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Abstract

The paper presents a symbolic analysis method for solving bounded dead-
lock detection and reachability questions for Petri nets using nonmonotonic
reasoning techniques. More precisely, a mapping is devised such that given a
1-safe P/T-net, some Boolean conditions on the initial marking, and a bound
n, a logic program is obtained such that there is an execution of at most n
steps of the net starting from some initial marking satisfying the conditions
leading to deadlock iff the logic program has a stable model. A similar map-
ping is given for reachability questions from a set of initial markings satisfying
given Boolean conditions. Experiments to solve deadlock problems using the
Smodels system as the stable model finder indicate that the approach can
provide a competitive method for finding short executions to deadlocks.

1 Introduction

This is a paper for which the research started 15 years ago. It combines two areas
that seem to have very little to do with each other. The idea is to employ non-
monotonic reasoning techniques for analyzing Petri nets. We start the paper by
an account of its history. This provides a nice example of the way Prof. Leo Ojala
does research and leads a research group. It also illustrates the open-mindedness,
far-sightedness and long-term commitment of Leo in his approach to research.

The second author began to work on this paper (without even realizing it) in spring
1985 in a postgraduate seminar organized by Leo. The topic was nonmonotonic
logics. They involved strange mathematic concepts like fixed point equations and
second-order logic. It was hard to understand the definitions and even harder to
comprehend where all this could be used. Gradually it became clearer (to the second
author) that these logics are being developed to solve some fundamental problems in
artificial intelligence and, in particular, in knowledge representation. The problems
arise when describing dynamic systems, e.g., effects of actions, using a logic-based
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approach. The claim was that classical logics are not well suited for this because of,
e.g., the frame problem [15] and new nonmonotonic logics are needed.

Leo and his student Heikki Tuominen had got interested in nonmonotonic reasoning
in their study of using logic in Petri net analysis. One approach was to describe
the dynamics of a Petri net axiomatically employing a suitable logic. They had
used temporal logic [1] but this was not quite straightforward, e.g., because of the
frame problem and they had started with nonmonotonic logics as a possible remedy.
However, very little was known about the complexity, decidability and applicability
of such odd logics. As many young people do, the second author got interested in
such a challenging topic and started his Master’s thesis on the subject in 1986.

Sorting out the basic properties of this new form of reasoning kept the second author
busy and we did not get very far in axiomatizing Petri nets using nonmonotonic
logics. However, other interesting things got done. For the axiomatic approach
Heikki decided to use dynamic logic and gave an axiomatization of elementary net
systems [28]. Also a model checking approach was developed [28, 25] where the
reachability graph of a Petri net was interpreted as a (Kripke) model of temporal
logic which was used as a query language for checking interesting properties of the
net. Gradually such a model checker has become a standard part of the Petri net
analysis tools developed in Leo’s laboratory [29, 8, 14].

It became clear quite early that nonmonotonic logics were not ripe for applications
and a lot of work was needed. This did not discourage Leo and he let the second
author to continue the research on nonmonotonic reasoning. This was a new area
and novel results were obtained starting from decidability [18], computational com-
plexity [19], and decision procedures [21]. The innocent little side-track of Petri
net research grew gradually and has resulted already in, e.g., four doctoral disserta-
tions [20, 26, 11, 27].

In the early nineties the results obtained indicated that it could be possible to auto-
mate nonmonotonic logics (suitably restricted) as efficiently as classical logics and
maybe efficiently enough to make them interesting for real applications. A serious
effort to demonstrate the applicability of nonmonotonic reasoning techniques started
and led to the development of the Smodels system [23, 24, 27] (http://www.tcs.
hut.fi/Software/smodels/) whose first version was released in summer 1995. It
turned out that the nonmonotonic techniques in Smodels are promising in many
areas such as constraint satisfaction, combinatorial problems and planning [22].

The maturing implementation technology for nonmonotonic reasoning provided an
opportunity to apply it seriously to Petri net analysis. The first approach was to use
net unfoldings (finite complete prefixes) [10, 9]. Smodels was used here as a solver
for reachability and deadlock questions on prefixes with encouraging results. Hence,
it felt very interesting to return to the problem where all work on nonmonotonic
reasoning started in Leo’s lab 15 years earlier, i.e., axiomatizing Petri nets using
nonmonotonic logics. The idea is to describe the behavior of a Petri net as well as
the property to be analyzed symbolicly using the nonmonotonic formalism supported
by Smodels in such a way that Smodels could analyze the property using directly
the symbolic representation of the net and, e.g., without constructing its reachability
graph.



