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Abstract—We present an LTS-based (Labelled Transition
System) CSP-like (Communicating Sequential Processes) for-
malism for expressing parametrised systems. The parameters
are process types, which determine the number of replicated
components, and data types, which enable components with
a parametrised state space. We prove that the formalism is
compositional and show how to combine two existing results
for parametrised verification in order to check trace refinement
between parametrised processes. The combined approach gives
upper bounds, i.e., cut-offs, for types such that a parametrised
verification task collapses into finitely many checks solvable by
using existing finite state refinement checking tools. We have
implemented the approach and applied it to prove mutual
exclusion properties of network protocols and systems with
shared resources. To the best our knowledge, our technique is
the only one that combines compositionality and completeness
with support for multiple parametric process and data types.

I. I NTRODUCTION

Concurrent and object-oriented software systems have
many natural parameters which can take infinitely many
values. Such parameters are the number of replicated parts,
like processes and objects, and the size of data types, like
message domains and address spaces. Consequently, the
question on the correctness of a software system is naturally
expressed as theparametrised verification problem: given
a parametrised system implementation and specification,
determine whether the implementation is correct with respect
to the specification for all parameter values.

In practice, we can automatically verify only the smallest
instances of a parametrised system in order to detect bugs
in the implementation. Sometimes, we can also establish
upper bounds, i.e.,cut-offs, for the parameters such that the
system implementation is correct for all parameter values if
and only if it is correct for all values up to the cut-offs. In
other words, if there is a bug in an implementation instance
with a parameter value greater than the cut-off, then there is
an analogous bug in an implementation instance where the
values of the parameters are within the cut-offs. Although
such cut-offs always exist, determining them algorithmically
is undecidable in the most general case [1].

Another practical challenge is that some subsystems (e.g.,
external software packages and subsystems concurrently
under construction) can be available only in interface speci-
fication form. Hence, there is a need to perform parametrised
verification in acompositionalway, where we first substitute
the subsystem specification for each subsystem implementa-

tion that is known or proved to be correct and then analyse
the correctness of the whole system. This is possible if
the correctness relation is aprecongruence, a reflexive and
transitive relation which is preserved under the application
of composition operators.

Contribution: As the first contribution, we present a
formalism which enables expressing parametrised systems
and specifications and allows forcompositionalanalysis and
design. The formalism is based on an LTS-based (Labelled
Transition System) CSP-like [2], [3] (Communicating Se-
quential Processes) process calculus with hiding and parallel
composition operators, which we parametrise with types and
variables of two kinds. Process types enable parametrising
the structure of a system by controlling the number of repli-
cated concurrent parts. Data types allow for parametrising
the state space of components by controlling the number of
similar transitions acting on different data. Process and data
variables refer to individual components and data values,
respectively, and their values can be tested for (in)equality.
Hence, the formalism is like the one in [4] but significantly
extended with data parametrisation features. It allows for
expressing interesting and practically important classesof
systems and specifications, like the mutual exclusion proper-
ties of network protocols and systems with shared resources,
but increasing its expressiveness further quickly leads to
undecidability [5].

As the main contribution, we show how to compute cut-
offs for trace refinement checking between parametrised
processes. This is done by combining two existing results on
parametrised verification: theprecongruence reduction (PR)
method of Siirtola and Kortelainen [6], [7], [5], [4] and the
data independence (DI)results of Lazíc and Novak [8], [9].
It is not obvious that the combination of the results leads to
something useful since the PR technique applies to systems
with process types but does not allow for components with
a parametrised state space, whereas the DI results apply to
systems with data types but do not allow for systems with
a parametric number of replicated components.

Here, we solve the problem by bounding the process types
with the PR technique first. Basically, we should fix the
values of data types before we can apply the PR technique,
which means that we ought to apply the technique infinitely
many times in order to determine cut-offs for process types.
However, since the data types can affect the structure of
the system only finitely many ways, it turns out that we



can compute rough structural cut-offs for process types as
before without paying attention to data types. After that, we
can basically substitute the parallel composition of finitely
many parametrised processes for a replicated parametrised
parallel composition and apply the DI results to bound the
size of data types. For each typeT , the cut-off size can be
computed easily based on the structure of the parametrised
system implementation and specification and the number of
variables of the typeT . After that, the cut-offs can be further
improved by analysing the instances up to the cut-offs at the
operational level. Finally, the verification can be completed
by solving the remaining finitely many finite state refinement
checking tasks by using existing tools.

As a running example, we consider a host configuration
protocol (HCP) with an arbitrary number of hosts (process
type) and an arbitrary number of network addresses (data
type). Since the protocol involves types of both kinds, it
cannot be handled by either technique alone. However, it
can be treated with our combined result, which implies that
the result presented here is more powerful than either of the
approaches alone. We have implemented the technique and,
in addition to HCP, applied it to establish mutual exclusion
properties for systems with shared resources. Since our
formalism is compositional, it means that the specifications
of these systems can be used in place of the implementations
in further verification efforts.

Except for some small differences in formalism and the
definition of cut-offs, our DI results are semantically similar
to those of Lazíc and Novak [8], [9]. Additionally, our DI
proof technique is simpler than in [8], [9]: we use only the
bijective mapping of transitions and avoid the construction
of intermediate structures, like exploration graphs [8] and
quotient LTSs [9], altogether. This leads to a more accessible
and concise theory of data independence, which is the third
contribution of the paper. However, unlike [8], [9], we con-
sider only safety properties, since the PR technique cannot
be extended to deadlock preserving semantics directly [5].
On the other hand, extending the DI part of our results to
such semantics should be easy, since all the key DI lemmas
are formulated at the operational level.

Related Work:The distinctive features of our approach
are compositionality, completeness and support for the mul-
tiple parameters of two fundamentally different types.

Parametrised verification in a compositional setting is
previously considered by Valmari & Tienari [10] and
Creese [11]. In both works, induction is exploited to deter-
mine an abstract process which can be used in verification
in place of the parametrised subsystem. The methods scale
to the multi-parametrised case, too, but they involve the
discovery of an invariant process which is a task that cannot
be automated in general.

Ghilardi and Ranise present a complete parametrised
verification technique [12], where the infinite family of finite
state systems arising from a parametrised system description

is encoded as a single infinite state well-structured transition
system (WSTS) [13]. The technique allows for two levels
of parametrisation, the number and the state space of pro-
cesses, but since the formalism is not compositional, it does
not allow for an arbitrary number of nested parametrised
substructures like ours. The completeness of the approach is
based on the fact that there is an order on the set of states
compatible with the transition relation [13]. In our case,
there is no such a criterion nor an (obvious) way to define a
compatible order among the states of all the instances. That
is because our processes communicate through alphabet-
based synchronisation, where increasing the number of repli-
cated components may block some transitions and hence
break compatibility.

Other methods that enable multi-parametrised verification
are by Emerson & Kahlon [14], Yang & Li [15] and
Hanna et al. [16]. Their approaches apply to systems with
guarded broadcasts [14], shared actions [16] or rendezvous
communication [15]. The methods are cut-off-based and
allow for an arbitrary number of parameters which specify
the number of replicated processes. However, none of them
supports compositional analysis nor parametrised data types.

Other complete parametrised verification methods, in turn,
are based on either cut-offs [17], [18], [19], [20], [21] or
WSTSs [22], which covers counter abstraction and Petri
nets [23]. WSTSs are already discussed earlier and the other
cut-off results are only for closed systems with a single
parameter determining the number of replicated processes.

Moreover, some of the results can be obtained in
our approach, too. At least the systems with conjunctive
guards [14] and homogeneous processes communicating
through prioritised queue policy [21] can be modelled in our
formalism [5]. On the one hand, most cut-off results includ-
ing [14], [21] allow for the analysis of liveness, too, whereas
our result as well as WSTS-based approaches are restricted
to safety properties. On the other hand, parametrised sys-
tems where replicated processes communicate through ren-
dezvous events are difficult to model in our formalism,
whereas they can often be modelled as WSTSs.

Outline: In Section II, we introduce our process model.
After that, we parametrise it while preserving composition-
ality. In Section IV, we present the cut-off results and finally,
the paper concludes with discussion on future work. For the
sake of readability and the lack of space, proofs are found
in the online appendix [24].

II. PROCESSES

In this section, we define a fairly standard notation used
throughout the paper and a CSP- and LTS-based process
model with parallel composition and hiding operators. The
main difference with the standard LTSs is that in our model,
states and events have an explicit data part which makes
adding parametrisation convenient.



Notation: For any setA, A∗ denotes the set of all
finite tuples overA, especially the empty tuple() is in
A∗. Whenevera := (a1, . . . , an) andb := (b1, . . . , bk) are
tuples overA, then |a| denotes thelengthn of a, andab

the concatenation(a1, . . . , an, b1, . . . , bk) of a andb. For
any functionf : A 7→ B, dom(f) is the domainA of f ,
and im(f) the image {f(a) | a ∈ A} of f . The tuplea
can be regarded as a functionf : {1, . . . , n} 7→ A such that
f(i) = ai for all i ∈ {1, . . . , n}, so we can defineim(a) as
the set{ai | i = 1, . . . , n}. For any setC, f |C denotes the
restriction of f to A ∩ C, i.e., a functionf ′ : A ∩ C 7→ B
such thatf ′(a) = f(a) for all a ∈ A ∩C. For any function
g such thatim(f) ⊆ dom(g), g ◦ f is the compositionof
g and f , i.e., a functionh : dom(f) 7→ im(g) such that
h(a) = g(f(a)) for all a ∈ A.

Processes:A process is basically an LTS [3] where
states have a control and data part and events have a channel
and data part. LetS, C andV be mutually disjoint count-
ably infinite sets ofcontrol states, channelsand constants,
respectively, such thatS contains the natural numbers and is
closed under the Cartesian product. We assume that there is a
single invisible channelτ ∈ C which represents the internal
activity of a process. The other channels are calledvisible
and they are used for communication among processes and
environment. A structuresd, wheres ∈ S andd ∈ V

∗, is
a stateand a structurec e, wherec ∈ C ande ∈ V

∗, is an
event. If c 6= τ , the event isvisible, otherwise it isinvisible.

Definition 1 (Process). A processP is a pair(ŝ d̂, R), where
ŝ d̂ is a state andR is a set of triples(sd, c e, s′d′) such
that sd, s′d′ are states andc e is an event.

The first component ofP is called theinitial state, denoted
by init(P ), and the second one is the set oftransitions,
denoted by tran(P ). The set of all thevisible events
occurring inP , the alphabetof P , is denoted byalph(P ).
P is (in)finite if and only if tran(P ) is. P is (strongly)
deterministicif (i) it does not involve invisible events and
(ii) whenever (sd, c1 e1, s1 d1) and (sd, c2 e2, s2 d2) are
transitions ofP such thats1 d1 6= s2 d2, thenc1 e1 6= c2 e2.

Operators: In our formalism, both a system implemen-
tation and specification are modelled as processesPimpl and
Pspec , respectively. Since the implementation often consists
of several components,Pimpl is typically a parallel compo-
sition of smaller processes, and beforePimpl is compared
againstPspec , the channels irrelevant toPspec are hidden.

Definition 2 (Parallel Composition). Let Pi be the pro-
cess (ŝi d̂i, Ri) for both i ∈ {1, 2}. The parallel com-
position (of P1 and P2), denoted by(P1 ‖ P2), is a
pair ((ŝ1, ŝ2, |d̂1|) d̂1d̂2, R‖), whereR‖ is the set of all
triples((s1, s2, |d1|)d1d2, c e, (s

′
1, s

′
2, |d

′
1|)d

′
1d

′
2) such that

(i) c 6= τ and (si di, c e, s′i d
′
i) ∈ Ri for both i ∈ {1, 2}, or

(ii) (si di, c e, s
′
i d

′
i) ∈ Ri, c e /∈ alph(Pj), sj dj is a state

of Pj andsj dj = s′j d
′
j for different elementsi, j ∈ {1, 2}.

Obviously, (P1 ‖ P2) is a process, whereP1 and P2

execute a visible event jointly if and only if both agree
on its execution, whereas the visible events only in the
alphabet of one process and the invisible events are executed
individually. This is essentially the parallel composition
operator of CSP [2], [3] where the synchronisation alphabet
is alph(P1) ∩ alph(P2). Note that the third component in
the control states of(P1 ‖ P2) tells which part of the data
vector comes fromP1. Without the third component, the
composition of statess1(a) and s2() and statess1() and
s2(a) would be the same, which is not what we want.

Definition 3 (Hiding). Let P be the process(ŝ d̂, R) and
E a set of visible channels. The processP after hidingE,
denoted by(P \E), is a pair(ŝ d̂, R\), whereR\ is the set
of (i) all triples (sd, c e, s′d′) ∈ R such thatc /∈ E and (ii)
all triples (sd, τe, s′d′) such that(sd, c e, s′d′) ∈ R for
somec ∈ E.

In other words,(P \ E) is a process obtained fromP by
substitutingτ for the channelsc in E.

