
Implementing a CTL Model checkerKeijo HeljankoHelsinki University of Technology, Digital Systems LaboratoryOtakaari 1, FIN-02150 Espoo, FinlandKeijo.Heljanko@hut.�July 29, 1996AbstractThis paper discusses the implementation of a branching time temporal logic CTL model checkerfor the PROD Pr/T-Net Reachability analysis tool. A new algorithm for model checking CTL ispresented. This algorithm doesn't need the converse of the transition relation as the EMC algorithmdoes [4]. The algorithm also provides a counterexample and witness facility using one-pass reachabil-ity graph traversal. The ALMC local model checking algorithm as presented in [10] uses a two-passalgorithm. The new algorithm presented here is a global model checking algorithm and requires lessmemory in the worst case than the local model checking ALMC algorithm.Classi�cation: Concurrency, distributed systems1 IntroductionThis paper discusses the implementation of a branching-time temporal logic CTL model checkerfor the PROD Pr/T-Net Reachability analysis tool [7], [9] . The need for a new branching timemodel-checker was raised by the users of PROD. The model checker would be implemented in thereachability graph traversal tool PROBE, so the implementation would have the reachability graphgenerated for it.The partial order methods implemented in the PROD tool set reachability graph generationdo not preserve the branching time temporal logic CTL, and can't be applied to the reachabilitygraph generation when checking CTL properties. Therefore the full reachability graph needs to begenerated. The full reachability graph generation is the bottleneck in using the CTL model checker.Model checking CTL has been know to have a linear complexity in terms of the size of thereachability graph to be checked and also in the size of the CTL formula to be checked [4]. Westudied two existing algorithms for model checking CTL: the EMC algorithm [4] by Clarke, Emersonand Sistla, and the ALMC algorithm [10] by Vergauwen and Lewi.What was discovered was that while both of the algorithms could be used as a basis for a lineartime model checker, they both had some drawbacks in our application.The EMC model checker needs both the forward transition relation, and the converse of thetransition relation during model checking. While the converse of the transition relation can betheoretically computed in linear time, it requires additional storage space which is proportional tothe number of edges in the reachability graph. Another problem with the EMC algorithm is that itdoesn't contain a counterexample and witness facility [3]. These are in our experience very valuablewhen for example verifying an un�nished design that contains faults. The model checker can give acounterexample path along which a universally quanti�ed formula does not hold, or a witness pathalong which an existentially quanti�ed the formula holds.The ALMC model checker is a so called local model checker. It evaluates the truth value of theformula to be checked in a top-down manner evaluating only those subformulas that are needed todecide the truth value of the top level formula. The ALMC algorithm stores information aboutwhich subformulas it has already evaluated and the truth values of those subformulas. Evaluatinga subformula in ALMC algorithm requires space for search structures which is propositional to thenumber of nodes in the reachability graph in the worst case. Because evaluating a subformula mighttrigger the evaluating its subformulas, the search structures for the ALMC algorithm can require1



several times more memory than a global model checker in the worst case. The added memory usedfor book-keeping enables a local model checker to evaluate only a subset of those formulas that aglobal model checker does. In the worst case it needs to evaluate all the subformulas in the sameway a global model checker does.Because the model checking algorithms presented in the literature were not a perfect match forour needs, we developed a new model checking algorithm. It is based on the same basic ideas as theEMC and ALMC algorithm, but also contains some new ideas. The resulting new algorithm is aglobal model checker with a counterexample and witness facility.Our algorithm uses directed graph depth-�rst search as the basic algorithm on which the modelchecking algorithm is implemented. It enables us to do CTL model checking memory-e�ciently witha counterexample and witness facility provided without increasing the time or space complexity ofthe algorithm.One implementation option was to make the CTL model checker a BDD-data structure [1], [8]based one. It was discovered that we couldn't