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Abstra
tThe paper presents a symboli
 analysis method for solving bounded dead-lo
k dete
tion and rea
hability questions for Petri nets using nonmonotoni
reasoning te
hniques. More pre
isely, a mapping is devised su
h that given a1-safe P/T-net, some Boolean 
onditions on the initial marking, and a boundn, a logi
 program is obtained su
h that there is an exe
ution of at most nsteps of the net starting from some initial marking satisfying the 
onditionsleading to deadlo
k i� the logi
 program has a stable model. A similar map-ping is given for rea
hability questions from a set of initial markings satisfyinggiven Boolean 
onditions. Experiments to solve deadlo
k problems using theSmodels system as the stable model �nder indi
ate that the approa
h 
anprovide a 
ompetitive method for �nding short exe
utions to deadlo
ks.1 Introdu
tionThis is a paper for whi
h the resear
h started 15 years ago. It 
ombines two areasthat seem to have very little to do with ea
h other. The idea is to employ non-monotoni
 reasoning te
hniques for analyzing Petri nets. We start the paper byan a

ount of its history. This provides a ni
e example of the way Prof. Leo Ojaladoes resear
h and leads a resear
h group. It also illustrates the open-mindedness,far-sightedness and long-term 
ommitment of Leo in his approa
h to resear
h.The se
ond author began to work on this paper (without even realizing it) in spring1985 in a postgraduate seminar organized by Leo. The topi
 was nonmonotoni
logi
s. They involved strange mathemati
 
on
epts like �xed point equations andse
ond-order logi
. It was hard to understand the de�nitions and even harder to
omprehend where all this 
ould be used. Gradually it be
ame 
learer (to the se
ondauthor) that these logi
s are being developed to solve some fundamental problems inarti�
ial intelligen
e and, in parti
ular, in knowledge representation. The problemsarise when des
ribing dynami
 systems, e.g., e�e
ts of a
tions, using a logi
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approa
h. The 
laim was that 
lassi
al logi
s are not well suited for this be
ause of,e.g., the frame problem [15℄ and new nonmonotoni
 logi
s are needed.Leo and his student Heikki Tuominen had got interested in nonmonotoni
 reasoningin their study of using logi
 in Petri net analysis. One approa
h was to des
ribethe dynami
s of a Petri net axiomati
ally employing a suitable logi
. They hadused temporal logi
 [1℄ but this was not quite straightforward, e.g., be
ause of theframe problem and they had started with nonmonotoni
 logi
s as a possible remedy.However, very little was known about the 
omplexity, de
idability and appli
abilityof su
h odd logi
s. As many young people do, the se
ond author got interested insu
h a 
hallenging topi
 and started his Master's thesis on the subje
t in 1986.Sorting out the basi
 properties of this new form of reasoning kept the se
ond authorbusy and we did not get very far in axiomatizing Petri nets using nonmonotoni
logi
s. However, other interesting things got done. For the axiomati
 approa
hHeikki de
ided to use dynami
 logi
 and gave an axiomatization of elementary netsystems [28℄. Also a model 
he
king approa
h was developed [28, 25℄ where therea
hability graph of a Petri net was interpreted as a (Kripke) model of temporallogi
 whi
h was used as a query language for 
he
king interesting properties of thenet. Gradually su
h a model 
he
ker has be
ome a standard part of the Petri netanalysis tools developed in Leo's laboratory [29, 8, 14℄.It be
ame 
lear quite early that nonmonotoni
 logi
s were not ripe for appli
ationsand a lot of work was needed. This did not dis
ourage Leo and he let the se
ondauthor to 
ontinue the resear
h on nonmonotoni
 reasoning. This was a new areaand novel results were obtained starting from de
idability [18℄, 
omputational 
om-plexity [19℄, and de
ision pro
edures [21℄. The inno
ent little side-tra
k of Petrinet resear
h grew gradually and has resulted already in, e.g., four do
toral disserta-tions [20, 26, 11, 27℄.In the early nineties the results obtained indi
ated that it 
ould be possible to auto-mate nonmonotoni
 logi
s (suitably restri
ted) as eÆ
iently as 
lassi
al logi
s andmaybe eÆ
iently enough to make them interesting for real appli
ations. A seriouse�ort to demonstrate the appli
ability of nonmonotoni
 reasoning te
hniques startedand led to the development of the Smodels system [23, 24, 27℄ (http://www.t
s.hut.fi/Software/smodels/) whose �rst version was released in summer 1995. Itturned out that the nonmonotoni
 te
hniques in Smodels are promising in manyareas su
h as 
onstraint satisfa
tion, 
ombinatorial problems and planning [22℄.The maturing implementation te
hnology for nonmonotoni
 reasoning provided anopportunity to apply it seriously to Petri net analysis. The �rst approa
h was to usenet unfoldings (�nite 
omplete pre�xes) [10, 9℄. Smodels was used here as a solverfor rea
hability and deadlo
k questions on pre�xes with en
ouraging results. Hen
e,it felt very interesting to return to the problem where all work on nonmonotoni
reasoning started in Leo's lab 15 years earlier, i.e., axiomatizing Petri nets usingnonmonotoni
 logi
s. The idea is to des
ribe the behavior of a Petri net as well asthe property to be analyzed symboli
ly using the nonmonotoni
 formalism supportedby Smodels in su
h a way that Smodels 
ould analyze the property using dire
tlythe symboli
 representation of the net and, e.g., without 
onstru
ting its rea
habilitygraph.



