
Improved Testing of Multithreaded Programs 
with Dynamic Symbolic Execution 

Keijo Heljanko, Kari Kähkönen, Olli Saarikivi  
(firstname.lastname@aalto.fi) 
Department of Computer Science and Engineering, 
Aalto University & 
Helsinki Institute for Information Technology 
 

4th Halmstad Summer School on Testing, HSST 2014  
June 9-12, 2014 - Halmstad University, Sweden  

  
  



Validation Methods for Concurrent 
Systems 
There are many system validation approaches: 
•  Model based approaches: 

–  Model-based Testing: Automatically generating tests for an 
implementation from a model of a concurrent system 

–  Model Checking: Exhaustively exploring the behavior of a model 
of a concurrent system 

–  Theorem proving, Abstraction, … 

•  Source code analysis based approaches: 
–  Automated test generation tools 
–  Static analysis tools 
–  Software model checking, Theorem Proving for source code, … 



Model Based vs. Source Code Based 
Approaches 
•  Model based approaches require building the verification 

model 
–  In hardware design the model is your design 
–  Usually not so for software: 

•  Often a significant time effort is needed for 
building the system model 

•  Making the cost-benefit argument is not easy for 
non-safety-critical software 

•  Source code analysis tools make model building cheap: 
The tools build the model from source code as they go 



The Automated Testing Problem 

•  How to automatically test the local state reachability in 
multithreaded programs that read input values 
–  E.g., find assertion violations, uncaught exceptions, etc. 

•  Our tools use a subset of Java as its input language 
•  The main challenge: path explosion and numerous 

interleavings of threads 
•  One popular testing approach: dynamic symbolic 

execution (DSE) + partial order reduction 
•  New approach: DSE + unfoldings 



Dynamic Symbolic Execution 

•  DSE aims to systematically explore different execution 
paths of the program under test  

Control flow graph 

x = input 
x = x + 5 
 
if (x > 10) { 
 ... 
} 
... 



Dynamic Symbolic Execution 

•  DSE typically starts with a random execution 
•  The program is executed concretely and symbolically 

Control flow graph 

x = input 
x = x + 5 
 
if (x > 10) { 
 ... 
} 
... 



Dynamic Symbolic Execution 

•  Symbolic execution generates constraints at branch 
points that define input values leading to true and false 
branches 

Control flow graph 

x = input 
x = x + 5 
 
if (x > 10) { 
 ... 
} 
... 

c1 c2 

c3 c4 

c1 = input1 + 5 > 10  

c2 = input1 + 5 ≤ 10  



Dynamic Symbolic Execution 

•  A conjunction of symbolic constraints along an execution 
path is called a path constraint 
–  Solved using SAT modulo theories (SMT)-solvers to obtain 

concrete test inputs for unexplored execution paths 
–  E.g., pc:$$input1$+$5$>$10 ∧$input2$*$input1$=$50
–  Solution: input1$=$10$and$input2$=$5

c1 c2 

c3 c4 



What about Multithreaded Programs? 

•  We need to be able to reconstruct scheduling scenarios 
•  Take full control of the scheduler 
•  Execute threads one by one until a global operation 

(e.g., access of shared variable or lock) is reached 
•  Branch the execution tree for each enabled operation 

Scheduling decision 



What about Multithreaded Programs? 

•  We need to be able to reconstruct scheduling scenarios 
•  Take full control of the scheduler 
•  Execute threads one by one until a global operation 

(e.g., access of shared variable or lock) is reached 
•  Branch the execution tree for each enabled operation 

Problem: a large number of irrelevant interleavings 



One Solution: Partial-Order Reduction 

•  Ignore provably irrelevant parts of the symbolic 
execution tree 

 
 
•  Existing algorithms use independence of state 

transitions:  
–  dynamic partial-order reduction (DPOR) [FlaGod05] 
–  race detection and flipping [SenAgh06] 



Independence of State Transitions 

•  There are several notions of independence that can be 
statically derived from the program source code: 
–  Two operations in different processes on local data 

are independent 
–  Two reads in different processes to the same global 

variable are independent with each other 
–  Two writes in different processes to two different 

global variables are independent 
–  Etc. 