Semantics: For verification purposes, a process is
interpreted as a set of traces, which enables us to
consider safety properties. A finite alternating sequence
(s0 d0, c1 e1, s1 d1, . . . , cn en, sn dn) of states and events
of P is a path of P (from s0 d0) (to sn dn) if
(si−1 di−1, ci ei, si di) is a transition ofP for every i ∈
{1, . . . , n}. A path from the initial state is called anexecu-
tion (ofP ). A finite sequence of visible events is atrace (of
P ), if there is an execution ofP such that the sequence is
obtained from the execution by erasing all the states and the
invisible events. The set of all the traces ofP is denoted by
tr(P ). A processP1 is a trace refinementof a processP2,
denoted byP1 �tr P2, if and only if alph(P1) = alph(P2)
andtr(P1) ⊆ tr(P2) [2]. The processesP1 andP2 aretrace
equivalent, denoted byP1 ≡tr P2, if and only if P1 �tr P2

andP2 �tr P1. Pimpl is considered correct with respect to
Pspec if and only if Pimpl �tr Pspec .

Calculus: The operators and the trace relations have
many useful properties from the viewpoint of synthesis and
analysis. First, the parallel composition is commutative and
associative with respect to≡tr and a single state process
Pid := (s(), ∅) without transitions is an identity element of
the parallel composition. That is why for every finite set
I = {i1, . . . , in} and any processesPi1 , . . . , Pin , we can
define theI-indexed version of‖ as follows: (‖i∈I Pi) :=
Pi1 ‖ (‖i∈{i2,...,in} Pi), whenn > 0, and(‖i∈I Pi) := Pid ,
when n = 0. Secondly,�tr is a preorder (i.e., a reflexive
and transitive relation) and≡tr an equivalence on the set of
processes. Moreover,�tr is compositional, i.e., preserved
under the application of the operators: ifP1 �tr P2, then
P1 ‖ P �tr P2 ‖ P , P ‖ P1 �tr P ‖ P2 andP1\E �tr P2\
E for all processesP1, P2, P and setsE of visible channels.
Hence,�tr is a compositional preorder, aprecongruence, on
the set of processes.



III. PARAMETRISED PROCESSES

In this section, we equip our process calculus with pa-
rameters. Our parametrised formalism is based on the one
which is presented in [4] and which allows for parametrising
the structure of a system. Here, we extend that formalism
with data parameters which allow for components with a
parametrised state space, too.

Running Example:As a running example, we consider
a host configuration protocol (HCP), where each host repeat-
edly picks a network address until it finds one that is not used
by other hosts. This is done by broadcasting address queries
and replies to other hosts in the style of ARP (Address
Resolution Protocol). Our goal is to formally model the
protocol with an arbitrary number of hosts and an arbitrarily
large address space and prove that in our construction, each
address is possessed by at most one host.

Parameters: In order to model HCP, we parametrise
processes and operators with four kinds of variables:(pro-
cess and data) typesand (process and data) variables. A
data type denotes a finite non-empty set of data values
and a process type represents a finite non-empty set of
the identifiers of replicated components of a certain kind
whereas a process variable refers to the identifier of an
individual component and a data variable to a data value. A
(concurrent) parametrised system is composed of sequential
parametrised processes each of which represents the system
from the viewpoint of finitely many replicated components.

Formally, we assume that for each typeT there is a
countably infinite setIT ⊆ V of constants such thatIU and
IV are disjoint wheneverU andV are different types, and
for each process and data variablex, there is respectively
a unique process or data typeTx. The possible values of
a type T are the finite non-empty subsets ofIT and the
possible values of a variablex are the elements ofITx . We
assume that the sets of process types, data types, process
variables and data variables, denoted byTP , TD, XP and
XD, respectively, are disjoint and countably infinite. We
write T andX short forTP ∪TD andXP ∪XD, respectively.

In HCP, there are two kinds of replicated objects: hosts
and addresses. Hence, we pick a process typeTH to repre-
sent the set of the identifiers of hosts and a data typeTA to
denote the set of available addresses.

Guards: In our parametrised formalism, (in)equality
tests between variables are represented as guards.

Definition 4 (Guard). GuardsC are given by the grammar

C ::= ⊤ | x =̂ y | (¬̂ C) | (C ∧̂ C),

wherex andy range over variables.

The parametersof a guardC are the variables occurring in
C. The set of all the parameters ofC is denoted bypar(C)
and the setpar(C)∪{Tx | x ∈ par(C)} of all the parameters
of C plus the types of the parameters is denoted bypar(C).

Intuitively, ⊤ denotes a guard which is always true and
symbols with a hat on top are interpreted as connectives
without one; the hat is included just to mark operators
which act on parametrised structures. Formally, a guard is
instantiated by using a function called a valuation which
assigns values to parameters.

Definition 5 (Valuation). A valuation is a functionφ whose
domain is a finite set of types and variables such that (i) for
each typeT ∈ dom(φ), φ(T ) is a finite non-empty subset
of IT and (ii) for every variablex ∈ dom(φ), Tx ∈ dom(φ)
andφ(x) ∈ φ(Tx).

A valuationφ is compatiblewith a guardC if and only if
par(C) ⊆ dom(φ), i.e., par(C) ⊆ dom(φ).

Definition 6 (Instance of Guard). Let C be a guard andφ
a compatible valuation. The(φ-)instance ofC, denoted by
[[C]]φ, is determined inductively as follows:

1) [[⊤]]φ is true,
2) [[x =̂ y]]φ equalsφ(x) = φ(y),
3) [[¬̂ C′]]φ is ¬ [[C′]]φ and
4) [[C1 ∧̂ C2]]φ = [[C1]]φ ∧ [[C2]]φ.

Parametrised Processes:A structuresx, wheres ∈ S

and x is a tuple of data variables, is aparametrised
state. Respectively, a structurecy, where c ∈ C and
y is a tuple of any variables, is aparametrised event.
A sequential parametrised process is basically a process
where parametrised states and events are substituted for the
ordinary ones and transitions are equipped with a guard and
a choice set, i.e., a set ofdata variables whose values are
fixed during the execution of the transition.

Definition 7 (SPP). A sequential parametrised process (SPP)
is a pairS := (ŝ x̂,∆), whereŝ x̂ is a parametrised state and
∆ is a finite set of five-tuples(sx, X, C, cy, s′x′) such that
sx and s′x′ are parametrised states,cy is a parametrised
event,C is a guard andX ⊆ im(yx′) ∩XD is a choice set.

The first component ofS is called theparametrised initial
state and the elements of∆ are parametrised transitions.
Let x be a variable that occurs in a parametrised transition
(sx, X, C, cy, s′x′). If x ∈ im(x) ∪ X, then x and all
its occurrences arebound in the parametrised transition,
otherwise they arefree. A variable isfree in an SPPS, if it
occurs in the parametrised initial state ofS or it is free in
some parametrised transition ofS. Respectively, a variable
is boundin S, if it is bound in some parametrised transition
of S. Hence, if a variable occurs twice inS, it can be both
free and bound. Theparametersof S are thefree variables
and the types ofboundvariables occurring inS. Like in the
case of guards,par(S) denotes the set of all the parameters
of S, par(S) is the setpar(S) ∪ {Tx | x ∈ par(S) ∩X} of
all the parameters ofS plus the types of the parameters,
and a valuationφ is compatible with S if and only if
par(S) ⊆ dom(φ), i.e., par(S) ⊆ dom(φ).



Analogously to predicate logic, the free occurrences of
variables are initialised (instantiated) in the beginningand
preserve their value throughout the computation whereas the
values of the bound occurrences are determined at run time.
To put it more formally, letφ be a valuation andX a set of
variables such thatTx ∈ dom(φ) for everyx ∈ X. We write
ext(φ,X) for the set of all valuationsφ′ with the domain
dom(φ) ∪ X such thatφ and φ′ agree on the values of
parameters outsideX, i.e., φ′|dom(φ)\X = φ|dom(φ)\X and
φ′(x) ∈ φ(Tx) for all x ∈ X.

Definition 8 (Instance of SPP). Let S be an SPP(ŝ x̂,∆)
andφ a compatible valuation. The(φ-)instance ofS, denoted
by [[S]]φ, is a pair (ŝ(φ ◦ x̂), R), where R is the set
of all triples (s(φ′ ◦ x), c(φ′ ◦ y), s′(φ′ ◦ x′)) such that
(sx, X, C, cy, s′x′) ∈ ∆, φ′ ∈ ext(φ, im(x)∪X) and[[C]]φ′

is true.

In order to formalise the specification of HCP, we first
capture it from the viewpoint of two hosts in an SPPUA2 in
Figure 1, where a parametrised eventih(zh, za) denotes that
a hostzh has an addressza, guards other than⊤ are written
in brackets, and non-empty choice sets{x1, . . . , xn} are
expressed in the form�x1, . . . , xn separated by a colon. In
UA2 , variablesxh andyh of the typeTH representing hosts
are free and variablesxa andya of the typeTA representing
addresses are bound. That is whypar(UA2 ) = {xh, yh, TA}
and par(UA2 ) = {xh, yh, TA, TH}. Initially, UA2 allows
the hostyh to report having any address but after the hostxh
has picked an addressxa, the hostyh is no longer allowed
to report havingxa.

s0() s1(xa)
�xa : ih(xh, xa)

� ya : ih(yh, ya)

� ya : [¬̂ (ya =̂ xa)] ih(yh, ya)

ih(xh, xa)

Figure 1. SPPUA2 representing the specification of HCP from the
viewpoint of two hosts

Concurrent parametrised processes are constructed from
SPPs, guards and parametrised versions of the operators.

Definition 9 (CPP). Concurrent parametrised processes
(CPPs)P are determined by the grammar:

P ::= S | ([C]P) | (P ‖̂ P) | (P \̂E) | (‖̂xP),

whereS ranges over SPPs,C over guards,E over the finite
sets of visible channels andx over process variables.

A process variablex is bound in a CPPP if it occurs
in P and its every occurrence is within a structure of the
form ‖̂y P

′ such thaty = x. A data variablex is bound
in P if it occurs in P and it is not free in any SPP within
P. The other variables occurring inP are free in P. The
parametersof P, the setspar(P) and par(P), and the

notion of compatibility are defined like for SPPs. We can
also writeP(x1, . . . , xm, T1, . . . , Tn) to point out thatP is
a CPP the parameters of which are variablesx1, . . . , xm and
typesT1, . . . , Tn.

Intuitively, each CPP represents (infinitely) many pro-
cesses obtained by fixing the values of the parameters
and evaluating the operators. Especially,‖̂x P

′ denotes the
parallel composition of all structuresP ′ obtained by letting
the variablex to range over its domain.

Definition 10 (Instance of CPP). Let P be a CPP andφ
a compatible valuation. The(φ-)instance ofP, denoted by
[[P]]φ, is determined inductively as follows:

1) [[P1 ‖̂ P2]]φ = [[P1]]φ ‖ [[P2]]φ,
2) [[P ′ \̂E]]φ = [[P ′]]φ \ E,

3) [[[C]P ′]]φ =

{
[[P ′]]φ, if [[C]]φ is true,
Pid , if [[C]]φ is false, and

4) [[‖̂x P
′]]φ = ‖φ′∈ext(φ,{x})[[P

′]]φ′ .

The φ-instance of a CPPP(x1, . . . , xm, T1, . . . , Tn) is de-
noted byP(φ(x1), . . . , φ(xm), φ(T1), . . . , φ(Tn)), too. Nev-
ertheless,[[P]]φ is obviously a process with finitely many
transitions and[[P]]φ = [[P]]ψ wheneverψ is a valuation
such thatψ|par(P) = φ|par(P).

The model of the full specification is obtained by letting
xh andyh to range over all pairs of different host identifiers
and by composing all the resulting instances ofUA2 in
parallel. Hence, the formal specification is a CPP

UnqAdr(TH , TA) := ‖̂xh ‖̂yh [¬̂ (xh =̂ yh)]UA2 ,

which allows for each host to report only a single unique
address. To see this, consider a valuationφ such that
φ(TH) = {h1, h2} andφ(TA) = A2, whereA2 = {a1, a2}.
Obviously,φ is compatible withUnqAdr and theφ-instance
of UnqAdr is the process

Pid ‖ (UA2 (h1, h2, A2) ‖ (UA2 (h2, h1, A2) ‖ Pid))

which is equal toUA2 (h1, h2, A2) ‖ UA2 (h2, h1, A2) in
Figure 2, modulo the structure of control states.

The protocol itself is modelled in a similar way and
captured in a CPP

HCP(TH , TA) :=
(
‖̂xh ‖̂yh [¬̂ (xh =̂ yh)]Host

)
\̂ IC ,

whereHost is an SPP (in Figure 3 in [24]) andIC is the
set of all visible channels occurring inHost , except forih.

Refinement:We complete our parametrised formalism
by defining a trace refinement relation on the set of CPPs.

Definition 11 (Parametrised Trace Refinement). A CPPP1

is a trace refinementof a CPPP2, denoted byP1 �̂tr P2, if
and only if [[P1]]φ �tr [[P2]]φ for all valuationsφ compatible
with bothP1 andP2.

Given a system implementation CPPP and a system spec-
ification CPPQ, we considerP to becorrect (with respect
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Figure 2. The specification of HCP with two hosts and two addresses

to Q) if and only if P �̂tr Q. Now, the question on the cor-
rectness of HCP can be formalised as the problem whether
HCP �̂tr UnqAdr . Like the original trace refinement, also
its parametrised version allows for compositional analysis.

Proposition 12. The relation�̂tr is a precongruence on the
set of CPPs.

