
Concurrent clause strengthening

Siert Wieringa and Keijo Heljanko⋆

Aalto University, School of Science
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland
siert.wieringa@aalto.fi keijo.heljanko@aalto.fi

Abstract. This work presents a novel strategy for improving SAT solver
performance by using concurrency. Rather than aiming to parallelize
search, we use concurrency to aid a conventional CDCL search procedure.
More concretely, our work extends a conventional CDCL SAT solver
with a second computation thread, which is solely used to strengthen
the clauses learned by the solver. This provides a simple and natural
way to exploit the availability of multi-core hardware.
We have employed our technique to extend two well established solvers,
MiniSAT and Glucose. Despite its conceptual simplicity the technique
yields a significant improvement of those solvers’ performances, in par-
ticular for unsatisfiable benchmarks. For such benchmarks an extensive
empirical evaluation revealed a remarkably consistent reduction of the
wall clock time required to determine unsatisfiability, as well as an ability
to solve more benchmarks in the same CPU time.
The proposed technique can be applied in combination with existing par-
allel SAT solving techniques, including both portfolio and search space
splitting approaches. The approach presented here can thus be seen as
orthogonal to those existing techniques.

1 Introduction

Propositional satisfiability (typically abbreviated SAT) is the problem of finding
a satisfying truth assignment for a given propositional logic formula, or deter-
mining that no such assignment exists. This classifies the formula as respectively
satisfiable or unsatisfiable. SAT is an important theoretical problem as it was
the first problem ever to be proven NP-complete [8].

Despite the theoretical hardness of SAT, current state-of-the-art decision
procedures for SAT, so called SAT solvers, have become surprisingly efficient.
The introduction of Conflict Driven Clause Learning (CDCL) [23] was a crucial
step in the process of making these algorithms into industrial strength prob-
lem solvers. However, modern SAT solvers are not just efficient implementations
of the CDCL search procedure. Instead, they implement several forms of extra
reasoning. For example, formula simplification before CDCL search, so called
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preprocessing, is commonly used. An important work for the widespread adap-
tation of this technique was the introduction of an efficient preprocessor called
SatELite [10]. Some modern solvers, such as Lingeling [6], use inprocessing, which
is the sequential interleaving of search and simplification procedures. For a re-
cent and extensive overview of pre- and inprocessing techniques, as well as a
concise set of rules formalizing such techniques please refer to [21].

Another technique that is crucial for performance, but not part of the core
CDCL search procedure is conflict clause strengthening (e.g. [11, 14, 29]). This
is usually performed during conflict analysis (see Sec. 2). The length of a con-
flict clause can be efficiently reduced to a minimal clause implied by the set of
clauses used in its derivation [14, 29]. Hence, the name conflict clause minimiza-

tion is also commonly used [11]. However, reducing a conflict clause to a minimal

conflict clause implied by all clauses in the formula is NP-hard, as this clause
is of length zero iff the formula is unsatisfiable. In [14] the related Generalized

Conflict-Clause Strengthening problem was defined and proven NP-hard.

Sequentially interleaving a more expensive conflict clause strengthening pro-
cedure with the core CDCL search procedure may provide performance improve-
ments, but it is hard to develop good heuristics for deciding when to switch be-
tween searching and conflict clause strengthening. As the majority of computer
hardware is nowadays equipped with multi-core CPUs conflict clause strengthen-
ing can instead be performed in parallel with the core search procedure. We have
developed a novel solving architecture that uses two computation threads, one
for CDCL search and one solely for strengthening conflict clauses. The conflict
clause strengthening algorithm used is similar to existing algorithms for prob-
lem clause strengthening [25, 17]. In extensive experimental results we show the
performance of two implementations of our architecture, based on two different
well established SAT solvers, MiniSAT [12] and Glucose [2].

For all experiments we will present results regarding wall clock time and
CPU time. Wall clock time is defined as the amount of time that passes from
the start to the finish of the solving process, and this measure is independent
of the amount of resources that are used during that time. CPU time on the
other hand is the sum of the time spend by each of the cores used, i.e. if a single
program uses all the computation power of two CPU cores concurrently then
the CPU time grows twice as fast as the wall clock time.