In the meanwhile significant progress has been made in using the symbolic approach
in system verification. The first breakthrough was in hardware verification where
symbolic model checking techniques proved to be very efficient [3, 4]. This approach
is based on encoding reachable states using Boolean formulae represented by (or-
dered) binary decision diagrams (BDDs). Although the BDD-based approach has
been successfully, there are difficulties in applying the technique, in particular, in ar-
eas outside hardware verification. The key problem is that some Boolean functions
do not have a compact representation as BDDs and the size of the BDD repre-
sentation of a Boolean function is very sensitive to the variable ordering used for
constructing the BDD.

Bounded model checking [2] has been proposed as a technique for overcoming the
space problem by replacing BDDs with propositional satisfiability (SAT) checking
techniques because typical SAT checkers use only polynomial amount of memory.
The idea is roughly the following. Given a sequential digital circuit, a (temporal)
property to be verified, and a bound n, the behavior of the circuit is unfolded up to
n steps as a Boolean formula S and the negation of the property to be verified is
represented as a Boolean formula R. The translation to Boolean formulae is done
so that S A R is satisfiable iff the system has a behavior violating the property
of length at most n. A main advantage of the bounded model checking approach
is that it can find fast counterexamples, i.e., behaviors violating the correctness
requirements. When searching for the counterexamples by increasing gradually the
bound n, one finds those of minimal length. This helps the user to understand the
counterexamples more easily.

Until now bounded model checking has been applied to synchronous hardware ver-
ification. In this work we extend the approach to handle asynchronous concurrent
systems modeled by Petri nets. It turns out that bounded model checking for 1-safe
P/T-nets is closely related to Al planning. Here we show how to map bounded
model checking problems to the problem of finding stable models of logic programs
by employing ideas used in reducing planning to stable model computation [22].

The structure of the rest of the paper is the following. In the next section we
introduce Petri nets and the bounded model checking problem. Then we present
the nonmonotonic logic supported by Smodels (logic programs with the stable model
semantics) which we employ in the following section to achieve a compact encoding
of bounded model checking. We present some experimental results and finish with
some concluding remarks.

2 Petri nets and bounded model checking

We will now introduce P/T-nets. They are one of the simplest forms of Petri nets.
We will use as a running example the P/T-net represented in Figure 1.

A triple (P, T, F) isa netif PNT =@ and FF C (P x T) U (T x P). The elements
of P are called places, and the elements of 1" transitions. Places and transitions are
also called nodes.



Figure 1: Running Example: A 1-safe P/T-net

We identify F' with its characteristic function on the set (P x T) U (T" x P). The
preset of a node z, denoted by *z, is the set {y € PUT | F(y,z) = 1}. The postset
of a node z, denoted by z°, is the set {y € PUT | F(z,y) = 1}.

A marking of a net (P,T,F) is a mapping P — IN. A marking M is identified
with the multi-set which contains M (p) copies of p for every p € P. A 4-tuple
Y. = (P, T,F, My) is a net system (also called a P/T-net) if (P,T, F) is a net and
My is a marking of (P, T, F).

A marking M enables a transition t € T if Vp € P : F(p,t) < M(p). If ¢ is enabled,

it can occur leading to a new marking (denoted M 5 M"), where M' is defined by
Vpe P: M(p)=M(p) — F(p,t) + F(t,p). In the running example the transition

t2 is enabled in the initial marking My, and thus M, 2 M', where M' = {p3, p4}.

A marking M, is reachable in X if there is an ezecution, i.e. a (possibly empty)
sequence of transitions t,%9,...,t, and markings M, Ms,... , M,_, such that:
M, LN M, 2 oM,y Iny M,. A marking M is reachable within a bound n, if
there is an execution with at most n transitions, with which M is reachable from
the initial state.

A marking is 1-safe if Vp € P : M(p) < 1. A P/T-net X is 1-safe if all its reachable
markings are 1-safe. In this work we will restrict ourselves to P/T-nets which are
1-safe, have a finite number of places and transitions, and in which each transition
has both nonempty pre- and postsets.