IV. CUT-OFF THEOREMS

Next, we present the main result of the paper, Corol-
lary 21, which provides cut-offs for checking trace refine-
ment between CPPs. However, we need to assume that the
specification does not involve hiding and that it isdetermin-
istic, i.e., all its instances are deterministic. That is because
giving up either of the assumptions renders parametrised
verification undecidable.1 Fortunately, in practice, many
safety specifications are deterministic and hiding is typically
applied only on the implementation side.

The proof consists of two main parts, Theorems 16 and
20, which give cut-offs for process types and data types,
respectively. Theorem 16 is similar to the ones proved
in [7], [5] but allows for data parameters, too, whereas
Theorem 20 is semantically similar to the DI results [8], [9]
but technically more elegant. Consequently, the presentation
is more accessible and concise here than in [8], [9].

Finally, we provide cut-offs for checking the determinism
of a CPP in the form of Theorem 22. Previously, a semanti-
cally similar result is presented in [25] in the context of [8].

1To see why allowing hiding on the specification side makes parametrised
verification undecidable, we refer to [5]. The undecidability for non-
deterministic specifications follows from the fact that theycan detect
whether an implementation uses data constants for counting. As long as
the implementation maintains the initial order for any (non-deterministically
chosen) pair of data constants, the specification does not allow for an extra
behaviour, especially executing a halting event is forbidden. However, if a
pair of data constants does not respect the order in which they were seen for
the first time, the specification allows the implementation to doanything.
This way, the implementation can simulate a Turing machine and halting
can be detected as the violation of the specification.

A. Cut-Offs for Process Types

In order to determine cut-offs for process types, we first
show that if a big instance of the system specificationQ
is composed of the same components as a set of small
instances, then the big instance can be represented as the
parallel composition of the small ones. (Here, big and small
are in terms of the size of the values of process types.)
Similarly, if a big instance of the system implementation
P is composed of the same components as a set of small
instances, the big instance can be over-approximated as the
parallel composition of the small ones (Lemma 13).

Second, if each of the small instances ofP is a trace
refinement of the corresponding instance ofQ, then by
the compositionality of the trace refinement, the parallel
composition of the small instances ofP is a trace refinement
of the parallel composition of the small instances ofQ.
By above and the transitivity of the trace refinement, it
implies that the big instance ofP is a trace refinement of
the corresponding instance ofQ, too (Proposition 14).

Finally, since there is an upper limit for the size of small
instances which is obtained by simply counting the number
of free and nested bound variables for each process type
(Lemma 15), a parametrised trace refinement checking task
reduces to the refinement checking of the instances, where
the size of the process types is bounded (Theorem 16).

In order to present the technique formally, we need to
clarify some concepts. IfR is a CPP andφ a compatible
valuation,the set of the processes (of theφ-instance ofR),
denoted byprc(R, φ), is defined inductively as follows:

1) prc(S, φ) = {[[S]]φ} for an SPPS,
2) prc(R1 ‖̂ R2, φ) =

⋃
i∈{1,2}

(
{i} × prc(Ri, φ)

)
,

3) prc(R \̂E, φ) = prc(R, φ),

4) prc([C]R′, φ) =

{
prc(R′, φ), if [[C]]φ is true,
∅, if [[C]]φ is false, and

5) prc(‖̂xR
′, φ)=

⋃
φ′∈ext(φ,{x})

(
{φ′(x)}×prc(R′, φ′)

)
.

For example, ifθ is a valuation such thatTH , TA ∈ dom(θ)
andθ(TH) = {h1, . . . , hn}, thenprc(UnqAdr , θ) equals
{
(hi, (hj ,UA2 (hi, hj , θ(TA)))) | i, j ∈ {1, . . . , n}, i 6= j

}
.

If φ1 andφ2 are valuations andT is a set of types, we
say thatφ1 is a (T -)subvaluationof φ2, if

1) φ1 andφ2 have the same domain,
2) φ1(T ) ⊆ φ2(T ) for all typesT ∈ T ∩ dom(φ1) and
3) φ1|dom(φ1)\T = φ2|dom(φ2)\T (the valuations agree on

the values of parameters outsideT ).
The φ1-instance of a CPPR is smaller than (or equal to)
the φ2-instance ofR if φ1 is a subvaluation ofφ2. For
example, ifΘ is the set of all subvaluationsθ′ of θ such
that |θ′(TH)| ≤ 2, thenΘ is a finite set ofTP -subvaluations
of θ and [[UnqAdr ]]θ′ is smaller than[[UnqAdr ]]θ for all
θ′ ∈ Θ.

Since the specificationQ does not involve hiding, each
instance ofQ is just the parallel composition of the instances



of SPPs occurringQ. Hence, if the set of the processes of a
(big) instance ofQ equals the set of the processes of smaller
instances ofQ, then by the commutativity, associativity and
idempotence of the parallel composition, it is evident thatthe
big instance is trace equivalent to the parallel composition
of the small instances. For implementation CPPsP, which
typically involve hiding, trace equivalence does not hold in
general. However, since distributing hiding over the parallel
composition results in a process with more traces, we can
still establish a trace refinement between the big instance of
P and the parallel composition of the small ones.

Lemma 13. Let R be a CPP,ψ a compatible valuation,
T ∈ dom(ψ) a process type andΦ a finite set of the{T}-
subvaluations ofψ such thatprc(R, ψ) =

⋃
φ∈Φ prc(R, φ).

Then[[R]]ψ �tr ‖φ∈Φ[[R]]φ, and ifR does not involve hiding,
[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ, too.

Considering our running example, letθ and Θ be as
above. Since every element ofprc(UnqAdr , θ) depends
on the identifiers of two hosts, it is easy to see that
prc(UnqAdr , θ) equals

⋃
θ′∈Θ prc(UnqAdr , θ′), which im-

plies that [[UnqAdr ]]θ ≡tr ‖θ′∈Θ[[UnqAdr ]]θ′ . Similarly,
we can check thatprc(HCP , θ) =

⋃
θ′∈Θ prc(HCP , θ′),

which implies that[[HCP ]]θ �tr ‖θ′∈Θ[[HCP ]]θ′ . Now, if
[[HCP ]]θ′ �tr [[UnqAdr ]]θ′ for all θ′ ∈ Θ, then by the
compositionality of�tr, we know that‖θ′∈Θ[[HCP ]]θ′ �tr

‖θ′∈Θ[[UnqAdr ]]θ′ , too. By the transitivity of�tr, it follows
that [[HCP ]]θ �tr [[UnqAdr ]]θ. Hence, the lemma implies
that we can derive the correctness of a big system instance
from the correctness of small instances.

Proposition 14. Let P and Q be CPPs such thatQ does
not involve hiding,ψ a compatible valuation,T ∈ dom(ψ)
a process type andΦ a set of the{T}-subvaluations ofψ
such thatprc(P, ψ) =

⋃
φ∈Φ prc(P, φ) and prc(Q, ψ) =⋃

φ∈Φ prc(Q, φ). If [[P]]φ �tr [[Q]]φ for all valuationsφ ∈ Φ,
then [[P]]ψ �tr [[Q]]ψ.

The proposition allows us to discard (big) instances but
it does not explicitly say which instances we should keep.
This piece of information is hidden in the condition of the
form prc(R, ψ) =

⋃
φ∈Φ prc(R, φ) which requires the set

of the processes of the big instance to be the same as the
set of the processes of the small ones. Since each element
in prc(R, ψ) is completely determined by the values of
finitely many variables and data types, thecut-off (size)for
a process typeT andR, denoted bycpT (R), depends on
the maximum number of constants inIT that occur in an
element inprc(R, ψ). In other words,cpT (R) is obtained
by simply counting the number of the free variables of the
typeT and adding the maximum number of the nested bound
variables of the typeT . More formally,

cpT (R) := max(1, |freeT (R)|+ pbndT (R)) ,

wherefreeT (R) is the set{x ∈ X∩par(R) | Tx = T} of all

the variables of the typeT that are free inR andpbndT (R)
is defined inductively as follows:

1) pbndT ((ŝ x̂,∆)) = 0,
2) pbndT ([C]R

′) = pbndT (R
′),

3) pbndT (R1 ‖̂ R2) = max(pbndT (R1), pbndT (R2)),
4) pbndT (R

′ \̂E) = pbndT (R
′) and

5) pbndT (‖̂xR
′) =

{
pbndT (R

′) + 1, if Tx = T,
pbndT (R

′), if Tx 6= T.
For example, as the specification CPPUnqAdr involves

two subprocesses of the form̂‖x P
′ such thatTx = TH , we

see thatpbndTH (UnqAdr) = 2. Moreover, sinceUnqAdr
has no free variable, it implies thatcpTH (UnqAdr) = 2.
Similarly, we can show thatcpTH (HCP) = 2, too.

Lemma 15. If R is a CPP, ψ a compatible valuation,
T ∈ dom(ψ) a process type,k ≥ |im(ψ|X) ∩ IT | +
pbndT (R) a positive integer andΦ the set of all{T}-
subvaluationsφ of ψ such that|φ(T )| = min(k, |ψ(T )|),
thenprc(R, ψ) =

⋃
φ∈Φ prc(R, φ).

By combining the results above, we get cut-offs for
process types for parametrised trace refinement checking.

Theorem 16(Cut-Offs for Process Types). LetP andQ be
CPPs such thatQ does not involve hiding,Φ the set of all
valuations with the domainpar(P ‖̂Q) andΨ the set of all
valuationsφ ∈ Φ such that|φ(T )| ≤ cpT (P ‖̂ Q) for every
process typeT ∈ par(P ‖̂ Q). Then[[P]]φ �tr [[Q]]φ for all
φ ∈ Φ, if and only if [[P]]ψ �tr [[Q]]ψ for all ψ ∈ Ψ.

When we apply the theorem to HCP, we see that to prove
HCP correct for any number of hosts and network addresses,
it is sufficient to consider instances with an arbitrary number
of addresses but at most two hosts.

B. Cut-Offs for Data Types

To determine cut-offs for data types, we first show that
an execution of a big instance of a system implementation
P can be bijectively mapped to an execution of a small
instance ofP transition by transition. (Here, big and small
are in terms of the size of the values of data types.)
If the small instance ofP is a trace refinement of the
small instance of the system specificationQ, then the small
specification instance has a corresponding execution which
can be projected back to the execution of the big instance of
Q by using the inverse mappings, provided the specification
is deterministic (Lemma 17). This implies that if the small
instance ofP is a trace refinement of the small instanceQ,
then the big instance ofP is a trace refinement of the big
instanceQ, too (Prop. 18).

Since we can compute an upper limit for the size of small
instances based on the cut-offs of process types and the
number of data variables occurring inP andQ (Lemma 19),
a parametrised trace refinement checking task reduces to
the refinement checking of the instances of bounded size
(Theorem 20).



The bijective mapping of executions between big and
small instances presumes that the small instance is big
enough. The sufficient size for the small instance depends on
the number of constants occurring in a transition or the initial
state of the big instance, which motivates the following
definition. Let P be a process andA a set of constants.
We write idc(P,A) for the maximum number of constants
in A that occur in a state or transition ofP , i.e.,

idc(P,A) := max{|im(d̂) ∩A|, |im(ded′) ∩A|
∣∣

ŝ d̂ = init(P ), (sd, c e, s′d′) ∈ tran(P )} .

For example, letθ1 be a valuation with the domain{TA, TH}
such thatθ1(TH) = {h1, h2} and θ1(TA) = {a1, . . . , an}.
If n = 2, then [[UnqAdr ]]θ1 is the process in Figure 2,
where obviouslyidc([[UnqAdr ]]θ1 , ITA) = 2. More gener-
ally, since [[UnqAdr ]]θ1 = Pid ‖ UA2 (h1, h2, θ1(TA)) ‖
UA2 (h2, h1, θ1(TA)) ‖ Pid and each parametrised transi-
tion and state ofUA2 involves at most two variables of
the typeTA, we can see thatidc([[UnqAdr ]]θ1 , ITA) ≤ 4.
Similarly, we get thatidc([[HCP ]]θ1 , ITA) ≤ 4.

Lemma 17. Let P and Q be CPPs,ψ a compatible
valuation, T ∈ dom(ψ) a data type andφ a {T}-
subvaluation ofψ such that |φ(T )| ≥ |im(ψ|X) ∩ IT | +
idc

(
[[P]]ψ, IT \ im(ψ|X)

)
+idc

(
[[Q]]φ, IT \ im(ψ|X)

)
. More-

over, let [[Q]]φ be deterministic,[[P]]φ a trace refinement of
[[Q]]φ and (s0 d0, c1 e1, s1 d1, . . . , cn en, sn dn) an execu-
tion of [[P]]ψ such thatn = 0 or cn en is a visible event,
and let i1, i2, . . . , ik be the increasing sequence of all the
indices in{1, . . . , n} such thatci 6= τ .

Then, (i) there are bijectionsg1, . . . , gn : V 7→ V

which move only constants inψ(T ) \ im(ψ|X) such that
(s0 d0, c1(g1◦ e1), s1(g1◦d1), . . . , cn(gn◦ en), sn(gn◦dn))
is an execution of[[P]]φ, (ii) and there is an execu-
tion (s′0 d

′
0, c

′
1 e

′
1, s

′
1 d

′
1, . . . , c

′
k e

′
k, s

′
k d

′
k) of [[Q]]φ such that

(s′0d
′
0, c

′
1(g

−1
i1
◦e′1), s

′
1(g

−1
i1
◦d′

1), . . . , c
′
k(g

−1
ik
◦e′k), s

′
k(g

−1
ik
◦d′

k))

is an execution of[[Q]]ψ and c′j(g
−1
ij

◦ e′j) = cij eij for all
j ∈ {1, . . . , k}.

