvaluation off;
such that|f2(T4)| = 8. Since[UngAdr]e, is deterministic,
im(6:]x) is empty and|62(T4)| > idc([HCPo,, IT,) +
ide([UngAdr]e,, Ir,), the proposition implies that if
[HCP]o, =u [UngAdr]e,, then for every execution of
[HCP]y, there is an execution dfUngAdr]s, which gives

ables of the typel’y, we see thatlbndy, npy(UA2) = 2.
Hence,dbndr, nu(UngAdr) = cpr, (HU)-cpp, (HU)-
dbndy, py(UA2) 8. Similarly, we can show that
dbndr, gy (HCP) = 8. BecauseHU has no free variable,
it implies thatcdr, (HU) = 16.

Lemma 19. Let P be a CPP¢ a compatible valuation and
R a CPP such that¢(U)| < cpy(R) for each process
typeU € dom(¢). Then for every data typ& € dom(¢),
dbndr g (P) > ide([Ply, It \ im(¢]x)).

By combining the results above, we get cut-offs for data
types for parametrised trace refinement checking.

Theorem 20 (Cut-Offs for Data Types)Let P and Q be
CPPs such that is deterministic. Moreover, le¥ be the
set of all valuationsy) with the domainpar(P || Q) such

rise to the same trace. Hence, with the aid of the lemmdhat [¢(U)| < cpy (P || Q) for every process typ& e
above, we can derive the correctness of a big implementatiopar (P || Q), and ® the set of all valuationg € ¥ such that

instance from the correctness of a small one.

Proposition 18. Let P and Q be CPPs,y a com-
patible valuation,7 € dom(y)) a data type and¢ a
{T}-subvaluation ofi) such that|¢(T)| >|im(¢|x) N I7|
+ ide([Ply. Ir \ im () +ide([Qlyp, Ir \ im($lx)). I
[Q]s is deterministic andP]s =i [Qle, then [Py <
[Q], too.

6(T)| < cdr (P Q) for every data typd € par(P | Q).
Then,[Ply = [Qly for all ¢ € U, if and only if[P], <
[Q], for all ¢ € ®.

When we apply the theorem to HCP, we see that to prove
the system correct for any number of addresses and up to
two hosts, it is sufficient to consider instances with at most
16 addresses and two hosts.



C. Automated Approach parametrised verification task.

. When applied to HCP, Bounds first generates all 32
Even though Theorems 16 and 20 provide cut-offs foria]stances up to the cut-offs of two hosts and 16 addresses and

types, they do not quite enable automated parametrise ecks that the specification is deterministic. After thiat,

verification because there are st |nf|n|_te|y many msta-m applies Propositions 14 and 18, which reveals that onlyfsix o
up to the cut-offs. However, if we consider only valuations

which arenon-isomorphigi.e., cannot be obtained from each the instances have to be actually verified. By using FDR2, all

o ; ix instances are found to be correct, which implies that HCP
other by the bijective mapping of constants, then we are lef
e ) . operates correctly for any number of hosts and addresses.
with finitely many instances. Formally, valuations and ¢,

. L : X We have also proved mutual exclusion properties for a
areisomorphic if they have the same domain and if there shared resource system (SRS) where an arbitrary number of
is a bijectiong : V — V such thaps(z) = g(¢: (x)) for all Y y

variablesz € dom(é1) and é(T) = {g(c) | c € ¢1(T)} users compete for an access to an arbitrary number of shared

. . g resources which store data from an arbitrary large domain
for all typesT € dom(¢;). Valuations arenon-isomorphic . .
) ) ; and a cache coherence protocol with an arbitrary number
if they are not isomorphic.

Getti d of i hs i fe si . hi | of processors and an arbitrary amount of memory storing
_ o€tling 1 o ISomOrpRs 1S salé SINCe 1Somorphic va ua'arbitrary large data values. Additionally, we have proved
tions result in verification tasks with the same answer. Tha

h that a seb of valuati . t-off set f Eonsistency properties for both systems when the number of
why we say that a Seb of valualions 1S &ut-off set fora —,qqg ang processes was fixed to two. In each case, the whole
CPPR if @ is a maximal set of non-isomorphic valuations

6 with the domainpar(R) such thatl(U)] < cpy,(R) for verification process took only a second or two (see Table 1),
=~ CPpy

hich sh that hi licable t tical
every process typ® € dom(s) and |¢(T)| < cdz(R) for which shows that our approach is applicable to practica

/ . verification problems. Moreover, since our formalism is
every data typd” & dom(¢). With Theorems 16 and 20, this compositional, the specifications of these systems can be

notion Iead's o our main result, Wh.'c.h allow us to' reduceused in place of the implementations in further verification
a parametrised ve_rl_flcatlon task to finitely many refmemenreﬁorts_ The experiments were run on a desktop computer
checks between finite processes. with 4GB of memory running 64-bit Ubuntu on 3Ghz Intel
Corollary 21 (The Main Cut-Off Theorem)Let ® be a  Core2 Duo processor. The descriptions of HCP, SRS and
cut-off set for a CPRP || Q), whereQ is deterministic and ~Cache models are available in [24].

does not involve hiding. Then (®)is finite and (2)P =,, Q

if and only if [[P]]¢ 20 [[Q]]¢ for all ¢ € . V. CONCLUSIONS ANDFUTURE WORK

We have presented a formalism for expressing

Another practical problem is that establishing the deterparametrised systems and combined two existing results [8]
minism of the specification involves infinitely many checks, [5] on parametrised verification into a single powerful

too. That is why we provide cut-offs for that task as well technique which enables parametrised verification by
by using similar reasoning as above. reduction to finitely many finite state verification tasks.

Theorem 22 (Cut-Offs for Determinism Checking)Let & The reduction is determined by the structure of a system

be a cut-off set for a CPPQ|| Q), whereQ does not involve implementation and specification and, to the best of our
hiding. Then (1) is finite and (é)Q is deterministic. if and knowledge, this is the first and only parametrised verifarati
only if [Q]., is deterministic for allé € & ' technique that allows for compositional reasoning, lends

support to multiple and two fundamentally different kinds
Corollary 21 and Theorem 22 give rise to a completelyof parameters and guarantees termination with the correct
automatic procedure for parametrised verification which weanswer. The approach is implemented in a tool used to
have implemented in the recent version of the Boundgrove the correctness of several parametrised systems.
tool [26]. First, the tool reads system implementation and An obvious topic for future research is extending the
specification CPPs. Then, it computes the cut-off sizes fompproach. We already know that the approach can be
types, produces the instances of the specification up to thextended with relations over process types that are deéinabl
cut-offs and checks that they are deterministic. Moreoverin the first order logic [7], [5] but we are also interested in
since the cut-offs provided by the corollary are only roughmixing process and data types and extending the technique
structural ones, the tool tries to improve them further byto liveness properties [10] and interface theories [27]e Th
checking the assumptions of Propositions 14 and 18 for eacthallenge is that such extensions tend to render paraexbtris
instance up to the rough bounds and by discarding big inrefinement checking undecidable [5]. Nevertheless, we are
stances which satisfy the assumptions of either propositio hopeful in finding practically sensible assumptions under
After that, Bounds produces the trace refinement checkingvhich the extensions can be realised.
tasks up to the improved cut-offs. Finally, the outputteddin
state verification questions are solved using the refinement Acknowledgement: The work was partially funded
checker FDR2 [3] in order to obtain the answer to theby Helsinki Institute for Information Technology HIIT,



