Improved Testing of Multithreaded Programs with Dynamic Symbolic Execution

Keijo Heljanko, Kari Kähkönen, Olli Saarikivi
(firstname.lastname@aalto.fi)
Department of Computer Science and Engineering, Aalto University & Helsinki Institute for Information Technology

4th Halmstad Summer School on Testing, HSST 2014
June 9-12, 2014 - Halmstad University, Sweden
Validation Methods for Concurrent Systems

There are many system validation approaches:

• Model based approaches:
 – Model-based Testing: Automatically generating tests for an implementation from a model of a concurrent system
 – Model Checking: Exhaustively exploring the behavior of a model of a concurrent system
 – Theorem proving, Abstraction, …

• Source code analysis based approaches:
 – Automated test generation tools
 – Static analysis tools
 – Software model checking, Theorem Proving for source code, …
Model Based vs. Source Code Based Approaches

• Model based approaches require building the verification model
 – In hardware design the model is your design
 – Usually not so for software:
 • Often a significant time effort is needed for building the system model
 • Making the cost-benefit argument is not easy for non-safety-critical software
• Source code analysis tools make model building cheap: The tools build the model from source code as they go
The Automated Testing Problem

• How to automatically test the local state reachability in multithreaded programs that read input values
 – E.g., find assertion violations, uncaught exceptions, etc.
• Our tools use a subset of Java as its input language
• The main challenge: path explosion and numerous interleavings of threads
• One popular testing approach: dynamic symbolic execution (DSE) + partial order reduction
• New approach: DSE + unfoldings
Dynamic Symbolic Execution

- DSE aims to systematically explore different execution paths of the program under test

```
x = input
x = x + 5
if (x > 10) {
...
}
...
```

Control flow graph
Dynamic Symbolic Execution

- DSE typically starts with a random execution
- The program is executed concretely and symbolically

```c
x = input
x = x + 5

if (x > 10) {
  ...
}
...
```

Control flow graph
Dynamic Symbolic Execution

- Symbolic execution generates constraints at branch points that define input values leading to true and false branches

\[
x = \text{input} \\
x = x + 5 \\
\text{if } (x > 10) \{ \\
\quad \ldots \\
\} \\
\quad \ldots
\]

\[
c_1 = \text{input}_1 + 5 > 10 \\
c_2 = \text{input}_1 + 5 \leq 10
\]
Dynamic Symbolic Execution

- A conjunction of symbolic constraints along an execution path is called a path constraint
 - Solved using SAT modulo theories (SMT)-solvers to obtain concrete test inputs for unexplored execution paths
 - E.g., pc: \(\text{input}_1 + 5 > 10 \land \text{input}_2 \times \text{input}_1 = 50 \)
 - Solution: \(\text{input}_1 = 10 \) and \(\text{input}_2 = 5 \)
What about Multithreaded Programs?

• We need to be able to reconstruct scheduling scenarios
• Take full control of the scheduler
• Execute threads one by one until a global operation (e.g., access of shared variable or lock) is reached
• Branch the execution tree for each enabled operation
What about Multithreaded Programs?

- We need to be able to reconstruct scheduling scenarios
- Take full control of the scheduler
- Execute threads one by one until a global operation (e.g., access of shared variable or lock) is reached
- Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings
One Solution: Partial-Order Reduction

• Ignore provably irrelevant parts of the symbolic execution tree

• Existing algorithms use independence of state transitions:
 – dynamic partial-order reduction (DPOR) [FlaGod05]
 – race detection and flipping [SenAgh06]
Independence of State Transitions

• There are several notions of independence that can be statically derived from the program source code:
 – Two operations in different processes on local data are independent
 – Two reads in different processes to the same global variable are independent with each other
 – Two writes in different processes to two different global variables are independent
 – Etc.
Independence of State Transitions

- Independence induces diamond structures in the state space as follows.

- A pair \(t \) and \(u \) independent state transitions satisfy the following two properties for all sequences of state transitions \(w, w' \) of the system:
 1. If \(w t u w' \) is an execution of the system, then so is \(w u t w' \); and
 2. If \(w t \) and \(w u \) are executions of the system, then so are \(w t u \) and \(w u t \)
Mazurkiewics Traces

• If we have an execution $w'' = w \, t \, u \, w'$ such that t and u are independent, then the execution $w \, u \, t \, w'$ will lead to the same final state.

• If we take the union of all execution sequences that can be obtained from w'' by the transitive closure of repeatedly permuting any two adjacent independent state transitions we obtain the equivalence class called \textit{Mazurkiewicz trace} $[w'']$.

• All executions in the Mazurkiewicz trace are executable and will lead to the same final state – testing one of them suffices!