The presented two threaded solver maintains all the features of a normal
SAT solver, including for example its interface for incremental SAT solving [13].
Hence, our new solver could in principle replace the conventional solver inside the
parallel incremental solver that we presented in recent work [30]. Although the
performance of the technique presented here in combination with incremental
SAT is interesting this is left for further work.

One may consider a parallelization of an algorithm as a strategy for assigning
any number of simultaneously available computation resources to performing a
single task. By that definition this work does not present a parallelization of a
SAT solver, as only the use of exactly two concurrent computation threads is
considered. However, existing techniques for parallelizing SAT algorithms can be



used in combination with our two threaded solver, in order to obtain a generic
parallelization. Even running multiple copies of our two threaded solver is a
practical proposition for such environments, given its good performance regard-
ing CPU time. Hence, we will provide a short overview of relevant work on
parallelizing SAT solvers.

Two major approaches for parallelizing SAT algorithms can be distinguished
[19]. The first is the classic divide-and-conquer approach, which aims to parti-
tion the formula to divide the total workload evenly over multiple SAT solver
instances [7, 28, 32]. The second approach is the so called portfolio approach [16,
22]. Rather than partitioning the formula, portfolio systems run multiple solvers
in parallel each of which attempt to solve the same formula. The system finishes
whenever the fastest solver is done. Both approaches can be extended with some
form of conflict clause sharing between the solver threads.

Although other techniques have recently been developed (e.g. [18, 19]) port-
folio solvers have received the majority of the research attention in recent years.
Some insight into the good performance of these approaches is provided in [20].
ManySAT [16] is a well known adaptation of the portfolio strategy. It employs
conflict clause sharing and is thus a so called cooperative portfolio. It is build
around running multiple copies of the sequential solver MiniSAT [12] in parallel.
Although each of the solver threads may be given different settings the threads
are largely homogeneous.

Other portfolio solvers are non-cooperative, but use truly heterogeneous solver
threads. Examples are ppfolio1, SATzilla [31], and 3S [22]. These all use a col-
lection of different SAT solvers from several developers. Whereas SATzilla and
3S try to be clever about which solvers to use for solving a particular formula
ppfolio is completely näıve. In fact, ppfolio is a very simple program that just
executes multiple solvers in parallel. It was meant to illustrate a lower bound on
what is achievable using portfolios1, but it turned out to be one of the strongest
solvers at the SAT Competition2 in 2011.

In several recent cooperating portfolios using homogeneous solver threads,
such as Plingeling [6], cooperation is limited to sharing unit clauses only. The
relatively weak performance of portfolios sharing more than just unit clauses was
the motivation for work presenting a new set of clause sharing heuristics [1]. The
solver implementing those heuristics, called PeneLoPe, won a silver medal at the
SAT Challenge in 2012 [4]. The winner, solving one instance more, was a non-
cooperative portfolio called pfolioUZK [4]. PeneLoPe is based on ManySAT and
its performance is remarkable, considering its use of homogeneous solver threads.

2 Definitions

A literal l is either a Boolean variable x or its negation ¬x. Double negations
cancel out, hence ¬¬l = l. An assignment ρ is a set of literals such that if l ∈ ρ
then ¬l /∈ ρ. If l ∈ ρ we say that literal l is assigned the value true. If ¬l ∈ ρ

1 www.cril.univ-artois.fr/~roussel/ppfolio
2 www.satcompetition.org



it is said that l is assigned the value false, or equivalently that l is falsified. If
for some literal l neither l nor ¬l is in the assignment ρ then l is unassigned.
For an assignment ρ we denote by ¬ρ the set {¬l | l ∈ ρ}. A clause c is a set
of literals c = {l0, l1, · · · , ln} representing the disjunction

∨
c = l0 ∨ l1 · · · ∨ ln.

Hence, clause c is satisfied by assignment ρ iff c ∩ ρ 6= ∅. A clause consisting of
exactly one literal is called a unit clause.