get all the bene�ts of the BDD-based model checkingwithout a major rewrite of the PROD tools. We decided that a more conventional approach would�t the current tools better and we could still be able to obtain very signi�cant improvements in CTLmodel checking compared to the older versions of the PROD tools.In chapter 2 we shortly de�ne the branching time temporal logic CTL. Chapter 3 discusses CTLmodel checking complexity and the local vs. global model checking. In chapter 4 we present our newalgorithm. Chapter 5 discusses the PROD implementation issues.2 Branching time temporal logic CTLHere we brie�y discuss the branching time temporal logic CTL. For a more thorough discussion ondi�erent temporal logics we direct the reader to [5]. This section is largely based on the paper byClarke, Emerson and Sistla [4]. We discuss model checking �nite-state systems that are described asa labeled state-transition graph. This structure is a triple M = (S;R; P ) where1. S is a �nite set of states2. R is a binary relation on S(R � S � S) which gives the possible transitions between states. Itmust be total; 8x 2 S 9y 2 S [(x; y) 2 R]3. P : S ! 2AP assigns to each state atomic proposition true in that stateThe formal syntax of CTL is given below:1. Every atomic proposition p 2 AP is a CTL formula2. If f1 and f2 are CTL formulas, so are :f1; f1 ^ f2; EXf1; A [f1 U f2] and E [f1 U f2].A path is an in�nite sequence of states (s0; s1; : : :) such that 8i [(si; si+1) 2 R]. For any structureM = (S; R;P ) there is an in�nite computation tree with root labeled s0. s! t is a arc in the tree i�(s; t) 2 R. The relation M;s0 j= f means that the formula f holds at state s0 in structure M . Therelation j= is de�ned inductively as follows:1. M;s0 j= p i� p 2 P (s0)2. M;s0 j= :f i� not(M;s0 j= f)3. M;s0 j= f1 ^ f2 i� M;s0 j= f1 and M;s0 j= f24. M;s0 j= EXf1 i� M; t j= f1 for some state t such that (s0; t) 2 R5. M;s0 j= A [f1 U f2] i� for all paths (s0; s1; : : :),9i [i � 0 ^M;si j= f2 ^ 8j [0 � j < i =) M;sj j= f1]]6. M;s0 j= E [f1 U f2] i� for some path (s0; s1; : : :),9i [i � 0 ^M;si j= f2 ^ 8j [0 � j < i =) M;sj j= f1]]We can use some abbreviation to help us in writing CTL formulas more easily:1. AX(f) � :EX(:f) means that f holds in all the immediate successor states of s2. AF (f) � A [True U f ] means that f holds in the future along every path3. EF (f) � E [True U f ] means that there is some path which leads to a state at which f holds4. AG(f) � :EF (:f) means that f holds in every state on every path5. EG(f) � :AF (:f) means that there is some path on which f holds in every state2



3 CTL Model checkingCTL model checker is a program that answers the problem stated as follows: Given a structure Mand a CTL formula f, determine which states ofM satisfy f . We may be only interested whether theformula is satis�ed in a state s of the structure M . This is called local model checking [10]. Anotherpossibility is that we want to know the satis�ability of formula f in all the states of the structureM . This is called global model checking correspondingly.The model checking problem for CTL has been shown to be linear in both the length of theformula f and the size of the structure M [4]. Therefore in the worst case CTL model checkersdiscussed here require O(length(f) � (card(S) + card(R))) running time.A global model checker evaluates the truth value of the top-level formula in a bottom-up manner.It always evaluates the truth values of subformulas in all states of a graph before trying to evaluate aformula that depends on these subformulas. If some of these subformula truth values are not neededto evaluate the truth value of the top-level formula, unnecessary work has been performed. One wayof looking at globally evaluating a subformula is that it creates a new atomic proposition that isevaluated to either true or false for all the states of the reachability graph.A local model checker, which only wants to know the satis�ability of a formula in one state canevaluate only those of the subformulas it requires to show whether the top-level formula is satis�edor not. The drawback is that it needs to do more complicated book-keeping to lazily evaluate onlythose subformulas it needs. This translates into a slower execution when compared to a simpler globalmodel checking algorithm. The ALMC [10] local model checking algorithm also has to keep in memorythe search structures needed for evaluating a top-level formula when encountering a non-evaluatedsubformula. Evaluating this subformula can recursively cause an evaluation of its subformulas. Thesize of each of these search structures are proportional to the number of nodes