• If a partial order reduction method preserves one test from each Mazurkiewicz trace, it will also preserve all deadlocks.
Dynamic Partial-Order Reduction (DPOR)

- DPOR algorithm by Flanagan and Godefroid (2005) calculates what additional interleavings need to be explored based on the history of the current execution.
- Once DPOR has fully explored the subtree from a state, it will have explored a persistent set of operations from that state.
 - Will find all deadlocks and assertions on local states.
- As any persistent set approach preserves one interleaving from each Mazurkiewicz trace.
DPOR – Algorithm Intuition

- The DPOR algorithm does a depth-first traversal of the execution tree.
- It tries to detect races between state transitions, e.g., a case when in a test run a global variable X is first written by process 1, that could be also concurrently read by process 2.
- When race conditions are detected a backtracking point is added to try both outcomes of the race.
- In the example, a backtracking point would be added just before write by process 1 to also explore the other interleaving where the read by process 2 happens first.
Basic DPOR Pseudocode – Part 1

\[\text{start: } \text{Explore}(\epsilon, \lambda x.\perp, \lambda x.\perp)\]

1. procedure Explore\((E, CP, CE)\)
 2. \(s \leftarrow \text{last}(E)\)
 3. forall the processes \(p\) do
 4. \(v \leftarrow \text{next}(s, p)\)
 5. if \(\exists i = \max\{{i \in \{1 \ldots |E|\} \mid E_i \text{ is dependent and may be co-enabled with } v \text{ and } i \notin CP(p)(\text{proc}(E_i))}\}\) then
 6. if \(v \in \text{enabled}(\text{pre}(E, i))\) then
 7. add \(v\) to \(\text{backtrack}(\text{pre}(E, i))\)
 else
 9. add \(\text{enabled}(\text{pre}(E, i))\) to \(\text{backtrack}(\text{pre}(E, i))\)
 10. end
 11. end
 12. end

- Looks for races:
 - Adds backtrack points for any potential races found
Basic DPOR Pseudocode – Part 2

13 if ∃v₀ ∈ enabled(s) then
14 backtrack(s) ← {v₀} // Initialize the backtracking set
15
16 done ← ∅
17 while ∃vₙext ∈ (backtrack(s) \ done) do
18 add vₙext to done
19 E' ← E.vₙext
20 cv ← vmax(\{CE(i) | i ∈ 1..|E| and Eᵢ dependent with vₙext\})
21 cv ← cv[proc(vₙext) := |E'|]
22 CP' ← CP[proc(vₙext) := cv]
23 CE' ← CE[|E'| := cv]
24 Explore(E', CP', CE') // Execute the visible operation vₙext
25
26 end
27 end

- Execute forward using backtrack sets
- Update vector clocks for race detection
Identifying Backtracking Points in DPOR

• To detect races, DPOR tracks the causal relationships of global operations in order to identify backtracking points.

• In typical implementations the causal relationships are tracked by using vector clocks.

• An optimized DPOR approach pseudocode can be found from:

• Slideset: Testing Multithreaded programs with DPOR
Parallelizing DSE: LCT Architecture
Parallelization of LCT (PDMC’12)

- DSE+DPOR parallelizes excellently, LCT speedups from: Kähkönen, K., Saarikivi, O., and Heljanko, K.: LCT: A Parallel Distributed Testing Tool for Multithreaded Java Programs, PDMC’12
- The experiments below have both DPOR and Sleep Sets enabled but LCT still achieves good speedups

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Avg. paths</th>
<th>Avg. time</th>
<th>Avg. speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 client</td>
<td></td>
<td>2 clients</td>
</tr>
<tr>
<td>Indexer (13)</td>
<td>671</td>
<td>285s</td>
<td>1.89</td>
</tr>
<tr>
<td>File System (18)</td>
<td>138</td>
<td>47s</td>
<td>1.92</td>
</tr>
<tr>
<td>Parallel Pi (5)</td>
<td>1252</td>
<td>250s</td>
<td>1.95</td>
</tr>
<tr>
<td>Synthetic 1 (3)</td>
<td>1020</td>
<td>176s</td>
<td>1.99</td>
</tr>
<tr>
<td>Synthetic 2 (3)</td>
<td>4496</td>
<td>783s</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Sleep Sets

• *Sleep sets* were invented by Patrice Godefroid in:
• The algorithm maintains Sleep sets, which allow for a sound truncation of some of the execution tree branches
• *Sleep sets* provide nice additional reduction on top of DPOR and thus are an easy extra addition to it
• For details, see: Patrice Godefroid: *Partial-Order Methods for the Verification of Concurrent Systems - An Approach to the State-Explosion Problem*. LNCS 1032, 1996
Sleep Set Pseudocode (P. Godefroid’96)