 



Independence of State Transitions 

•  Independence induces diamond structures in the state 
space as follows 

•  A pair t and u independent state transitions satisfy the 
following two properties for all sequences of state 
transitions w, w′ of the system:  
1.  If w t u w′ is an execution of the system, 

          then so is w u t w′ ; and 
2.  If w t and w u are executions of the system, then so 

are w t u and w u t  
 



Mazurkiewics Traces 

•  If we have an execution w′′ = w t u w′ such that t and u are 
independent, then the execution w u t w′ will lead to the 
same final state 

•  If we take the union of all execution sequences that can be 
obtained from w′′ by the transitive closure of repeatedly 
permuting any two adjacent independent state transitions we 
obtain the equivalence class called Mazurkiewicz trace [w′′] 

•  All executions in the Mazurkiewicz trace are executable and 
will lead to the same final state – testing one of them suffices! 

•  If a partial order reduction method preserves one test from 
each Mazurkiewicz trace, it will also preserve all deadlocks 



Dynamic Partial-Order Reduction (DPOR)  

•  DPOR algorithm by Flanagan and Godefroid (2005) 
calculates what additional interleavings need to be 
explored based on the history of the current execution 

•  Once DPOR has fully explored the subtree from a state 
it will have explored a persistent set of operations from 
that state 
–  Will find all deadlocks and assertions on local states 

•  As any persistent set approach preserves one 
interleaving from each Mazurkiewicz trace 

 



DPOR – Algorithm Intuition 

•  The DPOR algorithm does a depth-first traversal of the 
execution tree 

•  It tries to detect races between state transitions, e.g., a 
case when in a test run a global variable X is first written 
by process 1, that could be also concurrently read by 
process 2 

•  When race conditions are detected a backtracking point 
is added to try both outcomes of the race 

•  In the example, a backtracking point would be added 
just before write by process 1 to also explore the other 
interleaving where the read by process 2 happens first 



Basic DPOR Pseudocode – Part 1 

•  Looks for races: 
     Adds backtrack 
     points for any 
     potential races 
     found 



Basic DPOR Pseudocode – Part 2 

•  Execute forward 
    using backtrack 
    sets 
•  Update vector 
    clocks for race 
    detection 



Identifying Backtracking Points in DPOR  
  
•  To detect races, DPOR tracks the causal relationships of 

global operations in order to identify backtracking points 
•  In typical implementations the causal relationships are 

tracked by using vector clocks 
•  An optimized DPOR approach pseudocode can be 

found from: 
•  Saarikivi, O., Kähkönen, K., and Heljanko, K.: Improving 

Dynamic Partial Order Reductions for Concolic Testing. 
    ACSD 2012. 

•  Slideset: Testing Multithreaded programs with DPOR  

19 



Parallelizing DSE: LCT Architecture 



Parallelization of LCT (PDMC’12) 
•  DSE+DPOR parallelizes excellently, LCT speedups from: 
    Kähkönen, K., Saarikivi, O., and Heljanko, K.: 
    LCT: A Parallel Distributed Testing Tool for Multithreaded 
    Java Programs, PDMC’12 
•  The experiments below have both DPOR and Sleep Sets 
     enabled but LCT still achieves good speedups 



Sleep Sets 

•  Sleep sets were invented by Patrice Godefroid in: 
–  P. Godefroid. Using Partial Orders to Improve Automatic 

Verification Methods. In Proc. 2nd Workshop on Computer 
Aided Verification, LNCS 531, p. 176-185, 1990 

•  The algorithm maintains Sleep sets, which allow for a sound 
truncation of some of the execution tree branches 

•  Sleep sets provide nice additional reduction on top of DPOR 
and thus are an easy extra addition to it 

•  For details, see: Patrice Godefroid: Partial-Order Methods for 
the Verification of Concurrent Systems - An Approach to the 
State-Explosion Problem. LNCS 1032, 1996 



Sleep Set Pseudocode (P. Godefroid’96) 

•  Can be combined with 
     persistent sets 
     (e.g., DPOR) 

•  Ignore: Only for stateful search 

•  Fire transitions and 
     update sleep sets 



Example of Sleep Set POR Reduction 



Sleep Set Reduction Example 
•  At node 2 only one of the two independent read interleavings is needed 
•  The sleep set method is able to prune the subtrees rooted under node 7 



DPOR is Search Order Dependent 



Family of Programs with Exponential 
DPOR Reduced Execution Trees 

•  Example: Add N variables and 2N threads: There will 
     be 2N test runs as there are 2N deadlocks 
     (Mazurkiewicz traces), and DPOR preserves 
     one test run for each deadlock (Mazurkiewicz trace) 



Exponentially Growing DPOR Example, 
N=2 with 2N = 4 test runs 



Another Solution? 

