Testing SPIN’s LTL Formula Conversion into
Biichi Automata with Randomly Generated Input

Heikki Tauriainen and Keijo Heljanko*

Helsinki University of Technology,
Laboratory for Theoretical Computer Science
P. O. Box 5400, FIN-02015 HUT, Finland
{Heikki.Tauriainen, Keijo.Heljanko}@hut.fi

Abstract. The use of model checking tools in the verification of reactive
systems has become into widespread use. Because the model checkers are
often used to verify critical systems, a lot of effort should be put on ensur-
ing the reliability of their implementation. We describe techniques which
can be used to test and improve the reliability of linear temporal logic
(LTL) model checker implementations based on the automata-theoretic
approach. More specifically, we will concentrate on the LTL-to-Biichi
automata conversion algorithm implementations, and propose using a
random testing approach to improve their robustness. As a case study,
we apply the methodology to the testing of this part of the SPIN model
checker. We also propose adding a simple counterexample validation al-
gorithm to LTL model checkers to double check the counterexamples
generated by the main LTL model checking algorithm.

1 Introduction

Model checking of linear temporal logic (LTL) properties can be done using
the automata-theoretic approach [15]. This model checking method employs a
translation of properties expressed in LTL into finite-state automata over infinite
words (Biichi automata), which are then used to determine whether a given
system model satisfies a given LTL property.

An essential requirement for the correctness of model checking results is
the correctness of the model checker implementation itself. Therefore, a model
checker which has itself been verified or proved correct would certainly be a
tremendous advantage in ensuring the correctness of the verification results.
However, full verification of complex software of this kind — especially when im-
plemented in an imperative general-purpose programming language such as C —
is somewhat out of reach of current software verification techniques. Neverthe-
less, even methods for only partially improving the robustness of model checkers
would still be welcome.

We will propose a method for testing and improving the robustness of a
part of a model checker. We focus on the translation of LTL formulas into Biichi

* The financial support of Academy of Finland (Project 47754), the Emil Aaltonen
Foundation and the Nokia Foundation are gratefully acknowledged.

automata (LTL-to-Biichi conversion), which seems to be among the most difficult
steps in LTL model checking to implement correctly. The method is based on
the comparison of several implementations against each other. As a concrete
example, we will test the LTL-to-Biichi conversion implementation in the model
checker SPIN [6, 5] using a random testing methodology. This work can be seen
as a continuation of the work published in [13] with the following extensions:

— We describe a systematic method of using the results of the comparison (to-
gether with a single behavior in the system model) to find out the particular
implementation which failed, an improvement over simply detecting result
inconsistencies. The method is based on model checking an LTL formula
directly in the witness behavior by applying computation tree logic (CTL)
model checking techniques. This special case of model checking LTL in wit-
ness behaviors is based on the ideas first presented in an extended version
of [8].

— We discuss an additional application of the previous technique in LTL model
checking tools for validating counterexamples.

— We extend the test procedure for LTL-to-Biichi conversion algorithm imple-
mentations to make use of non-branching state sequences (paths) as reach-
ability graphs, taking advantage of some additional checks provided by the
direct LTL model checking method in comparing the behavior of the imple-
mentations.

— We present experimental results on using the test procedure on up-to-date
versions of SPIN.

The rest of this paper is organized as follows. In Sect. 2, we describe the
general testing procedure for comparing the results produced by different LTL-
to-Biichi translation algorithm implementations with each other. Section 3 in-
troduces a practical implementation of the test procedure into a randomized
testbench for LTL-to-Biichi translation algorithm implementations. In Sect. 4,
we propose a method for validating counterexamples provided by LTL model
checkers. Section 5 reports the results of using the test procedure on the LTL-
to-Biichi translation algorithm implementations of different versions of SPIN.
Conclusions with some directions for future work are presented in Sect. 6.

2 Testing Procedure

In order to test the correctness of different LTL-to-Biichi conversion algorithm
implementations in practice, the test procedure itself should be efficient in finding
errors in the implementations. It should also be as reliable and simple as possible
to avoid errors in the test procedure implementation itself.

Testing LTL-to-Biichi conversion algorithm implementations requires input
for the implementations, i.e. LTL formulas to be converted into Biichi automata.
We could try to test the correctness of a single implementation by using it to
construct automata from an LTL formula and its negation and then checking
whether the intersection of the languages accepted by these two automata is

empty. (This could be checked with the help of a synchronous composition of
the two automata, see e.g. [14].) If this result is found to be nonempty, we can
conclude that the implementation does not work correctly.