1. Initialize: Stack is empty; H is empty;
 \[s_0.\text{Sleep} = \emptyset; \]
 \[\text{push (}s_0\text{) onto Stack}; \]

2. Loop: while Stack \(\neq\) \(\emptyset\) do {
 3. pop (s) from Stack;
 4. if s is NOT already in \(H\) then {
 5. enter s in \(H\);
 6. \[T = \text{Persistent.Set}(s) \setminus s.\text{Sleep} \]
 7. } else {
 8. \[T = \{ t \mid t \in H(s).\text{Sleep} \land t \notin s.\text{Sleep} \}; \]
 9. \[s.\text{Sleep} = s.\text{Sleep} \cap H(s).\text{Sleep}; \]
 10. \[H(s).\text{Sleep} = s.\text{Sleep} \]
 11. } for all \(t\) in \(T\) do {
 12. \(s' = \text{succ}(s)\) after \(t\); /* \(t\) is executed */
 13. \[s'.\text{Sleep} = \{ t' \in s.\text{Sleep} \mid (t, t') \text{ are independent in } s \} \];
 14. \[\text{push (}s'\text{) onto Stack}; \]
 15. \[s.\text{Sleep} = s.\text{Sleep} \cup \{t\} \]
 16. } }

- Can be combined with persistent sets (e.g., DPOR)
- Ignore: Only for stateful search
- Fire transitions and update sleep sets
Example of Sleep Set POR Reduction

Global vars: Thread 1:
X = 0;
1: i1 = input();
2: i1 = i1 + 1;
3: if (i1 == 5)
 4: X = 5;
 5: else
 6: a = X;

Thread 2:
7: i2 = input();
8: b = X;
9: if (i2 > 10)
 10: b = 0;
Sleep Set Reduction Example

- At node 2 only one of the two independent read interleavings is needed
- The sleep set method is able to prune the subtrees rooted under node 7
DPOR is Search Order Dependent

Global variables: Thread 1: Thread 2:
X = 0;
Y = 0;

1: a = X;
2: Y = 1;
3: b = X;
4: Y = 2;
Family of Programs with Exponential DPOR Reduced Execution Trees

- Example: Add N variables and 2N threads: There will be 2^N test runs as there are 2^N deadlocks (Mazurkiewicz traces), and DPOR preserves one test run for each deadlock (Mazurkiewicz trace)

<table>
<thead>
<tr>
<th>Global variables:</th>
<th>Thread 1:</th>
<th>Thread 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0;$</td>
<td>1: $a = X;$</td>
<td>2: $X = 1;$</td>
</tr>
<tr>
<td>$Y = 0;$</td>
<td>3: $b = Y;$</td>
<td>4: $Y = 2;$</td>
</tr>
</tbody>
</table>

Thread 3:
3: $b = Y;$
Exponentially Growing DPOR Example, N=2 with $2^N = 4$ test runs
Another Solution?

• Can we create a symbolic representation of the executions that contain all the interleavings but in more compact form than with execution trees?
• **Yes**, with **Unfoldings**
• Originally created by Ken McMillan
What Are Unfoldings?

- Unwinding of a control flow graph is an execution tree
- Unwinding of a Petri net (Java code) is an unfolding
- Can be exponentially more compact than exec. trees

![Petri net and Initial unfolding diagram]
What Are Unfoldings?

- Unwinding of a control flow graph is an execution tree
- Unwinding of a Petri net is an unfolding
- Can be exponentially more compact than exec. trees

Petri net

Unfolding
What Are Unfoldings?

- Unwinding of a control flow graph is an execution tree
- Unwinding of a Petri net is an unfolding
- Can be exponentially more compact than exec. trees

Petri net

Unfolding
What Are Unfoldings?

- Unwinding of a control flow graph is an execution tree
- Unwinding of a Petri net is an unfolding
- Can be exponentially more compact than exec. trees
What Are Unfoldings?

- Unwinding of a control flow graph is an execution tree
- Unwinding of a Petri net is an unfolding
- Can be exponentially more compact than exec. trees

![Petri net](image1)

![Unfolding](image2)
Example: Petri net, Execution Tree, Unfolding

- Note: Execution tree grows exponentially in the levels, unfolding grows only linearly.
Using Unfoldings with DSE

• When a test execution encounters a global operation, extend the unfolding with one of the following events:

 - read
 - write
 - lock
 - unlock

• Trick: Place Replication of global variables into N variables, one per each process – makes all reads independent of other reads
Shared Variables have Local Copies

- **Read global variable**
 - $pc_i \rightarrow X_{1,1}$
 - $pc_j \rightarrow X_{1,2}$