Regarding HCP, letθ2 be a {TA}-subvaluation ofθ1
such that|θ2(TA)| = 8. Since[[UnqAdr ]]θ2 is deterministic,
im(θ1|X) is empty and|θ2(TA)| ≥ idc

(
[[HCP ]]θ1 , ITA

)
+

idc
(
[[UnqAdr ]]θ2 , ITA

)
, the proposition implies that if

[[HCP ]]θ2 �tr [[UnqAdr ]]θ2 , then for every execution of
[[HCP ]]θ1 there is an execution of[[UnqAdr ]]θ1 which gives
rise to the same trace. Hence, with the aid of the lemma
above, we can derive the correctness of a big implementation
instance from the correctness of a small one.

Proposition 18. Let P and Q be CPPs, ψ a com-
patible valuation, T ∈ dom(ψ) a data type andφ a
{T}-subvaluation ofψ such that|φ(T )| ≥|im(ψ|X) ∩ IT |
+ idc

(
[[P]]ψ, IT \ im(ψ|X)

)
+idc

(
[[Q]]ψ, IT \ im(ψ|X)

)
. If

[[Q]]φ is deterministic and[[P]]φ �tr [[Q]]φ, then [[P]]ψ �tr

[[Q]]ψ, too.

Like in the case of process types, the proposition allows
us to discard (big) instances but it does not explicitly say
which instances we should keep. This time, the cut-off size
of a data typeT depends on the number of constants in
IT that occur in a state or transition of an implementation
instance and a specification instance. If the size of process
types is already bounded using Theorem 16, then thecut-
off (size)for T and a CPPR, denoted bycdT (R), can be
over-approximated as follows. First, count the number of
the free variables of the typeT . Then, go through all SPPs
S occurring inR and in each round, add the product of
two figures: the maximum number of the bound variables
of the typeT occurring in a parametrised transition and the
maximum number of the instances ofS within an instance
of R. To put it more formally,

cdT (R) := max(1, |freeT (R)|+ dbndT,R(R)) ,

wheredbndT,R(R) is defined inductively as follows:
1) dbndT,R((ŝ x̂,∆)) is the maximum of

|{x ∈ im(x) ∪X | Tx = T}|
when (sx, X, C, cy, s′x′) ranges over∆,

2) dbndT,R([C]R′) = dbndT,R(R′),
3) dbndT,R(R1 ‖̂R2) = dbndT,R(R1)+dbndT,R(R2),
4) dbndT,R(R′ \̂E) = dbndT,R(R′) and
5) dbndT,R(‖̂xR

′) = cpTx(R) · dbndT,R(R′).

For example, letHU := HCP ‖̂ UnqAdr . By above,
we know that cpTH (HU ) = 2. Moreover, since every
parametrised transition ofUA2 involves at most two vari-
ables of the typeTA, we see thatdbndTA,HU (UA2 ) = 2.
Hence,dbndTA,HU (UnqAdr) = cpTxh

(HU ) · cpTxy (HU ) ·

dbndTA,HU (UA2 ) = 8. Similarly, we can show that
dbndTA,HU (HCP) = 8. BecauseHU has no free variable,
it implies thatcdTA(HU ) = 16.

Lemma 19. Let P be a CPP,φ a compatible valuation and
R a CPP such that|φ(U)| ≤ cpU (R) for each process
typeU ∈ dom(φ). Then for every data typeT ∈ dom(φ),
dbndT,R(P) ≥ idc

(
[[P]]φ, IT \ im(ψ|X)

)
.

By combining the results above, we get cut-offs for data
types for parametrised trace refinement checking.

Theorem 20 (Cut-Offs for Data Types). Let P and Q be
CPPs such thatQ is deterministic. Moreover, letΨ be the
set of all valuationsψ with the domainpar(P ‖̂ Q) such
that |ψ(U)| ≤ cpU (P ‖̂ Q) for every process typeU ∈

par(P ‖̂Q), andΦ the set of all valuationsφ ∈ Ψ such that
|φ(T )| ≤ cdT (P ‖̂ Q) for every data typeT ∈ par(P ‖̂ Q).
Then,[[P]]ψ �tr [[Q]]ψ for all ψ ∈ Ψ, if and only if[[P]]φ �tr

[[Q]]φ for all φ ∈ Φ.

When we apply the theorem to HCP, we see that to prove
the system correct for any number of addresses and up to
two hosts, it is sufficient to consider instances with at most
16 addresses and two hosts.



C. Automated Approach

Even though Theorems 16 and 20 provide cut-offs for
types, they do not quite enable automated parametrised
verification because there are still infinitely many instances
up to the cut-offs. However, if we consider only valuations
which arenon-isomorphic, i.e., cannot be obtained from each
other by the bijective mapping of constants, then we are left
with finitely many instances. Formally, valuationsφ1 andφ2
are isomorphic, if they have the same domain and if there
is a bijectiong : V 7→ V such thatφ2(x) = g(φ1(x)) for all
variablesx ∈ dom(φ1) and φ2(T ) = {g(c) | c ∈ φ1(T )}
for all typesT ∈ dom(φ1). Valuations arenon-isomorphic
if they are not isomorphic.

Getting rid of isomorphs is safe since isomorphic valua-
tions result in verification tasks with the same answer. That
why we say that a setΦ of valuations is acut-off set fora
CPPR if Φ is a maximal set of non-isomorphic valuations
φ with the domainpar(R) such that|φ(U)| ≤ cpU (R) for
every process typeU ∈ dom(φ) and |φ(T )| ≤ cdT (R) for
every data typeT ∈ dom(φ). With Theorems 16 and 20, this
notion leads to our main result, which allow us to reduce
a parametrised verification task to finitely many refinement
checks between finite processes.

Corollary 21 (The Main Cut-Off Theorem). Let Φ be a
cut-off set for a CPP(P ‖̂Q), whereQ is deterministic and
does not involve hiding. Then (1)Φ is finite and (2)P �̂trQ
if and only if [[P]]φ �tr [[Q]]φ for all φ ∈ Φ.

Another practical problem is that establishing the deter-
minism of the specification involves infinitely many checks,
too. That is why we provide cut-offs for that task as well
by using similar reasoning as above.

Theorem 22 (Cut-Offs for Determinism Checking). Let Φ
be a cut-off set for a CPP(Q‖̂Q), whereQ does not involve
hiding. Then (1)Φ is finite and (2)Q is deterministic, if and
only if [[Q]]φ is deterministic for allφ ∈ Φ.

Corollary 21 and Theorem 22 give rise to a completely
automatic procedure for parametrised verification which we
have implemented in the recent version of the Bounds
tool [26]. First, the tool reads system implementation and
specification CPPs. Then, it computes the cut-off sizes for
types, produces the instances of the specification up to the
cut-offs and checks that they are deterministic. Moreover,
since the cut-offs provided by the corollary are only rough
structural ones, the tool tries to improve them further by
checking the assumptions of Propositions 14 and 18 for each
instance up to the rough bounds and by discarding big in-
stances which satisfy the assumptions of either proposition.
After that, Bounds produces the trace refinement checking
tasks up to the improved cut-offs. Finally, the outputted finite
state verification questions are solved using the refinement
checker FDR2 [3] in order to obtain the answer to the

parametrised verification task.
When applied to HCP, Bounds first generates all 32

instances up to the cut-offs of two hosts and 16 addresses and
checks that the specification is deterministic. After that,it
applies Propositions 14 and 18, which reveals that only six of
the instances have to be actually verified. By using FDR2, all
six instances are found to be correct, which implies that HCP
operates correctly for any number of hosts and addresses.

We have also proved mutual exclusion properties for a
shared resource system (SRS) where an arbitrary number of
users compete for an access to an arbitrary number of shared
resources which store data from an arbitrary large domain
and a cache coherence protocol with an arbitrary number
of processors and an arbitrary amount of memory storing
arbitrary large data values. Additionally, we have proved
consistency properties for both systems when the number of
users and processes was fixed to two. In each case, the whole
verification process took only a second or two (see Table I),
which shows that our approach is applicable to practical
verification problems. Moreover, since our formalism is
compositional, the specifications of these systems can be
used in place of the implementations in further verification
efforts. The experiments were run on a desktop computer
with 4GB of memory running 64-bit Ubuntu on 3Ghz Intel
Core2 Duo processor. The descriptions of HCP, SRS and
Cache models are available in [24].

V. CONCLUSIONS ANDFUTURE WORK

We have presented a formalism for expressing
parametrised systems and combined two existing results [8],
[5] on parametrised verification into a single powerful
technique which enables parametrised verification by
reduction to finitely many finite state verification tasks.
The reduction is determined by the structure of a system
implementation and specification and, to the best of our
knowledge, this is the first and only parametrised verification
technique that allows for compositional reasoning, lends
support to multiple and two fundamentally different kinds
of parameters and guarantees termination with the correct
answer. The approach is implemented in a tool used to
prove the correctness of several parametrised systems.

An obvious topic for future research is extending the
approach. We already know that the approach can be
extended with relations over process types that are definable
in the first order logic [7], [5] but we are also interested in
mixing process and data types and extending the technique
to liveness properties [10] and interface theories [27]. The
challenge is that such extensions tend to render parametrised
refinement checking undecidable [5]. Nevertheless, we are
hopeful in finding practically sensible assumptions under
which the extensions can be realised.
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Table I
STATISTICS ON THE VERIFICATION OF SYSTEMS INVOLVING BOTH PARAMETRIC PROCESS AND DATA TYPES

Process types Data types Instances Processing time
System number cut-offs number cut-offs generated outputted Bounds FDR2
HCP 1 2 1 16 32 6 0.20s 0.13s
SRS mutex 2 2,1 1 12 24 5 0.06s 0.11s
SRS consistency 1 1 1 8 8 6 0.04s 0.15s
Cache mutex 2 2,1 1 17 34 12 0.23s 0.35s
Cache consistency 1 1 1 14 14 12 0.28s 1.05s
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APPENDIX

A. Additional Definitions, Lemmas and Propositions

For the proofs, we need the following auxiliary concepts
and results. For any processP , we write st(P ) for the
set of the states ofP and g(P ) for a process obtained
from P by mapping the constants using a functiong :
V 7→ V. For any valuationφ, we write Im(φ) for the set⋃
T∈dom(φ)∩T

φ(T ) of all constants occurring in the image
of φ. Notationg ◦ψ, whereψ is a valuation andg : V 7→ V

a bijection, denotes a functionφ with the domaindom(ψ)
such thatφ(x) = g(ψ(x)) for all variablesx ∈ dom(ψ)
andφ(T ) = {g(v) | v ∈ ψ(T )} for all typesT ∈ dom(ψ).
Hence, valuationsφ1 and φ2 are isomorphic if there is a
bijection g : V 7→ V such thatφ2 = g ◦ φ1.

Proposition 23. Let P1, P2 and P3 be processes,E a set
of visible channels andg a bijection: V 7→ V. Then the
following holds.

1) P1 ‖ P2 ≡tr P2 ‖ P1,
2) P1 ‖ (P2 ‖ P3) ≡tr (P1 ‖ P2) ‖ P3,
3) P1 ‖ P1 ≡tr P1,
4) if alph(P2) = ∅, thenP1 ‖ P2 ≡tr P1,
5) P1 is deterministic if and only ifg(P1) is deterministic,
6) P1 ‖ P2 is deterministic if and only if bothP1 andP2

are deterministic.
7) g(P1 ‖ P2) = g(P1) ‖ g(P2),
8) g(P1 \ E) = g(P1) \ E,
9) (P1 ‖ P2) \ E �tr (P1 \ E) ‖ (P2 \ E), and

10) if P1 �tr P2, thenP1 ‖ P3 �tr P2 ‖ P3, g(P1) �tr

g(P2) andP1 \ E �tr P2 \ E.

Proposition 24. LetP be a CPP andφ a compatible valua-
tion. Then (i)[[P]]φ is a finite process and (ii)[[P]]φ = [[P]]ψ
wheneverψ is a valuation such thatψ|par(P) = φ|par(P).

Lemma 25. Let C be a guard,ψ a compatible valuation
andφ a subvaluation ofψ. Then[[C]]ψ is true if and only if
[[C]]φ is true.

Lemma 26. LetS be an SPP,ψ a compatible valuation and
φ a TP -subvaluation ofψ. Then[[S]]ψ = [[S]]φ.

Lemma 27. Let C be a guard,φ a compatible valuation
and g a bijection: V 7→ V such thatg(IT ) = IT for every
typeT . Then[[C]]φ if and only if [[C]]g◦φ.

Lemma 28. LetR be a CPP,φ a compatible valuation and
g a bijection:V 7→ V such thatg(IT ) = IT for all typesT .
Theng([[R]]φ) = [[R]]g◦φ.

Proposition 29. If R is a CPP,φ a compatible valuation,
T a data type andg a bijection onV which moves only
constants inφ(T ) \ im(φ|X), then [[R]]φ = g([[R]]φ).

