
Petri Net Analysis and Nonmonotoni ReasoningKeijo Heljanko� and Ilkka Niemel�a�
AbstratThe paper presents a symboli analysis method for solving bounded dead-lok detetion and reahability questions for Petri nets using nonmonotonireasoning tehniques. More preisely, a mapping is devised suh that given a1-safe P/T-net, some Boolean onditions on the initial marking, and a boundn, a logi program is obtained suh that there is an exeution of at most nsteps of the net starting from some initial marking satisfying the onditionsleading to deadlok i� the logi program has a stable model. A similar map-ping is given for reahability questions from a set of initial markings satisfyinggiven Boolean onditions. Experiments to solve deadlok problems using theSmodels system as the stable model �nder indiate that the approah anprovide a ompetitive method for �nding short exeutions to deadloks.1 IntrodutionThis is a paper for whih the researh started 15 years ago. It ombines two areasthat seem to have very little to do with eah other. The idea is to employ non-monotoni reasoning tehniques for analyzing Petri nets. We start the paper byan aount of its history. This provides a nie example of the way Prof. Leo Ojaladoes researh and leads a researh group. It also illustrates the open-mindedness,far-sightedness and long-term ommitment of Leo in his approah to researh.The seond author began to work on this paper (without even realizing it) in spring1985 in a postgraduate seminar organized by Leo. The topi was nonmonotonilogis. They involved strange mathemati onepts like �xed point equations andseond-order logi. It was hard to understand the de�nitions and even harder toomprehend where all this ould be used. Gradually it beame learer (to the seondauthor) that these logis are being developed to solve some fundamental problems inarti�ial intelligene and, in partiular, in knowledge representation. The problemsarise when desribing dynami systems, e.g., e�ets of ations, using a logi-based�Both from Helsinki University of Tehnology, Dept. of Computer Siene and Engineering,Laboratory for Theoretial Computer Siene, P.O.Box 5400, FIN-02015 HUT, Finland. The�nanial support of Helsinki Graduate Shool in Computer Siene and Engineering, Aademyof Finland (Projets 43963 and 47754), Foundation for Finanial Aid at Helsinki University ofTehnology, Emil Aaltonen Foundation, and Nokia Foundation are gratefully aknowledged.



approah. The laim was that lassial logis are not well suited for this beause of,e.g., the frame problem [15℄ and new nonmonotoni logis are needed.Leo and his student Heikki Tuominen had got interested in nonmonotoni reasoningin their study of using logi in Petri net analysis. One approah was to desribethe dynamis of a Petri net axiomatially employing a suitable logi. They hadused temporal logi [1℄ but this was not quite straightforward, e.g., beause of theframe problem and they had started with nonmonotoni logis as a possible remedy.However, very little was known about the omplexity, deidability and appliabilityof suh odd logis. As many young people do, the seond author got interested insuh a hallenging topi and started his Master's thesis on the subjet in 1986.Sorting out the basi properties of this new form of reasoning kept the seond authorbusy and we did not get very far in axiomatizing Petri nets using nonmonotonilogis. However, other interesting things got done. For the axiomati approahHeikki deided to use dynami logi and gave an axiomatization of elementary netsystems [28℄. Also a model heking approah was developed [28, 25℄ where thereahability graph of a Petri net was interpreted as a (Kripke) model of temporallogi whih was used as a query language for heking interesting properties of thenet. Gradually suh a model heker has beome a standard part of the Petri netanalysis tools developed in Leo's laboratory [29, 8, 14℄.It beame lear quite early that nonmonotoni logis were not ripe for appliationsand a lot of work was needed. This did not disourage Leo and he let the seondauthor to ontinue the researh on nonmonotoni reasoning. This was a new areaand novel results were obtained starting from deidability [18℄, omputational om-plexity [19℄, and deision proedures [21℄. The innoent little side-trak of Petrinet researh grew gradually and has resulted already in, e.g., four dotoral disserta-tions [20, 26, 11, 27℄.In the early nineties the results obtained indiated that it ould be possible to auto-mate nonmonotoni logis (suitably restrited) as eÆiently as lassial logis andmaybe eÆiently enough to make them interesting for real appliations. A seriouse�ort to demonstrate the appliability of nonmonotoni reasoning tehniques startedand led to the development of the Smodels system [23, 24, 27℄ (http://www.ts.hut.fi/Software/smodels/) whose �rst version was released in summer 1995. Itturned out that the nonmonotoni tehniques in Smodels are promising in manyareas suh as onstraint satisfation, ombinatorial problems and planning [22℄.The maturing implementation tehnology for nonmonotoni reasoning provided anopportunity to apply it seriously to Petri net analysis. The �rst approah was to usenet unfoldings (�nite omplete pre�xes) [10, 9℄. Smodels was used here as a solverfor reahability and deadlok questions on pre�xes with enouraging results. Hene,it felt very interesting to return to the problem where all work on nonmonotonireasoning started in Leo's lab 15 years earlier, i.e., axiomatizing Petri nets usingnonmonotoni logis. The idea is to desribe the behavior of a Petri net as well asthe property to be analyzed symbolily using the nonmonotoni formalism supportedby Smodels in suh a way that Smodels ould analyze the property using diretlythe symboli representation of the net and, e.g., without onstruting its reahabilitygraph.