- **Write global variable**
 - $pc_i \rightarrow X_{1,1}$
 - $pc_j \rightarrow X_{1,2}$

- **Symbolic branching**
 - $pc_i \rightarrow \text{true}$
 - $pc_i \rightarrow \text{false}$
 - $pc_j \rightarrow pc_k$

- **Acquire lock l**
 - $pc_j \rightarrow l_x$

- **Release lock l**
 - $pc_j \rightarrow l_y$

Write modifies all copies of the variable X
From Java Source Code to Unfoldings

- The unfolding shows the control and data flows possible in all different ways to solve races in the Java code.
- The underlying Petri net is never explicitly built in the tool, we compute possible extensions on the Java code level.
- Our unfolding has no data in it – The unfolding is an over-approximation of the possible concurrent executions of the Java code.
- Once a potential extension has been selected to extend the unfolding, the SMT solver is used to find data values that lead to that branch being executed, if possible.
- Branches that are non-feasible (due to data) are pruned.
Example – Unfolding Shows Data Flows

Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

Initial unfolding
Example – Unfolding Shows Data Flows

Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
error();

Thread 2:
local int b = x;
if (b == 0)
x = input();

First test run
Example – Unfolding Shows Data Flows

Global variables:
\[\text{int } x = 0; \]

Thread 1:
\[\text{local int } a = x; \]
\[\text{if } (a > 0) \]
\[\text{error();} \]

Thread 2:
\[\text{local int } b = x; \]
\[\text{if } (b == 0) \]
\[x = \text{input();} \]

Find possible extensions
Example— Unfolding Shows Data Flows

Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
error();

Thread 2:
local int b = x;
if (b == 0)
x = input();

R
R
W
W
Another Example Program

Global vars: Thread 1: Thread 2:

X = 0;

1: i1 = input();
2: i1 = i1 + 1;
3: if (i1 == 5)
4: X = 5;
5: else
6: a = X;
7: i2 = input();
8: b = X;
9: if (i2 > 10)
10: b = 0;
Program Representation as Petri Net

i1 = input() + 1

i1 != 5

i1 == 5

a = x

i2 = input()

i2 <= 10

i2 > 10
Unfolding of the Program Representation
Recap: Family of Programs with Exponential DPOR Reduced Execution Trees

- Example: Add N variables and 2N threads: There will be 2^N test for any partial order reduction method preserving all Mazurkiewicz traces, e.g., DPOR, persistent, ample, stubborn, and sleep sets.

Global variables: Thread 1: Thread 2:

X = 0;

1: a = X;

2: X = 1;

Y = 0;

Thread 3: Thread 4:

3: b = Y;

4: Y = 2;
Example Unfolding Grows Linear in N

- Unfolding of the example is $O(N)$, see below, while the DPOR reduced execution tree is $O(2^N)$

- Unfoldings will be exponentially more compact than any deadlock (Mazurkiewicz trace) preserving POR method!
What is Preserved by Unfoldings

• The unfolding of the previous example can be covered by two test runs
• The unfolding preserves the reachability of local states and executability of statements
• Thus asserts on local state can be checked
• Reachability of global states e.g., deadlocks, is symbolic in the unfolding – allows unfoldings to be smaller
• Reachability of a global state is present in the unfolding – it is a symbolic representation of the system behavior
• Checking any global state reachability question can be done in NP in the unfolding size using an SAT solver
Unfolding based Testing Algorithm

Input: A program P

1. $unf := \text{initial unfolding}$
2. $\text{extensions} := \text{events enabled in the initial state}$
3. **while** $\text{extensions} \neq \emptyset$ **do**
4. \hspace{1em} **choose** $target \in \text{extensions}$
5. \hspace{1em} **if** $target \notin unf$ **then**
6. \hspace{2em} $\text{statement_sequence} := \text{EXECUTE}(P, target, k)$
7. \hspace{2em} $M = \text{initial marking}$
8. \hspace{1em} **for all** $stmt \in \text{statement_sequence}$ **do**
9. \hspace{2em} $e = \text{CORRESPONDING_EVENT}(stmt, M)$
10. \hspace{2em} **if** $e \notin unf$ **then**
11. \hspace{3em} add e and its output conditions to unf
12. \hspace{3em} $\text{extensions} := \text{extensions} \setminus \{e\}$
13. \hspace{2em} $pe := \text{POSSIBLE_EXTENSIONS}(e, unf)$
14. \hspace{2em} $\text{extensions} := \text{extensions} \cup pe$
15. \hspace{1em} $M = \text{FIRE_EVENT}(e, M)$
Computing Possible Extensions