Lemma 30. Let R be a CPP,ψ a compatible valuation,
T ∈ dom(ψ) a data type andφ a {T}-subvaluation ofψ
such that|φ(T )| ≥ idc

(
[[R]]ψ, IT \ im(ψ|X)

)
+ |im(ψ|X) ∩

IT |. Then (i) the initial state of[[R]]φ is the initial state of
[[R]]ψ and (ii) wheneverd,d′ and e are tuples of constants
over Im(φ), then (sd, c e, s′d′) ∈ tran([[R]]φ) if and only
if (sd, c e, s′d′) ∈ tran([[R]]ψ).

Lemma 31. Let Φ be a set of non-isomorphic valuations
with the same finite domain andk a positive integer such that
|φ(T )| ≤ k for all valuationsφ ∈ Φ and typesT ∈ dom(φ).
Then the setΦ is finite.

Proposition 32. LetP andQ be CPPs andφ andψ isomor-
phic valuations compatible with the CPPs. If[[P]]φ �tr [[Q]]φ
then [[P]]ψ �tr [[Q]]ψ, too.

B. Proofs

Proposition 23: Most of the properties are well known
[2], [3]. See [5] for proofs.

Proposition 24: The proposition follows straightfor-
wardly from the definition of the instance.

Proof: The relation�̂tr is obviously reflexive because
[[P]]φ �tr [[P]]φ for all CPPsP and valuationsφ such that
par(P) ⊆ dom(φ).

To see that̂�tr is also transitive, letP1,P2,P3 be CPPs
such thatP1 �̂tr P2 andP2 �̂tr P3. Moreover, letφ be a
valuation compatible withP1 andP3 andφ′ any valuation
with the domaindom(φ)∪par(P2) such thatφ′|dom(φ) = φ.
Note that such a valuation always exists. By assumption,
[[P1]]φ′ �tr [[P2]]φ′ and [[P2]]φ′ �tr [[P3]]φ′ , which by
the transitivity of �tr implies that [[P1]]φ′ �tr [[P3]]φ′ .
By Proposition 24, it means that[[P1]]φ �tr [[P3]]φ, too.
Therefore,P1 �̂tr P3, which implies that�̂tr is transitive.

Finally, we need to show that̂�tr is compositional. For
that purpose, letP1 andP2 be CPPs such thatP1 �̂tr P2.

If C is a guard andφ a valuation compatible withC,P1

andP2, then there are two cases to consider. If[[C]]φ is false,
then obviously[[[C]P1]]φ �tr [[[C]P2]]φ. On the other hand, if
[[C]]φ is true, then[[[C]P1]]φ = [[P1]]φ �tr [[P2]]φ = [[[C]P2]]φ.
Hence,P1 �̂tr P2 implies that[C]P1 �̂tr [C]P2, too.

Similarly, we can show thatP1 �̂trP2 impliesP ‖̂P1 �̂tr

P‖̂P2, P1‖̂P�̂trP2‖̂P, P1\̂E�̂trP2\̂E and‖̂x P1�̂tr‖̂x P2

for all CPPsP, all process variablesx and all finite sets
E of visible channels. Therefore, the relation̂�tr is also
compositional and hence a precongruence.

Lemma 25: The lemma follows easily by induction
on the structure ofC by using the lemma as an induction
hypothesis.

Lemma 26:Since process variables can occur only free
in S, it is obvious that both[[S]]ψ and [[S]]φ have the same
initial state and the same set of transitions.

Lemma 13: First, we show that whenR does not
involve hiding,[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ. We argue by induction
on the structure ofR by using the claim as an induction
hypothesis.

In the base case,R is an SPP. Sinceprc(R, ψ) =⋃
φ∈Φ prc(R, φ), it means that[[R]]ψ = [[R]]φ for all φ ∈ Φ.



Since every process is an idempotent with respect to the
parallel composition (Prop. 23, Item 3), it implies that
[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ.

In the induction step, there are three cases to consider.
First, let us assume thatR is [C]R′. Sinceφ is a subvaluation
of ψ for all φ ∈ Φ, by Lemma 25,[[C]]ψ = [[C]]φ for every
φ ∈ Φ. If [[C]]ψ is not true, then[[R]]ψ = [[R]]φ = Pid for
all φ ∈ Φ. By the idempotence of the parallel composition
(Prop. 23, Item 3), it implies that[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ.
Otherwise, if [[C]]ψ is true, [[R]]ψ = [[R′]]ψ and [[R]]φ =
[[R′]]φ for all φ ∈ Φ. It also means that

prc(R′, ψ) = prc(R, ψ)

=
⋃

φ∈Φ

prc(R, φ) =
⋃

φ∈Φ

prc(R′, φ) .

Hence, by the induction hypothesis,

[[R]]ψ = [[R′]]ψ ≡tr ‖
φ∈Φ

[[R′]]φ = ‖
φ∈Φ

[[R]]φ .

Next, we assume thatR is R1 ‖̂ R2. Since
prc(R, ψ) =

⋃
φ∈Φ prc(R, φ), it implies that

prc(Ri, ψ) =
⋃
φ∈Φ prc(Ri, φ) for both i ∈ {1, 2}.

Then, by the induction hypothesis,[[Ri]]ψ ≡tr ‖φ∈Φ[[Ri]]φ
for both i ∈ {1, 2}. By the commutativity and associativity
of the parallel composition (Prop. 23, Items 1–2) and
the compositionality of the trace equivalence (Prop. 23,
Item 10),

[[R]]ψ = [[R1]]ψ ‖ [[R2]]ψ
i.h. & P23.10

≡tr ( ‖
φ∈Φ

[[R1]]φ) ‖ ( ‖
φ∈Φ

[[R2]]φ)

P23.1–2,10
≡tr ‖

φ∈Φ

([[R1]]φ ‖ [[R2]]φ) = ‖
φ∈Φ

[[R]] .

By the transitivity of the trace equivalence, it implies that
[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ.

Finally, let R be ‖̂xR
′. For everyψ′ ∈ ext(ψ, {x}),

let Φψ′ denote the set of allφ′ ∈
⋃
φ∈Φ ext(φ, {x}) such

that φ′(x) = ψ′(x). Obviously,Φψ′ is a finite set of{T}-
subvaluations ofψ′ for every ψ′ ∈ ext(ψ, {x}). More-
over, sinceprc(R, ψ) =

⋃
φ∈Φ prc(R, φ), thenprc(R, ψ′)

must be
⋃
φ′∈Φψ′

prc(R, φ′) for all ψ′ ∈ ext(ψ, {x}), too.
By the induction hypothesis, it implies that[[R′]]ψ′ ≡tr

‖φ′∈Φψ′
[[R′]]φ′ . Then, by the commutativity, associativity

and idempotence of the parallel composition (Prop. 23,
Items 1–3), the identity ofPid (Prop. 23, Item 4) and
the compositionality of the trace equivalence (Prop. 23,
Item 10),

[[R]]ψ = ‖
ψ′∈ext(ψ,{x})

[[R]]ψ′

i.h. & P23.4,10
≡tr ‖

ψ′∈ext(ψ,{x})

( ‖
φ′∈Φψ′

[[R′]]φ′)

P23.1–2,4
≡tr ‖

φ′∈
⋃
φ∈Φ

ext(φ,{x})

[[R′]]φ′

P23.1–4
≡tr ‖

φ∈Φ

( ‖
φ′∈ext(φ,{x})

[[R′]]φ′) = ‖
φ∈Φ

[[R]]φ .

By the transitivity of the trace equivalence, it implies that
[[R]]ψ ≡tr ‖φ∈Φ[[R]]φ. Hence, by the induction principle, the
first part of the lemma is correct.

Next, we prove that ifR is allowed to involve hiding,
[[R]]ψ �tr ‖φ∈Φ[[R]]φ. The proof is similar to the above

one except for a case, whereR is R′ \̂E. To see that
the claim holds in this case, too, we apply the induction
hypothesis, the distributivity of hiding (Prop. 23, Item 9)
and the compositionality of the trace refinement (Prop. 23,
Item 10), which gives us

[[R]]ψ = [[R′]]ψ \ E
i.h. & P23.10

�tr ( ‖
φ∈Φ

[[R′]]φ) \ E

P23.9–10
�tr ‖

φ∈Φ

([[R′]]φ \ E) = ‖
φ∈Φ

[[R]]φ .

By the transitivity of the trace refinement, it implies that
[[R]]ψ �tr ‖φ∈Φ[[R]]φ and the lemma is correct.

Proposition 14: Let [[P]]φ �tr [[Q]]φ for all valua-
tions φ ∈ Φ. Then, by the compositionality of the trace
refinement (Prop. 23, Item 10),‖φ∈Φ[[P]]φ �tr ‖φ∈Φ[[Q]]φ.
By Lemma 13, it implies that[[P]]ψ �tr ‖φ∈Φ[[P]]φ and
[[Q]]ψ ≡tr ‖φ∈Φ[[Q]]φ. Hence,

[[P]]ψ �tr ‖
φ∈Φ

[[P]]φ �tr ‖
φ∈Φ

[[Q]]φ ≡tr [[Q]]ψ ,

which by the transitivity of the trace refinement implies that
[[P]]ψ �tr [[Q]]ψ.

Lemma 15: We argue by induction on the structure of
R by using the lemma as an induction hypothesis.

In the base step,R is an SPPS. First, note thatΦ is non-
empty becausemin(k, |ψ(T )|) ≥ |im(ψ|X)∩ IT |. Secondly,
since eachφ ∈ Φ is a{T}-subvaluation ofψ, by Lemma 26,
it means that[[S]]ψ = [[S]]φ for every φ ∈ Φ. Then, by
definition, it is evident thatprc(R, ψ) =

⋃
φ∈Φ prc(R, φ).

In the induction step, there are four cases to consider.
First, let us assume thatR is [C]R′. Sinceφ is a subval-
uation of ψ for all φ ∈ Φ, by Lemma 25,[[C]]ψ = [[C]]φ
for every φ ∈ Φ. If [[C]]ψ is false, then prc(R, ψ) =⋃
φ∈Φ prc(R, φ) = ∅. Otherwise, if [[C]]ψ is true, then by

definition and the induction hypothesis,

prc(R, ψ) = prc(R′, ψ)

=
⋃

φ∈Φ

prc(R′, φ) =
⋃

φ∈Φ

prc(R, φ) .

Next, letR beR1 ‖̂R2. Obviously,k ≥ |im(ψ|X)∩IT |+
pbndT (R) ≥ |im(ψ|X) ∩ IT | + pbndT (Ri) for both i ∈



{1, 2}, which means that the induction hypothesis is appli-
cable toR1 andR2. Hence,prc(Ri, ψ) =

⋃
φ∈Φ prc(Ri, φ)

for both i ∈ {1, 2}, which implies that

prc(R, ψ) =
⋃

i∈{1,2}

(
{i} × prc(Ri, ψ)

)

=
⋃

i∈{1,2}

(
{i} ×

⋃

φ∈Φ

prc(Ri, φ)
)

=
⋃

φ∈Φ

⋃

i∈{1,2}

(
{i} × prc(Ri, φ)

)
=

⋃

φ∈Φ

prc(R, φ) .

After that, we assume thatR is R′ \̂E. Again, it is easy
to see thatk ≥ |im(ψ|X) ∩ IT |+ pbndT (R) ≥ |im(ψ|X) ∩
IT | + pbndT (R

′), which by definition and the induction
hypothesis implies that

prc(R, ψ) = prc(R′, ψ)

=
⋃

φ∈Φ

prc(R′, φ) =
⋃

φ∈Φ

prc(R, φ) .

Finally, we assume thatR is ‖̂xR
′. First, note that

whenever ψ′ ∈ ext(ψ, {x}), k ≥ |im(ψ|X) ∩ IT | +
pbndT (R) ≥ |im(ψ′|X) ∩ IT | + pbndT (R

′). Secondly,
for every ψ′ ∈ ext(ψ, {x}), let Φψ′ be the set of all
valuationsφ′ ∈

⋃
φ∈Φ ext(φ, {x}) such thatφ′(x) = ψ′(x).

Obviously,Φψ′ is a set of{T}-subvaluationsφ′ of ψ′ such
that |φ′(T )| = min(k, |ψ(T )|) = min(k, |ψ′(T )|). To see
that Φψ′ is the set of all such valuations, letφ′′ be a{T}-
subvaluation ofψ′ such that|φ′′(T )| = min(k, |ψ′(T )|).
Then, there is a{T}-subvaluationφ of ψ such thatφ′′ ∈
ext(φ, {x}). Since |φ(T )| = |φ′′(T )| = min(k, |ψ′(T )|) =
min(k, |ψ(T )|), we know thatφ ∈ Φ. It implies thatΦψ′

is the set of all {T}-subvaluationsφ′ of ψ′ such that
|φ′(T )| = min(k, |ψ′(T )|). By the induction hypothesis,
it means thatprc(R′, ψ′) =

⋃
φ′∈Φψ′

prc(R′, φ′) for all
ψ′ ∈ ext(ψ, {x}). Therefore,

prc(R, ψ) =
⋃

ψ′∈ext(ψ,{x})

(
{ψ′(x)} × prc(R′, ψ′)

)

=
⋃

ψ′∈ext(ψ,{x})

(
{ψ′(x)} ×

⋃

φ′∈Φψ′

prc(R′, φ′)
)

=
⋃

ψ′∈ext(ψ,{x})

⋃

φ′∈Φψ′

(
{φ′(x)} × prc(R′, φ′)

)

=
⋃

φ′∈
⋃
φ∈Φ

ext(φ,{x})

(
{φ′(x)} × prc(R′, φ′)

)

=
⋃

φ∈Φ

⋃

φ′∈ext(φ,{x})

(
{φ′(x)} × prc(R′, φ′)

)

=
⋃

φ∈Φ

prc(R, φ).