in the reachabilitygraph for each subformula.We decided to develop a global model checking algorithm because it requires less memory forboth storing the subformulas and the subformula evaluation search structures in the worst case. Thiscombined with the reduced book-keeping overhead of the model checking algorithm will hopefullymake up for the potentially larger number of subformulas required to be evaluated.4 A Global Model Checking AlgorithmHere we present a new algorithm for model checking CTL. It owes a lot to the algorithms EMC[4] and ALMC [10]. It presents an algorithm which has the reduced book-keeping overhead of theEMC algorithm, without the need for the backward transition relation. Another major bene�t isthe counterexample and witness facility, which is provided without a�ecting the complexity of thealgorithm. The paper presenting the ALMC algorithm uses a two-pass depth-�rst search methodto implement model checking the temporal subformula E [f1 U f2]. The basic idea of used by ouralgorithm for model checking the temporal formula E [f1 U f2] is the same as used in the ALMCalgorithm, but our algorithm uses simpler datatypes and completes the model checking using onlyone-pass depth-�rst search.Our algorithm implements local model checking for the top-level subformula. This can be seen asan optimization which is provided because it required no extra memory or running-time overhead.Because of space considerations we won't duplicate the parts of the model checking algorithmthat are identical to the ones represented in [4] and [10]. We present here the procedures needed formodel checking only the temporal subformulas A [f1 U f2] and E [f1 U f2]. The main program andthe algorithms needed for model checking other temporal subformulas are either trivial or identicalto the algorithms presented in [4], [10].4.1 Model checking the formula A [f1 U f2]Implementation of the subroutine check_au, which is used to model check the temporal formulaA [f1 U f2], is very similar to the one used in the ALMC algorithm. Because our algorithm is a globalmodel checker, some of the logic needed in evaluating a formula can be replaced by initializationwhich uses only simple boolean operations on subformula truth values.Subroutine check_au is provided with truth values of the subformulas f1 and f2 evaluated in allstates. It labels states marked when the truth of the formula has been evaluated in that state, andit stores the truth values of the formula to be evaluated for each state in labeled. All of these can besimply implemented with bit-arrays containing as many bits as there are states.The actual subroutine check_au is called with additional parameters state and check_global. Theparameter state is the state we want the formula A [f1 U f2] to be evaluated in, and check_global is3



false when the formula to be checked is a top-level subformula, and a counterexample path is to beproduced instead. Here is the pesudo-code for the subroutine check_au:1 proc check_au(state; f1; f2; check global) �2 init_f_and_marked(f1; f2); Initialize from subformula values3 if check global then4 foreach s 2 S do Evaluate formula in all states5 if :marked(s) then6 st := empty stack;7 visit_au(s; st);8 �;9 od;10 else11 st := empty stack; Evaluate formula in state12 if :visit_au(state; st) then13 process_counterexample (st);14 �;15 �;16 return (labeled(state));17 .4.1.1 InitializationApart from the counterexample facility the subroutine check_au also di�ers from other model checkersin the initialization of the marked and labeled. We want the bit-array marked to be initialized to truewhen we can decide the truth value of the formula without searching any successor states. We wantthe bit-array labeled to be initialized to true only when we can decide that the formula is truewithout searching any successor states. From the de�nition of the temporal formula A [f1 U f2] wecan create a truth table presenting all the possible cases:f1 f2 marked labeledfalse false true falsefalse true true truetrue false false falsetrue true true trueFrom the column marked in the truth table we see that only those states in which f1 holds butf2 doesn't hold require further processing. Implementing these initializations can be easily be madefast by processing several states at a time in one machine word. Also if the subformulas f1 and f2are no longer needed, they can be overwritten as marked and labeled respectively.4.1.2 Searching for a counterexampleThe subroutine visit_au is a non-recursive subroutine with explicit stack manipulation to implementdepth-�rst search. The logic of the visit_au is to try to �nd a counterexample that shows that