As typical in work on SAT solvers, we only consider formulas in conjunctive

normal form (CNF). Such formulas are formed as conjunctions of disjunctions,
and hence can be represented as sets of clauses. The formula F under the assign-

ment ρ is denoted Fρ as in [5]. It is defined as the formula F after removing all
clauses satisfied by ρ, followed by shrinking the remaining clauses by removing
literals that are falsified by ρ. Formally:

Fρ = { c \ ¬ρ | c ∈ F and c ∩ ρ = ∅ }

Let iup(F , ρ) be the assignment ρ that is the result of executing the following
iterative unit propagation loop:

while {l} ∈ Fρ do ρ = ρ ∪ {l}

Moreover we define F|ρ = F iup(F, ρ), which is the result of simplifying formula
F under assignment ρ by iterative unit propagation. If ∅ ∈ F|ρ we say that a
conflict has been reached. If on the other hand F|ρ = ∅ then assignment ρ
satisfies F . The DPLL algorithm [9] is the classical algorithm for determining
the satisfiability of CNF formulas. It starts from the formula F and an empty
assignment ρ, and alternates between iterative unit propagation and branching

decisions. During a branching decision, or simply decision, the algorithm picks a
decision variable xd that is unassigned by ρ and assigns it to either true or false.
Whenever iterative unit propagation leads to a conflict the algorithm backtracks
to the last decision to which it had not backtracked before, and negates the
assignment made at that decision. This backtracking search continuous until
either all variables of F are assigned, or all branches of the search tree have
been unsuccessfully explored. In the former case ρ satisfies F , in the latter case
F is unsatisfiable.

Most modern SAT solvers are so called Conflict Driven Clause Learning

(CDCL) solvers [23, 24]. Just like the basic DPLL procedure the search for a
satisfying assignment proceeds by alternating between iterative unit propagation
and branching decisions. The crucial difference is what happens when a conflict
is reached. In this case, a CDCL solver will analyze the sequence of decisions
and implications that lead to the conflict. During this conflict analysis the solver
derives a conflict clause, which is a clause implied by the input formula that gives
a representation of the “cause” of the conflict. By including the conflict clause
in the set of clauses on which iterative unit propagation is performed hitting
another conflict with the same cause can be avoided.

An important property of the most popular clause learning scheme for CDCL
solvers, called first unique implication point (1-UIP) [24], is that each conflict
clause contains exactly one literal that was falsified by the last decision or the



subsequent unit propagation. This literal is called the asserting literal. After
conflict analysis the CDCL solver must backtrack. Unlike the DPLL procedure
CDCL solvers use non-chronological backtracking, which is driven by the conflict
clauses. By definition all literals in a conflict clause are assigned the value false

by assignment ρ when it is derived. After learning conflict clause c, the solver
backtracks until the earliest decision at which all literals of c except the asserting
literal la are assigned false. The literal la is then assigned the value true, as this
is required to satisfy c. Subsequent unit propagation may yield a new conflict
which is handled in the same way.

Any conflict clause c, derived by a CDCL solver from the formula F with
the aid of previously derived conflict clauses P , can be derived using a so called
trivial resolution derivation [5]. This implies that if the value false is assigned
to all literals of a conflict clause, then the result of simplifying formula F ∪ P
under that assignment by iterative unit propagation is guaranteed to reach a
conflict, i.e. the following property holds:

∅ ∈ F ′|ρ for F ′ = F ∪ P and ρ = {¬l | l ∈ c} (1)

Another important property of conflict clauses derived using the 1-UIP scheme
is their 1-empowerment property [27]. Informally this means that if all literals
of a conflict clause c except its asserting literal la are assigned to false, then
iterative unit propagation on the set F ∪ P does not yield the necessary truth
assignment true to la, i.e. the following property holds:

la /∈ iup(F ′, ρ) for F ′ = F ∪ P and ρ = {¬l | l ∈ c and l 6= la} (2)

It is said that c is 1-empowering with respect to F∪P via its asserting literal
la. This property implies that adding the conflict clause c to the learnt clause
set P strictly extends the propagation abilities of the solver. In other words, the
deductive power of the CNF formula F ∪ P is strictly increased [17].

3 The solver-reducer architecture

We propose an architecture using two concurrently executing threads, which
are called the solver and the reducer. The solver acts like any conventional
SAT solver, except for its interaction with the reducer. The interaction between
the solver and the reducer is limited to passing clauses through two shared-
memory data structures called the work set and the result queue. The work set is
used to pass clauses from the solver to the reducer, the result queue is used
for passing clauses in the opposite direction, as illustrated in Fig. 1.