• Finding possible extensions is the most computationally expensive part of unfolding (NP-complete [Heljanko’99])
• It is possible to use existing backtracking search based potential extension algorithms with DSE
 – Designed for arbitrary Petri nets
 – Can be very expensive in practice
• Key observation: It is possible to limit the search space of potential extensions due to restricted form of unfoldings generated by the algorithm
 – Same worst case behavior, but in practice very efficient, see ASE’2012 paper for details
Specialized Algorithm for Possible Extensions

• In a Petri net representation of a program under test (not constructed explicitly in our algorithm) the places for shared variables are always marked

• This results in a tree like connection of the unfolded shared variable places and allows very efficient potential extension search, see [ASE’12]

Thread 1:
local int a = x; (read)

Thread 2:
x = 5; (write)
NP-Hardness of Possible Extensions

Consider the 3-SAT Formula below turned into a Petri net:

\[(x_1 \lor x_2 \lor v_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)\]
NP-Hardness of Possible Extensions

- The formula is satisfiable iff transition t is a possible extension of the following prefix of the unfolding:
Comparison with DPOR and Race Detection and Flipping

• The amount of reduction obtained by dynamic partial-order approaches depend on the order events are added to the symbolic execution tree
 – Unfolding approach always generates canonical representation regardless of the execution order

DPOR example:
Comparison with DPOR and Race Detection and Flipping

• Unfolding approach is computationally more expensive per test run than DPOR but requires less test runs
 – The reduction to the number of test runs can be exponential
 – Recall the system with 2N threads and N shared variables, which consist of a thread reading and writing a variable X_i.
 – It has an exponential number of Mazurkiewics traces but a linear size unfolding
Additional Observations

• The unfolding approach is especially useful for programs whose control depends heavily on input values
 • DPOR might have to explore large subtrees generated by DSE multiple times if it does not manage to ignore all irrelevant interleavings of threads
• One limitation of ASE’12 algorithm is that it does not cleanly support dynamic thread creation
 • Fixed in our ACSD’14 paper by using contextual nets
Using Contextual Unfoldings (ACSD’14)

- *Contextual nets* (Petri nets with read arcs) allow an even more compact representation of the control and data flow
- *Read arcs* are denoted with lines instead of arrows
- A read arc requires a token to be present for transition to be enabled but firing it does not consume the token
- A more compact representation using read arcs can potentially be covered with less test executions
- However, computing potential extensions becomes computationally more demanding in practice (not in theory)
Recap: Example as Ordinary Petri net

Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
error();

Thread 2:
local int b = x;
if (b == 0)
x = input();
Example with Read Arcs

Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
x = input();
Another Example (Place Replication)

Global variables:
int x = 0;

Thread 1:
x = 5;

Thread 2:
local int a = x;

Thread 3:
local int b = x;

• Requires 4 test executions to explore all subsets of two reads before write
Another Example (Read Arcs)

Global variables:
int x = 0;

Thread 1:
x = 5;

Thread 2:
local int a = x;

Thread 3:
local int b = x;

• Contextual unfoldings can be exponentially more compact (just add more reads)!
• Only requires two test to be covered
Almost the Same Example Program

Thread 1:
 a = \text{input}();
 if (a == 10)
 a = 0;

Thread 2:
 b = X;

Thread 3:
 X = 5;

Thread 4:
 c = x;
Unfolding Using Petri Net – All arcs!
Unfolding with Contextual Nets – Natural

initial unfolding

thread 1

thread 2

thread 3

thread 4

unfolding after one test execution

thread 1

thread 2

thread 3

thread 4

input != 10

read(x)

write(x)

read(x)

complete unfolding

thread 1

thread 2

thread 3

thread 4

input != 10

input = 10

read(x)

read(x)

write(x)

read(x)

read(x)

read(x)
Additional Example

Global variables: Thread 1: Thread 2:
\[X = 0; \] 1: \(X = 5; \) 3: \(b = \text{input}(); \)
2: \(a = X; \) 4: if \((b == 0) \)
5: \(c = X; \)
6: \(d = X; \)

- Execution order
 2,4,5
is impossible
Read Arcs Induce Cycles of Causality

- No way to fire both r_3 and r_5!
- w_2 before r_3
- r_3 before w_4
- w_4 before r_5
- r_5 before w_2
- No ordering of $\{w_2, r_3, w_4, r_5\}$ possible!
Petri nets vs Contextual nets

• Contextual nets are sometimes much more (exponentially) compact (but not for all systems!)
• Contextual nets often have also less test runs to explore for the same system
• Contextual nets have a more complex theory
• Algorithms for contextual nets are more complex (need to check for acyclicity of ordering relation), and thus sometimes slower per generated test case
• Dynamic thread creation is easy with contextual nets
Experiments – Unfoldings vs DPOR