theformula A [f1 U f2] doesn't hold in an unmarked state s. If no such counterexample can be found,the formula must be true in that state.A counterexample is either a path of initially unmarked states to a state in which neither f1 norf2 holds, or an in�nite path (i.e. a path ending in a loop) of initially unmarked states along whichf1 holds, but f2 does not hold. We do not need to tell these two cases apart, if we do not want to. Ifwe have found a counterexample, all states on the search stack are part of this counterexample pathand we must conclude they should be labeled false, which is their initialization value in the truthtable above. A formal de�nition of the two possible cases of counterexample paths is below:A path �c = s0; s1; : : : is a counterexample for formula A [f1 U f2] in state s0 i�:9i [i � 0 ^M; si j= (:f1 ^ :f2) ^ 8j [0 � j < i =) M;sj j= (f1 ^ :f2)]]4



or9i [i � 0 ^ 9j [j > 0 ^ si = si+j ^ 8k [0 � k < i + j =) M; sk j= (f1 ^ :f2)]]]The de�nition above is suitable for our purposes when noticing that one can replace in thede�nition (:f1 ^ :f2) with (marked ^ :labeled), and (f1 ^ :f2) with (:marked ^ :labeled). Thisde�nition of counterexample paths is derived from the following equality of CTL formulas presentedin [4]: 1 A [f1 U f2] � 1 :(E [:f2 U :f1 ^ :f2] _ EG(:f2)) .We only need to evaluate the formula in those states in which it is unknown i.e. which arenot marked. If we �nd a marked and labeled state, it can't belong to a counterexample path, andtherefore we do not need to consider paths going trough it as potential counterexamples.Each time we encounter a new unmarked state, we mark it. By doing this we accomplish twothings: We know the truth value of the formula in all visited states after returning from visit_au,and therefore no state needs to be visited more than once. Secondly we notice if a counterexamplepath ending in a loop is found by encountering a state marked when it was �rst seen by visit_au,and which is not yet labeled.When all successor states of a state have been visited and no counterexample has been found, wemust conclude that the formula is true in that state and label the state accordingly. If the searchstack st is empty, all states reachable from the state s have been visited and the formula A [f1 U f2]must be true in state s.Here is the pseudo-code for visit_au:1 proc visit_au(s; st) �2 while TRUE do3 while TRUE do4 if :marked(s) then5 mark_state(s); Unmarked state found, mark it.6 succ num := 0; Search succs for counterexample7 push(hs; succ numi; st); Push state8 s := successor(s; succ num); Get �rst successor9 else10 if :labeled(s) then11 push(hs; 0i; st); Counterexample12 return (FALSE); found13 �;14 break ; Already labeled, backtrack to parent15 �;16 od;17 while TRUE do18 if empty(st) then19 return (TRUE); No counterexample found20 �;21 hs; succ numi := pop(st); Get parent22 succ num := succ num+ 1; Try next successor23 if has_successor(s; succ num) then24 push(hs; succ numi; st); Push state25 s := successor(s; succ num); Next succ26 break ; Visit succ27 else28 add_label(s); Succs visited, formula true29 �;30 od;31 od;32 .The stack st contains tuples hs; succ numi, the succ_num is a index to the successor state table ofstate s. The subroutine has_successor(s,succ_num) returns true if the state s has over succ_num+1successors. The subroutine successor(s,succ_num) returns the successor state indexed by succ_num.Note that because the structures over which CTL is interpreted are total, each state has at least onesuccessor. 5



4.2 Model checking the formula E [f1 U f2]Also the implementation of the subroutine check_eu, which is used to model check the temporalformula E [f1 U f2], is very similar to the one used in the ALMC algorithm. The di�erence here isthat our algorithm is a global model checker that uses one-pass depth-�rst traversal of the reachabilitygraph. The ALMC algorithm as presented in [10] is a local model checking algorithm which uses atwo-pass depth-�rst traversal of the reachability graph.Another major di�erence is that ALMC algorithm uses linked lists and sharing to keep track ofthose states which have been encountered during the depth-�rst search and from which the currentlyvisited state can be reached. Our algorithm uses a stack to store these states.Here is the pseudo-code for check_eu:1 proc check_eu(state; f1; f2; check global) �2 fst := empty stack;3 clear_min_and_modi�ed (); Initialize min to zeroes and modi�ed to false4 init_f_and_marked(f1; f2); Initialize from subformula values5 if check global then6 foreach s 2 S do Evaluate formula in all states7 if :marked(s) then8 st := empty stack;9 visit_eu(s; st; fst);10 �;11 od;12 else13 st := empty stack; Evaluate formula in state14 if visit_eu(state; st; fst) then15 process_witness(st);16 �;17 �;18 return (labeled(state));19 .4.2.1 InitializationAs before we use the bit-array marked to mark those states for which the �nal truth value of theevaluated formula is known. Also we use the bit-array labeled to mark those states in which theformula is true.We can see from the de�nition of the formula E [f1 U f2] that the bit-arrays marked and labeledshould be initialized with exactly the same truth table as for the formula A [f1 U f2]:f1 f2 marked labeledfalse false true falsefalse true true truetrue false false falsetrue true true true4.2.2 Searching for a witnessThe logic used in evaluating the subformula E [f1 U f2] is the following: We try to �nd a path ofinitially unmarked states to a state which is both marked and labeled. If no such path can be foundthe formula must be false.For the formula E [f1 U f2] de�ning which paths are witness paths is straightforward. We can getthis almost directly from the CTL de�nition:A path �w = s0; s1; : : : is a witness for formula E [f1 U f2] in state s0 i�:9i [i � 0 ^M;si j= f2 ^ 8j [0 � j < i =) M;sj j= (f1 ^ :f2)]]6



Again using the initialization truth table we can replace in the de�nition above (f1 ^ :f2) with(:marked ^ :labeled), and f2 with (marked ^ labeled).Unfortunately creating an algorithm for model checking E [f1 U f2] while keeping the model check-ing algorithm linear in the number of states is much more challenging than model checking A [f1 U f2].When we �nd the last state of a witness path, we must decide for all visited states, whether theformula is true or false in them.The EMC algorithm in [4] depends on the converse of the transition relation to implement this.It �rst globally �nds those states in which f2 holds and then does a depth-�rst starting from thesestates using states in which f1 holds. All these states are such that E [f1 U f2] holds in them and arelabeled when found.The drawback of using the EMC method is that the amount of additional storage needed to storethe converse of the transition relation is proportional to the number of transitions in the reachabilitygraph.The method we use here is to continuously keep track of those states encountered before state sthe depth-�rst search from which the currently visited state can be reached. First we de�ne < to bethe total ordering relation on visited states: 8s; s0 2 S : s < s0, i� state s was encountered befores' during the depth-�rst search. We use the symbol ; to represent those edges of the reachabilitygraph which have been traversed by the current call to the subroutine visit_eu. The �; is used torepresent the re�exive, transitive closure of;. The set of 'father' states is de�ned here to be functionF : S ! P(S) : F (s) = ns0 � s j s0 �; soWhen a state which is the last state of a witness path is encountered in the depth-�rst search, allstates in F (s) must also be labeled. Our algorithm visit eu keeps track of the set F (s) by using astack fst. At the time the state s is �rst visited the stack fst contains all those visited states s0 fromwhich s can be reached: 8s0 2 fst[s0 �; s].Here we present only a sketch why the states stored on the stack fst are exactly those visitedstates from which the currently visited state s can be reached.Each time a state s is visited for the �rst time, the stack fst contains the visited states from whichthe state s can be reached. The state s always belongs to the set F (s) and is added to stack fstbefore visiting any successor state t. After this the array min is set to the depth-�rst search numberof the state s and min value is marked unmodi�ed.Next we visit successor states of s one at a time. We return from searching a successor state tonly if no witness path end state could be found from t.When returning from a successor state t back to the parent state s, the array min value for thesuccessor contains the depth-�rst search number of the smallest state reachable from the successor,or 0 if there is no way of �nding a counterexample which contains the successor state. If the smalleststate reachable through the successor t is smaller than the current smallest depth-�rst number storedin the variable min of s, the following is true: 9s0 2 F (s)[s; t �; s0]. The min value of s is in thiscase updated to the value of the successor t i.e depth �rst search number of the state s0 and the minvalue of s is marked modi�ed.After all successor states of state s have been visited, and the min value of state s hasn't beenmodi�ed, there can't exist a witness path that contains state s or any state reachable from