Tab

le |

STATISTICS ON THE VERIFICATION OF SYSTEMS INVOLVING BOTH PARMETRIC PROCESS AND DATA TYPES

Process types Data types Instances Processing time
System number | cut-offs | number | cut-offs | generated| outputted | Bounds | FDR2
HCP 1 2 1 16 32 6 0.20s| 0.13s
SRS mutex 2 2,1 1 12 24 5 0.06s | 0.11s
SRS consistency 1 1 1 8 8 6 0.04s | 0.15s
Cache mutex 2 2,1 1 17 34 12 0.23s| 0.35s
Cache consistency 1 1 1 14 14 12 0.28s | 1.05s

Academy of Finland (project 139402), and RECOMP project[14] E. A. Emerson and V. Kahlon, “Reducing model checking of

funded by ARTEMIS-JU.
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APPENDIX
A. Additional Definitions, Lemmas and Propositions

Ir|. Then (i) the initial state of R], is the initial state of
[R] and (ii) wheneveid, d’ and e are tuples of constants
over Im(¢), then(sd, ce, s'd’) € tran([R],) if and only

For the proofs, we need the following auxiliary concepts;s (sd,ce, s'd’) € tran([R]y).

and results. For any proced3, we write st(P) for the

set of the states of? and g(P) for a process obtained Lemma 31.Let ® be a set of non-isomorphic valuations

from P by mapping the constants using a functign:
V — V. For any valuationp, we write Im(¢) for the set

with the same finite domain arida positive integer such that
|p(T)| < k for all valuations¢ € ® and typesI” € dom(¢).

Urcdom(e)nr ¢(T) of all constants occurring in the image Then the se is finite.

of ¢. Notationg o v, where is a valuation ang : V — V
a bijection, denotes a functiop with the domaindom(v)
such that¢(x) = g(¢(z)) for all variablesz € dom(%))
ando(T) = {g(v) | v € (T)} for all typesT € dom(¢)).

Proposition 32. Let’? and Q be CPPs and and+) isomor-
phic valuations compatible with the CPPs[R],, <. [Q]
then [Py, = [Q]y, too.

Hence, valuations); and ¢, are isomorphic if there is a B. Proofs

bijection g : V — V such thatps = g o ¢1.

Proposition 23. Let P, P, and P; be processesk a set
of visible channels and a bijection: V +— V. Then the
following holds.
1) P1 || Pg =tr PQ || Pl,
2) P (P2l Ps) = (P || P2) || Ps,
3) P || PL=u P,
4) if alph(Pg) = (Z), thenP1 || P =, P,
5) P, is deterministic if and only ify(P;) is deterministic,
6) P, || P is deterministic if and only if bot®; and P,
are deterministic.
7) g(P1 || P2) = g(P1) || 9(P2),
8) g(P1\ E)=g(P)\E,
9) (P1 || P)\E = (Pi\ E) | (P2 \ E), and
10) if P, = P, thenPy || Pz =i P || Ps, g(P1) Z¢r
g(PQ) and P; \E <ir P \E

Proposition 24. Let’P be a CPP and) a compatible valua-
tion. Then (i)[P], is a finite process and (iijP]4 = [P]
whenevery is a valuation such that)|,..(p) = ¢lpar(p)-

Lemma 25. Let C be a guard,sy) a compatible valuation
and ¢ a subvaluation of). Then[C] is true if and only if
[Cls is true.

Lemma 26. Let S be an SPPy) a compatible valuation and
¢ a Tp-subvaluation ofy. Then[S], = [S]s-

Lemma 27. Let C be a guard,¢ a compatible valuation
and g a bijection: V — V such thatg(Ir) = I for every
typeT. Then[C]y if and only if [C] 0.

Lemma 28. Let R be a CPP¢ a compatible valuation and
g a bijection: V — V such thatg(Ir) = I for all typesT.
Theng([R]s) = [R]goe-

Proposition 29. If R is a CPP,¢ a compatible valuation,
T a data type andg a bijection onV which moves only
constants inp(7T') \ im(¢|x), then[R]s = g([R]4).

Lemma 30. Let R be a CPP,%» a compatible valuation,
T € dom(%)) a data type andp a {T'}-subvaluation ofy
such that|¢(T)| > ide([R]y, Ir \ im(4[x)) + [im(]x) N

Proposition 23: Most of the properties are well known

[2], [3]. See [5] for proofs. [ ]
Proposition 24: The proposition follows straightfor-
wardly from the definition of the instance. [ ]

Proof: The relation=;, is obviously reflexive because
[Ply =i [Pl for all CPPsP and valuationsp such that
par(P) C dom().

To see thatz,, is also transitive, le;, P», P; be CPPs
such thatP; gtr P> and Py gtr P3. Moreover, letg be a
valuation compatible with?; andP; and ¢’ any valuation
with the domaindom(¢)Upar(Pz) such that'|qoms) = ¢-
Note that such a valuation always exists. By assumption,
[[771]]¢' =¢r [[PQ]]¢/ and [['Pgﬂqy =tr [[733]]45/, which by
the transitivity of <, implies that [P1]y =i [P3]e-
By Proposition 24, it means thdtP1], =i [Ps]s, too.
Therefore,P; =,, P, which implies that=,, is transitive.

Finally, we need to show that,, is compositional. For
that purpose, leP; and P, be CPPs such tha, =, P-.

If C is a guard andy a valuation compatible witl®, P;
andPs, then there are two cases to considefClf, is false,
then obviousM[C]P1]s = [[C]P2]e. On the other hand, if
[Cl is true, then[[CIP1]y = [Pils Sur [Pals = [[CIP2]o-
Hence,P; =, P2 implies that[C]P; =, [C]Pa, too.

Similarly, we can show thaP, gt;\PQ implies P || Py 2
PP, Pi| P2 Pal| P, PI\E= P2\ E and||, P1 =yl Ps
for all CPPsP, all process variableg and all finite sets
E of visible channels. Therefore, the relatiof), is also
compositional and hence a precongruence. ]

Lemma 25: The lemma follows easily by induction
on the structure of by using the lemma as an induction
hypothesis. [ ]

Lemma 26: Since process variables can occur only free
in S, it is obvious that bott{S], and[S], have the same
initial state and the same set of transitions. ]

Lemma 13: First, we show that wherR does not
involve hiding, [R]y =t [|4cq[R]»- We argue by induction
on the structure ofR by using the claim as an induction
hypothesis.