<table>
<thead>
<tr>
<th>program</th>
<th>Unfolding</th>
<th></th>
<th></th>
<th>DPOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paths</td>
<td>time</td>
<td>paths</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>Szymanski</td>
<td>65138</td>
<td>2m 3s</td>
<td>65138</td>
<td>0m 30s</td>
<td></td>
</tr>
<tr>
<td>Filesystem 1</td>
<td>3</td>
<td>0m 0s</td>
<td>142</td>
<td>0m 4s</td>
<td></td>
</tr>
<tr>
<td>Filesystem 2</td>
<td>3</td>
<td>0m 0s</td>
<td>2227</td>
<td>0m 46s</td>
<td></td>
</tr>
<tr>
<td>Fib 1</td>
<td>19605</td>
<td>0m 17s</td>
<td>21102</td>
<td>0m 21s</td>
<td></td>
</tr>
<tr>
<td>Fib 2</td>
<td>218243</td>
<td>4m 18s</td>
<td>232531</td>
<td>4m 2s</td>
<td></td>
</tr>
<tr>
<td>Updater 1</td>
<td>33269</td>
<td>2m 22s</td>
<td>33463</td>
<td>2m 6s</td>
<td></td>
</tr>
<tr>
<td>Updater 2</td>
<td>33497</td>
<td>2m 24s</td>
<td>34031</td>
<td>2m 13s</td>
<td></td>
</tr>
<tr>
<td>Locking</td>
<td>2520</td>
<td>0m 8s</td>
<td>2520</td>
<td>0m 6s</td>
<td></td>
</tr>
<tr>
<td>Synthetic 1</td>
<td>926</td>
<td>0m 3s</td>
<td>1661</td>
<td>0m 4s</td>
<td></td>
</tr>
<tr>
<td>Synthetic 2</td>
<td>8205</td>
<td>0m 41s</td>
<td>22462</td>
<td>1m 20s</td>
<td></td>
</tr>
</tbody>
</table>
Experiments – Petri vs Contextual nets

<table>
<thead>
<tr>
<th>program</th>
<th>Unfolding</th>
<th>Contextual unfolding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paths</td>
<td>time</td>
</tr>
<tr>
<td>Szymanski</td>
<td>65138</td>
<td>2m 3s</td>
</tr>
<tr>
<td>Fib 1</td>
<td>19605</td>
<td>0m 17s</td>
</tr>
<tr>
<td>Fib 2</td>
<td>218243</td>
<td>4m 18s</td>
</tr>
<tr>
<td>Updater 1</td>
<td>33269</td>
<td>2m 22s</td>
</tr>
<tr>
<td>Synthetic 1</td>
<td>926</td>
<td>0m 3s</td>
</tr>
<tr>
<td>Synthetic 2</td>
<td>8205</td>
<td>0m 41s</td>
</tr>
<tr>
<td>Locking 2</td>
<td>22680</td>
<td>0m 55s</td>
</tr>
</tbody>
</table>
Summary for Unfoldings in Testing

• A new approach to test multithreaded programs
• The restricted form of the unfoldings allows efficient implementation of the algorithm, crucial for performance!
• Unfoldings are competitive with existing approaches and can be substantially faster in some cases
• Can be exponentially smaller than any persistent set algorithm – Only preserves local state reachability
• Global state reachability is more complex:
 • Encode the unfolding as SMT formula in order to check global properties of the program under test
Lightweight State Capturing for Automated Testing of Multithreaded Programs (TAP’14)

- DSE testing tools usually do not store the reached states explicitly.
- It can be very expensive to test whether a set of states reached by one branch is a subset of a set of states reached by another branch.
- Usually such a subsumption check involves SMT solver proving inclusion between two symbolic path constraints, which can be expensive.
- **What can be done without using SMT solver based inclusion checks?**
- Our Solution: Use a Petri net abstraction to capture some paths with identical sets of reachable states – cut-off testing when such states are found.
Motivating Example

• The two interleavings will result in the same final state:

Global variables:
int x = 0;
int y = 0;

Thread 1:
1: acquire(lock);
2: x = 1;
3: release(lock);

Thread 2:
4: acquire(lock);
5: y = 1;
6: release(lock);
Solution – Lightweight State Matching

• Generate from the tested system a state matching abstraction such that:
 – If the abstraction reaches a state M in two different test executions, then the symbolically represented sets of states reached by the two executions will be identical
 – Note: The converse is not true: If two different test executions reach the same symbolically represented sets of states, the abstraction might be in two different states M and M′
Solution – Lightweight State Matching