•  Can we create a symbolic representation of the 
executions that contain all the interleavings but in 
more compact form than with execution trees? 

•  Yes, with Unfoldings 
•  Originally created by Ken McMillan 
•  Book: Esparza, J. and Heljanko, K.: Unfoldings - A 

Partial-Order Approach to Model Checking. EATCS 
Monographs in Theoretical Computer Science, 
Springer, ISBN 978-3-540-77425-9, 172 p., 2008. 

•  http://users.ics.aalto.fi/kepa/publications/Unfoldings-Esparza-Heljanko.pdf 
 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net (Java code) is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Initial unfolding 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Unfolding 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Unfolding 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Unfolding 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Unfolding 



Example: Petri net, Execution Tree, 
Unfolding  

•  Note: Execution tree grows exponentially 
    in the levels, unfolding grows only linearly 



Using Unfoldings with DSE 

•  When a test execution encounters a global operation, 
extend the unfolding with one of the following events: 

 

         read                      write                       lock                unlock 
 
•  Trick: Place Replication of global variables into N variables, one 
     per each process – makes all reads independent of other reads 



Shared Variables have Local Copies 

...

...

read global variable write global variable

acquire lock lrelease lock l

symbolic branching

true false

X
1,1

X
1,2

X
1,1

X
1,2

Xn,1

Xn,2

l
x

l
y

pc
k

pc
i

pc
i

pc
i

pc
i

pc
i

pc
j

pc
j

pc
j

pc
j

pc
j

37 

Write modifies 
all copies of 
the variable X 

  



From Java Source Code to Unfoldings 

•  The unfolding shows the control and data flows possible in all 
different ways to solve races in the Java code 

•  The underlying Petri net is never explicitly built in the tool, we 
compute possible extensions on the Java code level 

•  Our unfolding has no data in it – The unfolding is an over-
approximation of the possible concurrent executions of the 
Java code 

•  Once a potential extension has been selected to extend the 
unfolding, the SMT solver is used to find data values that lead 
to that branch being executed, if possible 

•  Branches that are non-feasible (due to data) are pruned 



Example – Unfolding Shows Data Flows 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

Initial unfolding 



Example – Unfolding Shows Data Flows 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R

W
First test run 



Example – Unfolding Shows Data Flows 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R

W W
Find possible 
extensions 



Example– Unfolding Shows Data Flows 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R

W W



Another Example Program 



Program Representation as Petri Net 



Unfolding of the Program Representation 



Recap: Family of Programs with Exponential 
DPOR Reduced Execution Trees 
•  Example: Add N variables and 2N threads: There will be 
    2N test for any partial order reduction method preserving 
    all Mazurkiewicz traces, e.g., DPOR, persistent, ample, 
    stubborn, and sleep sets 



Example Unfolding Grows Linear in N 

•  Unfolding of the example is O(N), see below, while the 
DPOR reduced execution tree is O(2N) 

•  Unfoldings will be exponentially more compact than any 
deadlock (Mazurkiewicz trace) preserving POR method! 