Whenever the solver learns a clause it writes a copy of that clause to the
work set. The reducer reads clauses from the work set and tries to strengthen
them. When the reducer successfully reduces the length of a clause, it places
the new shorter clause in the result queue. The solver checks frequently whether
there are any clauses in the result queue. If this is the case the solver enters the
clauses from the result queue in its learnt clause set. It is possible that all of the



solver reducer

work set

result queue

Fig. 1. The solver-reducer architecture

literals in such a clause are assigned the value false in the current assignment
ρ of the solver. In this case the solver must backtrack before entering the
clause in the set. Our implementation of on-the-fly addition of “foreign” clauses
in the solver tries to keep backtracking to a minimum. If the clause is asserting
then this is handled in the same way as for normal conflict clauses. We could have
chosen to introduce the clauses only when the solver’s assignment ρ contains no
decision variables (as in e.g. [30]), but a more dynamic approach was considered
more appropriate here. There is no mechanism to ensure that the clause c is
removed from the solver’s learnt clause set when a clause c′ ⊂ c is obtained
from the result queue.

Our proposed architecture is conceptually simple, and we will show that it
can provide substantial performance improvements. An unfortunate side-effect
of our approach is that the behavior of the solver becomes non-deterministic, as
the execution order is determined by the operating system’s thread scheduling
policy. This means that runs of our two threaded solver are not reproducible,
and performance may vary drastically in between two different runs on the same
formula. The same problem occurs also when using more conventional paral-
lelizations of SAT solvers. In [15] it was shown that a deterministic version of
ManySAT, using synchronization barriers and a dynamic heuristic for deciding
when to perform synchronization, on average performed almost as well as the
original version. We believe that a similar technique could be applied successfully
in an implementation of the solver-reducer architecture.

3.1 The reducer

The reducer continuously checks the work set for new input clauses, and then
runs its reduction algorithm. The algorithm is based on unit propagation and
conflict clause learning. Basically, the algorithm assigns the literals of the input
clause cin to false one by one until iterative unit propagation leads to a conflict,
or all variables are assigned. The pseudocode for this algorithm is given in Fig. 2,
where PR represents the set of learnt clauses maintained by the reducer.

Consider the case where the algorithm returns cout from Line 7. This case
occurs iff there is no trivial resolution derivation of cin from F ∪ PR. This is
possible, because the set PR does not necessarily contain all the clauses PS

that were contained in the solver when cin was derived. The returned clause



1. cout = ∅; ρ = ∅
2. F ′ = F ∪ PR

3. for l ∈ (cin \ cout) s.t. ¬l /∈ iup(F ′, ρ)
4. if ∅ ∈ F ′|

ρ
then (PR, cnew) = analyze(F , PR, ρ); return cnew

5. cout = cout ∪ {l}; ρ = ρ ∪ {¬l}
6. PR = PR ∪ {cout}
7. return cout

Fig. 2. Pseudocode for the reducer’s algorithm

cout ⊆ cin is obtained by removing with respect to cin any literals l ∈ cin for
which the value false of the corresponding literal l was implied rather than
assigned. This implements self-subsumption resolution [10]. It is sound because
the forced falsification of l means that for some c ⊂ cin it holds that F |= c∪{¬l},
and by resolution on the clauses cin and c ∪ {¬l} it follows that F |= cin \ {l}.
Because cout is 1-empowering with respect to F ∪ PR it is added to PR.

Now consider the case were the algorithm returns after calling the func-
tion analyze on Line 4 of the pseudocode. The function analyze analysis the
conflicting assignment ρ. Until ρ is non-conflicting or ρ = ∅ it performs back-
tracking by removing literals from ρ, conflict clause learning by adding clauses to
PR, and iterative unit propagation. Because for each clause added to PR at least
one literal is removed from ρ the number of new conflict clauses is bounded by
|ρ| ≤ |cin|. These conflict clauses are crucial for the performance of the reducer,
but they are never shared with the solver. The function analyze returns a
clause3 cnew such that cnew ⊆ cout. Consider the assignment ρ after the back-
tracking performed by analyze. If ρ = ∅ then cnew = ∅. Else, for some l ∈ cout
and ρ′ ⊆ ρ it holds that l ∈ iup(F ′, ρ′). In this case cnew = {l′ | ¬l′ ∈ ρ′} ∪ {l}.