However, this simple method has some disadvantages. First of all, if only a
single implementation is used, this check is not sufficient to show that the ob-
tained automata actually represent the formula and its negation correctly. (As
a trivial example, this check would not detect the error in an otherwise correct
Biichi automaton generator which always negates every input formula before
generating the automaton.) We can gain more confidence in the correctness of
the implementation by performing the language emptiness check against an au-
tomaton constructed for the negation of the formula using another independent
conversion algorithm implementation. Therefore, if we have several implementa-
tions available, we can use each of them to construct automata from the formula
and its negation and then check whether all the pairwise synchronous compo-
sitions of some automaton constructed for the formula and another automaton
constructed for its negation are empty.

Another problem with this approach is that we cannot use the results of the
emptiness checks to infer the correctness of any implementation (even on a single
LTL formula) even if no failures are detected. Namely, implementations with
errors may generate automata which pass all these checks but which still do not
accept the exact languages corresponding to the input formulas. (For example,
an implementation which always generates the empty automaton regardless of
the LTL formula would always pass the emptiness check with any automaton.)

The test method’s reliability in this respect could be increased by extending
the procedure with one additional step. In addition to checking the emptiness
of the intersection of the languages accepted by a pair of automata constructed
from the formula and its negation, we could also check that the union of these
languages (once again representable as a Biichi automaton, see e.g. [14]) forms
the universal language. However, this problem is in general PSPACE-complete
in the size of the resulting Biichi automaton, see e.g. [14]. In principle, the uni-
versality check can be done with a Biichi automata complementation procedure.
However, this is a potentially hard-to-implement task [11], contradicting the goal
of trying to keep the test procedure implementation as simple as possible.

In practice, it would also be an advantage if the test procedure were able
to give some justification for the incorrectness of an implementation instead of
a simple statement that the checks failed without exactly revealing which one
of the implementations was in error. For instance, a concrete example of an
input incorrectly accepted or rejected by some automaton might be of help in
debugging the implementation with errors.

As a compromise between the difficulty of implementation and the reliability
and practical applicability of test results, we will not try to compare the obtained
automata directly. Instead, we use a testing method based on the automata-
theoretic model checking procedure for LTL, see e.g. [4, 14, 15]. Basically, this
involves model checking LTL formulas in models of systems and then check-
ing that the model checking results obtained with the help of each individual

LTL-to-Biichi conversion algorithm agree. Although this testing method requires
more input (the system models) in addition to the formulas, it can also easily
provide counterexamples for confirming the incorrectness of a particular imple-
mentation if the verification results are inconsistent. In addition, all steps in this
test procedure are relatively straightforward to implement.

In this section, we discuss the general testing procedure and the methods for
analyzing the test results. Since the methods for generating input for the testing
procedure are independent of the procedure itself, we will leave the description
of some possible methods for input generation until Sect. 3.

2.1 Automata-Theoretic Model Checking

We assume the system model to be given as a finite-state reachability graph, an
explicit-state representation capturing all the behaviors of the system as infinite
paths in the graph. The properties of the system are modeled using a finite set
AP of atomic propositions, whose truth values are fixed independently in each
state of the graph.

Formally, the reachability graph is a Kripke structure K = (S, p, so, 7), where

— S is a finite set of states,

p € S x S is a total transition relation, i.e. satisfying Vs € S : s’ € S :

(5,5') € p,

— 8o € S is the initial state and

— 7 : S~ 247 is a function which labels each state with a set of atomic
propositions. Semantically, 7 (s) represents the set of propositions that hold
in a state s € S, and the propositions in AP \ 7 (s) are false in s.

The executions of the system are infinite sequences of states sgs; ... € S
such that sq is the initial state of the system and for all ¢ > 0, (s;, $;+1) € p.

By using the function 7 for labeling each state with a subset of AP including
exactly the propositions which are true in the state, the infinite behaviors of the
system can alternatively be represented as infinite strings of state labels.

The task of the conversion algorithms we wish to test is to expand a given
LTL property expressed as a formula over AP into a Biichi automaton. This
automaton is supposed to accept exactly those infinite strings of state labels
(system behaviors) which are models of the formula.

Formally, a Biichi automaton is a 5-tuple A = (¥, Q, A, qo, F'), where

— ¥ = 24P ig an alphabet,

— (is a finite set of states,

— ACQ x X x @ is a transition relation,
— qo € @ is the initial state, and

— F C Q is a set of accepting states.

An execution of A over an infinite word w = zgz12> ... € X¥ is an infinite
sequence of states qoq1g2 ... € Q¥ such that gg is the initial state and for all
i >0, (¢, 7i,qi+1) € A.