What is Preserved by Unfoldings 

•  The unfolding of the previous example can be covered 
by two test runs 

•  The unfolding preserves the reachability of local states 
    and executability of statements 
•  Thus asserts on local state can be checked 
•  Reachability of global states e.g., deadlocks, is symbolic 

in the unfolding – allows unfoldings to be smaller 
•  Reachability of a global state is present in the unfolding 

– it is a symbolic representation of the system behavior 
•  Checking any global state reachability question can be 

done in NP in the unfolding size using an SAT solver  



Unfolding based Testing Algorithm 



Computing Possible Extensions 

•  Finding possible extensions is the most computationally 
expensive part of unfolding (NP-complete [Heljanko’99]) 

•  It is possible to use existing backtracking search based 
potential extension algorithms with DSE 
–  Designed for arbitrary Petri nets 
–  Can be very expensive in practice 

•  Key observation: It is possible to limit the search space 
of potential extensions due to restricted form of 
unfoldings generated by the algorithm 
–  Same worst case behavior, but in practice very efficient, see 

ASE’2012 paper for details 



Specialized Algorithm for Possible 
Extensions 
•  In a Petri net representation of a program under test (not 

constructed explicitly in our algorithm) the places for 
shared variables are always marked 

•  This results in a tree like connection of the unfolded 
shared variable places and allows very efficient potential 
extension search, see [ASE’12] 

Thread 1: 
local int a = x; (read) 
 
Thread 2: 
x = 5; (write) 

R W



NP-Hardness of Possible Extensions 

x1 x2 x3

tpx1 tnx1 tpx2 tnx2 tpx3 tnx3

m1

nx11 nx12px12

px11 px13 nx13

m2
m3

c3c2c1

t

s

ts11 ts13ts12 ts21 ts22 ts23 ts31 ts32 ts33

Consider the 3-SAT Formula below turned into a Petri net: 
 (x1 � x2 � v3) � (!x1 � !x2 � !x3) � (!x1 � x2 � x3) 



NP-Hardness of Possible Extensions 
•  The formula is satisfiable iff transition t is a possible 

extension of the following prefix of the unfolding: 
bx1 bx2 bx3

enx1 epx2 enx2 epx3 enx3

bnx13

bm2
bm3

es11 es13es12 es21 es22 es23 es31 es32 es33

epx1

bpx11 bpx13

bpx12 bnx11bnx12

bm1

bc11 bc12 bc13 bc21 bc22 bc23 bc31 bc32 bc33



Comparison with DPOR and Race 
Detection and Flipping 
•  The amount of reduction obtained by dynamic partial-

order approaches depend on the order events are 
added to the symbolic execution tree 
–  Unfolding approach always generates canonical 

representation regardless of the execution order 
r1

r2

l2

l2l1

l1

r1

r2

l2

l2

l1

l1

r2

l2

r1

l1

54 

DPOR example: 



Comparison with DPOR and Race 
Detection and Flipping 
•  Unfolding approach is computationally more expensive 

per test run than DPOR but requires less test runs 
–  The reduction to the number of test runs can be 

exponential 
–  Recall the system with 2N threads and N shared 

variables, which consist of a thread reading and 
writing a variable Xi. 

–  It has an exponential number of Mazurkiewics traces 
but a linear size unfolding 

 

55 



Additional Observations 

•  The unfolding approach is especially useful for programs 
whose control depends heavily on input values 
•  DPOR might have to explore large subtrees 

generated by DSE multiple times if it does not 
manage to ignore all irrelevant interleavings of 
threads 

•  One limitation of  ASE’12 algorithm is that it does not 
cleanly support dynamic thread creation 
•  Fixed in our ACSD’14 paper by using contextual nets 

56 



Using Contextual Unfoldings (ACSD’14) 

•  Contextual nets (Petri nets with read arcs) allow an even 
more compact representation of the control and data 
flow 

•  Read arcs are denoted with lines instead of arrows 
•  A read arc requires a token to be present for transition to 

be enabled but firing it does not consume the token 
•  A more compact representation using read arcs can 

potentially be covered with less test executions 
•  However, computing potential extensions becomes 

computationally more demanding in practice (not in 
theory) 

 



Recap: Example as Ordinary Petri net 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R

W W



Example with Read Arcs 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R

W



Another Example (Place Replication) 
Global variables: 
int x = 0; 

Thread 1: 
x = 5; 

Thread 2: 
local int a = x; 

W

Thread 3: 
local int b = x; 

R RR R RRWWW

•  Requires 4 test executions to explore all subsets of 
two reads before write 



Another Example (Read Arcs) 
Global variables: 
int x = 0; 

Thread 1: 
x = 5; 

Thread 2: 
local int a = x; 

W

Thread 3: 
local int b = x; 

R R R R

•  Contextual unfoldings can be exponentially more 
compact (just add more reads)! 