Given a 1-safe P/T-net X, we say that a set of transitions S C T is concurrently
enabled in the marking M, if (i) all transitions ¢ € S are enabled in M, and (ii)
for all pairs of transitions ¢,#' € S, such that ¢ # #', it holds that *tN*t' = (. If a
set S is concurrently enabled in the marking M, we can fire it in a step (denoted

M > M'"), where M’ is the marking reached after firing all of the transitions in the
step S in arbitrary order. In our running example in the marking M' = {p3, p4}
the step {t1,¢4} is enabled, and will lead back to the initial marking M. This is

denoted by M’ teLgy M.

We say that a marking M, is reachable in step semantics in a 1-safe P/T-net X if

there is an step execution, i.e. a (possibly empty) sequence of steps Si,Ss, ..., S,

and markings M, My, ..., M,_; such that: My, 2% M, 3 ... M,_, &% M, A



marking M is reachable within a bound n in the step semantics if there is a step
execution with at most n steps, with which M is reachable from the initial state. We
will often refer to the "normal semantics” as interleaving semantics to more clearly
distinguish it from the step semantics. We have the following theorem.

Theorem 1 For 1-safe P/T-nets the set of reachable markings in the interleaving
semantics and the set of reachable markings in the step semantics coincide.

Thus the step semantics does not bring any new reachable markings. However, it
allows to fire several transitions ”in one time step”. Such concurrency implies that
the number of ”time steps” that the system is executed can be decreased without
losing any reachable markings.

Reachability and deadlock detection are among the most important problems in the
analysis of Petri net models.

Definition 1 (Reachability) Given a 1-safe P/T-net ¥ and a 1-safe marking M,
is M a reachable marking of X7

Definition 2 (Deadlock) Given a I-safe P/T-net ¥, is there a reachable marking
M, which does not enable any transition of 37

Both the reachability and deadlock problems for 1-safe Petri nets are PSPACE-
complete [12, 6].

In the bounded case there are now two problems and two different semantics to
consider. We will define only one of them, the others are defined in a similar fashion.

Definition 3 (Bounded deadlock, step semantics) Given a 1-safe P/T-net ¥
and an integer bound n > 0, is there a marking M reachable within the bound n in
the step semantics such that M does not enable any transition of %7

We can think about the bounded versions of the problems as approximations of
the original problems, which become increasingly better as the bound n increases.
The main motivation is that if we find a solution to the bounded version, then the
original problem also has that solution.

We will now define the notion of a reachability diameter for both semantics, which
is the semantic version of the "sufficient bound”:

Definition 4 (Reachability diameter) Given a 1-safe P/T-net ¥, the reacha-
bility diameter d for the step (interleaving) semantics is the smallest integer d > 0
such that the set of reachable markings and the set of reachable markings in the step
(interleaving) semantics within bound d coincide.

See [2] for discussion on how to obtain a reachability diameter using a QBF formula
(using a slightly different definition of the diameter, however, the discussion still
applies here). In practice the currently used tools do not support the calculation of
the diameter for examples of interesting size. Therefore, bounded model checking is
at its best in ”bug hunting”, and not as easily applicable in verifying systems to be
correct.



3 Nonmonotonic reasoning

Nonmonotonic logics formalize a pattern of reasoning which is not supported by
any classical logic: adding new premises might invalidate previous conclusions. All
classical logics are monotonic meaning that new premises can only increase the set of
conclusions. A general approach to formalizing nonmonotonic reasoning is to see it
as autoepistemic reasoning [17], i.e., as reasoning performed by a fully introspective
agent. The set of premises is given using a modal language containing an operator
L which refers to the beliefs of the agent. Besides classical consequences the agent is
capable of performing positive introspection (if it believes ¢, then it believes L¢) and
negative introspection (if it does not believe ¢, then it believes = L¢). It is negative
introspection that makes the reasoning nonmonotonic.

Given a set of premises Y, a possible set of beliefs of a fully introspective agent,
called a stable expansion A of X, is defined by the following a fixed point equation:

A={)|SULAU-LA E o} (1)

which says that A is a possible set of beliefs if it is the set of formulae which are
classical consequences (=) of the premises X, positive introspection LA = {L¢ |
¢ € A} and negative introspection =LA = {=L¢ | ¢ ¢ A}. A possible set of
nonmonotonic conclusions from a set of premises can be taken as a set of beliefs (a
stable expansion) of a fully introspective agent given the premises.