In the meanwhile signi�
ant progress has been made in using the symboli
 approa
hin system veri�
ation. The �rst breakthrough was in hardware veri�
ation wheresymboli
 model 
he
king te
hniques proved to be very eÆ
ient [3, 4℄. This approa
his based on en
oding rea
hable states using Boolean formulae represented by (or-dered) binary de
ision diagrams (BDDs). Although the BDD-based approa
h hasbeen su

essfully, there are diÆ
ulties in applying the te
hnique, in parti
ular, in ar-eas outside hardware veri�
ation. The key problem is that some Boolean fun
tionsdo not have a 
ompa
t representation as BDDs and the size of the BDD repre-sentation of a Boolean fun
tion is very sensitive to the variable ordering used for
onstru
ting the BDD.Bounded model 
he
king [2℄ has been proposed as a te
hnique for over
oming thespa
e problem by repla
ing BDDs with propositional satis�ability (SAT) 
he
kingte
hniques be
ause typi
al SAT 
he
kers use only polynomial amount of memory.The idea is roughly the following. Given a sequential digital 
ir
uit, a (temporal)property to be veri�ed, and a bound n, the behavior of the 
ir
uit is unfolded up ton steps as a Boolean formula S and the negation of the property to be veri�ed isrepresented as a Boolean formula R. The translation to Boolean formulae is doneso that S ^ R is satis�able i� the system has a behavior violating the propertyof length at most n. A main advantage of the bounded model 
he
king approa
his that it 
an �nd fast 
ounterexamples, i.e., behaviors violating the 
orre
tnessrequirements. When sear
hing for the 
ounterexamples by in
reasing gradually thebound n, one �nds those of minimal length. This helps the user to understand the
ounterexamples more easily.Until now bounded model 
he
king has been applied to syn
hronous hardware ver-i�
ation. In this work we extend the approa
h to handle asyn
hronous 
on
urrentsystems modeled by Petri nets. It turns out that bounded model 
he
king for 1-safeP/T-nets is 
losely related to AI planning. Here we show how to map boundedmodel 
he
king problems to the problem of �nding stable models of logi
 programsby employing ideas used in redu
ing planning to stable model 
omputation [22℄.The stru
ture of the rest of the paper is the following. In the next se
tion weintrodu
e Petri nets and the bounded model 
he
king problem. Then we presentthe nonmonotoni
 logi
 supported by Smodels (logi
 programs with the stable modelsemanti
s) whi
h we employ in the following se
tion to a
hieve a 
ompa
t en
odingof bounded model 
he
king. We present some experimental results and �nish withsome 
on
luding remarks.2 Petri nets and bounded model 
he
kingWe will now introdu
e P/T-nets. They are one of the simplest forms of Petri nets.We will use as a running example the P/T-net represented in Figure 1.A triple hP; T; F i is a net if P \ T = ; and F � (P � T ) [ (T � P ). The elementsof P are 
alled pla
es, and the elements of T transitions. Pla
es and transitions arealso 
alled nodes.
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p3 p4 p5Figure 1: Running Example: A 1-safe P/T-netWe identify F with its 
hara
teristi
 fun
tion on the set (P � T ) [ (T � P ). Thepreset of a node x, denoted by �x, is the set fy 2 P [ T jF (y; x) = 1g. The postsetof a node x, denoted by x�, is the set fy 2 P [ T jF (x; y) = 1g.A marking of a net hP; T; F i is a mapping P 7! IN. A marking M is identi�edwith the multi-set whi
h 
ontains M(p) 
opies of p for every p 2 P . A 4-tuple� = hP; T; F;M0i is a net system (also 
alled a P/T-net) if hP; T; F i is a net andM0 is a marking of hP; T; F i.A marking M enables a transition t 2 T if 8p 2 P : F (p; t) �M(p). If t is enabled,it 
an o