In the base caseR is an SPP. Sincerc(R,vy) =
Ugea Pre(R, ¢), it means thafR]y, = [R], for all ¢ € ®.



Since every process is an idempotent with respect to the

parallel composition (Prop. 23, Item 3), it implies that
[Rly =t llgealRle-

In the induction step, there are three cases to consider.

First, let us assume th@ is [C]R’. Since¢ is a subvaluation
of ¢ for all ¢ € ®, by Lemma 25,[C],, = [C], for every

¢ € ®. If [C]y is not true, thenR]y = [R]s = Pia for

all ¢ € ®. By the idempotence of the parallel composition
(Prop. 23, Item 3), it implies thafR]y, =t [l,cqe[R]s-
Otherwise, if [C], is true, [R]y = [R']y and [R]4
[R']4 for all ¢ € ®. It also means that

pre(R/, 1) = pre(R, )
= U pre(R,¢) = U pre(R', ¢) .

PpeD Pped
Hence, by the induction hypothesis,
[Rly = [Rly =« || [RTs =1 [R]s-
ped ped
Next, we assume thatR is R; ﬂ Rs. Since
pre(R, ) = Ugeapre(R,9), it implies that

pre(Ri,¢) = Uyeqe Pre(Ri,¢) for both i € {1,2}.
Then, by the induction hypothesi§R;]y, =t [lca[Rils

for bothi € {1,2}. By the commutativity and associativity tion
of the parallel composition (Prop. 23, Items 1-2) and

the compositionality of the trace equivalence (Prop. 23
Item 10),

[Rly = [Raly [l [R2]y

RO Ralg) (I [R2Ds)
peD PpeD
PPEZ N (IRl | [Ralg) = || [R]-
HED oed

By the transitivity of the trace equivalence, it implies ttha
[Rly =t llgeolRls:

Finally, let R be ||, R'. For everyy’ € ext(¢,{z}),
let @, denote the set of alp’ € (J, 4 ext(e, {z}) such
that ¢'(z) = ¢’ (x). Obviously,®, is a finite set of{T'}-
subvaluations ofy’ for every ¢/ € ext(y,{z}). More-
over, sinceprc(R, ) = U(bé‘i’ pre(R, ¢), thenpre(R, ")
must beU¢,€%/ pre(R, ¢') for all ¢/ € ext(¢y, {z}), too.
By the induction hypothesis, it implies thgR'], =,
I ped, [R']4. Then, by the commutativity, associativity
and idempotence of the parallel composition (Prop. 23
ltems 1-3), the identity ofP,; (Prop. 23, Item 4) and
the compositionality of the trace equivalence (Prop. 23
Item 10),

[Rly = | [Rly
P’ €ext(Y,{z})
i.h. &_|323.4,10

=ur | C

P eext(Y,{x}) ¢ €Dy

[R]s)

P23.1-2,4
=tr |
¢/€U¢eq> ext(¢,{z})

e 1 IR

PED ¢'cext(¢,{z})

[R'To

P23.1-4
=tr

| [R]e -
ped

By the transitivity of the trace equivalence, it implies ttha
[Rly =t [l sea[R]s- Hence, by the induction principle, the
first part of the lemma is correct.

Next, we prove that ifR is allowed to involve hiding,
[Rly =i llsealRls- The proof is similar to the above

one except for a case, whef is R’YE. To see that
the claim holds in this case, too, we apply the induction
hypothesis, the distributivity of hiding (Prop. 23, Item 9)
and the compositionality of the trace refinement (Prop. 23,
Item 10), which gives us

i.h. & P23.10
jtr

[Rly = [R]s \ E (I [RT)\E

PP
P23.9-10

Zu | ([RIe\E)= || [R]s -
beD ped

By the transitivity of the trace refinement, it implies that
[Rly =t |l 4ealR]» and the lemma is correct. [ |
Proposition 14: Let [P]y =i [Q], for all valua-
s ¢ € ®. Then, by the compositionality of the trace
refinement (Prop. 23, Item 10}, [Pls =t [lyeq[Qo-

By Lemma 13, it implies thafP], =i ||¢€q) PJ, and

[Qly =tr [l4ca[<Qls- Hence,

[Ply = ¢!¢[[7’ﬂ¢ Sor ¢!¢[[Q]]¢ =u [Qy

which by the transitivity of the trace refinement impliesttha
[Ply = [Qly- u

Lemma 15: We argue by induction on the structure of
R by using the lemma as an induction hypothesis.

In the base stefR is an SPRS. First, note thatb is non-
empty becausenin(k, [(T)]) > |im(¢|x) N Ir|. Secondly,
since eachy € ® is a{T'}-subvaluation of), by Lemma 26,
it means that[S], = [S]4 for every ¢ € ®. Then, by
definition, it is evident thapre(R, ) = Uyeqp Pre(R, ¢).

In the induction step, there are four cases to consider.
First, let us assume th& is [C|R’. Since¢ is a subval-
uation of ¢ for all ¢ € ®, by Lemma 25,[C], = [C]4
for every ¢ € ®. If [C]y is false, then prc(R,y) =
Ugea Pre(R, ¢) = 0. Otherwise, if[C]y is true, then by
definition and the induction hypothesis,

" pre(R, ) = pre(R',¢)

= U pre(R/, ¢) = U pre(R, ¢) .

ped PP

Next, letR beRlﬂRg. Obviously,k > |[im(¢|x) N Ip|+
pbnd;(R) > |im(y|x) N Ir| + pbundy(R;) for bothi €



{1,2}, which means that the induction hypothesis is appli-
cable toR; andR.. Hencepre(R;, ¢) = Uyeqp Pre(Ri, ¢)
for bothi € {1, 2}, which implies that

pre(R,¢) = | ({i} x pre(Ri,9))

ie{1,2}

U i} x [ pre(ri )

ie{1,2} HeD

= U U ({i} x prc(R;, ¢)) = U pre(R, @) -

Ppe®ic{1,2} PeD

After that, we assume th& is R’YE. Again, it is easy
to see thatt > |im(¢|x) N I7| + pbnd;(R) > |im(¢|x) N
Ir| + pbnd,(R’), which by definition and the induction
hypothesis implies that

pre(R, ) = pre(R/ ;)
= U prc(R/, ¢) = U prc(R, @) .