In the meanwhile signi�ant progress has been made in using the symboli approahin system veri�ation. The �rst breakthrough was in hardware veri�ation wheresymboli model heking tehniques proved to be very eÆient [3, 4℄. This approahis based on enoding reahable states using Boolean formulae represented by (or-dered) binary deision diagrams (BDDs). Although the BDD-based approah hasbeen suessfully, there are diÆulties in applying the tehnique, in partiular, in ar-eas outside hardware veri�ation. The key problem is that some Boolean funtionsdo not have a ompat representation as BDDs and the size of the BDD repre-sentation of a Boolean funtion is very sensitive to the variable ordering used foronstruting the BDD.Bounded model heking [2℄ has been proposed as a tehnique for overoming thespae problem by replaing BDDs with propositional satis�ability (SAT) hekingtehniques beause typial SAT hekers use only polynomial amount of memory.The idea is roughly the following. Given a sequential digital iruit, a (temporal)property to be veri�ed, and a bound n, the behavior of the iruit is unfolded up ton steps as a Boolean formula S and the negation of the property to be veri�ed isrepresented as a Boolean formula R. The translation to Boolean formulae is doneso that S ^ R is satis�able i� the system has a behavior violating the propertyof length at most n. A main advantage of the bounded model heking approahis that it an �nd fast ounterexamples, i.e., behaviors violating the orretnessrequirements. When searhing for the ounterexamples by inreasing gradually thebound n, one �nds those of minimal length. This helps the user to understand theounterexamples more easily.Until now bounded model heking has been applied to synhronous hardware ver-i�ation. In this work we extend the approah to handle asynhronous onurrentsystems modeled by Petri nets. It turns out that bounded model heking for 1-safeP/T-nets is losely related to AI planning. Here we show how to map boundedmodel heking problems to the problem of �nding stable models of logi programsby employing ideas used in reduing planning to stable model omputation [22℄.The struture of the rest of the paper is the following. In the next setion weintrodue Petri nets and the bounded model heking problem. Then we presentthe nonmonotoni logi supported by Smodels (logi programs with the stable modelsemantis) whih we employ in the following setion to ahieve a ompat enodingof bounded model heking. We present some experimental results and �nish withsome onluding remarks.2 Petri nets and bounded model hekingWe will now introdue P/T-nets. They are one of the simplest forms of Petri nets.We will use as a running example the P/T-net represented in Figure 1.A triple hP; T; F i is a net if P \ T = ; and F � (P � T ) [ (T � P ). The elementsof P are alled plaes, and the elements of T transitions. Plaes and transitions arealso alled nodes.