•  Only requires two test to be covered 
 



Almost the Same Example Program 



Unfolding Using Petri Net – All arcs! 



Unfolding with Contextual Nets – Natural 



Additional Example 

•  Execution order 
     2,4,5 
     is impossible 



Read Arcs Induce Cycles of Causality  
•  No way to fire 
    both r3 and r5 ! 
 
•  w2 before r3 
•  r3 before w4 
•  w4 before r5 
•  r5 before w2 

•  No ordering of 
    {w2,r3,w4, r5} 
    possible! 



Petri nets vs Contextual nets 

•  Contextual nets are sometimes much more 
(exponentially) compact (but not for all systems!) 

•  Contextual nets often have also less test runs to explore 
for the same system 

•  Contextual nets have a more complex theory 
•  Algorithms for contextual nets are more complex (need 

to check for acyclicity of ordering relation), and thus 
sometimes slower per generated test case 

•  Dynamic thread creation is easy with contextual nets 



Experiments – Unfoldings vs DPOR 

program paths time paths time 
Szymanski 65138 2m 3s 65138 0m 30s 
Filesystem 1 3 0m 0s 142 0m 4s 
Filesystem 2 3 0m 0s 2227 0m 46s 
Fib 1 19605 0m 17s 21102 0m 21s 
Fib 2 218243 4m 18s 232531 4m 2s 
Updater 1 33269 2m 22s 33463 2m 6s 
Updater 2 33497 2m 24s 34031 2m 13s 
Locking 2520 0m 8s 2520 0m 6s 
Synthetic 1 926 0m 3s 1661 0m 4s 
Synthetic 2 8205 0m 41s 22462 1m 20s 

Unfolding DPOR 



Experiments – Petri vs Contextual nets 

program paths time paths time 
Szymanski 65138 2m 3s 65138 2m 37s 
Fib 1 19605 0m 17s 4959 0m 6s 
Fib 2 218243 4m 18s 46918 0m 54s 
Updater 1 33269 2m 22s 33269 3m 24s 
Synthetic 1 926 0m 3s 773 0m 3s 
Synthetic 2 8205 0m 41s 3221 0m 18s 
Locking 2 22680 0m 55s 22680 1m 3s 

Unfolding Contextual unfolding 



Summary for Unfoldings in Testing 

•  A new approach to test multithreaded programs  
•  The restricted form of the unfoldings allows efficient 

implementation of the algorithm, crucial for performance! 
•  Unfoldings are competitive with existing approaches and 

can be substantially faster in some cases 
•  Can be exponentially smaller than any persistent set 

algorithm – Only preserves local state reachability 
•  Global state reachability is more complex: 

•  Encode the unfolding as SMT formula in order to 
check global properties of the program under test 

 

 



Lightweight State Capturing for Automated 
Testing of Multithreaded Programs (TAP’14) 
•  DSE testing tools usually do not store the reached states 

explicitly 
•  It can be very expensive to test whether a set of states 

reached by one branch is a subset of a set of states reached 
by another branch 

•  Usually such a subsumption check involves SMT solver 
proving inclusion between two symbolic path constraints, 
which can be expensive 

•  What can be done without using SMT solver based inclusion 
checks? 

•  Our Solution: Use a Petri net abstraction to capture some 
paths with identical sets of reachable states – cut-off testing 
when such states are found 



Motivating Example 
•  The two interleavings will result in the same final state: 



Solution – Lightweight State Matching 

•  Generate from the tested system a state matching 
abstraction such that: 
–  If the abstraction reaches a state M in two different 

test executions, then the symbolically represented  
sets of states reached by the two executions will be 
identical 

–  Note: The converse is not true: If two different test 
executions reach the same symbolically represented 
sets of states, the abstraction might be in two 
different states M and M’ 



Solution – Lightweight State Matching 

•  We will use a Petri net based abstraction: 
–  Locks have no internal state, lock+unlock 

combination will return the system into the same 
internal state 

–  Reads will not modify the global variables read, just 
the local state of the process 

–  Writes will modify both the local state of the process 
and the global variable  



Abstraction Modeling Constructs 
•  Lock&unlock will always use the same lock place, read 
    modifies only local state, write modifies local state&var: 



Naïve Lightweight State Matching 

•  Just basic DFS with 
    cut-off if the same 
    abstract state M is 
    seen twice 



Unfolding based Lightweight State Matching 

•  Unfolding with 
    cut-off if the same 
    abstract state M is seen 
    twice 
•  Note search order 
    imposed on line 7! 