ped PP

Finally, we assume thaR is ﬂt R'. First, note that
whenever ¢’ € ext(y,{z}), ¥ > |im(¢|x) N Ir| +
pbnd;(R) > |im(¢’|x) N Ir| + pbnd,(R'). Secondly,
for every ¢/ € ext(y,{z}), let &, be the set of all
valuations¢’ € (¢4 ext(¢, {z}) such thatp'(z) = ¢'(z).
Obviously, @, is a set of{T'}-subvaluations’ of ¢’ such
that |¢'(T)| = min(k, [¢(T)|) = min(k, [¢/(T)|). To see
that @, is the set of all such valuations, l¢t' be a{T'}-
subvaluation ofy’ such that|¢”(T)| min(k, [¢'(T))).
Then, there is &7 }-subvaluationg of ¢ such thaty” €
ext (6, {x}). Since|¢(T)| = |¢"(T)| = min(k, |¢'(T)|) =
min(k, |¢(T)|), we know thaty € ®. It implies that®,
is the set of all{T}-subvaluations¢’ of ¢’ such that
|¢'(T)| = min(k, |¢'(T)]). By the induction hypothesis,
it means thatprc(R’,¢’) = U¢,e%l pre(R’, ¢") for all
' € ext(y, {x}). Therefore,

U

Y/ €ext(y,{z})

U @@rx (J pre(R.¢))

Y’ eext(,{z}) PEDy

U U ({¢'@)} x pre(R’, ¢))

Y eext(,{x}) '€y

U

¢>/€U¢€<I> ext(d),{aﬁ})

-U U

pe® ¢’ cext(d,{z})

pre(R,¢) = ({¢'(@)} x pre(R’, ¢"))

({#' ()} x pre(R', ¢))
({¢'(2)} x pre(R', ¢"))
= | pre(R, ¢).

Pped

Hence, by the induction principle, the lemma is correm.

Theorem 16: Obviously, if [P], < [Q]4 for all ¢ €
®, then[P]y = [Q]y for all valuationsy € ¥, too.

Next, let us assume thiP], =:. [Q]y for all valuations
Y € V. LetTy,...,T, be the process types imr(P || Q)
and¥,,..., ¥, sets of valuations with the domajrar(P ||
Q) such thatly C ¥, ¥, = ® and for alli € {1,...,n},
W,_; is the set of all {Ti}—subvaluationswi_i of the
valuations inW¥; such that|y; 1 (T3)| < cpr, (P || Q). We
proceed by induction to show that for ale {0,...,n}, the
relation [P],, =¢ [Q]y, holds whenever); € ;.

The base step is clear sincey C ¥ and the claim
holds by assumption. In the induction step, dete ¥; \
Vi 1, k := cpr, (P || Q) and ®; be the set of al{T;}-
subvaluationsp of +; such that|¢(TiA)\ = k. By definition,
k > [freer,(P || Q)| + pbndy, (P | Q) > [im(vslx) N
Ir,| + max(pbndy, (P), pbndy, (Q)) and by the choice of
vi, |o(T;)| = k = min(k, [¢;(T;)]) for all ¢ € ;. By
Lemma 15, it implies thapre(Q, ;) = Uyeq, Pre(Q, ¢)
and pre(P, ¢;) = Uyeq, Pre(P, ¢). Sinced; C ¥;_4, by
the induction hypothesigP], <. [Q], for all valuations
¢ € ®,. By Proposition 14, it means that th§#®],, <.
[Q]y,. too. By the induction principle, it implies that for
all i € {0,...,n}, [Ply =« [Qly whenevery € ;.
Hence, the relatioffP], =< [Q]4 holds especially for all
valuationsg € . |

Lemma 27: The claim follows straightforwardly by
induction on the structure of the guard using the lemma as
an induction hypothesis. [ ]

Lemma 28: We argue by induction on the structure of
R by using the lemma as an induction hypothesis.

In the base stepR is an SPP and it is easy to see that
9([R]y) = [R]gos holds.

In the induction step, there are four cases to consider.
First, we assume th&® is [C]R’. By Lemma 27, we know
that [C], if and only if [C]goe. If [Cle = [Clgop = false,
then[R]y = [R]gop = Pia and the lemma holds trivially.
On the other hand, ifC], = [C]40p = true, then by the
induction hypothesisg([R]s) = g([R']s) = [R']gos =
[[Rﬂgwb- N

Next, if R is Rq || Rz, then by Item 7 of Proposition 23
and the induction hypothesis,

9([Rle) = 9([Rals Il [R2]s)

"27([Ralo) | 9([Rale) = [Ralgeos || [Ralges
= [[R]]90¢> :

After that, letR be R’YE. Then by the induction hy-
pothesisg([R']4) = [R']404- By Item 8 of Proposition 23,
it implies that

9([Rls) = 9([R'], \ E) "2°

2%9([R']o) \ B
L [R'gos \ E = [Rlgos -



Finally, if R is ﬂl R', we argue like in the second case of states offR1], and[R2], this implies thatdc([R], I\
the induction step. By using Item 7 of Proposition 23 andim(¢|x)) > idc([R1]y, Ir \ im(¢|x)), which means that

the induction hypothesis, we see that

gC 1 [Re)

¢’ €ext(¢,{z})
R

9([R']y)
¢’ €ext(p,{z})
= |

¢’ ext(god,{x})

i.h.

= || [[R/]]gow
¢’ €ext(d,{x})

[[R/]]qb’ = [[R]]goqﬁ :

Hence, also the induction step is clear and by the inductiomf

principle, the lemma is correct. [ ]
Proposition 29: Sincego¢ = ¢, by Lemma 28[R], =
[Rlgos = 9([R]s)- L

(1) = ide([Raly, Ir \ im(¢]x)) + [im(y[x) N Iz|.
Similarly, one can establish¢(T)| > idc([Ra2]y, Ir \
im(¢|x)) + |im(¢)|x) N Ir|, too. Now, by the induction
hypothesisinit([R;],) = init([R;]4) for both: € {1,2},
which implies that[R], and [R], have the same initial
state.

Let us then assume that
((s1, 82, |d1])d1da, ce, (s}, s5, |d}])didS) is a transition

[R]y such that di,ds,dj,ds,e € (Im(¢))*.
If  (s;di,ce,s;d)) € tran([R;]y) for both
i € {1,2}, then by the induction hypothesis,

(s;d;, ce,s;d}) € tran([R;]4) for bothi € {1,2}, which

Lemma 30: We argue by induction on the structure of implies that ((s1, sz, |d1]|)d1d2, ce, (s], s5, |d}])didb) is

R by using the lemma as an induction hypothesis.

In the base cas&® is an SPRsx, A). Sincey is compat-
ible with R and¢ is a subvaluation of), ¢|imx) = ¥|im)-
Hence,¢ o x = 9 o x, which implies that the initial states
of [R]4 and[R], are the same.