ur leading to a new marking (denoted M t! M 0), where M 0 is de�ned by8p 2 P : M 0(p) = M(p) � F (p; t) + F (t; p). In the running example the transitiont2 is enabled in the initial marking M0, and thus M0 t2!M 0, where M 0 = fp3; p4g.A marking Mn is rea
hable in � if there is an exe
ution, i.e. a (possibly empty)sequen
e of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1 su
h that:M0 t1! M1 t2! : : :Mn�1 tn! Mn. A marking M is rea
hable within a bound n, ifthere is an exe
ution with at most n transitions, with whi
h M is rea
hable fromthe initial state.A marking is 1-safe if 8p 2 P :M(p) � 1. A P/T-net � is 1-safe if all its rea
hablemarkings are 1-safe. In this work we will restri
t ourselves to P/T-nets whi
h are1-safe, have a �nite number of pla
es and transitions, and in whi
h ea
h transitionhas both nonempty pre- and postsets.Given a 1-safe P/T-net �, we say that a set of transitions S � T is 
on
urrentlyenabled in the marking M , if (i) all transitions t 2 S are enabled in M , and (ii)for all pairs of transitions t; t0 2 S, su
h that t 6= t0, it holds that �t \ �t0 = ;. If aset S is 
on
urrently enabled in the marking M , we 
an �re it in a step (denotedM S!M 0), where M 0 is the marking rea
hed after �ring all of the transitions in thestep S in arbitrary order. In our running example in the marking M 0 = fp3; p4gthe step ft1; t4g is enabled, and will lead ba
k to the initial marking M0. This isdenoted by M 0 ft1;t4g! M0.We say that a marking Mn is rea
hable in step semanti
s in a 1-safe P/T-net � ifthere is an step exe
ution, i.e. a (possibly empty) sequen
e of steps S1; S2; : : : ; Snand markings M1;M2; : : : ;Mn�1 su
h that: M0 S1! M1 S2! : : :Mn�1 Sn! Mn. A



marking M is rea
hable within a bound n in the step semanti
s if there is a stepexe
ution with at most n steps, with whi
hM is rea
hable from the initial state. Wewill often refer to the "normal semanti
s" as interleaving semanti
s to more 
learlydistinguish it from the step semanti
s. We have the following theorem.Theorem 1 For 1-safe P/T-nets the set of rea
hable markings in the interleavingsemanti
s and the set of rea
hable markings in the step semanti
s 
oin
ide.Thus the step semanti
s does not bring any new rea
hable markings. However, itallows to �re several transitions "in one time step". Su
h 
on
urren
y implies thatthe number of "time steps" that the system is exe
uted 
an be de
reased withoutlosing any rea
hable markings.Rea
hability and deadlo
k dete
tion are among the most important problems in theanalysis of Petri net models.De�nition 1 (Rea
hability) Given a 1-safe P/T-net � and a 1-safe marking M ,is M a rea
hable marking of �?De�nition 2 (Deadlo
k) Given a 1-safe P/T-net �, is there a rea
hable markingM , whi
h does not enable any transition of �?Both the rea
hability and deadlo
k problems for 1-safe Petri nets are PSPACE-
omplete [12, 6℄.In the bounded 
ase there are now two problems and two di�erent semanti
s to
onsider. We will de�ne only one of them, the others are de�ned in a similar fashion.De�nition 3 (Bounded deadlo
k, step semanti
s) Given a 1-safe P/T-net �and an integer bound n � 0, is there a marking M rea
hable within the bound n inthe step semanti
s su
h that M does not enable any transition of �?We 
an think about the bounded versions of the problems as approximations ofthe original problems, whi
h be
ome in
reasingly better as the bound n in
reases.The main motivation is that if we �nd a solution to the bounded version, then theoriginal problem also has that solution.We will now de�ne the notion of a rea
hability diameter for both semanti
s, whi
his the semanti
 version of the "suÆ
ient bound":De�nition 4 (Rea
hability diameter) Given a 1-safe P/T-net �, the rea
ha-bility diameter d for the step (interleaving) semanti
s is the smallest integer d � 0su
h that the set of rea
hable markings and the set of rea
hable markings in the step(interleaving) semanti
s within bound d 
oin
ide.See [2℄ for dis
ussion on how to obtain a rea
hability diameter using a QBF formula(using a slightly di�erent de�nition of the diameter, however, the dis
ussion stillapplies here). In pra
ti
e the 
urrently used tools do not support the 
al
ulation ofthe diameter for examples of interesting size. Therefore, bounded model 
he
king isat its best in "bug hunting", and not as easily appli
able in verifying systems to be
orre
t.