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p3 p4 p5Figure 1: Running Example: A 1-safe P/T-netWe identify F with its harateristi funtion on the set (P � T ) [ (T � P ). Thepreset of a node x, denoted by �x, is the set fy 2 P [ T jF (y; x) = 1g. The postsetof a node x, denoted by x�, is the set fy 2 P [ T jF (x; y) = 1g.A marking of a net hP; T; F i is a mapping P 7! IN. A marking M is identi�edwith the multi-set whih ontains M(p) opies of p for every p 2 P . A 4-tuple� = hP; T; F;M0i is a net system (also alled a P/T-net) if hP; T; F i is a net andM0 is a marking of hP; T; F i.A marking M enables a transition t 2 T if 8p 2 P : F (p; t) �M(p). If t is enabled,it an our leading to a new marking (denoted M t! M 0), where M 0 is de�ned by8p 2 P : M 0(p) = M(p) � F (p; t) + F (t; p). In the running example the transitiont2 is enabled in the initial marking M0, and thus M0 t2!M 0, where M 0 = fp3; p4g.A marking Mn is reahable in � if there is an exeution, i.e. a (possibly empty)sequene of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1 suh that:M0 t1! M1 t2! : : :Mn�1 tn! Mn. A marking M is reahable within a bound n, ifthere is an exeution with at most n transitions, with whih M is reahable fromthe initial state.A marking is 1-safe if 8p 2 P :M(p) � 1. A P/T-net � is 1-safe if all its reahablemarkings are 1-safe. In this work we will restrit ourselves to P/T-nets whih are1-safe, have a �nite number of plaes and transitions, and in whih eah transitionhas both nonempty pre- and postsets.Given a 1-safe P/T-net �, we say that a set of transitions S � T is onurrentlyenabled in the marking M , if (i) all transitions t 2 S are enabled in M , and (ii)for all pairs of transitions t; t0 2 S, suh that t 6= t0, it holds that �t \ �t0 = ;. If aset S is onurrently enabled in the marking M , we an �re it in a step (denotedM S!M 0), where M 0 is the marking reahed after �ring all of the transitions in thestep S in arbitrary order. In our running example in the marking M 0 = fp3; p4gthe step ft1; t4g is enabled, and will lead bak to the initial marking M0. This isdenoted by M 0 ft1;t4g! M0.We say that a marking Mn is reahable in step semantis in a 1-safe P/T-net � ifthere is an step exeution, i.e. a (possibly empty) sequene of steps S1; S2; : : : ; Snand markings M1;M2; : : : ;Mn�1 suh that: M0 S1! M1 S2! : : :Mn�1 Sn! Mn. A



marking M is reahable within a bound n in the step semantis if there is a stepexeution with at most n steps, with whihM is reahable from the initial state. Wewill often refer to the "normal semantis" as interleaving semantis to more learlydistinguish it from the step semantis. We have the following theorem.Theorem 1 For 1-safe P/T-nets the set of reahable markings in the interleavingsemantis and the set of reahable markings in the step semantis oinide.Thus the step semantis does not bring any new reahable markings. However, itallows to �re several transitions "in one time step". Suh onurreny implies thatthe number of "time steps" that the system is exeuted an be dereased withoutlosing any reahable markings.Reahability and deadlok detetion are among the most important problems in theanalysis of Petri net models.De�nition 1 (Reahability) Given a 1-safe P/T-net � and a 1-safe marking M ,is M a reahable marking of �?De�nition 2 (Deadlok) Given a 1-safe P/T-net �, is there a reahable markingM , whih does not enable any transition of �?Both the reahability and deadlok problems for 1-safe Petri nets are PSPACE-omplete [12, 6℄.In the bounded ase there are now two problems and two di�erent semantis toonsider. We will de�ne only one of them, the others are de�ned in a similar fashion.De�nition 3 (Bounded deadlok, step semantis) Given a 1-safe P/T-net �and an integer bound n � 0, is there a marking M reahable within the bound n inthe step semantis suh that M does not enable any transition of �?We an think about the bounded versions of the problems as approximations ofthe original problems, whih beome inreasingly better as the bound n inreases.The main motivation is that if we �nd a solution to the bounded version, then theoriginal problem also has that solution.We will now de�ne the notion of a reahability diameter for both semantis, whihis the semanti version of the "suÆient bound":De�nition 4 (Reahability diameter) Given a 1-safe P/T-net �, the reaha-bility diameter d for the step (interleaving) semantis is the smallest integer d � 0suh that the set of reahable markings and the set of reahable markings in the step(interleaving) semantis within bound d oinide.See [2℄ for disussion on how to obtain a reahability diameter using a QBF formula(using a slightly di�erent de�nition of the diameter, however, the disussion stillapplies here). In pratie the urrently used tools do not support the alulation ofthe diameter for examples of interesting size. Therefore, bounded model heking isat its best in "bug hunting", and not as easily appliable in verifying systems to beorret.