Autoepistemic logic provides a unified basis for solving many kinds of knowledge
representation issues [20]. For example, consider the frame problem, i.e., the problem
of compactly representing conditions saying that things remain the same unless
something forces them to change. It can be handled using frame axioms of the form

p(T) AN =Lty (T)N---AN=Lt)(T) — p(T + 1) (2)

saying that if proposition p holds in a situation 7' and none of the transitions
ti,...,t; capable of changing p are not believed to be executed, then p holds also in
the next situation 7"+ 1.

General autoepistemic logic is very expressive and consequently computationally
hard [19]. For most engineering problems, it is enough to restrict to a subset capable
of capturing NP-complete problems. For this it is sufficient to consider autoepis-
temic formulae of the form

ar A=+ ANam A Lapiy A -+ AN Lay — ag (3)

where every a; is an atomic formula. Such a formula states a simple constraint on a
stable expansion saying that is each of ay,... ,a,, is included in the expansion but
none of a1 1, ... ,a, is, then ag must be included. Gelfond and Lifschitz [7] pointed
out that this fragment of autoepistemic logic provides a very intuitive declarative
semantics for normal logic programs where the idea is to map the negation (as
failure) in logic programming 'not a’ to a disbelief '—~La’ in autoepistemic logic.
Hence, an autoepistemic formula (3) corresponds to the normal logic program rule

ag < A1, ... ,Qp, DOt Qi1 ... , 000 ay . (4)



The declarative semantics is obtained by taking as the possible models of the pro-
gram the atomic parts of the stable expansions of the program seen as the corre-
sponding set of autoepistemic formulae. Such a model, i.e., the set of the atomic
formulae in a stable expansion, is called a stable model of the program.

It was this fragment of autoepistemic logic corresponding to normal programs that
we decided originally to implement in the Smodels system. In order to make Smodels
more expressive and easier to apply, the language of normal programs has been
extended with cardinality and weight constraints [24, 27]. For the purpose of this
paper it is enough to understand two cases of the extensions. The first is a compact
way of encoding a conditional choice using a rule on the left

{ag} «— a1,... ,an ag < not dy, a1, ... , 0y
dg < not ag

which says that ag can be included in a stable model only if ay,... ,a, are also
included but ay can be left out. This corresponds to the two normal rules on the
right where a new atom @y has to be introduced as the complement of ag. The other
case

— 2{ay, ..., an}

excludes all stable models where at least two of a4, ... , a,, are included. There seems
to be no compact encoding of such a rule using only a linear number of normal rules.

4 Bounded symbolic model checking

In this section we develop a method for translating bounded model checking prob-
lems of 1-safe P/T-nets to tasks of finding stable models. We do this so that model
checking can be done for sets of initial markings satisfying certain properties at once.

Consider a P/T-net N = (P,T,F) and a step bound n. We construct a logic
program [T, (N, n) whose stable models correspond to the possible executions of the
net up to n steps in the following way.

e For each place p € P, include a choice rule: {p(0)} <

e For each transition ¢t € T, and for all t = 0,1,... ,n — 1, include a rule
{t()} < pi(0),... ,mu(0) (5)
where {p1,...,p} is the preset of t. Hence, a stable model can contain a

transition instance in step ¢ only if its preset holds at step .
e For each place p € P and for all : =0,1,... ,n — 1, include a rule
p(i+1) « (i) (6)

for each ¢ in the preset of p. The rules imply that p holds in the next step if
at least one of its preset transitions is in the current step.



{p1(0)} + 3(i+ 1) < t2(1)
{p2(0)} + 4(i+ 1) < t2(1)
{p3(0)} + pa(i+ 1) < t3(i)
{p4(0)} « ph(i + 1) < t5(i)
{p5(0)} <— 2{12(z), 13(4), t5(i) }
{t1(2)} < p3(i) pl(i+ 1) < pl(i), not ¢2(7)
{t2(2)} < p1(i), p2(i) 2(2' + 1) < p2(i), not ¢2(7), not t3(z), not t5(7)
{t3(i)} < p2(i) p3(i 4+ 1) < p3(i), not ¢1(7)
{t4(i)} < p4(i) 4(i 4+ 1) < p4(i), not t4(i)
{t5(i)} < p2(i) 5(i + 1) < pb(7)
pl(i+ 1) < t1(3)
p2(i + 1) < t4(3) where i =0,1,...n—1
Figure 2: Program II5(N,n)
e For each place p € P, and for all+ =0,1,... ,n — 1, include a rule
«— 2{t1(4),... ,t;(1)} (7)
where {t,...,%;} is the set of transitions having each p in their preset and