Hence, by the induction principle, the lemma is correct.

Theorem 16: Obviously, if [[P]]φ �tr [[Q]]φ for all φ ∈
Φ, then [[P]]ψ �tr [[Q]]ψ for all valuationsψ ∈ Ψ, too.

Next, let us assume that[[P]]ψ �tr [[Q]]ψ for all valuations
ψ ∈ Ψ. Let T1, . . . , Tn be the process types inpar(P ‖̂ Q)

andΨ0, . . . ,Ψn sets of valuations with the domainpar(P ‖̂
Q) such thatΨ0 ⊆ Ψ, Ψn = Φ and for all i ∈ {1, . . . , n},
Ψi−1 is the set of all {Ti}-subvaluationsψi−1 of the
valuations inΨi such that|ψi−1(Ti)| ≤ cpTi(P ‖̂ Q). We
proceed by induction to show that for alli ∈ {0, . . . , n}, the
relation [[P]]ψi �tr [[Q]]ψi holds wheneverψi ∈ Ψi.

The base step is clear sinceΨ0 ⊆ Ψ and the claim
holds by assumption. In the induction step, letψi ∈ Ψi \

Ψi−1, k := cpTi(P ‖̂ Q) and Φi be the set of all{Ti}-
subvaluationsφ of ψi such that|φ(Ti)| = k. By definition,
k ≥ |freeTi(P ‖̂ Q)| + pbndTi(P ‖̂ Q) ≥ |im(ψi|X) ∩
ITi | + max(pbndTi(P), pbndTi(Q)) and by the choice of
ψi, |φ(Ti)| = k = min(k, |ψi(Ti)|) for all φ ∈ Φi. By
Lemma 15, it implies thatprc(Q, ψi) =

⋃
φ∈Φi

prc(Q, φ)
and prc(P, ψi) =

⋃
φ∈Φi

prc(P, φ). SinceΦi ⊆ Ψi−1, by
the induction hypothesis,[[P]]φ �tr [[Q]]φ for all valuations
φ ∈ Φi. By Proposition 14, it means that then[[P]]ψi �tr

[[Q]]ψi , too. By the induction principle, it implies that for
all i ∈ {0, . . . , n}, [[P]]ψ �tr [[Q]]ψ wheneverψ ∈ Ψi.
Hence, the relation[[P]]φ �tr [[Q]]φ holds especially for all
valuationsφ ∈ Φ.

Lemma 27: The claim follows straightforwardly by
induction on the structure of the guard using the lemma as
an induction hypothesis.

Lemma 28: We argue by induction on the structure of
R by using the lemma as an induction hypothesis.

In the base step,R is an SPP and it is easy to see that
g([[R]]φ) = [[R]]g◦φ holds.

In the induction step, there are four cases to consider.
First, we assume thatR is [C]R′. By Lemma 27, we know
that [[C]]φ if and only if [[C]]g◦φ. If [[C]]φ = [[C]]g◦φ = false,
then [[R]]φ = [[R]]g◦φ = Pid and the lemma holds trivially.
On the other hand, if[[C]]φ = [[C]]g◦φ = true, then by the
induction hypothesis,g([[R]]φ) = g([[R′]]φ) = [[R′]]g◦φ =
[[R]]g◦φ.

Next, if R is R1 ‖̂ R2, then by Item 7 of Proposition 23
and the induction hypothesis,

g([[R]]φ) = g([[R1]]φ ‖ [[R2]]φ)
P23.7
= g([[R1]]φ) ‖ g([[R2]]φ)

i.h.
= [[R1]]g◦φ ‖ [[R2]]g◦φ

= [[R]]g◦φ .

After that, letR be R′ \̂E. Then by the induction hy-
pothesis,g([[R′]]φ) = [[R′]]g◦φ. By Item 8 of Proposition 23,
it implies that

g([[R]]φ) = g([[R′]]φ \ E)
P23.8
= g([[R′]]φ) \ E

i.h.
= [[R′]]g◦φ \ E = [[R]]g◦φ .



Finally, if R is ‖̂xR
′, we argue like in the second case of

the induction step. By using Item 7 of Proposition 23 and
the induction hypothesis, we see that

g([[R]]φ) = g( ‖
φ′∈ext(φ,{x})

[[R′]]φ′)

P23.7
= ‖

φ′∈ext(φ,{x})

g([[R′]]φ′)
i.h.
= ‖

φ′∈ext(φ,{x})

[[R′]]g◦φ′

= ‖
φ′∈ext(g◦φ,{x})

[[R′]]φ′ = [[R]]g◦φ .

Hence, also the induction step is clear and by the induction
principle, the lemma is correct.

Proposition 29:Sinceg◦φ = φ, by Lemma 28,[[R]]φ =
[[R]]g◦φ = g([[R]]φ).

Lemma 30: We argue by induction on the structure of
R by using the lemma as an induction hypothesis.

In the base case,R is an SPP(ŝ x̂,∆). Sinceψ is compat-
ible with R andφ is a subvaluation ofψ, φ|im(x̂) = ψ|im(x̂).
Hence,φ ◦ x = ψ ◦ x, which implies that the initial states
of [[R]]φ and [[R]]ψ are the same.

Next, letd,d′, e ∈ (Im(φ))∗. Sinceφ is a subvaluation of
ψ, it easy to see that whenever(sd, c e, s′d′) is a transition
of [[R]]φ, (sd, c e, s′d′) is a transition of[[R]]ψ, too. To prove
the other direction, let(sd, c e, s′d′) be a transition of[[R]]ψ.
By definition, there arex,x′ ∈ X

∗
D, y ∈ X

∗, a guardC, a
subsetX of im(yx′) andψ′ ∈ ext(ψ, im(x)∪X) such that
d = ψ′◦x, e = ψ′◦y, d′ = ψ′◦x′, (sx, X, C, cy, s′x′) ∈ ∆
and [[C]]ψ′ is true. Sinced,d′, e ∈ (Im(φ))∗ and φ is a
subvaluation ofψ, we can pickφ′ ∈ ext(φ, im(x) ∪ X)
such thatφ′ andψ′ agree on the values of the variables in
im(xyx′)∪par(C). It means thatd = φ′◦x, e = φ′◦y, d′ =
φ′ ◦ x′ and [[C]]φ′ is true, which implies that(sd, c e, s′d′)
is a transition of[[R]]φ as well.

In the induction step, there are four cases to consider.
First, we assume thatR is [C]R′. Becauseψ is compatible
with R and φ is a subvaluation ofψ, by Lemma 25,
it implies that [[C]]φ if and only if [[C]]ψ. Hence, there
are two cases to check. If[[C]]φ = [[C]]ψ = false, then
[[R]]φ = [[R]]ψ = Pid and it is obvious that the lemma
holds. On the other hand, if[[C]]φ = [[C]]ψ = true, then
[[R]]φ = [[R′]]φ and [[R]]ψ = [[R′]]ψ. Now, by the induction
hypothesis, it is again obvious that the lemma holds.

Next, we assume thatR is R1 ‖̂ R2. In order to
apply the induction hypothesis to bothR1 and R2, we
need to show that|φ(T )| ≥ idc([[Ri]]ψ, IT \ im(ψ|X)) +
|im(ψ|X) ∩ IT | for both i ∈ {1, 2}. For that purpose,
let (s1 d1, c e, s

′
1 d

′
1) be a transition of[[R1]]ψ. If c e ∈

alph([[R2]]ψ), then there ares2 d2, s
′
2 d

′
2 ∈ st([[R2]]ψ)

such that(s2 d2, c e, s
′
2 d

′
2) is a transition of[[R2]]ψ, which

implies that((s1, s2, |d1|)d1d2, c e, (s
′
1, s

′
2, |d

′
1|)d

′
1d

′
2) is a

transition of[[R]]ψ. On the other hand, ifc e /∈ alph([[R2]]ψ),
then ((s1, ŝ2, |d1|)d1d̂2, c e, (s

′
1, ŝ2, |d

′
1|)d

′
1d̂2) is a transi-

tion of [[R]]ψ, whereŝ2 d̂2 is the initial state of[[R2]]ψ. Since
the initial state of[[R]]ψ is the combination of the initial

states of[[R1]]ψ and[[R2]]ψ, this implies thatidc([[R]]ψ, IT \
im(ψ|X)) ≥ idc([[R1]]ψ, IT \ im(ψ|X)), which means that
|φ(T )| ≥ idc([[R1]]ψ, IT \ im(ψ|X)) + |im(ψ|X) ∩ IT |.
Similarly, one can establish|φ(T )| ≥ idc([[R2]]ψ, IT \
im(ψ|X)) + |im(ψ|X) ∩ IT |, too. Now, by the induction
hypothesis,init([[Ri]]ψ) = init([[Ri]]φ) for both i ∈ {1, 2},
which implies that[[R]]φ and [[R]]ψ have the same initial
state.

Let us then assume that
((s1, s2, |d1|)d1d2, c e, (s

′
1, s

′
2, |d

′
1|)d

′
1d

′
2) is a transition

of [[R]]ψ such that d1,d2,d
′
1,d

′
2, e ∈ (Im(φ))∗.

If (si di, c e, s
′
i d

′
i) ∈ tran([[Ri]]ψ) for both

i ∈ {1, 2}, then by the induction hypothesis,
(si di, c e, s

′
i d

′
i) ∈ tran([[Ri]]φ) for both i ∈ {1, 2}, which

implies that ((s1, s2, |d1|)d1d2, c e, (s
′
1, s

′
2, |d

′
1|)d

′
1d

′
2) is

a transition of [[R]]φ, too. Otherwise, there are distinct
i, j ∈ {1, 2} such that(si di, c e, s′i d

′
i) ∈ tran([[Ri]]ψ),

c e /∈ alph([[Rj ]]ψ), and sj dj and s′j d
′
j are the same

state of [[Rj ]]ψ. Then, by the induction hypothesis,
it is evident that (si di, c e, s

′
i d

′
i) ∈ tran([[Ri]]φ).

To see that c e /∈ alph([[Rj ]]φ), assume contrary-
wise that c e ∈ alph([[Rj ]]φ). Then, by definition,
c e appears in a transition of[[Rj ]]φ, which by the
induction hypothesis, implies that also[[Rj ]]ψ has the
same transition. Therefore,c e ∈ alph([[Rj ]]ψ), which
is a contradiction. Hence,c e /∈ alph([[Rj ]]φ). Because
sj dj ∈ st([[Rj ]]ψ), sj dj is the initial state or there
is a transition (s3 d3, c3 e3, s

′
3 d

′
3) of [[Rj ]]ψ such that

sj dj ∈ {s3 d3, s
′
3 d

′
3}. If sj dj = init([[Rj ]]ψ), then

by the induction hypothesis,sj dj = init([[Rj ]]φ).
Otherwise, since|φ(T )| ≥ idc([[Rj ]]ψ, IT \ im(ψ|X)) +
|im(ψ|X) ∩ IT | ≥ |(im(ψ|X) ∪ im(d3e3d

′
3)) ∩ IT |,

we can pick a bijectiong : V 7→ V such that
im(g ◦ d3e3d

′
3) ⊆ Im(φ) and g moves only constants

in ψ(T ) \ (im(ψ|X) ∪ im(dj)). Then, by Proposition 29,
(s3(g ◦ d3), c3(g ◦ e3), s

′
3(g ◦ d′

3)) ∈ tran([[Rj ]]ψ)
such that g ◦ d3, g ◦ e3, g ◦ d′

3 ∈ (Im(φ))∗,
which by the induction hypothesis implies that
(s3(g ◦ d3), c3(g ◦ e3), s

′
3(g ◦ d′

3)) ∈ tran([[Rj ]]φ),
too. Therefore,sj dj is a state of[[Rj ]]φ, which implies that
also in this case,((s1, s2, |d1|)d1d2, c e, (s

′
1, s

′
2, |d

′
1|)d

′
1d

′
2)

is a transition of[[R]]φ.
Proving the other direction, i.e., the containment

tran([[R]]φ) ⊆ tran([[R]]ψ), proceeds similarly. The main
difference is that now it is easy to see that a state of[[R]]φ
is a state of[[R]]ψ, too, while proving thatc e /∈ alph([[Rj ]]φ)
implies c e /∈ alph([[Rj ]]ψ) is a similar process as establish-
ing sj dj ∈ [[Rj ]]φ above.

Thirdly, we assume thatR is R′ \̂E. Since hiding af-
fects only channel names, it is evident thatidc([[R]]φ, IT \
im(ψ|X)) = idc([[R′]]φ, IT \ im(ψ|X)), which implies that
the induction hypothesis is applicable toR′. By definition
and induction hypothesis, it is then straightforward to check
that [[R]]φ and [[R′]]ψ have the same initial state.