Our reducer’s algorithm is very similar to the vivification algorithm of [25].
The vivification algorithm aims to find redundant literals in the problem clauses
c ∈ F by assigning the value false for the literals in c, and performing unit
propagation on the formula F \{c}. In case a conflict arises the algorithm learns
only exactly one new conflict clause. The order in which the literals are assigned
is heuristically controlled in the vivification algorithm. In our reducer imple-
mentation the literals are assigned in the order in which they appear in the
clause. Due to the organization of the conflict clause analysis procedure of the
solver this means that the asserting literal of the conflict clause is always as-
signed first. Note that the clause c ∪ {la}, where la is the asserting literal, is
equivalent to the implication (¬

∨
c) → la. Although the clause can be rewritten

as an implication with any one of its literals as the consequent, this implica-
tion of la is the one that guaranteed the 1-empowering property of the clause

3 In the implementation cnew is obtained using MiniSAT’s analyzeFinal function,
where ρ is regarded as the set of assumptions [13].



in the solver. By starting from la, the reducer aims to reduce the size of the
antecedent ¬c of this deduction power increasing implication.

The reducer can not do anything that a conventional solver could not also
do in the same number of steps. This means that the solver-reducer architecture
does not implement a stronger proof system (see, e.g. [5]) than a conventional
CDCL solver. In fact, a modern SAT solver using the VSIDS heuristic [24],
phase saving [26], and frequent restarts (e.g. [3]) has a tendency to “run towards
conflicts” just like the reducer does. Consider a SAT solver using phase saving
and extreme parameter settings: It restarts after every conflict, and uses a VSIDS
activity decay so large that the set of variables involved in the most recent conflict
always have larger activities than any other variables. In this case, after every
conflict and the subsequent restart, the VSIDS heuristic will pick as decision
variables those variables that occur in the most recent conflict clause. Combined
with phase saving this will lead to the same sequence of assignments as the
reducer would make to reduce that conflict clause.

3.2 The work set

A set of clauses stored in a shared-memory data structure called the work set is
forming the inputs of the reducer. It is possible to implement the work set as a
simple unbounded FIFO queue. This may be sufficient if the reducer has only
very few clauses in its learnt clause set, as in this case it can often perform unit
propagation fast enough to keep up with the conflict clause generation of the
solver. However, the clause learning in the reducer is crucial to the strength
of the reduction procedure. As the size of reducer’s learnt clause set increases
it is able to provide stronger reduced clauses, but at a lower speed.

If the reducer can not keep up with the solver then a work set imple-
mented as a FIFO queue will just keep growing. As the reducer lags behind it
will only strengthen “old” clauses, that are less likely to be of use to the solver.
An unbounded LIFO queue would make the reducer focus on reducing recent
clauses first, but strong clauses may shift to the back of such a queue quickly if
the reducer is momentarily busy. Giving preference to strengthening clauses
that are likely to be “important” to the solver is natural. The “quality” of a
conflict clause can be crudely approximated by its length, or alternatively by its
Literal Blocks Distance (LBD) [2]. Hence, an alternative work set implementa-
tion could keep an unbounded set of clauses sorted by their length. However,
as the average conflict clause length changes during the search, a clause that
was relatively long (“bad”) at the time it was learned may seem relatively short
(“good”) after some time has passed. Thus, this unbounded sorted set also leads
to reducing outdated clauses. The same argument holds when the LBD is used
for sorting the set, as the LBD measure of a clause is bounded by its length.

We achieved the best performance using work set with a limited capacity. If
the solver enters a clause into a full work set then this clause will replace the
oldest clause in the set. If the reducer requests a clause from the work set it
is given the “best” clause from the set. In this way, the reducer’s inputs are
kept both “fresh” and “good”.



3.3 Implementation

We have implemented our solver-reducer architecture on top of two well estab-
lished existing SAT solvers, MiniSAT 2.2.04 [12] and Glucose 2.15 [2]. Mini-
SAT is often used as a basis for the development of new solving techniques,
as witnessed by the existence of a “MiniSAT hack track” at the SAT competi-
tions. Glucose won the SAT Challenge in 2012 [4]. Older Glucose versions won
at the applications tracks of the SAT competitions in 2009 (for unsatisfiable
benchmarks) and in 2011 (for mixed benchmarks). Because Glucose is based on
MiniSAT the solver-reducer architecture was easy to port to Glucose once it had
been developed inside MiniSAT. We will refer to the two open-source6 solver-
reducer implementations we created as respectively MiniRed and GlucoRed.