it. Beforewe return to the parent state of s we must update the stack fst by removing s and all states foundafter s from the stack fst.If the min value has been modi�ed, we have found a loop: 9s0 2 F (s)[s �; s0 �; s ^ s0 < s]. Thisloop requires us to keep s and all states found after it on the stack fst. The logic for this is thatthrough s we can get to a state s0 found earlier in the depth-�rst search. We can now from s0 getto any new state found during the depth-�rst search at least as long as state s0 has not been fullyprocessed. Now we can return to the parent state of s and the stack fst has been updated for thenext unmarked state to be visited.All that is left for us to do in visit_eu is to combine the updating of the stack fst with detectionof the end state of a witness path. When an end state of a witness path is encountered, the stackfst will contain all the initially unmarked states from which it can be reached. All that is left for usto do is to label the formula true for all the states in the stack fst. If no witness can be found fromthe start state of the search, no witness can be found and the formula must therefore be false in allvisited states. This is the initialized value, so nothing more needs to be done in this case.7



Here is the pseudo-code for visit_eu:1 proc visit_eu(s; st; fst) �2 dfs := 1;3 while TRUE do4 while TRUE do5 if :marked(s) then6 mark_state(s); Unmarked state found, mark it.7 push(s; fst); Store state on father state stack8 set_min(s; dfs); Store the state depth-�rst search number9 reset_modi�ed(s); Mark minimum reachable state as unmodi�ed10 dfs := dfs+ 1;11 succ num := 0; Search succs for witness12 push(hs; succ numi; st); Push state13 s := successor(s; succ num); Get �rst successor14 else15 if labeled(s) then Witness found16 push(hs; 0i; st); 8t 2 fst[t �; s]17 while :empty(fst) do18 t := pop(fst); Get state19 set_min(t; 0); Cleanup20 reset_modi�ed(t);21 add_label(t); Label state22 od;23 return (TRUE);24 �;25 break ; Not labeled, backtrack to parent26 �;27 od;28 while TRUE do29 if empty(st) then30 return (FALSE); No witness found31 �;32 successor min := get_min(s); Get smallest dfs of reachable states33 hs; succ numi := pop(st); Get parent34 if ((successor min 6= 0) ^ (get_min(s) > successor min))35 then36 set_min(s; successor min); Update smallest dfs of reachable states37 set_modi�ed(s); Mark the smallest dfs reachable form s modi�ed38 �;39 succ num := succ num+ 1; Try next successor40 if has_successor(s; succ num)41 then42 push(hs; succ numi; st); Push state43 s := successor(s; succ num); Next succ44 break ; Visit succ45 else All succs visited46 if :modi�ed(s) then Can a state with a smaller dfs number be reached?47 repeat No. ! No witness can be reached from s48 t := pop(fst); or any states t reachable from it49 set_min(t; 0); Cleanup50 reset_modi�ed(t);51 until t = s; All states reachable form s popped?52 �;53 �;54 od;55 od;56 . 8



5 PROD implementation of the algorithmWe have implemented the model checking algorithm presented in the previous section of this pa-per and integrated it into the PROD tool set reachability graph traversal tool PROBE. It will bedistributed in a future release of the PROD tool set.The implementation of the CTL model checking algorithm presented in previous section has beenstraightforward. Initializing the bit-arrays marked and labeled several states at a time enables themodel checker to avoid calling the visit_au and visit_eu subroutines for many states.In our experience most of the time in CTL model checking is spent in evaluating the atomicsubformulas for all states in the reachability graph. The current implementation evaluates all atomicsubformulas for all states in one pass over the markings generated by the PROD reachability graphgenerator. This is to avoid accessing the large marking �le several times for each state as atomicsubformulas are evaluated. This is possible, because the amount of memory needed to store thetruth values of the atomic subformulas is usually very small when compared to for example memoryneeded to store the markings of the Pr/T-Net reachability graph. The current code used to evaluatethe atomic subformulas has been reused from the old PROBE query language. One way of speedingup the model checking would be to rewrite this code to better �t the CTL model checking algorithm.Model checking for the top-level formula is local in the current implementation, but the imple-mentation still evaluates the needed atomic subformulas in all states. We could easily implementa local model checker with small modi�cations to the algorithms presented in the previous section.The user of the tool