Next, letd,d’, e € (Im(¢))*. Since¢ is a subvaluation of
1, it easy to see that wheneverd, ce, s'd’) is a transition
of [R]s, (sd, ce,s'd’) is a transition of R, too. To prove
the other direction, lets d, ce, s'd’) be a transition of R] ;.
By definition, there arex,x’ € X5, y € X*, a guardC, a
subsetX of im(yx’) andy’ € ext(v,im(x) U X) such that
d =¢'ox,e =¢'oy,d =¢/ox/, (sx,X,C,cy,s'x') € A
and [C]y- is true. Sinced,d’,e € (Im(¢))* and ¢ is a
subvaluation ofi, we can pick¢’ € ext(¢,im(x) U X)

such that¢’ and+’ agree on the values of the variables inby the induction hypothesiss;d; =

im(xyx’)Upar(C). It means thatl = ¢'ox, e = ¢'oy,d’ =
¢’ ox’ and[C]y is true, which implies thatsd, ce, s'd’)
is a transition of[R],4 as well.

a transition of [R],, too. Otherwise, there are distinct
i,j € {1,2} such that(s;d;,ce,s;d;) € tran([R;]y),

ce ¢ alph([R,]y), and s;d; and_s; d; are the same
state of [R;],. Then, by the induction hypothesis,

it is evident that (s;d;,ce,s;d]) € tran([R:]s)-
To see thatce ¢ alph([R;],), assume contrary-
wise that ce € alph([R;]s). Then, by definition,

ce appears in a transition offR;]s, which by the
induction hypothesis, implies that alspR;],, has the
same transition. Therefore;e € alph([R;]y), which
is a contradiction. Hencege ¢ alph([R;]s). Because
sjd; € st([R;]y), s;jd; is the initial state or there
is a transition (s3ds,cses, s5d5) of [R;], such that
dej S {Sgdg,Sédg}. If dej = iIlit(ﬂRj]]¢), then
init([R;]s)-
Otherwise, since|l¢(T)| > ide([R;]y, It \ im(¢|x)) +
lim(¢lx) N Ir| = [(im(dlx) U im(dsesds)) N Ir|,
we can pick a bijectiong V +— V such that

In the induction step, there are four cases to considefm(g o dsesds) C Im(¢) and ¢ moves only constants

First, we assume th& is [C|R’. Becausep is compatible
with R and ¢ is a subvaluation ofy, by Lemma 25,
it implies that [C], if and only if [C],. Hence, there
are two cases to check. [[C]y = [C]y = false, then
[Rle = [R]y = Piq and it is obvious that the lemma
holds. On the other hand, {[C]4 = [C], = true, then
[Rl¢ = [R']s and [R]y = [R']. Now, by the induction
hypothesis, it is again obvious that the lemma holds.
Next, we assume thaR is R; || Re. In order to
apply the induction hypothesis to botR; and R,, we
need to show thatp(T)| > idc([Ri]y, Ir \ im(¢|x)) +
lim(¢)|x) N Ir| for both i € {1,2}. For that purpose,
let (s1dq,ce,s)d]) be a transition of[R{]y. If ce €
alph([R2]y), then there aresyds,shbdy, € st([Ra]y)
such that(sq ds, ce, sh dj) is a transition off Rz],, which
implies that((s1, s2, |d1])d1d2, ce, (s], sh,|d}])djd)) is a
transition of[R],,. On the other hand, ife ¢ alph([R2]y),
then ((sy, 82, |d1|)d1da, ce, (s}, 82, |d}|)d}dy) is a transi-
tion of [R],;, wheres, d, is the initial state of R,],,. Since
the initial state of[R], is the combination of the initial

in ¥(T) \ (im(¢|x) U im(d;)). Then, by Proposition 29,
(s3(g o ds),cs(g o e3),s5(g o di)) € tran([R;]y)

such that g o ds,g o e5,9 o dy € (Im(¢))*,
which by the induction hypothesis implies that
(s3(g o ds),cs(g o e3),s3(g o d3)) € tran([R;]y),

too. Therefores; d; is a state of R ;] 4, which implies that
also in this case((s1, s2, |[d1])d1d2, ce, (s], s5, [d}])d;db)
is a transition offR],.

Proving the other direction, i.e., the containment
tran([R],) C tran([R]y), proceeds similarly. The main
difference is that now it is easy to see that a stat§7of,
is a state of R], too, while proving thate ¢ alph([R;],)
implies ce ¢ alph([R;]) is a similar process as establish-
ing s;d; € [R;]4 above. R

Thirdly, we assume thaR is R\ E. Since hiding af-
fects only channel names, it is evident that([R],, I7 \
im(¢|x)) = ide([R']4, It \ im(¢)[x)), which implies that
the induction hypothesis is applicable ®. By definition
and induction hypothesis, it is then straightforward toakhe
that [R], and[R'],, have the same initial state.



If (sd,ce,s’d") is a transition of [R], such that wheneverj € {m+1,...,n}. By Proposition 29, it implies
d,d’,e € (Im(¢))*, then there are two cases to consider. Ifthat(s,;_i(fjog;—10d;_1),¢;j(fj0gj-10€;),5;(fjogj—10
(sd,ce,s'd’) € tran([R']) andc ¢ E, then the induction  d;)) = (sj—1(gj—1 0 d;j_1),¢;(gj 0 €;),s;(g; odj)) is a
hypothesis implies thatsd,ce,s'd’) € tran([R']4) as transition of[P], for all j € {m+1,...,n}. Sinceim(g; o
well. Therefore, (sd,ce,s’d’) is a transition of [R],,  e;d;) C Im(¢), by Lemma 30,(s;_1(gj—1 od;_1),¢;(g; o
too. Otherwise,c = 7 and there is¢ € E such that e;),s;(g; od;)) is a transition of[P], for all j € {m +
(sd,ce,s'd’) € tran([R']). By the induction hypothesis, 1,...,n}. Hence,(sodo,ci(g10e1),s1(giod1), ..., cn(gno
it implies that (sd,ce,s’'d’) € tran([R']y), which, in  e,),s,(g, 0d,)) is an execution of P],.
turn, means thats d,ce,s’d’) is a transition Of[[R]]d, also To prove the existence of an execution @Q}M)

in this case. Provingran([R]s) < tran([R]y), proceeds satisfying (i), recall that [Q], does not involve
similarly. P o invisible events and [P], is a trace refinement
The case wherR is ||, R’ is a generalisation of the of [Q]s- It means that there is an execution

case wherR is R; || R2 and can be treated in a similar (s dj,c; e},s;d},....c e}, s.d;) of [Q], such that
way. That is because is a process variable, so for every c; e;. =ci, (95, 0ey,), i€, 63(9;1 ) e’j) = ¢;; o ey, for all
Y€ ext(y, {z}) there is¢’ € ext(¢, {x}) such thaty’ is  j € {1,...,k}. Since[Q], is deterministic, the execution
a subvaluation of)’. Hence, also this case is clear and, by (si dj, ¢y e, s7di,....c;_ €, _1,8,_,dj_;) is the
the induction principle, the lemma is correct. | " el " o

same as (sgdgy,ci ey, sy dy,....ci_qe;_q, 8, 1di_4),
Lemma 17: We argue by induction o by using the  which implies that (sh déacﬁ(gﬂl o 63)78’1(9_;1 o
dl1)7~~'_7c;c—1(977ll o € _1),85_1(9m © dj_y)) IS an
execution of [Q],. By Lemma 30 and Proposition 29,