Both the solver and the reducer of MiniRed are build as extensions to
the MiniSAT solver. All the default settings and heuristics of MiniSAT were
maintained in the solver and the reducer. Similarly, the solver and the
reducer of GlucoRed maintain the default settings of the Glucose solver. An
example of a heuristic that concerns both the solver and the reducer is
the heuristic for deciding when to reduce the size of their learnt clause sets.
GlucoRed uses the LBD measure of a clause as a sorting metric for the work
set, i.e. when the reducer requests a clause from the work set it is given the
clause with the smallest LBD. Because MiniSAT does not compute LBD values
MiniRed uses clause length as a sorting metric instead. The result queue is
implemented as an unbounded FIFO queue.

The two threads interact solely by passing clauses, or more precisely pointers
to clauses, through the work set and the result queue. Exclusive access to those
datastructures is achieved by the use of a single lock. To reduce the number of
times the lock must be acquired the solver and reducer always combine read
and write operations. In the reducer this is straightforward: If the length of a
clause is reduced, then the new shorter clause is written to the result queue once
the lock has been obtained to read a new input clause from the work set. The
solver combines reading and writing by checking the result queue for new
reduced clauses whenever it has acquired the lock to write a new clause to the
work set, i.e. whenever it derives a conflict clause. The solver always postpones
the addition of reduced clauses from the result queue to its learnt clause database
until just before its next branching decision.

4 Experimental evaluation

All experiments in this work were performed in a computing cluster, using ma-
chines that each have two six core Intel Xeon X5650 processors7. A memory
limit of 7GB was enforced.

4 http://www.minisat.se
5 http://www.lri.fr/~simon
6 http://users.ics.aalto.fi/swiering/solver_reducer
7 These resources were provided by the Aalto Science-IT project.



 0

 200

 400

 600

 800

 1000

 0  20000  40000  60000  80000  100000  120000  140000

# 
C

la
us

es
 in

 w
or

k 
se

t

Clause insertion #

c7nidw f8b IBM

Fig. 3. Erratic use of the work set during three different runs

The MiniSAT [12] distribution provides a version of the solver with an inte-
grated preprocessor, which is similar to SatELite [10]. During the SAT Challenge
[4] the developers of Glucose [2] did not use such an internal preprocessor. In-
stead, they provided a script that first ran SatELite, and then ran Glucose on the
resulting formula. For a fair comparison of the strength of the solvers we chose
to run all solvers without enabling their integrated preprocessors, and provide
them with both original and simplified benchmarks.

The first set of benchmarks we used is named Competition, and contains in
total 547 benchmarks. The set combines 300 benchmarks from the application
track of the SAT competition held in 2011, and the 247 application track bench-
marks from the SAT Challenge 2012 that were marked as unused in previous
competitions [4]. The set Simplified contains 501 benchmarks that are the re-
sult of running SatELite on the set Competition. The difference in size between
the Competition set and the Simplified set is caused by leaving out benchmarks
that were proven unsatisfiable by SatELite, and benchmarks that could not be
simplified in 15 minutes.

4.1 Capacity of the work set

All experiments used a work set with a capacity of 1000 clauses. The average
performance of our implementation is not particularly sensitive to this setting.
It is however hard to make any general statements about the typical use of the
work set. We illustrate this using a small experiment for which we solved three
unsatisfiable benchmarks from the Simplified set using MiniRed. Each of these



benchmarks takes just over thirty seconds to solve using conventional MiniSAT.
In Fig. 3 the number of clauses in the work set just before a new clause is inserted
is plotted for the solver’s first 140 000 conflict clauses8. The graph shows that
the use of the work set is very different for the three benchmarks. For f8b the set
fills up almost immediately and remains full afterwards, whereas for c7nidw the
size keeps varying dramatically. For benchmark IBM

9 the reducer easily keeps
up with the supply of clauses, as the work set never fills. Interestingly, IBM was
also the only one of the three benchmarks for which the added reducer did not
seem to be beneficial for the solver’s performance.