• We will use a Petri net based abstraction:
 – Locks have no internal state, lock+unlock combination will return the system into the same internal state
 – Reads will not modify the global variables read, just the local state of the process
 – Writes will modify both the local state of the process and the global variable
Abstraction Modeling Constructs

- Lock & unlock will always use the same lock place, read modifies only local state, write modifies local state & var:
Naïve Lightweight State Matching

Input: A program P

1: $model := \text{empty Petri net}$
2: $visited := \emptyset$
3: extend model with a random test execution
4: $\text{EXPLORE}(M_0, \emptyset)$
5: procedure $\text{EXPLORE}(M, S)$
6: \hspace{1em} if $M \notin visited$ then
7: \hspace{2em} $visited := visited \cup \{M\}$
8: \hspace{2em} $\text{PREDICTTRANSITIONSFROMMODEL}(M)$
9: \hspace{1em} if model is incomplete at M then
10: \hspace{2em} $\text{EXTENDMODEL}(P, S, k)$
11: \hspace{1em} for all transitions t enabled in M do
12: \hspace{2em} $M' := \text{FIRE}(t, M)$
13: \hspace{2em} $S' := S$ appended with t
14: \hspace{2em} $\text{EXPLORE}(M', S')$

- Just basic DFS with cut-off if the same abstract state M is seen twice
Unfolding based Lightweight State Matching

Input: A program P

1. $model :=$ empty Petri net
2. $unf :=$ initial unfolding
3. $visited := \emptyset$
4. extend model with a random test execution
5. $extensions :=$ events enabled in the initial state
6. **while** $extensions \neq \emptyset$ **do**
 7. **choose** $e \leftarrow$ minimal event from $extensions$
 8. $M := \text{St}(e)$
 9. $\text{PREDICTTRANSITIONSFROMMODEL}(M)$
 10. **if** model is incomplete at M **then**
 11. $\text{EXTENDMODEL}(P, e, k)$
 12. **else**
 13. add e to unf
 14. $extensions := extensions \setminus \{e\}$
 15. **if** $M \notin visited$ **then** // e is not a terminal
 16. $visited := visited \cup \{M\}$
 17. $extensions := extensions \cup \text{POSSIBLEEXTENSIONS}(e, unf)$

- Unfolding with cut-off if the same abstract state M is seen twice
- Note search order imposed on line 7!
Why use Order $<$ on Line 7 when Extending Unfolding?

- Note that on line 7 a minimal event according to an Adequate Order $<$ on events to be added to the unfolding is selected.
- If an arbitrary order would be used on line 7, the algorithm would become unsound!
- For more information, see Chapter 4.4 of: Esparza, J. and Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking.
Unsoundeness:

- Smallest known example where unsoundness occurs
Unsound Cuts:

- Using the order given by numbers will cut both 8 and 9, leaving both 11 and 12 undiscovered!

- This can be fixed!
Adequate Orders

• The adequate order \(\prec \) on traces needs to satisfy the following:
 1. \(\prec \) is well-founded (contains no infinite descending chain); and
 2. If \([w] \prec [w']\) then \([w w''] \prec [w' w'']\).

• Surprisingly Chatain and Khomenko were able to prove that (1) above implies (2), and thus a sufficient condition on an adequate order \(\prec \) is that it is well founded.

• Using property (2) repeatedly it is possible to show all reachable local states have a representative in the unfolding also when cut-offs are used to cut branches away.