(8h_1(gntod), 1), ch(gntoer), sk (g, od,)) is a transition

lemma as an induction hypothesis.
In the base casd; = 0, which implies that the execution
so dp is the initial state of P],,. By Lemma 30,50 do is an

execution of[P],, too. Moreover, by the same lemma, the of [Q],. Since eacty; preservesm(d, ,), g, od} , =
initial states; dj, of [Q], is an execution of Q] such that -1, ;1“ o...oftod, , =g,lod, ,, which means

sy dp is an execution of 9], too. Hence, the base case is that (s (gt od, ), ch(gnt oer),shlgnt ody)) is a

clear.
In the induction step,k is a positive integer. Now,

transition of [Q],,. Hence, (s d, ¢} (g;," o €}),s)(g;," ©
d}),....ch(g;" o e}),s(g;" o dj})) is an execution of

we can apply the induction hypothesis to the executiong], and the induction step is complete. n

(sodo,c1e1,81d1,...,Cm€m, Smdn), Wherem = i;_1.
Hence, (i) there are bijectiongy,...,gm V —» V
which move only constants in(7T) \ im(¢|x) such that
(sodo,c1(g10e1),s1(g1 0d1),...,cm(gm © €m), Sm(gm ©
d,,)) is an execution of P], and (ii) there is an execution
(shdy.clef sy dy,....ci el st df ) of [Qly
such that(sj djj, c’l’(gi_l1 oel), 5/1/(91'_11 odf),...,c}l_i(gmto
el 1),si_1(gmt od}_,)) is an execution of[Q], and
c}’(gigl oef)=c; e, forall je{l,....,k—1}.

Next, we will construct bijectiong,,+1,...,gn : V=V
satisfying (i). Let fp+1,...,fn be bijections:V — V
such that for allj € {m + 1,...,n}, f; moves only
constants in(7') \ (im(¢|x) Uim(d}_,)). Now, for each
j e {m+1,...,n}, let g; be the bijectionf; o f;_1 o
... 0 fm41 © gm. By definition, eachg; moves only con-
stants iny(T) \ im(¢|x). By Proposition 29, it means
that (sj1(g;-1 0 d;-1),¢j(g5-10€5),55(gj-10d;)) is a
transition of[P],, for all j € {m+1,...,n}. Note that we
may pick the bijectiong;,,+1, - . ., f, in this order, such that
for eachj € {m+1,...,n}, f; preservesm(g;_1o0d;_1).
Moreover, sincep is a {T'}-subvaluation ofy and

|(T)| > ide([Ply, It \ im(¥|x))
+ide([Q] g, It \ im(¥[x)) + [im(¢|x) N I7|
> |(im(gj-1 0d;j—1e;d;) Uim(dy_;) Uim(¢]x)) N Ir|,

we may also assume that mapsim(g;_i10e;d;)) to Im(¢)

Proposition 18: Let us assume thqQ],, is determin-
istic and [P]y < [Q]e. To prove the lemma, we need
to show thatalph([P],) = alph([Q],) and tr([P]y) <
tr([Q]y)-

First, if ce € alph([P]y), there are states; d;, s} d}
such that(s; di,ce, s} d}) is a transition of[P],. Since
6(T)] > ide([Ply, Ir \ im(lx) + im(lx) O Ir] >
|(im(dyed]) Uim(¢|x)) N Ir|, we can pick a bijectiory :

V — V such thaty moves only constants (7)) \ im(¢)|x)
and maps those iim(d;ed}) to Im(¢). Then, by Proposi-
tion 29 and Lemma 30(s1(g o d1),c(g o e),s7(g o d}))
is a transition of[P]s. As ¢(g o e) € alph([P],) and
[Pls =t [Qle, c(goe) € alph([Q]4), too. Hence, there
are statess; do, sh d} such that(soda, c(g o €),s5dh) is
a transition of[Q],. By Lemma 30 and Proposition 29, it
means tha{sa(g~! ods), ce,sh(g~ ! od})) is a transition
of [Q]. Hence,ce € alph([Q]), too. Similarly, one can
show that every event ialph([Q],) is also an event in
alph([P]y), which implies that the alphabets 9], and
[P]y match.

Next, if ¢ € tr([P]y), there is an execution
(sodo,c1e1,81d1,...,¢€pn,5,d,) Of [Py such thatt
is obtained from(c; ey, ..., c, e,) by erasing the invisible
events. We may also assume that eithee= 0 or ¢, e,
is a visible event. By Lemma 17, it means that there is
an execution(s) dy, ¢j €/, s1dj, ..., ¢, e, s, dj,) of [Q]y



such that(c ef,...,c, e},) equals(cieq,...,c,e,) after  hypothesis, it is easy to see that the claim holds in this,case
erasing the invisible events. Thereforec tr([Q],). too,  too.

which proves that the lemma is correct. ] Finally, we consider the case wheR is ﬂr P’. By
Lemma 19: We argue by induction on the structure of the induction hypothesis, we know thdbndr z(P’) >
P by using the lemma as an induction hypothesis. ide([P' ]y, It \ im(¢'|x)) for every ¢’ € ext(¢,{z}) and

In the base stepP is an SPP(5%,A). Sinceim(x) C  all data typesl’ € dom(¢’). Since
dom(¢), the setim(¢ox) N (Ir \ im(¢|x)) is empty. More-

over, it is easy to see that for evefyx, X,C, cy, s'x’) € A cpr, (R) 2 [o(T:)| = [ext(o, {z})] ,

and¢’ € ext(¢,im(x)U X) such that[C]y is true it holds implies that

that

. dbndr & (P) = cpp, (R) - dbndr = (P')
X|T,=T ‘ ‘ ’
{z € m(x)UX | o > Jext(¢, {z})] - dbndg = (P')
. . 1ac ’ 1m

> [{im(¢' o xyx') N (I7 \ im(¢[x))} , = ¢ T x

¢’ cext(¢,{z})

which means thatibndr,r (P) > ide([Ply, Ir \ im(¢lx))  \yheneverr ¢ dom(¢) is a data type. Now, we argue like

for every data typel’ € dom(¢). Hence, the base step is in the second case of the induction step that every constant
clear. , . . in a state of[P], occurs in a state of somgP’]4/, where

_In the induction step, _there /are four cases to consider,, € ext(s, {x}), and every constant in a transition ],
First, we assume thap is [CIP". If [Cl, is false, then o000  state or a transition of sorff¢'] ./, where again