3 Nonmonotoni
 reasoningNonmonotoni
 logi
s formalize a pattern of reasoning whi
h is not supported byany 
lassi
al logi
: adding new premises might invalidate previous 
on
lusions. All
lassi
al logi
s are monotoni
 meaning that new premises 
an only in
rease the set of
on
lusions. A general approa
h to formalizing nonmonotoni
 reasoning is to see itas autoepistemi
 reasoning [17℄, i.e., as reasoning performed by a fully introspe
tiveagent. The set of premises is given using a modal language 
ontaining an operatorL whi
h refers to the beliefs of the agent. Besides 
lassi
al 
onsequen
es the agent is
apable of performing positive introspe
tion (if it believes �, then it believes L�) andnegative introspe
tion (if it does not believe �, then it believes :L�). It is negativeintrospe
tion that makes the reasoning nonmonotoni
.Given a set of premises �, a possible set of beliefs of a fully introspe
tive agent,
alled a stable expansion � of �, is de�ned by the following a �xed point equation:� = f j � [ L� [ :L� j=  g (1)whi
h says that � is a possible set of beliefs if it is the set of formulae whi
h are
lassi
al 
onsequen
es (j=) of the premises �, positive introspe
tion L� = fL� j� 2 �g and negative introspe
tion :L� = f:L� j � 62 �g. A possible set ofnonmonotoni
 
on
lusions from a set of premises 
an be taken as a set of beliefs (astable expansion) of a fully introspe
tive agent given the premises.Autoepistemi
 logi
 provides a uni�ed basis for solving many kinds of knowledgerepresentation issues [20℄. For example, 
onsider the frame problem, i.e., the problemof 
ompa
tly representing 
onditions saying that things remain the same unlesssomething for
es them to 
hange. It 
an be handled using frame axioms of the formp(T ) ^ :Lt1(T ) ^ � � � ^ :Ltl(T )! p(T + 1) (2)saying that if proposition p holds in a situation T and none of the transitionst1; : : : ; tl 
apable of 
hanging p are not believed to be exe
uted, then p holds also inthe next situation T + 1.General autoepistemi
 logi
 is very expressive and 
onsequently 
omputationallyhard [19℄. For most engineering problems, it is enough to restri
t to a subset 
apableof 
apturing NP-
omplete problems. For this it is suÆ
ient to 
onsider autoepis-temi
 formulae of the forma1 ^ � � � ^ am ^ :Lam+1 ^ � � � ^ :Lan ! a0 (3)where every ai is an atomi
 formula. Su
h a formula states a simple 
onstraint on astable expansion saying that is ea
h of a1; : : : ; am is in
luded in the expansion butnone of am+1; : : : ; an is, then a0 must be in
luded. Gelfond and Lifs
hitz [7℄ pointedout that this fragment of autoepistemi
 logi
 provides a very intuitive de
larativesemanti
s for normal logi
 programs where the idea is to map the negation (asfailure) in logi
 programming 'not a' to a disbelief ':La' in autoepistemi
 logi
.Hen
e, an autoepistemi
 formula (3) 
orresponds to the normal logi
 program rulea0  a1; : : : ; am; not am+1; : : : ; not an : (4)