Let r = qogig2 - .- € @“ be an execution of A. We denote by inf(r) C @ the
set of states occurring infinitely many times in r. We say that r is an accepting
execution of A iff inf(r) N F # 0.

The automaton accepts an infinite word w € X* if and only if there is an
accepting execution of A over w.

The goal is now to check whether the reachability graph and the Biichi au-
tomaton have any common behaviors, i.e. whether any infinite behavior of the
system is accepted by the Biichi automaton. In LTL model checking, the answer
to this question is used to confirm or refute whether the system satisfies a given
LTL property . This actually involves using an automaton A-,, constructed
for the negation of the property. Since the model checking of LTL properties
requires all system behaviors to be considered, any system behavior accepted by
A, is sufficient to falsify the given property.

However, in our testing approach, we are not interested in making any such
conclusions about the system as a whole. For our needs, it is sufficient to use
the LTL-to-Biichi conversion algorithms to construct an automaton A, simply
for the given property . In effect, we will be using the constructed automaton
for actually model checking the CTL* formula E ¢ instead of the LTL formula
© in the system [7].

Actually, the reachability graph can be seen as a Biichi automaton whose
every state is accepting. This allows checking the existence of common behav-
iors by computing the synchronous product of the reachability graph with the
property automaton (see e.g. [4]). Intuitively, this corresponds to enumerating all
the parallel behaviors of the system and the automaton such that the behaviors
agree at each step on the truth values of the atomic propositions in the property
formula, when both the system and the automaton start their execution in their
respective initial states.

Computing the synchronous product (for details, see e.g. [13]) results in an-
other finite-state nondeterministic Biichi automaton having an accepting execu-
tion (specifically, a cyclic state sequence with an accepting state) if and only if
any infinite system behavior is accepted by the property automaton. The exis-
tence of an accepting execution is equivalent to the question whether any non-
trivial maximal strongly connected graph component with an accepting state
can be reached from the initial state of the product. Determining the answer to
this question can be done with the well-known algorithm due to Tarjan [12] for
enumerating the maximal strongly connected graph components in linear time
in the size of the product automaton.

2.2 Result Cross-comparison

The existence of system behaviors satisfying the property should not depend
on the particular Biichi automaton used for computing the product. However,
errors in the LTL-to-Biichi conversion algorithm implementations may result in
incorrect Biichi automata.

The basic test objective is to use the different LTL-to-Biichi conversion al-
gorithm implementations to obtain several Biichi automata from a single LTL

formula. Each of the automata is then synchronized separately with the reacha-
bility graph, and the results are checked for the existence of accepting cycles. As-
suming that all the used LTL-to-Biichi implementations are error-free (in which
case all the obtained automata will accept the same language), this check should
always produce the same set of system states from which an accepting cycle can
be reached. Any inconsistencies in the results suggest an error in some conver-
sion algorithm implementation. We will show in Sect. 2.4 how we distinguish the
incorrect implementation from those for which the results are correct.

The synchronization of the system with the property automaton is often
performed only with respect to the unique initial states of the two automata.
However, we proceed by synchronizing the property automaton separately in
every state of the reachability graph, i.e. considering each state of the reachability
graph in turn as the initial state. In this way, we can obtain more test data
for comparison from a single reachability graph. The additional computation
corresponds to checking the existence of behaviors satisfying the property in
every state of the system, instead of only in its initial state. We call this the
global synchronous product.

It is straightforward to extend the standard method for computing the prod-
uct to perform all the synchronizations simultaneously. Basically, this requires
ensuring that the initial state of the property automaton is paired with each
state of the reachability graph while maintaining the product closed under its
transition relation. This approach also takes advantage of the possible sharing
of substructures between the different product automata, resulting in the same
worst-case result size (|Q|-|S]|) as in the single-state method. (The actual oc-
currence of the worst case is, however, certainly much more probable with this
approach.)

The check for accepting cycles is also easily extended to the global product.
The only difference here is that the product automaton now has more than one
state in which the reachability of any accepting cycle must be checked.

As a result, we obtain for each Biichi automaton conversion algorithm imple-
mentation a set of yes/no answers to the question of the existence of behaviors
satisfying the LTL formula beginning at each state of the reachability graph.
Assuming the Biichi automata were constructed from an LTL formula ¢, these
answers correspond to the truth values of the CTL* formula E ¢ in each sys-
tem state.! These answers can then be compared against each other in each
individual state as described above.

2.3 Checking the Results for Consistency

Once the previous testing procedure has been completed for a single LTL for-
mula, it is useful to repeat the whole procedure again for the negation of the
same formula. In addition to another result cross-comparison check, this allows

! By exploring the global synchronous product with an on-the-fly version of Tarjan’s
algorithm, we could thus use the approach also as an efficient LTL model checking
subroutine for an on-the-fly CTL* model checker. (See [1].)

a simple consistency check to be performed on the two result sets obtained using
each individual LTL-to-Biichi conversion algorithm implementation.