4.2 Clause length

The numbers in Fig. 4 were obtained using MiniRed and the benchmarks from
the Simplified set. MiniRed was run twice for every benchmark, once with the
default settings, and once with the standard MiniSAT conflict minimization
procedure [11] disabled in the solver. In total 367 benchmarks were solved
within 1800 seconds of CPU time during both runs.

Let us first focus on the numbers printed in a bold font, which represent the
results for MiniRed’s default settings. The numbers on the arrows indicate the
average length of all the clauses that passed it during the 367 runs. Note that
the absolute values of these numbers are meaningless, as they are averaged over
a large set of independent and very different runs. The relation between these
numbers nevertheless provides some insight in the operation of our architecture.

The arrow that points up out of the work set represents the clauses that are
deleted from the work set because of its limited capacity, as described in Sec. 3.2.
During this experiment on average 34.6% of the clauses placed in the work
set were deleted. The average length of those clauses is large (91.3) compared to
the average length of the clauses that are entering the work set (56.8). This was
expected, as the work set delivers the shortest clauses first to the reducer. The
average length of the clauses passing through the reducer dropped from 38.1
to 27.6 literals. On average 30.2% of the clauses remain the exact same length
after passing through the reducer. These clauses are not placed in the result
queue, as represented by the arrow that points down at the bottom of Fig. 4.
Unsurprisingly the average length of those clauses is rather short (15.3).

The results for the experiment in which MiniRed was run with the solver’s
conflict clause minimization disabled are printed in an italic font in the figure.
The total number of conflict clauses generated by the solver over the 367 runs
grew by 17%, and those clauses were on average 2.5 times longer. However, the
clauses that are actually delivered from the work set to the reducer are not
much longer than those in the first experiment, and after reduction they are even
slightly shorter. Surprisingly, the average overall performance of MiniRed was
almost identical in both experiments. Note that disabling the conflict clause

8 For the benchmarks c7nidw and IBM the total number of conflict clauses generated
by the solver was slightly over 300 000 clauses, for f8b the total was around 150 000.

9 IBM abbreviates IBM FV 2004 rule batch 26 SAT dat.k95.
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Fig. 4. Average clause lengths over 367 benchmarks

minimization in conventional MiniSAT results in a substantial degradation of
the performance [11], hence MiniRed’s consistent good performance is made
possible by the reducer. It apparently did not harm the solver that the
length of the longest clauses was never reduced at all, not even using the conflict
clause minimization routine. In the remainder of this work we will only use the
default settings, in which the solver’s conflict clause minimization is enabled.

4.3 Performance

Table 1 contains the number of benchmarks solved by the four different solvers
within 900 seconds of wall clock time. The numbers in the table that are printed
in a smaller font inside brackets represent the number of benchmarks solved
within 1800 seconds of CPU time. The column VBS (Virtual Best Solver) pro-
vides the total number of benchmarks solved by at least one of the four solvers.
The columns labelled ∆ underline the difference between the number of bench-
marks solved with- and without reducer.

Note the impressive performance improvement the solver-reducer architec-
ture provides for unsatisfiable benchmarks. MiniRed improves the number of
unsatisfiable benchmarks solved for the Simplified set by 58 benchmarks, and
even regarding CPU time still provides a 31 benchmark improvement over Mini-
SAT. The gaps are smaller but still significant for the Glucose based implemen-
tation. The results for the unsatisfiable benchmarks from the Competition set
are presented as cactus plots in Fig. 5. Comparison is made based on wall clock
time in Fig. 5a and based on CPU time in Fig. 5b. The same is done for the
unsatisfiable benchmarks from the Simplified set in Fig. 6a and Fig. 6b. The
logarithmic-scale scatter plots in Fig. 7 and Fig. 8 provide another presentation
of the wall clock time performance of MiniSAT versus MiniRed, and Glucose ver-
sus GlucoRed. The remarkable consistency of the improvement for unsatisfiable
benchmarks can be clearly seen.