If (sd, c e, s′d′) is a transition of [[R]]ψ such that
d,d′, e ∈ (Im(φ))∗, then there are two cases to consider. If
(sd, c e, s′d′) ∈ tran([[R′]]ψ) andc /∈ E, then the induction
hypothesis implies that(sd, c e, s′d′) ∈ tran([[R′]]φ) as
well. Therefore, (sd, c e, s′d′) is a transition of [[R]]φ,
too. Otherwise,c = τ and there isc′ ∈ E such that
(sd, c′e, s′d′) ∈ tran([[R′]]ψ). By the induction hypothesis,
it implies that (sd, c′e, s′d′) ∈ tran([[R′]]φ), which, in
turn, means that(sd, c e, s′d′) is a transition of[[R]]φ also
in this case. Provingtran([[R]]φ) ⊆ tran([[R]]ψ), proceeds
similarly.

The case whenR is ‖̂xR
′ is a generalisation of the

case whenR is R1 ‖̂ R2 and can be treated in a similar
way. That is becausex is a process variable, so for every
ψ′ ∈ ext(ψ, {x}) there isφ′ ∈ ext(φ, {x}) such thatφ′ is
a subvaluation ofψ′. Hence, also this case is clear and, by
the induction principle, the lemma is correct.

Lemma 17: We argue by induction onk by using the
lemma as an induction hypothesis.

In the base case,k = 0, which implies that the execution
s0 d0 is the initial state of[[P]]ψ. By Lemma 30,s0 d0 is an
execution of[[P]]φ, too. Moreover, by the same lemma, the
initial states′0 d

′
0 of [[Q]]φ is an execution of[[Q]]φ such that

s′0 d
′
0 is an execution of[[Q]]ψ, too. Hence, the base case is

clear.
In the induction step,k is a positive integer. Now,

we can apply the induction hypothesis to the execution
(s0 d0, c1 e1, s1 d1, . . . , cm em, sm dm), wherem = ik−1.
Hence, (i) there are bijectionsg1, . . . , gm : V 7→ V

which move only constants inψ(T ) \ im(ψ|X) such that
(s0 d0, c1(g1 ◦ e1), s1(g1 ◦ d1), . . . , cm(gm ◦ em), sm(gm ◦
dm)) is an execution of[[P]]φ and (ii) there is an execution
(s′′0 d

′′
0 , c

′′
1 e

′′
1 , s

′′
1 d

′′
1 , . . . , c

′′
k−1 e

′′
k−1, s

′′
k−1 d

′′
k−1) of [[Q]]φ

such that(s′′0 d
′′
0 , c

′′
1(g

−1
i1

◦e′′1), s
′′
1(g

−1
i1

◦d′′
1), . . . , c

′′
k−1(g

−1
m ◦

e′′k−1), s
′′
k−1(g

−1
m ◦ d′′

k−1)) is an execution of[[Q]]ψ and
c′′j (g

−1
ij

◦ e′′j ) = cij eij for all j ∈ {1, . . . , k − 1}.
Next, we will construct bijectionsgm+1, . . . , gn : V 7→ V

satisfying (i). Let fm+1, . . . , fn be bijections:V 7→ V

such that for all j ∈ {m + 1, . . . , n}, fj moves only
constants inψ(T ) \ (im(ψ|X) ∪ im(d′′

k−1)). Now, for each
j ∈ {m + 1, . . . , n}, let gj be the bijectionfj ◦ fj−1 ◦
. . . ◦ fm+1 ◦ gm. By definition, eachgj moves only con-
stants inψ(T ) \ im(ψ|X). By Proposition 29, it means
that (sj−1(gj−1 ◦ dj−1), cj(gj−1 ◦ ej), sj(gj−1 ◦ dj)) is a
transition of[[P]]ψ for all j ∈ {m+1, . . . , n}. Note that we
may pick the bijectionsfm+1, . . . , fn, in this order, such that
for eachj ∈ {m+1, . . . , n}, fj preservesim(gj−1 ◦dj−1).
Moreover, sinceφ is a {T}-subvaluation ofψ and

|φ(T )| ≥ idc([[P]]ψ, IT \ im(ψ|X))

+ idc([[Q]]φ, IT \ im(ψ|X)) + |im(ψ|X) ∩ IT |

≥ |(im(gj−1 ◦dj−1ejdj)∪ im(d′′
k−1)∪ im(ψ|X))∩ IT | ,

we may also assume thatfj mapsim(gj−1◦ejdj)) to Im(φ)

wheneverj ∈ {m+1, . . . , n}. By Proposition 29, it implies
that (sj−1(fj ◦gj−1 ◦dj−1), cj(fj ◦gj−1 ◦ej), sj(fj ◦gj−1 ◦
dj)) = (sj−1(gj−1 ◦ dj−1), cj(gj ◦ ej), sj(gj ◦ dj)) is a
transition of[[P]]ψ for all j ∈ {m+1, . . . , n}. Sinceim(gi ◦
eidi) ⊆ Im(φ), by Lemma 30,(sj−1(gj−1 ◦ dj−1), cj(gj ◦
ej), sj(gj ◦ dj)) is a transition of[[P]]φ for all j ∈ {m +
1, . . . , n}. Hence,(s0 d0, c1(g1◦e1), s1(g1◦d1), . . . , cn(gn◦
en), sn(gn ◦ dn)) is an execution of[[P]]φ.

To prove the existence of an execution of[[Q]]φ
satisfying (ii), recall that [[Q]]φ does not involve
invisible events and [[P]]φ is a trace refinement
of [[Q]]φ. It means that there is an execution
(s′0 d

′
0, c

′
1 e

′
1, s

′
1 d

′
1, . . . , c

′
k e

′
k, s

′
k d

′
k) of [[Q]]φ such that

c′j e
′
j = cij (gij ◦ eij ), i.e., c′j(g

−1
ij

◦ e′j) = cij ◦ eij , for all
j ∈ {1, . . . , k}. Since [[Q]]φ is deterministic, the execution
(s′0 d

′
0, c

′
1 e

′
1, s

′
1 d

′
1, . . . , c

′
k−1 e

′
k−1, s

′
k−1 d

′
k−1) is the

same as (s′′0 d
′′
0 , c

′′
1 e

′′
1 , s

′′
1 d

′′
1 , . . . , c

′′
k−1 e

′′
k−1, s

′′
k−1 d

′′
k−1),

which implies that (s′0 d
′
0, c

′
1(g

−1
i1

◦ e′1), s
′
1(g

−1
i1

◦
d′
1), . . . , c

′
k−1(g

−1
m ◦ e′k−1), s

′
k−1(g

−1
m ◦ d′

k−1)) is an
execution of [[Q]]ψ. By Lemma 30 and Proposition 29,
(s′k−1(g

−1
n ◦d′

k−1), c
′
k(g

−1
n ◦ek), s

′
k(g

−1
n ◦d′

k)) is a transition
of [[Q]]ψ. Since eachfj preservesim(d′

k−1), g
−1
n ◦ d′

k−1 =
g−1
m ◦ f−1

m+1 ◦ . . . ◦ f
−1
n ◦ d′

k−1 = g−1
m ◦ d′

k−1, which means
that (s′k−1(g

−1
m ◦ d′

k−1), c
′
k(g

−1
n ◦ ek), s

′
k(g

−1
n ◦ d′

k)) is a
transition of [[Q]]ψ. Hence,(s′0 d

′
0, c

′
1(g

−1
i1

◦ e′1), s
′
1(g

−1
i1

◦
d′
1), . . . , c

′
k(g

−1
ik

◦ e′k), s
′
k(g

−1
ik

◦ d′
k)) is an execution of

[[Q]]ψ and the induction step is complete.

Proposition 18: Let us assume that[[Q]]φ is determin-
istic and [[P]]φ �tr [[Q]]φ. To prove the lemma, we need
to show thatalph([[P]]ψ) = alph([[Q]]ψ) and tr([[P]]ψ) ⊆
tr([[Q]]ψ).

First, if c e ∈ alph([[P]]ψ), there are statess1 d1, s
′
1 d

′
1

such that(s1 d1, c e, s
′
1 d

′
1) is a transition of[[P]]ψ. Since

|φ(T )| ≥ idc([[P]]ψ, IT \ im(ψ|X)) + |im(ψ|X) ∩ IT | ≥
|(im(d1ed

′
1) ∪ im(ψ|X)) ∩ IT |, we can pick a bijectiong :

V 7→ V such thatg moves only constants inψ(T )\ im(ψ|X)
and maps those inim(d1ed

′
1) to Im(φ). Then, by Proposi-

tion 29 and Lemma 30,(s1(g ◦ d1), c(g ◦ e), s′1(g ◦ d′
1))

is a transition of[[P]]φ. As c(g ◦ e) ∈ alph([[P]]φ) and
[[P]]φ �tr [[Q]]φ, c(g ◦ e) ∈ alph([[Q]]φ), too. Hence, there
are statess2 d2, s

′
2 d

′
2 such that(s2 d2, c(g ◦ e), s′2 d

′
2) is

a transition of[[Q]]φ. By Lemma 30 and Proposition 29, it
means that(s2(g−1 ◦ d2), c e, s

′
2(g

−1 ◦ d′
2)) is a transition

of [[Q]]ψ. Hence,c e ∈ alph([[Q]]ψ), too. Similarly, one can
show that every event inalph([[Q]]ψ) is also an event in
alph([[P]]ψ), which implies that the alphabets of[[Q]]ψ and
[[P]]ψ match.

Next, if t ∈ tr([[P]]ψ), there is an execution
(s0 d0, c1 e1, s1 d1, . . . , cn en, sn dn) of [[P]]ψ such thatt
is obtained from(c1 e1, . . . , cn en) by erasing the invisible
events. We may also assume that eithern = 0 or cn en
is a visible event. By Lemma 17, it means that there is
an execution(s′0 d

′
0, c

′
1 e

′
1, s

′
1 d

′
1, . . . , c

′
k e

′
k, s

′
k d

′
k) of [[Q]]ψ



such that(c′1 e
′
1, . . . , c

′
k e

′
k) equals(c1 e1, . . . , cn en) after

erasing the invisible events. Therefore,t ∈ tr([[Q]]ψ), too,
which proves that the lemma is correct.

Lemma 19: We argue by induction on the structure of
P by using the lemma as an induction hypothesis.

In the base step,P is an SPP(ŝ x̂,∆). Since im(x̂) ⊆
dom(φ), the setim(φ ◦ x̂)∩ (IT \ im(φ|X)) is empty. More-
over, it is easy to see that for every(sx, X, C, cy, s′x′) ∈ ∆
andφ′ ∈ ext(φ, im(x)∪X) such that[[C]]φ′ is true it holds
that

|{x ∈ im(x) ∪X | Tx = T}|

≥ |{φ′(x) ∈ IT | x ∈ im(x) ∪X}|

≥ |{im(φ′ ◦ xyx′) ∩ (IT \ im(φ|X))}| ,

which means thatdbndT,R(P) ≥ idc([[P]]φ, IT \ im(φ|X))
for every data typeT ∈ dom(φ). Hence, the base step is
clear.

In the induction step, there are four cases to consider.
First, we assume thatP is [C]P ′. If [[C]]φ is false, then
[[P ′]]φ = Pid . Since idc(Pid , IT \ im(φ|X)) = 0 for every
data typeT ∈ dom(φ), it is obvious that the claim holds.
Otherwise,[[C]]φ is true and [[P]]φ = [[P ′]]φ. Then, by the
induction hypothesis,

dbndT,R(P) = dbndT,R(P ′)

≥ idc([[P ′]]φ, IT \ im(φ|X))

= idc([[P]]φ, IT \ im(φ|X)) ,

for all data typesT ∈ dom(φ), which implies that this case
is clear.

Next, we assume thatP is P1 ‖̂ P2. First, note that every
state of [[P]]φ consists of a state of[[P1]]φ and a state of
[[P2]]φ. Secondly, note that every transition of[[P]]φ consists
of either a transition of[[P1]]φ and a transition of[[P2]]φ or a
transition of[[Pi]]φ and a state of[[Pj ]]φ, wherei and j are
different integers in{1, 2}. Therefore, it is obvious that

idc([[P]]φ, IT \ im(φ|X)) ≤
∑

i∈{1,2}

idc([[Pi]]φ, IT \ im(φ|X))

for every data typeT ∈ dom(φ). Therefore, by the induction
hypothesis,

dbndT,R(P)

= dbndT,R(P1) + dbndT,R(P2)

≥
∑

i∈{1,2}

idc([[Pi]]φ, IT \ im(φ|X))

≥ idc([[P]]φ, IT \ im(φ|X))

for all data typesT ∈ dom(φ), so also this case is clear.
After that, we assume thatP is P ′ \̂E. Since hid-

ing affects only channel names, obviouslyidc([[P]]φ, IT \
im(φ|X)) = idc([[P ′]]φ, IT \im(φ|X)). Then, by the induction

hypothesis, it is easy to see that the claim holds in this case,
too.