The de
larative semanti
s is obtained by taking as the possible models of the pro-gram the atomi
 parts of the stable expansions of the program seen as the 
orre-sponding set of autoepistemi
 formulae. Su
h a model, i.e., the set of the atomi
formulae in a stable expansion, is 
alled a stable model of the program.It was this fragment of autoepistemi
 logi
 
orresponding to normal programs thatwe de
ided originally to implement in the Smodels system. In order to make Smodelsmore expressive and easier to apply, the language of normal programs has beenextended with 
ardinality and weight 
onstraints [24, 27℄. For the purpose of thispaper it is enough to understand two 
ases of the extensions. The �rst is a 
ompa
tway of en
oding a 
onditional 
hoi
e using a rule on the leftfa0g  a1; : : : ; am a0  not â0; a1; : : : ; amâ0  not a0whi
h says that a0 
an be in
luded in a stable model only if a1; : : : ; am are alsoin
luded but a0 
an be left out. This 
orresponds to the two normal rules on theright where a new atom â0 has to be introdu
ed as the 
omplement of a0. The other
ase  2fa1; : : : ; amgex
ludes all stable models where at least two of a1; : : : ; am are in
luded. There seemsto be no 
ompa
t en
oding of su
h a rule using only a linear number of normal rules.4 Bounded symboli
 model 
he
kingIn this se
tion we develop a method for translating bounded model 
he
king prob-lems of 1-safe P/T-nets to tasks of �nding stable models. We do this so that model
he
king 
an be done for sets of initial markings satisfying 
ertain properties at on
e.Consider a P/T-net N = hP; T; F i and a step bound n. We 
onstru
t a logi
program �A(N; n) whose stable models 
orrespond to the possible exe
utions of thenet up to n steps in the following way.� For ea
h pla
e p 2 P , in
lude a 
hoi
e rule: fp(0)g  � For ea
h transition t 2 T , and for all i = 0; 1; : : : ; n� 1, in
lude a ruleft(i)g  p1(i); : : : ; pl(i) (5)where fp1; : : : ; plg is the preset of t. Hen
e, a stable model 
an 
ontain atransition instan
e in step i only if its preset holds at step i.� For ea
h pla
e p 2 P and for all i = 0; 1; : : : ; n� 1, in
lude a rulep(i+ 1) t(i) (6)for ea
h t in the preset of p. The rules imply that p holds in the next step ifat least one of its preset transitions is in the 
urrent step.



fp1(0)g  fp2(0)g  fp3(0)g  fp4(0)g  fp5(0)g  ft1(i)g  p3(i)ft2(i)g  p1(i); p2(i)ft3(i)g  p2(i)ft4(i)g  p4(i)ft5(i)g  p2(i)p1(i+ 1) t1(i)p2(i+ 1) t4(i)

p3(i+ 1) t2(i)p4(i+ 1) t2(i)p4(i+ 1) t3(i)p5(i+ 1) t5(i) 2ft2(i); t3(i); t5(i)gp1(i+ 1) p1(i); not t2(i)p2(i+ 1) p2(i); not t2(i); not t3(i); not t5(i)p3(i+ 1) p3(i); not t1(i)p4(i+ 1) p4(i); not t4(i)p5(i+ 1) p5(i)where i = 0; 1; : : : n� 1Figure 2: Program �A(N; n)� For ea
h pla
e p 2 P , and for all i = 0; 1; : : : ; n� 1, in
lude a rule 2ft1(i); : : : ; tl(i)g (7)where ft1; : : : ; tlg is the set of transitions having ea
h p in their preset andl � 2. This rule states that at most one of the transitions that are in 
on
i
tw.r.t. p 
an o

ur.� For ea
h pla
e p, and for all i = 0; 1; : : : ; n� 1,p(i+ 1) p(i); not t1(i); : : : ; not tl(i) (8)where ft1; : : : ; tlg is the set of transitions having p in their preset. This is theframe axiom for p stating that p holds if no transition using it o