It is not surprising that the reducer does not contribute much to the aver-
age performance for satisfiable benchmarks, and that thus for such benchmarks



Set VBS MiniSAT MiniRed ∆ Glucose GlucoRed ∆

Competition UNSAT 239 (251) 151 (171) 208 (208) 57 (37) 207 (234) 235 (235) 28 (1)

SAT 177 (179) 166 (174) 168 (168) 2 (-6) 158 (167) 155 (157) −3 (-10)

Simplified UNSAT 246 (249) 164 (191) 222 (222) 58 (31) 220 (232) 237 (237) 17 (5)

SAT 166 (168) 150 (157) 159 (159) 9 (2) 155 (157) 147 (149) −8 (-8)

Table 1. Number of benchmarks solved

GlucoRed PeneLoPe-2 PeneLoPe-4 PeneLoPe-8

UNSAT 237 (237) 227 (227) 231 (221) 247 (217)

SAT 147 (149) 142 (142) 160 (154) 164 (149)

Table 2. Number of benchmarks in the Simplified set solved by PeneLoPe

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60  80  100  120  140  160  180  200  220  240

w
al

l c
lo

ck
 ti

m
e 

(s
)

instances solved

MiniSAT (#151)
MiniRed (#208)
Glucose (#205)

GlucoRed (#235)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 60  80  100  120  140  160  180  200  220  240

C
P

U
 ti

m
e 

(s
)

instances solved

MiniSAT (#171)
MiniRed (#208)
Glucose (#232)

GlucoRed (#235)

(a) (b)

Fig. 5. Results for unsatisfiable benchmarks from the Competition set
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Fig. 6. Results for unsatisfiable benchmarks from the Simplified set
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Fig. 7. MiniSat versus MiniRed on benchmarks from the Simplified set
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Fig. 8. Glucose versus GlucoRed on benchmarks from the Simplified set



the addition of the reducer results in worse performance regarding the CPU
time. Between Glucose and GlucoRed, the number of satisfiable benchmarks
from the Simplified set degrades even regarding wall clock time. Glucose uses
many tunable heuristics that we left untouched when creating GlucoRed. Some
of these, such as the restart blocking heuristic [3], may be negatively affected
by the on-the-fly introduction of reducer result clauses. An important mea-
sure for the heuristics inside Glucose is the average LBD of its conflict clauses.
GlucoRed does not incorporate the clauses provided by the reducer in this
average. Moreover, Glucose and GlucoRed use the LBD measure for deciding
which clauses to remove when reducing their learnt clause sets. MiniSAT and
MiniRed use an activity based heuristic for this purpose. We expect that for
implementations of the solver-reducer architecture the latter is better because
it has a natural tendency to delete subsumed clauses. This is important as the
reducer provides clauses to the solver that are subsumed by clauses that
are (or were) already in its learnt clause set. Adaptation of the heuristics from
PeneLoPe [1] may also improve GlucoRed’s performance.

It would be interesting to study the performance of a PeneLoPe style port-
folio of solver-reducer implementations such as GlucoRed. Table 2 presents the
number of benchmarks in the Simplified set solved by PeneLoPe using 2, 4 and
8 cores. Recall that PeneLoPe is a portfolio solver using homogeneous solver
threads and clause sharing. This type of portfolio is expected to perform best
on formulas that are satisfiable, as compared to unsatisfiable formulas the run
time deviations between multiple runs of a similar solver are larger [19]. Pene-
LoPe witnesses this by solving more satisfiable benchmarks using four threads
than it does using two threads, given the same amount of CPU time. Clearly,
GlucoRed and PeneLoPe have orthogonal strengths. Given the same amount of
CPU time GlucoRed can prove more benchmarks unsatisfiable than PeneLoPe,
regardless of whether 2, 4 or 8 threads are used for PeneLoPe. For unsatisfiable
benchmarks the two threaded solver GlucoRed is so much more efficient that in
900 seconds of wall clock time it solves six unsatisfiable benchmarks more than
PeneLoPe does using four threads.

5 Conclusions

This work presents the solver-reducer architecture, which employs strengthening
of conflict clauses in parallel with CDCL search in a modern SAT solver. An
extensive empirical evaluation showed the good performance of this conceptually
simple idea, which can be combined with conventional parallelization strategies.

The use of concurrency to aid conventional sequential CDCL search, rather
than to parallelize that search, has not been suggested before. This simple but
novel idea can be exploited in many different ways. For example, a logical next
step would be to consider concurrent formula simplification. This would be a
natural way of employing concurrency in recent solvers that use inprocessing,
i.e. the sequential interleaving of solving and simplifying procedures.
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12. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of LNCS, pages 502–518.
Springer, 2003.
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