3 Nonmonotoni reasoningNonmonotoni logis formalize a pattern of reasoning whih is not supported byany lassial logi: adding new premises might invalidate previous onlusions. Alllassial logis are monotoni meaning that new premises an only inrease the set ofonlusions. A general approah to formalizing nonmonotoni reasoning is to see itas autoepistemi reasoning [17℄, i.e., as reasoning performed by a fully introspetiveagent. The set of premises is given using a modal language ontaining an operatorL whih refers to the beliefs of the agent. Besides lassial onsequenes the agent isapable of performing positive introspetion (if it believes �, then it believes L�) andnegative introspetion (if it does not believe �, then it believes :L�). It is negativeintrospetion that makes the reasoning nonmonotoni.Given a set of premises �, a possible set of beliefs of a fully introspetive agent,alled a stable expansion � of �, is de�ned by the following a �xed point equation:� = f j � [ L� [ :L� j=  g (1)whih says that � is a possible set of beliefs if it is the set of formulae whih arelassial onsequenes (j=) of the premises �, positive introspetion L� = fL� j� 2 �g and negative introspetion :L� = f:L� j � 62 �g. A possible set ofnonmonotoni onlusions from a set of premises an be taken as a set of beliefs (astable expansion) of a fully introspetive agent given the premises.Autoepistemi logi provides a uni�ed basis for solving many kinds of knowledgerepresentation issues [20℄. For example, onsider the frame problem, i.e., the problemof ompatly representing onditions saying that things remain the same unlesssomething fores them to hange. It an be handled using frame axioms of the formp(T ) ^ :Lt1(T ) ^ � � � ^ :Ltl(T )! p(T + 1) (2)saying that if proposition p holds in a situation T and none of the transitionst1; : : : ; tl apable of hanging p are not believed to be exeuted, then p holds also inthe next situation T + 1.General autoepistemi logi is very expressive and onsequently omputationallyhard [19℄. For most engineering problems, it is enough to restrit to a subset apableof apturing NP-omplete problems. For this it is suÆient to onsider autoepis-temi formulae of the forma1 ^ � � � ^ am ^ :Lam+1 ^ � � � ^ :Lan ! a0 (3)where every ai is an atomi formula. Suh a formula states a simple onstraint on astable expansion saying that is eah of a1; : : : ; am is inluded in the expansion butnone of am+1; : : : ; an is, then a0 must be inluded. Gelfond and Lifshitz [7℄ pointedout that this fragment of autoepistemi logi provides a very intuitive delarativesemantis for normal logi programs where the idea is to map the negation (asfailure) in logi programming 'not a' to a disbelief ':La' in autoepistemi logi.Hene, an autoepistemi formula (3) orresponds to the normal logi program rulea0  a1; : : : ; am; not am+1; : : : ; not an : (4)



The delarative semantis is obtained by taking as the possible models of the pro-gram the atomi parts of the stable expansions of the program seen as the orre-sponding set of autoepistemi formulae. Suh a model, i.e., the set of the atomiformulae in a stable expansion, is alled a stable model of the program.It was this fragment of autoepistemi logi orresponding to normal programs thatwe deided originally to implement in the Smodels system. In order to make Smodelsmore expressive and easier to apply, the language of