Why use Order � on Line 7 when 
Extending Unfolding?  
•  Note that on line 7 a minimal event according to an Adequate 

Order � on events to be added to the unfolding is selected 
•  Such an order was first presented by Esparza, J., Römer, S., 

Vogler, W.: An improvement of McMillan’s unfolding algorithm. 
Formal Methods in System Design 20(3), 285–310 (2002)  

•  If an arbitrary order would be used on line 7, the algorithm 
would become unsound! 

•  For more information, see Chapter 4.4 of: Esparza, J. and 
Heljanko, K.: Unfoldings - A Partial-Order Approach to Model 
Checking.  



Unsoundeness: 

•  Smallest known 
    example where 
    unsoundeness 
    occurs 



Unsound Cuts: 
•  Using the order 
    given by numbers 
    will cut both 8 and 
    9, leaving both 11 
    and 12  
    undiscovered! 
     

•  This can be fixed! 



Adequate Orders 

•  The adequate order � on traces needs to satisfy the following: 
1.  � is well-founded (contains no infinite descending chain); and 
2.  If [w] � [w′] then [w w′′] � [w′ w′′]. 

•  Surprisingly Chatain and Khomenko were able to prove that 
(1) above implies (2), and thus a sufficient condition on an 
adequate order � is that it is well founded 

•  Using property (2) repeatedly it is possible to show all 
reachable local states have a representative in the unfolding 
also when cut-offs are used to cut branches away 

•  Thus our algorithm is sound when � is an adequate order! 



Experimental Results 



Summary – Lightweight State Matching 

•  Lightweight state matching can yield dramatic reductions 
in the number of explored test runs 

•  This holds despite that no SMT solver is being used for 
state matching 

•  The naïve state matching testing algorithm can 
sometimes beat advanced DPOR and unfolding 
approaches 

•  Adding lightweight state matching to DPOR is 
straightforward future work 

•  Adding state matching to unfoldings requires the use of 
adequate orders from unfolding theory to remain sound  



Conclusions 

•  When testing multithreaded programs partial order reductions 
should be used 

•  Partial order reduction combines nicely with dynamic 
symbolic execution (DSE) 

•  DPOR together with sleep sets can be implemented in a fairly 
straightforward fashion based e.g., on our ACSD’12 paper for 
pseudocode and PDMC’12 for its parallelization 

•  Unfoldings can be exponentially more compact than DPOR 
–  More complex theory and algorithms needed 

•  State matching is essential to improve performance 
•  TODO: Explore border between Testing and Model Checking 



References for this talk 

•  Kari Kähkönen, Olli Saarikivi, Keijo Heljanko: Using 
unfoldings in automated testing of multithreaded 
programs. ASE 2012: 150-159 

•  Kari Kähkönen and Keijo Heljanko: Testing 
Multithreaded Programs with Contextual Unfoldings and 
Dynamic Symbolic Execution. ACSD 2014, to appear. 

•  Kari Kähkönen and Keijo Heljanko. Lightweight State 
Capturing for Automated Testing of Multithreaded 
Programs. TAP 2014, to appear. 



References for this talk (cnt.) 

•  Olli Saarikivi, Kari Kähkönen, Keijo Heljanko: Improving 
Dynamic Partial Order Reductions for Concolic Testing. 
ACSD 2012: 132-141 

•  Kähkönen, K., Saarikivi, O., and Heljanko, K.: LCT: A 
Parallel Distributed Testing Tool for Multithreaded Java 
Programs. PDMC 2012: Electronic Notes in Theoretical 
Computer Science (ENTCS), Volume 296, 2013, p. 
253-259 

•  Kari Kähkönen: Automated Systematic Testing Methods 
for Multithreaded Programs, PhD Thesis Draft, June 5, 
2014. 