[P'ls = Piq. Sinceide(P;q, I \ im(¢|x)) = 0 for every ¢ ¢ ext(e, {x}). Moreover, sincer is a ;
- : . , . ) process variable,
data typeT € dom(¢), it is obvious that the claim holds. it is obvious thatfy \ im(¢/|x) = I \ im(¢|x) for all data

Otherwise,[C]; is true and [P]s = [P']s. Then, by the T Theref
induction hypothesis, ypesT € dom(e). Therefore,

dbndz & (P) = dbndz = (P') ¢,Ee>§5‘{m}) ide([P]gr, I \ im(¢/]x))
> ([P Lo T\ () | > e([Pla. Ir \ (o)

= idC([[P]]¢, It \ 1m(¢5|x)) )

o _ for every data typel' € dom(¢), which completes the
for all data typesl” € dom(¢), which implies that this case jnqyction step. Hence, by the induction principle, the lemm
is clear. ~ is correct. ]

Next, we assume th& is P; || P.. First, note that every Theorem 20: Since ® C U, it obvious that when
state of [P]4 consists of a state dfP;], and a state of [Pls = [Q], for all valuationsy) € W, then [Py <
[P2]4. Secondly, note that every transition [§?]; consists [Q], for all valuations¢ € @, too.
of either a transition of P14 and a transition of P,]4 or a Next, let us assume th&P],, <. [Q]s for all valuations
transition of [7;], and a state of P;],, wherei andj are ¢ ¢ and lety) € W. To prove the theorem, it is sufficient to
different integers in{1,2}. Therefore, it is obvious that show that therfP],, = [Q]., too. First, we pick data types
. . : _ : Ti,...,T, € par(P || Q) and valuations)y, ...,v, € ¥
ide([Ply, Ir \ im(9lx)) < ie{zlg}ldcqm}]m M) e 0, v and for Al £ 11l

’ is a{T;}-subvaluation ofy; and|y;_1(T})| = cdr, (P || Q).
for every data typd” € dom(¢). Therefore, by the induction  After that, we proceed by induction to show tHa].,,, <.
hypothesis, [Q]y, forall i€ {0,...,n}.
The base step is clear singg € ¢ and the claim holds by

dbndz, (P) the assumption. In the induction step, we apply the defimitio
= dbndr g (P1) + dbndr z (Pa) and Lemma 19 to see that
> ide([Pile, I \ i ~
) {Z} WP et himi) i (T0)] = edr, (P Q)

> ide([Ply, It \ im(¢]x)) = max(1,|freer, (P) U freer, (Q)|

for all data typesl’ € dom(¢), so also this case is clear. - dbndT"’p“Q(P) - dbndT"’P”Q(g))
After that, we assume thaP is P’\ E. Since hid- Z[{w € dom(yilx) | T = T3}

ing affects only channel names, obvioustt([P]s, I \ +ide([Ply,, Ir, \ im(thi]x))

im(¢lx)) = ide([P']¢, I7\im(¢|x)). Then, by the induction +ide([Q]w:, I, \ im(v5]x))



> [im(¢ifx) N I,
+ide([Ply;, I, \ im(¢ix))
+ide([Q)y,, Iz, \ im(¢]x)) -

Since[Q]y,_, is deterministic and, by the induction hypoth-
esis, [Py, , =t [Qly;_,, it follows from Proposition 18
that [P]y, =« [Q]w,, too. Hence, by the induction princi-
ple, [Ply, = [Q]y, for all i € {0,...,n}, which means
that especially{P], <. [Q], holds. [
Lemma 31: To prove that® is finite, assume that it
is not. Since all the valuations if® share the same finite
domain and|¢(T)| < k for all ¢ € ® and for all types
T € par(P || Q), there is an infinite subsek’ of ® such
that all valuations inb’ map each type in the domain to a set
of the same size, i.ej¢1(T)| = [¢2(T)| for all g1, p2 € @
and for all typesT’ € par(P || Q). It means that for every
valuationg’ € ®’, we can pick a bijectiogy : V +— V such
that(gg, 0¢1)(T') = (ge,002)(T') for all 1, ¢» € ¢" and for
all typesT € par(P || Q). Since we assumed the valuations
in ® to be non-isomorphic, a s@” := {gy 0 ¢’ | ¢’ €
@'} must be infinite. However, this is impossible, since each
valuation¢” € ®” covers the same finite set of variables and
the values of the variables are always picked from the same
finite setIm(¢”). Therefore, we conclude thd@ must be
finite. ]
Proposition 32: By definition, there is a bijection :
V — V such thatyy = g o ¢. Necessarilyg preserves the
constants inly for every typeT'. Now, if [P]y = [Q]s.
then by Item 10 of Proposition 23,([P]s) < 9([Q]s),
too. By Lemma 28, it means thP] 04 <i: [Q]gos OF, i
other words[P]y <t [Q]y- ]
Corollary 21: By Lemma 31, the finiteness db is
clear. Moreover, ifP =, Q, then by definition,[P], <.
[Q], for all ¢ € @, too. To prove the other direction, ldt
be the set of all valuations with the domaiar(P || Q), ¥’
the set of all valuationg) € ¥ such thatjy)(U)| < cpy (P ||
Q) for every process typ€ € dom(z) and¥” the set of all
valuationsy’ € ¥’ such thaty’(T')| < cdr(P|| Q) for every
data typeT’ € dom(¢)’). Now, if [P], =<4 [Q]4 for all ¢ €
®, then by Proposition 3P], =< [Q]e~ for all ¢ €
U”. By Theorem 20, it implies that thefP]y < [Q]y
for all ¢/ € ¥’, and by Theorem 16, we see tH&], <.
[Q] for all ¢» € ¥, too. Finally, by Proposition 24, it means
that then[P], <. [Q] for all compatible valuations, in
other words,P =, Q. ]
Theorem 22: Similar to the proof of Corollary 21 but
simpler. [ ]




C. Figures

Oya : wh( y;“ya Ozq : wh(zp, za)

Oye : (za = ya)] wh(yn, ya)
ymxa

)7 sy (1a) =/ |

Ova : [5 (Za = ya)l #h(Yn, ya)
Ovya : th(yn, Ya) wh(yn, Ta) to()
to() O%a : ih(Yn, Ya)
th(xh, Ta)
s3(xq)—— E—D
wh(yhvl’a)

Uya [q (za = ya)] wh(Yn, Ya) ih(zh,Ta)

Figure 3. SPPHost(zp,yn, Ta) representing the behaviour of HCP from the viewpoint of tvasth, whereto() denotes timeout aneh(zp, za)
means that the hogt, wants to know whether someone has the addtgss

D. Verification Models
1) HCP:

type H
type A

var h :
var h2:
var a :
var a2:

>>TITT

chan ti neout
chan whohas : H A
chan i have : H A

pl ts Host
I'ts
I = timeout () -> |
[]a:whohas(h2,a) -> |
[Ta:ibhave(h2,a) -> |
[1a:whohas(h,a) -> Wa)
tineout () -> S(a)
timeout () -> |
i have(h2,a) -> I
whohas(h2,a) -> |
[la2:['a2=a] ihave(h2,a2) -> Wa)
[1]a2:[!'a2=a] whohas(h2,a2) -> Wa)
timeout () -> S(a)
i have(h,a) -> S(a)
whohas(h2,a) -> R(a)
[1a2:[!'a2=a] whohas(h2,a2) -> S(a)
[1a2:ihave(h2,a2) -> S(a)
i have(h,a) -> S(a)

K2 =
m o
N p—

— e —
T B TR I T

R(a)
froml



plts DfAdr =
I'ts
I = [1a2:i have(h2,a2) ->
[T [Ta: ihave(h,a) -> Si(a)
Sl(a) = [Ta2:[!'a2=a] ihave(h2,a2) -> Sl(a)
[1] 1 have(h,a) -> Sl(a)
from

pset WIEv = (_)h,a:{tineout(), whohas(h,a)}
plts Sys = || h, h2:[! h=h2] Host
plts Spec = || h,h2:[!h=h2] D fAdr

verify Sys \ WIEv agai nst Spec wrt traces when true
2) SRS:

type U
type R
type D

avar k : U
avar k1 : U
avar k2 : U
avar r . R
avar d : D

chan rdlock : U R
chan wlock : U R
chan unlock : U R
chan rdbeg :
chan rdend :
chan wrbeg :
chan wend :

cccc
T 00T
(wlw)

[tsc User =
I'ts
I = rdl ock(k,r) -> R
[T wlock(k,r) -> W
[1 tau() ->
R = rdbeg(k,r) -> R2
[T wlock(k,r) -> W
[T unlock(k,r) ->
R2 =[] d: rdend(k,r,d) -> R
W= rdbeg(k,r) -> W

[T []1 d: wbeg(k,r,d) -> W
[T unlock(k,r) ->
W =1]] d: rdend(k,r,d) -> W
W = wrend(k,r) -> W
froml

|tsc Lock =
Its



NO = rdl ock(kl,r) -> Rl
[T wlock(kl, r) -> W
[1 rdlock(k2,r) -> R2
[T wlock(k2,r) -> W
RL = wlock(kl,r) ->W
[T unlock(kl,r) -> NO
[T rdlock(k2,r) -> R12
R2 = wlock(k2,r) -> W
[1 unlock(k2,r) -> NO
[1 rdlock(k1l,r) -> R12
W = unl ock(kl1l,r) -> NO
W = unl ock(k2,r) -> NO
R12 = wunlock(kl, r) -> R2
[1 unlock(k2,r) -> Rl
from NO
[tsc Mutexl =
Its

NO = rdbeg(k,r) -> Rl
[1 [1 d: whbeg(k,r,d) -> N1

NL = wend(k,r) -> NO
Rl = [l d: rdend(k,r,d) -> NO
from NO
[tsc Mutex2 =
I'ts
NO = rdbeg(kl,r) -> Rl
[1 rdbeg(k2,r) -> R2
[T [T d: whbeg(kl, r,d) -> N1
[1 []1 d: wbeg(k2,r,d) -> N2
Nl = wend(kl,r) -> NO
N2 = wrend(k2,r) -> NO
Rl = [l d: rdend(kl,r,d) -> NO
[1] rdbeg(k2,r) -> RR
R2 = [T d: rdend(k2,r,d) -> NO
[1 rdbeg(kl,r) -> RR
RR = [ d: rdend(kl,r,d) -> R2
[T [1 d: rdend(k2,r,d) -> Rl
from NO

Itsc SRS = (|| k, r : User) || (|| r, k1, k2 : [!kl=k2] Lock)
[tsc Mutex = (|| k1, k2, r : [lk1=k2] Muitex2) || (|| k,r : Mitexl)
ssc Lcev = () k, r : {rdlock(k,r), wlock(k,r), unlock(k,r)}

verify SRS\ LcEv against Miutex wt traces when true
3) Cache:

type P
type R
type D

var p: P



var p2 : P
var r : R
var r2 : R
var d : D
var d2 : D
chan rdbeg P, R
chan rdend P,R, D
chan wrbeg P,R D
chan wrend P, R
chan rdnem: P,R D
chan flush R D
plts CUnit =
I'ts
I = rdbeg(p,r) -> IR
[1 [1 d: wbeg(p,r,d) -> 1Wd)
[ rdbeg(p2,r) -> |
[T [T d: wbeg(p2,r,d) ->1I
[1 [1 d: flush(r,d) ->1I
IR = [l d: rdnem(p,r,d) -> I R2(d)
[ rdbeg(p2,r) -> IR
IR2(d) = rdend(p,r,d) -> S(d)
[ rdbeg(p2,r) -> | R2(d)
IWd) = wend(p,r) -> Md)
S(d) = rdbeg(p,r) -> SR(d)
[1 rdbeg(p2,r) -> S(d)
[] []1 d: wbeg(p,r,d) -> SWd)
[ flush(r,d) -> 1
[] tau() ->1
SR(d) = rdend(p,r,d) -> S(d)
[ rdbeg(p2,r) -> SR(d)
SWd) = wrend(p,r) -> Md)
Md) = rdbeg(p,r) -> MR(d)
[] []1 d: wbeg(p,r,d) -> MAd)
[ flush(r,d) -> S(d)
[ flush(r,d) -> 1
MR(d) = rdend(p,r,d) -> Md)
MA(d) = wrend(p,r) -> Md)
froml
plts Cache = || p,p2,r : [!p=p2] CUnit
plts Mlit =
I'ts
I =tau() -> Md)
Mid) = rdmen(p,r,d) -> Md)
[1 [] d2 : flush(r,d2) -> Md2)
froml

plts Mem= || p,r : Mhit



plts CacheMem = Cache || Mem

plts Mit2 =
I'ts
I = rdbeg(p,r) -> Rl
[ rdbeg(p2 ry -> R
[1 [ d: wbeg(p,r,d) ->W
[T [1 d: wbeg(p2,r,d) -> W
Rl = [] d: rdend(p,r,d) ->1
[] rdbeg(p2,r) -> R12
R2 = [l d: rdend(p2,r,d) ->
[1 rdbeg(p,r) -> R12
R12 = [] d: rdend(p,r,d) -> R2
[111d rdend(p2,r,d) -> Rl
W = wwend(p,r) ->
W = wrend(p2,r) ->
froml
plts Muitex = || p,p2,r : [!p=p2] Mit2

pset MemAcc = (_) p,r,d : {rdmem(p,r,d), flush(r,d)}

verify CacheMem\ MenmAcc agai nst Mutex wt traces when true