[ > 2. This rule states that at most one of the transitions that are in conflict
w.r.t. p can occur.

e For each place p, and for all e =0,1,... ,n —1,
p(i + 1) < p(i),not t,(i),... ,not t;(i) (8)

where {¢1,...,t;} is the set of transitions having p in their preset. This is the
frame azxiom for p stating that p holds if no transition using it occurs.

Consider our running example. The program I, (V,n) is given in Figure 2. Con-
ditions on markings are straightforward to state using rules. Eliminating stable
models not satisfying a marking M at step ¢ can be achieved using rules

Iv(M,i) = {«notp(i)|[pe P, M(p)=1}U
{«p(i) |p € P,M(p) = 0}.

This extends to any Boolean combination directly. For example, for eliminating
stable models not satisfying condition C at step i requiring that M(p;) = 1 with
M (p2) =0 or M(p3) =1 it is sufficient to use rules Iy (C,1):

< not py (1) Cpyvps (1) <= 10t po(i)
<= 1Ot Cppvpg (7') CpaVvps (7') < D3 (7')

Theorem 2 Let N = (P,T,F) be a 1-safe P/T-net for all initial markings satis-
fying condition C. Net N has an initial marking satisfying C such that a marking
M is reachable in at most n steps iff Iy (C,0) UIIA(N,n) UILy(M,n) has a stable
model.



This approach can be adapted easily to handle deadlock checking by adding rules
[Ip(N,n) eliminating stable models where some transition is enabled. Program
IIp (N, n) includes for each transition ¢t € T, a rule

—pi(n),...,mi(n) (9)
where {p1,...,p} is the preset of . For our running example, rules Il (N, n) are
< p3(n) < p2(n)
< pl(n),p2(n) « pA(n).

Theorem 3 Let N = (P, T, F) be a 1-safe P/T-net for all initial markings satisfy-
ing condition C'. Net N has an initial marking satisfying C' such that a deadlock is
reachable in at most n steps iff Iy (C,0) ULIA (N, n) ULl (N, n) has a stable model.

So far in this section we have considered only the translations of the step semantics
versions of the problems. We can create the interleaving semantics versions of the
problems by adding some rules to the program for the step version of the problem.
Program IT; (N, n) includes for each time step 0 < i <n — 1 a rule

— 2{t1(3),... , tm(i)} (10)

where {t;,...,t,} is the set of all transitions. These rules will the eliminate all
stable models having more than one transition firing in a step.

Corollary 1 Let IIg(N,n) be a translation solving a bounded model checking prob-
lem in the step semantics. Then the program Ils(N,n) UII;(N,n) solves the same
problem in the interleaving semantics.

In [2] it is shown how bounded model checking can be done also for linear time
temporal logic LTL. An interesting area of further work is to extend bounded model
checking of LTL formulae to the asynchronous case. A main challenges is to allow as
much concurrency as possible, to obtain as small as possible diameter for the LTL
model checking translation. Also the safety property subset of LTL is interesting in
this context [13], as a simpler translation for that LTL subset is possible.

5 Experiments

We have implemented the translation from the bounded model checking problem to
the problem of finding a stable model. The translation was implemented in C++ in
quite a straightforward manner with only two simple optimizations included:

e If a single initial marking is given, place and transition atoms are added only
from the time step they can first appear on. Only atoms for places p(0) in
the initial marking are created for time ¢ = 0. Then for each 0 < ¢ < n — 1:
(i) Add transition atoms for all transitions ¢(¢) such that all the place atoms
in the preset of #(i) exist. (ii) Add place atoms for all places p(i + 1) such
that either the place atom p(7) exists or some transition atom in the preset of
p(i + 1) exists.



e Duplicate rules are removed (can appear in conflict (7) and liveness (9) rules).