urs.Consider our running example. The program �A(N; n) is given in Figure 2. Con-ditions on markings are straightforward to state using rules. Eliminating stablemodels not satisfying a marking M at step i 
an be a
hieved using rules�M(M; i) = f not p(i) j p 2 P;M(p) = 1g [f p(i) j p 2 P;M(p) = 0g:This extends to any Boolean 
ombination dire
tly. For example, for eliminatingstable models not satisfying 
ondition C at step i requiring that M(p1) = 1 withM(p2) = 0 or M(p3) = 1 it is suÆ
ient to use rules �M(C; i): not p1(i) not 
 �p2_p3(i) 
 �p2_p3(i) not p2(i)
 �p2_p3(i) p3(i)Theorem 2 Let N = hP; T; F i be a 1-safe P/T-net for all initial markings satis-fying 
ondition C. Net N has an initial marking satisfying C su
h that a markingM is rea
hable in at most n steps i� �M(C; 0) [ �A(N; n) [ �M(M;n) has a stablemodel.



This approa
h 
an be adapted easily to handle deadlo
k 
he
king by adding rules�D(N; n) eliminating stable models where some transition is enabled. Program�D(N; n) in
ludes for ea
h transition t 2 T , a rule p1(n); : : : ; pl(n) (9)where fp1; : : : ; plg is the preset of t. For our running example, rules �D(N; n) are p3(n) p1(n); p2(n)  p2(n) p4(n):Theorem 3 Let N = hP; T; F i be a 1-safe P/T-net for all initial markings satisfy-ing 
ondition C. Net N has an initial marking satisfying C su
h that a deadlo
k isrea
hable in at most n steps i� �M(C; 0)[�A(N; n)[�D(N; n) has a stable model.So far in this se
tion we have 
onsidered only the translations of the step semanti
sversions of the problems. We 
an 
reate the interleaving semanti
s versions of theproblems by adding some rules to the program for the step version of the problem.Program �I(N; n) in
ludes for ea
h time step 0 � i � n� 1 a rule 2ft1(i); : : : ; tm(i)g (10)where ft1; : : : ; tmg is the set of all transitions. These rules will the eliminate allstable models having more than one transition �ring in a step.Corollary 1 Let �S(N; n) be a translation solving a bounded model 
he
king prob-lem in the step semanti
s. Then the program �S(N; n) [ �I(N; n) solves the sameproblem in the interleaving semanti
s.In [2℄ it is shown how bounded model 
he
king 
an be done also for linear timetemporal logi
 LTL. An interesting area of further work is to extend bounded model
he
king of LTL formulae to the asyn
hronous 
ase. A main 
hallenges is to allow asmu
h 
on
urren
y as possible, to obtain as small as possible diameter for the LTLmodel 
he
king translation. Also the safety property subset of LTL is interesting inthis 
ontext [13℄, as a simpler translation for that LTL subset is possible.5 ExperimentsWe have implemented the translation from the bounded model 
he
king problem tothe problem of �nding a stable model. The translation was implemented in C++ inquite a straightforward manner with only two simple optimizations in
luded:� If a single initial marking is given, pla
e and transition atoms are added onlyfrom the time step they 
an �rst appear on. Only atoms for pla
es p(0) inthe initial marking are 
reated for time i = 0. Then for ea
h 0 � i � n � 1:(i) Add transition atoms for all transitions t(i) su
h that all the pla
e atomsin the preset of t(i) exist. (ii) Add pla
e atoms for all pla
es p(i + 1) su
hthat either the pla
e atom p(i) exists or some transition atom in the preset ofp(i+ 1) exists.