could then choose the method better suited for his or her purpose, based onintuition of the problem at hand. A global model checker might have smaller worst case memoryrequirements, while a local model checker might require evaluating less subformulas.The algorithm presented in the previous section always gives an counterexample or witness pathwhen one can be found. This path is the �rst one found during the depth-�rst search. In some casesthis path might be longer than necessary. Another algorithm could be added to the tool set, whichwould try to �nd shorter counterexample and witness paths.6 ConclusionsPartial order reductions used in the PROD reachability graph generation do not preserve the branch-ing time temporal logic CTL properties. Therefore we need to generate the full reachability graph forthe problem at hand. This limits the usefulness of the CTL model checking algorithm presented here.Partial order reductions can be used while preserving the temporal logic CTL-X, the branching timelogic CTL without the next-state operator, as demonstrated by [6], [11]. We do not currently knowof any implementation combining the CTL-X preserving partial-order reductions with an on-the-�ybranching time model checker.The CTL model checker presented in this paper has linear time complexity both in the size ofthe formula to be checked and the reachability graph to be model checked. The algorithm is a globalmodel checking algorithm with a counterexample and witness facility. It is more memory e�cientthan the ALMC algorithm [10] in the worst case. The algorithm is a one-pass depth-�rst searchalgorithm with small book-keeping overhead.In their paper Cheng, Christensen and Morgensen [2] discuss a way of using the strongly connectedcomponents of a graph when model checking some often used CTL queries. The methods presentedin their paper can be used also with the model checking algorithm presented here. The stronglyconnected components of a graph could also be used to optimize the order in which the global modelchecking is performed for the unmarked states in the reachability graph. We can use topologicalsorting to arrange the order in which the strongly connected components should be marked, startingfrom the terminal components. In this way we would minimize the amount of memory needed fordi�erent search stacks.
9



References[1] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactionson Computers, C-35 (1986) 8. pp. 677�691[2] Cheng, A., Christensen, S., Mortensen, K. H.: Model Checking Coloured Petri Nets; Exploit-ing Strongly Connected Components. Proceedings of 3rd Workshop on Discrete Event Systems,Edinburgh, Scotland, UK, August 1996. To appear.[3] Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: E�cient Generation of Counterexamplesand Witnesses in Symbolic Model Checking. Pittsburg, October 1994, Technical Report, CarnegieMellon University, School of Computer Science, TR CMU-CS-94-204, 15 p.[4] Clarke, E. M., Emerson, E. A., and Sistla, A. P.: Automatic Veri�cation of Finite-State Concur-rent Systems Using Temporal Logic Speci�cations.ACM Transactions on Programming Languagesand Systems 8 (1986) 2. pp. 244�263.[5] Emerson, E. A.: Temporal and modal logic, in van Leeuwen, J. (ed): Handbook of TheoreticalComputer Science, Volume B, Formal Models and Semantics, 1990, Elsevier, pp. 995�1072[6] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to Branching TimeLogic Model Checking. Proceedings of the 3rd Israel Symposium on the Theory of Computing andSystems, Tel Aviv, Israel, 1995, IEEE Computer Society Press, pp. 130�139[7] Grönberg, P., Tiusanen, M., and Varpaaniemi, K.: PROD�A Pr/T-Net Reachability AnalysisTool. Otaniemi 1993, Digital Systems Laboratory, Helsinki University of Technology, Series B:Technical Reports, No. 11. 44 p.[8] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Hwang, L. J.: Symbolic Model Checking:1020 States and Beyond. Information and Computation, 98 (1992) 2. pp. 142�170[9] Varpaaniemi, K., Halme, J., Hiekkanen, K., and Pyssysalo, T.: PROD Reference Manual.Otaniemi 1995, Digital Systems Laboratory, Helsinki University of Technology, Series B: Tech-nical Reports, No. 13. 56 p.[10] Vergauwen, B., Lewi, J.: A Linear Local Model Checking Algorithm for CTL. Best, E. (ed), Pro-ceedings of 4th International Conference on Concurrency Theory, Hildesheim, Germany, August1993, Lecture Notes in Computer Science 715, Springer-Verlag, pp. 447�461[11] Willems, B., Wolper, P.: Partial-Order Methods for Model Checking: From Linear Time toBranching Time. Proceedings of 11th Annual IEEE Symposium on Logic in Computer Science,New Jersey, USA, July 1996. To appear.

10