normal programs has beenextended with ardinality and weight onstraints [24, 27℄. For the purpose of thispaper it is enough to understand two ases of the extensions. The �rst is a ompatway of enoding a onditional hoie using a rule on the leftfa0g  a1; : : : ; am a0  not â0; a1; : : : ; amâ0  not a0whih says that a0 an be inluded in a stable model only if a1; : : : ; am are alsoinluded but a0 an be left out. This orresponds to the two normal rules on theright where a new atom â0 has to be introdued as the omplement of a0. The otherase  2fa1; : : : ; amgexludes all stable models where at least two of a1; : : : ; am are inluded. There seemsto be no ompat enoding of suh a rule using only a linear number of normal rules.4 Bounded symboli model hekingIn this setion we develop a method for translating bounded model heking prob-lems of 1-safe P/T-nets to tasks of �nding stable models. We do this so that modelheking an be done for sets of initial markings satisfying ertain properties at one.Consider a P/T-net N = hP; T; F i and a step bound n. We onstrut a logiprogram �A(N; n) whose stable models orrespond to the possible exeutions of thenet up to n steps in the following way.� For eah plae p 2 P , inlude a hoie rule: fp(0)g  � For eah transition t 2 T , and for all i = 0; 1; : : : ; n� 1, inlude a ruleft(i)g  p1(i); : : : ; pl(i) (5)where fp1; : : : ; plg is the preset of t. Hene, a stable model an ontain atransition instane in step i only if its preset holds at step i.� For eah plae p 2 P and for all i = 0; 1; : : : ; n� 1, inlude a rulep(i+ 1) t(i) (6)for eah t in the preset of p. The rules imply that p holds in the next step ifat least one of its preset transitions is in the urrent step.
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p3(i+ 1) t2(i)p4(i+ 1) t2(i)p4(i+ 1) t3(i)p5(i+ 1) t5(i) 2ft2(i); t3(i); t5(i)gp1(i+ 1) p1(i); not t2(i)p2(i+ 1) p2(i); not t2(i); not t3(i); not t5(i)p3(i+ 1) p3(i); not t1(i)p4(i+ 1) p4(i); not t4(i)p5(i+ 1) p5(i)where i = 0; 1; : : : n� 1Figure 2: Program �A(N; n)� For eah plae p 2 P , and for all i = 0; 1; : : : ; n� 1, inlude a rule 2ft1(i); : : : ; tl(i)g (7)where ft1; : : : ; tlg is the set of transitions having eah p in their preset andl � 2. This rule states that at most one of the transitions that are in onitw.r.t. p an our.� For eah plae p, and for all i = 0; 1; : : : ; n� 1,p(i+ 1) p(i); not t1(i); : : : ; not tl(i) (8)where ft1; : : : ; tlg is the set of transitions having p in their preset. This is theframe axiom for p stating that p holds if no transition using it ours.Consider our running example. The program �A(N; n) is given in Figure 2. Con-ditions on markings are straightforward to state using rules. Eliminating stablemodels not satisfying a marking M at step i an be ahieved using rules�M(M; i) = f not p(i) j p 2 P;M(p) = 1g [f p(i) j p 2 P;M(p) = 0g:This extends to any Boolean ombination diretly. For example, for eliminatingstable models not satisfying ondition C at step i requiring that M(p1) = 1 withM(p2) = 0 or M(p3) = 1 it is suÆient to use rules �M(C; i): not p1(i) not  �p2_p3(i)  �p2_p3(i) not p2(i) �p2_p3(i) p3(i)Theorem 2 Let N = hP; T; F i be a 1-safe P/T-net for all initial markings satis-fying ondition C. Net N has an initial marking satisfying C suh that a markingM is reahable in at most n steps i� �M(C; 0) [ �A(N; n) [ �M(M;n) has a stablemodel.