� Dupli
ate rules are removed (
an appear in 
on
i
t (7) and liveness (9) rules).As ben
hmarks we use a set of deadlo
k 
he
king problems 
olle
ted by Corbett [5℄.They have been 
onverted from 
ommuni
ating state ma
hines to 1-safe P/T-netsby Melzer and R�omer [16℄. The problem is to 
he
k deadlo
ks from a given singleinitial marking. The test
ases were pi
ked from those whi
h have a deadlo
k, andSmodels was instru
ted to stop after �nding the �rst stable model using the smallestbound n in whi
h the deadlo
k existed. In some 
ases a model 
ould not be foundwithin a reasonable time, in whi
h 
ase we report the time used to prove that thereis no deadlo
k within the bound n.The experimental results 
an be found in Fig. 3 with the following 
olumns:� Problem: The problem name, with the size of the instan
e in parenthesis.� jP j (jT j): Number of pla
es (transitions) in the original net.� St. n: The smallest integer n su
h that a deadlo
k 
ould be found using thestep semanti
s / in 
ase of > n the largest integer n for whi
h we 
ould provethat there is no deadlo
k within that bound using the step semanti
s.� St. s: The time in se
onds to �nd the �rst stable model / to prove that thereis no stable model. (See St. n above.)� Int. n and Int. s: de�ned as St. n and St. s but for the interleaving semanti
s.� States: Number of rea
hable states of the P/T-net (if known).The times are the average of 5 runs of the time for Smodels 2.26 as reported bythe /usr/bin/time 
ommand on a 450Mhz Pentium III PC running Linux.In many of the experiments the step semanti
s version had a mu
h smaller boundthan the interleaving one. Also, when the bound needed to �nd the deadlo
k wasfairly small, the bounded model 
he
ker was performing well.The DP(x) problems are dining philosophers problems, where in the step semanti
sthe 
ounterexample 
ould always be found with a bound of 1, while in the interleav-ing semanti
s the bound grew at the same speed as the number of philosophers. Inthe examples ELEV(4), HART(x) and Q(1) we were able to �nd the 
ounterexampleonly when using step semanti
s.In the KEY(2) example we were no able to �nd a 
ounterexample with either seman-ti
s, even though the problem is known to have only a small number of rea
hablestates. In 
ontrast, the DARTES(1) problem has a large state-spa
e, and despite ofit a 
ounterexample of length 32 was obtained. Thus is seems that the size of thestate spa
e is not always de
isive in the bounded model 
he
ker running time.This is the �rst set of experiments we have tried with asyn
hronous system ben
h-marks, and no major work has gone into obtaining the best possible performan
e.Overall, the results were promising, in parti
ular, for small bounds and the stepsemanti
s but we need to get a better understanding of the behavior of the boundedmodel 
he
king approa
h by doing more experiments.



Problem jP j jT j St. n St. s Int. n Int. s StatesDARTES(1) 331 257 32 0.5 32 0.5 >250000DP(6) 36 24 1 0.0 6 0.1 728DP(8) 48 32 1 0.0 8 0.3 6554DP(10) 60 40 1 0.0 10 3.3 48896DP(12) 72 48 1 0.0 12 617.4 >350000ELEV(1) 63 99 4 0.0 9 0.4 137ELEV(2) 146 299 6 0.5 12 3.9 1061ELEV(3) 327 783 8 5.6 15 139.0 7120ELEV(4) 736 1939 10 157.2 >13 1215.2 43439HART(25) 127 77 1 0.0 >5 1.0 52HART(50) 252 152 1 0.0 >5 5.7 102HART(75) 377 227 1 0.0 >5 15.5 152HART(100) 502 302 1 0.0 >5 35.9 202KEY(2) 94 92 >25 1937.9 >26 56.1 536MMGT(3) 122 172 7 11.1 10 87.2 7702MMGT(4) 158 232 8 687.3 >11 1874.1 66308Q(1) 163 194 9 0.1 >17 2733.7 123596SENT(25) 104 55 2 0.0 3 0.0 231SENT(50) 179 80 2 0.0 3 0.0 281SENT(75) 254 105 2 0.0 3 0.0 331SENT(100) 329 130 2 0.0 3 0.0 381SPD(1) 33 39 1 0.0 4 0.0 8689Figure 3: Experiments6 Con
lusionsWe present a mapping from bounded rea
hability and deadlo
k dete
tion problemsof 1-safe P/T-nets to stable model 
omputation. Our mapping is able to handlesets of initial markings. The �rst experimental results indi
ate that stable model
omputation is quite a 
ompetitive approa
h to sear
hing for short exe
utions ofthe system leading to deadlo
k even from a given single initial marking and worthfurther study. As further work the LTL model 
he
king and the safety LTL model
he
king problems look interesting. There are also alternative semanti
s to the twopresented in this work. Experiments are needed to determine whether they areuseful for bounded model 
he
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