As benchmarks we use a set of deadlock checking problems collected by Corbett [5].
They have been converted from communicating state machines to 1-safe P/T-nets
by Melzer and Rémer [16]. The problem is to check deadlocks from a given single
initial marking. The testcases were picked from those which have a deadlock, and
Smodels was instructed to stop after finding the first stable model using the smallest
bound n in which the deadlock existed. In some cases a model could not be found
within a reasonable time, in which case we report the time used to prove that there
is no deadlock within the bound n.

The experimental results can be found in Fig. 3 with the following columns:

e Problem: The problem name, with the size of the instance in parenthesis.
e |P| (|7|): Number of places (transitions) in the original net.

e St. n: The smallest integer n such that a deadlock could be found using the
step semantics / in case of > n the largest integer n for which we could prove
that there is no deadlock within that bound using the step semantics.

e St. s: The time in seconds to find the first stable model / to prove that there
is no stable model. (See St. n above.)

e Int. n and Int. s: defined as St. n and St. s but for the interleaving semantics.

e States: Number of reachable states of the P/T-net (if known).

The times are the average of 5 runs of the time for Smodels 2.26 as reported by
the /usr/bin/time command on a 450Mhz Pentium III PC running Linux.

In many of the experiments the step semantics version had a much smaller bound
than the interleaving one. Also, when the bound needed to find the deadlock was
fairly small, the bounded model checker was performing well.

The DP(x) problems are dining philosophers problems, where in the step semantics
the counterexample could always be found with a bound of 1, while in the interleav-
ing semantics the bound grew at the same speed as the number of philosophers. In
the examples ELEV (4), HART(x) and Q(1) we were able to find the counterexample
only when using step semantics.

In the KEY(2) example we were no able to find a counterexample with either seman-
tics, even though the problem is known to have only a small number of reachable
states. In contrast, the DARTES(1) problem has a large state-space, and despite of
it a counterexample of length 32 was obtained. Thus is seems that the size of the
state space is not always decisive in the bounded model checker running time.

This is the first set of experiments we have tried with asynchronous system bench-
marks, and no major work has gone into obtaining the best possible performance.
Overall, the results were promising, in particular, for small bounds and the step
semantics but we need to get a better understanding of the behavior of the bounded
model checking approach by doing more experiments.



Problem | P| || | St. n | St.s | Int. n | Int.s States
DARTES(1) | 331 | 257 32 0.5 32 0.5 | >250000
DP(6) 36 24 1 0.0 6 0.1 728
DP(8) 48 32 1 0.0 8 0.3 6554
DP(10) 60 40 1 0.0 10 3.3 48896
DP(12) 72 48 1 0.0 12 | 617.4 | >350000
ELEV(1) 63 99 4 0.0 9 0.4 137
ELEV(2) 146 | 299 6 0.5 12 3.9 1061
ELEV(3) 327 | 783 8 5.6 15 | 139.0 7120
ELEV(4) 736 | 1939 10 | 157.2 >13 | 1215.2 43439
HART(25) 127 v 1 0.0 >5 1.0 52
HART(50) | 252 | 152 1 00| >5 5.7 102
HART(75) | 377 | 227 1 0.0 >5 15.5 152
HART(100) | 502 | 302 1 0.0 >5 35.9 202
KEY(2) 94 92 | >25|1937.9 >26 56.1 536
MMGT(3) 122 | 172 7 11.1 10 87.2 7702
MMGT(4) 158 | 232 8 | 687.3 >11 | 1874.1 66308
Q(1) 163 | 194 9 0.1 >17 | 2733.7 123596
SENT(25) 104 55 2 0.0 3 0.0 231
SENT(50) 179 80 2 0.0 3 0.0 281
SENT(75) 254 | 105 2 0.0 3 0.0 331
SENT(100) | 329 | 130 2 0.0 3 0.0 381
SPD(1) 33 39 1 0.0 4 0.0 8689

Figure 3: Experiments

6 Conclusions

We present a mapping from bounded reachability and deadlock detection problems
of 1-safe P/T-nets to stable model computation. Our mapping is able to handle
sets of initial markings. The first experimental results indicate that stable model
computation is quite a competitive approach to searching for short executions of
the system leading to deadlock even from a given single initial marking and worth
further study. As further work the LTL model checking and the safety LTL model
checking problems look interesting. There are also alternative semantics to the two
presented in this work. Experiments are needed to determine whether they are
useful for bounded model checking.
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