This approah an be adapted easily to handle deadlok heking by adding rules�D(N; n) eliminating stable models where some transition is enabled. Program�D(N; n) inludes for eah transition t 2 T , a rule p1(n); : : : ; pl(n) (9)where fp1; : : : ; plg is the preset of t. For our running example, rules �D(N; n) are p3(n) p1(n); p2(n)  p2(n) p4(n):Theorem 3 Let N = hP; T; F i be a 1-safe P/T-net for all initial markings satisfy-ing ondition C. Net N has an initial marking satisfying C suh that a deadlok isreahable in at most n steps i� �M(C; 0)[�A(N; n)[�D(N; n) has a stable model.So far in this setion we have onsidered only the translations of the step semantisversions of the problems. We an reate the interleaving semantis versions of theproblems by adding some rules to the program for the step version of the problem.Program �I(N; n) inludes for eah time step 0 � i � n� 1 a rule 2ft1(i); : : : ; tm(i)g (10)where ft1; : : : ; tmg is the set of all transitions. These rules will the eliminate allstable models having more than one transition �ring in a step.Corollary 1 Let �S(N; n) be a translation solving a bounded model heking prob-lem in the step semantis. Then the program �S(N; n) [ �I(N; n) solves the sameproblem in the interleaving semantis.In [2℄ it is shown how bounded model heking an be done also for linear timetemporal logi LTL. An interesting area of further work is to extend bounded modelheking of LTL formulae to the asynhronous ase. A main hallenges is to allow asmuh onurreny as possible, to obtain as small as possible diameter for the LTLmodel heking translation. Also the safety property subset of LTL is interesting inthis ontext [13℄, as a simpler translation for that LTL subset is possible.5 ExperimentsWe have implemented the translation from the bounded model heking problem tothe problem of �nding a stable model. The translation was implemented in C++ inquite a straightforward manner with only two simple optimizations inluded:� If a single initial marking is given, plae and transition atoms are added onlyfrom the time step they an �rst appear on. Only atoms for plaes p(0) inthe initial marking are reated for time i = 0. Then for eah 0 � i � n � 1:(i) Add transition atoms for all transitions t(i) suh that all the plae atomsin the preset of t(i) exist. (ii) Add plae atoms for all plaes p(i + 1) suhthat either the plae atom p(i) exists or some transition atom in the preset ofp(i+ 1) exists.



� Dupliate rules are removed (an appear in onit (7) and liveness (9) rules).As benhmarks we use a set of deadlok heking problems olleted by Corbett [5℄.They have been onverted from ommuniating state mahines to 1-safe P/T-netsby Melzer and R�omer [16℄. The problem is to hek deadloks from a given singleinitial marking. The testases were piked from those whih have a deadlok, andSmodels was instruted to stop after �nding the �rst stable model using the smallestbound n in whih the deadlok existed. In some ases a model ould not be foundwithin a reasonable time, in whih ase we report the time used to prove that thereis no deadlok within the bound n.The experimental results an be found in Fig. 3 with the following olumns:� Problem: The problem name, with the size of the instane in parenthesis.� jP j (jT j): Number of plaes (transitions) in the original net.� St. n: The smallest integer n suh that a deadlok ould be found using thestep semantis / in ase of > n the largest integer n for whih we ould provethat there is no deadlok within that bound using the step semantis.� St. s: The time in seonds to �nd the �rst stable model / to prove that thereis no stable model. (See St. n above.)� Int. n and Int. s: de�ned as St. n and St. s but for the interleaving semantis.� States: Number of reahable states of the P/T-net (if known).The times are the average of 5 runs of the time for Smodels 2.26 as reported bythe /usr/bin/time ommand on a 450Mhz Pentium III PC running Linux.In many of the experiments the step semantis version had a muh smaller boundthan the interleaving one. Also, when the bound needed to �nd the deadlok wasfairly small, the bounded model heker was performing well.The DP(x) problems are dining philosophers problems, where in the step semantisthe ounterexample ould always be found with a bound of 1, while in the interleav-ing semantis the bound grew at the same speed as the number of philosophers. Inthe examples ELEV(4), HART(x) and Q(1) we were able to �nd the ounterexampleonly when using step semantis.In the KEY(2) example we were no able to �nd a ounterexample with either seman-tis, even though the problem is known to have only a small number of reahablestates. In ontrast, the DARTES(1) problem has a large state-spae, and despite ofit a ounterexample of length 32 was obtained. Thus is seems that the size of thestate spae is not always deisive in the bounded model heker running time.This is the �rst set of experiments we have tried with asynhronous system benh-marks, and no major work has gone into obtaining the best possible performane.Overall, the results were promising, in partiular, for small bounds and the stepsemantis but we need to get a better understanding of the behavior of the boundedmodel heking approah by doing more experiments.
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