Finally, we consider the case whenP is ‖̂x P
′. By

the induction hypothesis, we know thatdbndT,R(P ′) ≥
idc([[P ′]]φ′ , IT \ im(φ′|X)) for every φ′ ∈ ext(φ, {x}) and
all data typesT ∈ dom(φ′). Since

cpTx(R) ≥ |φ(Tx)| = |ext(φ, {x})| ,

it implies that

dbndT,R(P) = cpTx(R) · dbndT,R(P ′)

≥ |ext(φ, {x})| · dbndT,R(P ′)

≥
∑

φ′∈ext(φ,{x})

idc([[P ′]]φ′ , IT \ im(φ′|X))

wheneverT ∈ dom(φ) is a data type. Now, we argue like
in the second case of the induction step that every constant
in a state of[[P]]φ occurs in a state of some[[P ′]]φ′ , where
φ′ ∈ ext(φ, {x}), and every constant in a transition of[[P]]φ
occurs in a state or a transition of some[[P ′]]φ′ , where again
φ′ ∈ ext(φ, {x}). Moreover, sincex is a process variable,
it is obvious thatIT \ im(φ′|X) = IT \ im(φ|X) for all data
typesT ∈ dom(φ). Therefore,

∑

φ′∈ext(φ,{x})

idc([[P ′]]φ′ , IT \ im(φ′|X))

≥ idc([[P]]φ, IT \ im(φ|X)) ,

for every data typeT ∈ dom(φ), which completes the
induction step. Hence, by the induction principle, the lemma
is correct.

Theorem 20: Since Φ ⊆ Ψ, it obvious that when
[[P]]ψ �tr [[Q]]ψ for all valuationsψ ∈ Ψ, then [[P]]φ �tr

[[Q]]φ for all valuationsφ ∈ Φ, too.
Next, let us assume that[[P]]φ �tr [[Q]]φ for all valuations

φ ∈ Φ and letψ ∈ Ψ. To prove the theorem, it is sufficient to
show that then[[P]]ψ �tr [[Q]]ψ, too. First, we pick data types
T1, . . . , Tn ∈ par(P ‖̂ Q) and valuationsψ0, . . . , ψn ∈ Ψ
such thatψ0 ∈ Φ, ψn = ψ and for all i ∈ {1, . . . , n}, ψi−1

is a{Ti}-subvaluation ofψi and |ψi−1(Ti)| = cdTi(P ‖̂Q).
After that, we proceed by induction to show that[[P]]ψi �tr

[[Q]]ψi for all i ∈ {0, . . . , n}.
The base step is clear sinceφ0 ∈ Φ and the claim holds by

the assumption. In the induction step, we apply the definition
and Lemma 19 to see that

|ψi−1(Ti)| = cdTi(P ‖̂ Q)

= max
(
1,|freeTi(P) ∪ freeTi(Q)|

+ dbnd
Ti,P‖̂Q

(P) + dbnd
Ti,P‖̂Q

(Q)
)

≥|{x ∈ dom(ψi|X) | Tx = Ti}|

+ idc([[P]]ψi , ITi \ im(ψi|X))

+ idc([[Q]]ψi , ITi \ im(ψi|X))



≥|im(ψi|X) ∩ ITi |

+ idc([[P]]ψi , ITi \ im(ψi|X))

+ idc([[Q]]ψi , ITi \ im(ψi|X)) .

Since[[Q]]ψi−1
is deterministic and, by the induction hypoth-

esis, [[P]]ψi−1
�tr [[Q]]ψi−1

, it follows from Proposition 18
that [[P]]ψi �tr [[Q]]ψi , too. Hence, by the induction princi-
ple, [[P]]ψi �tr [[Q]]ψi for all i ∈ {0, . . . , n}, which means
that especially[[P]]ψ �tr [[Q]]ψ holds.

Lemma 31: To prove thatΦ is finite, assume that it
is not. Since all the valuations inΦ share the same finite
domain and|φ(T )| ≤ k for all φ ∈ Φ and for all types
T ∈ par(P ‖̂ Q), there is an infinite subsetΦ′ of Φ such
that all valuations inΦ′ map each type in the domain to a set
of the same size, i.e.,|φ1(T )| = |φ2(T )| for all φ1, φ2 ∈ Φ′

and for all typesT ∈ par(P ‖̂ Q). It means that for every
valuationφ′ ∈ Φ′, we can pick a bijectiongφ′ : V 7→ V such
that(gφ1

◦φ1)(T ) = (gφ2
◦φ2)(T ) for all φ1, φ2 ∈ Φ′ and for

all typesT ∈ par(P ‖̂Q). Since we assumed the valuations
in Φ to be non-isomorphic, a setΦ′′ := {gφ′ ◦ φ′ | φ′ ∈
Φ′} must be infinite. However, this is impossible, since each
valuationφ′′ ∈ Φ′′ covers the same finite set of variables and
the values of the variables are always picked from the same
finite set Im(φ′′). Therefore, we conclude thatΦ must be
finite.

Proposition 32: By definition, there is a bijectiong :
V 7→ V such thatψ = g ◦ φ. Necessarily,g preserves the
constants inIT for every typeT . Now, if [[P]]φ �tr [[Q]]φ,
then by Item 10 of Proposition 23,g([[P]]φ) �tr g([[Q]]φ),
too. By Lemma 28, it means that[[P]]g◦φ �tr [[Q]]g◦φ or, in
other words,[[P]]ψ �tr [[Q]]ψ.

Corollary 21: By Lemma 31, the finiteness ofΦ is
clear. Moreover, ifP �̂tr Q, then by definition,[[P]]φ �tr

[[Q]]φ for all φ ∈ Φ, too. To prove the other direction, letΨ
be the set of all valuations with the domainpar(P ‖̂Q), Ψ′

the set of all valuationsψ ∈ Ψ such that|ψ(U)| ≤ cpU (P ‖̂
Q) for every process typeU ∈ dom(ψ) andΨ′′ the set of all
valuationsψ′ ∈ Ψ′ such that|ψ′(T )| ≤ cdT (P‖̂Q) for every
data typeT ∈ dom(ψ′). Now, if [[P]]φ �tr [[Q]]φ for all φ ∈
Φ, then by Proposition 32,[[P]]ψ′′ �tr [[Q]]φ′′ for all ψ′′ ∈
Ψ′′. By Theorem 20, it implies that then[[P]]ψ′ �tr [[Q]]ψ′

for all ψ′ ∈ Ψ′, and by Theorem 16, we see that[[P]]ψ �tr

[[Q]]ψ for all ψ ∈ Ψ, too. Finally, by Proposition 24, it means
that then[[P]]φ �tr [[Q]]φ for all compatible valuationsφ, in
other words,P �̂tr Q.

Theorem 22: Similar to the proof of Corollary 21 but
simpler.
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Figure 3. SPPHost(xh, yh, TA) representing the behaviour of HCP from the viewpoint of two hosts, whereto() denotes timeout andwh(zh, za)
means that the hostza wants to know whether someone has the addressza.

D. Verification Models

1) HCP:

type H
type A

var h : H
var h2: H
var a : A
var a2: A

chan timeout
chan whohas : H,A
chan ihave : H,A

plts Host =
lts

I = timeout() -> I
[] []a:whohas(h2,a) -> I
[] []a:ihave(h2,a) -> I
[] []a:whohas(h,a) -> W(a)

W(a) = timeout() -> S(a)
[] timeout() -> I
[] ihave(h2,a) -> I
[] whohas(h2,a) -> I
[] []a2:[!a2=a] ihave(h2,a2) -> W(a)
[] []a2:[!a2=a] whohas(h2,a2) -> W(a)

S(a) = timeout() -> S(a)
[] ihave(h,a) -> S(a)
[] whohas(h2,a) -> R(a)
[] []a2:[!a2=a] whohas(h2,a2) -> S(a)
[] []a2:ihave(h2,a2) -> S(a)

R(a) = ihave(h,a) -> S(a)
from I



plts DifAdr =
lts

I = []a2:ihave(h2,a2) -> I
[] []a: ihave(h,a) -> S1(a)

S1(a) = []a2:[!a2=a] ihave(h2,a2) -> S1(a)
[] ihave(h,a) -> S1(a)

from I

pset WTEv = (_)h,a:{timeout(), whohas(h,a)}

plts Sys = ||h,h2:[!h=h2] Host

plts Spec = ||h,h2:[!h=h2] DifAdr

verify Sys \ WTEv against Spec wrt traces when true

2) SRS:

type U
type R
type D

avar k : U
avar k1 : U
avar k2 : U
avar r : R
avar d : D

chan rdlock : U, R
chan wrlock : U, R
chan unlock : U, R
chan rdbeg : U, R
chan rdend : U, R, D
chan wrbeg : U, R, D
chan wrend : U, R

ltsc User =
lts

I = rdlock(k,r) -> R
[] wrlock(k,r) -> W
[] tau() -> I

R = rdbeg(k,r) -> R2
[] wrlock(k,r) -> W
[] unlock(k,r) -> I

R2 = [] d : rdend(k,r,d) -> R
W = rdbeg(k,r) -> W2

[] [] d : wrbeg(k,r,d) -> W3
[] unlock(k,r) -> I

W2 = [] d : rdend(k,r,d) -> W
W3 = wrend(k,r) -> W

from I

ltsc Lock =
lts



NO = rdlock(k1,r) -> R1
[] wrlock(k1,r) -> W1
[] rdlock(k2,r) -> R2
[] wrlock(k2,r) -> W2

R1 = wrlock(k1,r) -> W1
[] unlock(k1,r) -> NO
[] rdlock(k2,r) -> R12

R2 = wrlock(k2,r) -> W2
[] unlock(k2,r) -> NO
[] rdlock(k1,r) -> R12

W1 = unlock(k1,r) -> NO
W2 = unlock(k2,r) -> NO
R12 = unlock(k1,r) -> R2

[] unlock(k2,r) -> R1
from NO

ltsc Mutex1 =
lts

NO = rdbeg(k,r) -> R1
[] [] d : wrbeg(k,r,d) -> N1

N1 = wrend(k,r) -> NO
R1 = [] d : rdend(k,r,d) -> NO

from NO

ltsc Mutex2 =
lts

NO = rdbeg(k1,r) -> R1
[] rdbeg(k2,r) -> R2
[] [] d : wrbeg(k1,r,d) -> N1
[] [] d : wrbeg(k2,r,d) -> N2

N1 = wrend(k1,r) -> NO
N2 = wrend(k2,r) -> NO
R1 = [] d : rdend(k1,r,d) -> NO

[] rdbeg(k2,r) -> RR
R2 = [] d : rdend(k2,r,d) -> NO

[] rdbeg(k1,r) -> RR
RR = [] d : rdend(k1,r,d) -> R2

[] [] d : rdend(k2,r,d) -> R1
from NO

ltsc SRS = (|| k, r : User) || (|| r, k1, k2 : [!k1=k2] Lock)

ltsc Mutex = (|| k1, k2, r : [!k1=k2] Mutex2) || (|| k,r : Mutex1)

ssc LcEv = (_) k, r : {rdlock(k,r), wrlock(k,r), unlock(k,r)}

verify SRS \ LcEv against Mutex wrt traces when true

3) Cache:

type P
type R
type D

var p : P



var p2 : P
var r : R
var r2 : R
var d : D
var d2 : D

chan rdbeg : P,R
chan rdend : P,R,D
chan wrbeg : P,R,D
chan wrend : P,R
chan rdmem : P,R,D
chan flush : R,D

plts CUnit =
lts

I = rdbeg(p,r) -> IR
[] [] d : wrbeg(p,r,d) -> IW(d)
[] rdbeg(p2,r) -> I
[] [] d : wrbeg(p2,r,d) -> I
[] [] d : flush(r,d) -> I

IR = [] d : rdmem(p,r,d) -> IR2(d)
[] rdbeg(p2,r) -> IR

IR2(d) = rdend(p,r,d) -> S(d)
[] rdbeg(p2,r) -> IR2(d)

IW(d) = wrend(p,r) -> M(d)

S(d) = rdbeg(p,r) -> SR(d)
[] rdbeg(p2,r) -> S(d)
[] [] d : wrbeg(p,r,d) -> SW(d)
[] flush(r,d) -> I
[] tau() -> I

SR(d) = rdend(p,r,d) -> S(d)
[] rdbeg(p2,r) -> SR(d)

SW(d) = wrend(p,r) -> M(d)

M(d) = rdbeg(p,r) -> MR(d)
[] [] d : wrbeg(p,r,d) -> MW(d)
[] flush(r,d) -> S(d)
[] flush(r,d) -> I

MR(d) = rdend(p,r,d) -> M(d)
MW(d) = wrend(p,r) -> M(d)

from I

plts Cache = || p,p2,r : [!p=p2] CUnit

plts MUnit =
lts

I = tau() -> M(d)
M(d) = rdmem(p,r,d) -> M(d)

[] [] d2 : flush(r,d2) -> M(d2)
from I

plts Mem = || p,r : MUnit



plts CacheMem = Cache || Mem

plts Mut2 =
lts

I = rdbeg(p,r) -> R1
[] rdbeg(p2,r) -> R2
[] [] d : wrbeg(p,r,d) -> W1
[] [] d : wrbeg(p2,r,d) -> W2

R1 = [] d : rdend(p,r,d) -> I
[] rdbeg(p2,r) -> R12

R2 = [] d : rdend(p2,r,d) -> I
[] rdbeg(p,r) -> R12

R12 = [] d : rdend(p,r,d) -> R2
[] [] d : rdend(p2,r,d) -> R1

W1 = wrend(p,r) -> I
W2 = wrend(p2,r) -> I

from I

plts Mutex = || p,p2,r : [!p=p2] Mut2

pset MemAcc = (_) p,r,d : {rdmem(p,r,d), flush(r,d)}

verify CacheMem \ MemAcc against Mutex wrt traces when true