• Thus our algorithm is sound when \(\prec \) is an adequate order!
Experimental Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Stateless unfolding</th>
<th></th>
<th>Stateless DPOR</th>
<th></th>
<th>Stateful naive</th>
<th></th>
<th>Stateful unfolding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tests</td>
<td>time</td>
<td>tests</td>
<td>time</td>
<td>tests</td>
<td>time</td>
<td>tests</td>
<td>time</td>
</tr>
<tr>
<td>Fib 1</td>
<td>19605</td>
<td>0m 17s</td>
<td>21102</td>
<td>0m 21s</td>
<td>5746</td>
<td>0m 11s</td>
<td>4946</td>
<td>0m 15s</td>
</tr>
<tr>
<td>Fib 2</td>
<td>218243</td>
<td>4m 18s</td>
<td>232531</td>
<td>4m 2s</td>
<td>53478</td>
<td>3m 45s</td>
<td>46829</td>
<td>3m 15s</td>
</tr>
<tr>
<td>Filesystem 1</td>
<td>3</td>
<td>0m 0s</td>
<td>142</td>
<td>0m 4s</td>
<td>-</td>
<td>(> 30m)</td>
<td>3</td>
<td>0m 0s</td>
</tr>
<tr>
<td>Filesystem 2</td>
<td>3</td>
<td>0m 0s</td>
<td>2227</td>
<td>0m 46s</td>
<td>-</td>
<td>(> 30m)</td>
<td>3</td>
<td>0m 0s</td>
</tr>
<tr>
<td>Dining 1</td>
<td>798</td>
<td>0m 3s</td>
<td>1161</td>
<td>0m 3s</td>
<td>3</td>
<td>0m 0s</td>
<td>4</td>
<td>0m 0s</td>
</tr>
<tr>
<td>Dining 2</td>
<td>5746</td>
<td>0m 14s</td>
<td>10065</td>
<td>0m 22s</td>
<td>3</td>
<td>0m 1s</td>
<td>3</td>
<td>0m 1s</td>
</tr>
<tr>
<td>Dining 3</td>
<td>36095</td>
<td>1m 29s</td>
<td>81527</td>
<td>3m 29s</td>
<td>2</td>
<td>0m 7s</td>
<td>4</td>
<td>0m 1s</td>
</tr>
<tr>
<td>Dining 4</td>
<td>205161</td>
<td>12m 55s</td>
<td>-</td>
<td>(> 30m)</td>
<td>-</td>
<td>(> 30m)</td>
<td>2</td>
<td>0m 3s</td>
</tr>
<tr>
<td>Szymanski</td>
<td>65138</td>
<td>2m 3s</td>
<td>65138</td>
<td>0m 30s</td>
<td>50264</td>
<td>0m 43s</td>
<td>46679</td>
<td>2m 35s</td>
</tr>
<tr>
<td>Locking 1</td>
<td>2520</td>
<td>0m 8s</td>
<td>2520</td>
<td>0m 6s</td>
<td>20</td>
<td>0m 1s</td>
<td>18</td>
<td>0m 3s</td>
</tr>
<tr>
<td>Locking 2</td>
<td>22680</td>
<td>0m 56s</td>
<td>22680</td>
<td>0m 47s</td>
<td>29</td>
<td>0m 2s</td>
<td>26</td>
<td>0m 9s</td>
</tr>
<tr>
<td>Locking 3</td>
<td>-</td>
<td>(> 30m)</td>
<td>-</td>
<td>(> 30m)</td>
<td>115</td>
<td>0m 21s</td>
<td>89</td>
<td>3m 32s</td>
</tr>
<tr>
<td>Updater</td>
<td>33269</td>
<td>2m 22s</td>
<td>33463</td>
<td>2m 6s</td>
<td>13586</td>
<td>1m 23s</td>
<td>12259</td>
<td>1m 52s</td>
</tr>
<tr>
<td>Writes</td>
<td>-</td>
<td>(> 30m)</td>
<td>-</td>
<td>(> 30m)</td>
<td>1</td>
<td>0m 0s</td>
<td>1</td>
<td>0m 0s</td>
</tr>
<tr>
<td>Synthetic 1</td>
<td>926</td>
<td>0m 3s</td>
<td>1661</td>
<td>0m 4s</td>
<td>68</td>
<td>0m 1s</td>
<td>62</td>
<td>0m 1s</td>
</tr>
<tr>
<td>Synthetic 2</td>
<td>8205</td>
<td>0m 41s</td>
<td>22462</td>
<td>1m 20s</td>
<td>123</td>
<td>0m 7s</td>
<td>97</td>
<td>0m 11s</td>
</tr>
<tr>
<td>Synthetic 3</td>
<td>11458</td>
<td>1m 12s</td>
<td>37915</td>
<td>2m 18s</td>
<td>326</td>
<td>1m 8s</td>
<td>298</td>
<td>0m 30s</td>
</tr>
</tbody>
</table>
Summary – Lightweight State Matching

• Lightweight state matching can yield dramatic reductions in the number of explored test runs
• This holds despite that no SMT solver is being used for state matching
• The naïve state matching testing algorithm can sometimes beat advanced DPOR and unfolding approaches
• Adding lightweight state matching to DPOR is straightforward future work
• Adding state matching to unfoldings requires the use of adequate orders from unfolding theory to remain sound
Conclusions

• When testing multithreaded programs partial order reductions should be used
• Partial order reduction combines nicely with dynamic symbolic execution (DSE)
• DPOR together with sleep sets can be implemented in a fairly straightforward fashion based e.g., on our ACSD’12 paper for pseudocode and PDMC’12 for its parallelization
• Unfoldings can be exponentially more compact than DPOR
 – More complex theory and algorithms needed
• State matching is essential to improve performance
• TODO: Explore border between Testing and Model Checking
References for this talk

• Kari Kähkönen, Olli Saarikivi, Keijo Heljanko: Using unfoldings in automated testing of multithreaded programs. ASE 2012: 150-159

References for this talk (cnt.)