The check is based on the fact that no system state can simultaneously satisfy
an LTL property and its negation, even though both may well remain unsatisfied
in the state. (For an LTL property, this will occur if there are several behaviors
beginning at the state, some of which satisfy the property individually, while
others satisfy its negation.) However, the nonewistence of a behavior satisfying
the LTL property implies that the negation of the property holds in that state.
Therefore, it follows that the answer to the existence of an accepting execution
cannot be negative for both the formula and its negation in any state, as that
would imply that both the property and its negation hold in the state at the
same time.

This check is very easy to perform on the two result sets obtained using a
particular LTL-to-Biichi conversion algorithm implementation. Any violation of
the previous fact immediately confirms an error in the implementation.

The basic steps of the test procedure are illustrated in Fig. 1.

N

LTL formulad
LTL -> Biichi converten

A Al
,,,,,,,,, \ ¢ Reachability
Graph

Global

automaton automaton
Search for States with Search for States with
Accepting Execution: Accepting Execution:

Consistency ChecR
Result
Compariso

Fig. 1. Basic test procedure

automaton automaton
Search for States with Search for States with
Accepting Execution Accepting Execution:

Consistency ChecR

2.4 Cross-comparison Result Analysis

The result cross-comparison check is not in itself enough to reveal the imple-
mentation or implementations in error. Of course, running several independent
implementations against each other may help to single out the incorrect one if a
pattern can be detected in the occurrence of result inconsistencies, e.g. when the

implementations generally agree with each other with the exception of a single
implementation which sometimes fails the check with all the other implementa-
tions.

However, simply searching for patterns in the detected inconsistencies may
not be an adequate strategy if the used implementations are not independent,
or if in some cases only few of the many tested implementations are actually
correct, while all the others give incorrect results. Therefore, we will need more
systematic methods to distinguish the incorrect implementation from the correct
ones.

Our approach for detecting the implementation with errors is based on first
finding (see below) a concrete example behavior of the system (i.e., a witness)
for which the model checking results obtained using two different LTL-to-Biichi
conversion algorithm implementations disagree. The LTL formula is then model
checked in this example behavior separately. Instead of using for this purpose a
general LTL model checking algorithm, whose implementation correctness would
be equally difficult to confirm as that of the implementations we wish to test, we
use a direct LTL model checking algorithm for a single state sequence. This ap-
proach is based on the intuition that a restricted algorithm is easier to implement
correctly than any of the tested translation algorithms and should therefore be
more reliable. Using this algorithm to model check the formula separately in the
example behavior, we obtain a strong suggestion about which one of the tested
LTL-to-Biichi conversion algorithm implementations had failed.

The first step of the analysis is to find a system state in which the result sets
obtained using two LTL-to-Biichi translation algorithms disagree. In this state,
another result set claims the existence of an infinite system behavior satisfying
the LTL formula. We use the product automaton associated with this result set
to extract an actual infinite system behavior which is accepted by the Biichi au-
tomaton used for constructing the product. This can be done using the standard
model checking techniques for extracting counterexamples (actually witnesses in
our case), see e.g. [2].

It is important to note that the obtained infinite system execution always
consists of a prefix of system states followed by a state cycle which repeats
infinitely often. Another important property of the execution is that each of its
states has exactly one successor. The execution is therefore an infinite path in
the reachability graph. These characteristics of the execution allow us to apply
CTL model checking techniques for evaluating the given LTL formula in the
execution.” (We use the standard semantics for CTL, see e.g. [7].)

% This idea was first presented as a remark in an extended version of [8], available at
<URL: http://www.cs.rice.edu/}7Evardi/papers/>.

Let 7 be a function mapping LTL formulas to CTL formulas, defined recur-
sively as follows:

= AX7(p)

Intuitively, this transformation simply replaces all temporal operators in the
original LTL formula with a corresponding quantified CTL operator.? It is clear
that the transformation can be done in linear time in the size of the formula.

Let K = (S, p, so, m) be a finite-state Kripke structure representing the wit-
ness behavior extracted using the product automaton as described above. Each
state of this structure has exactly one successor, and every state of the structure
is reachable from its initial state. Let £ = sgs152... € S“ denote the unique
infinite state sequence which begins in the initial state so € S.

Let ¢ be an LTL formula over the atomic propositions in AP. We have the
following:

Theorem 1. The infinite state sequence x satisfies the LTL formula ¢ if and
only if the CTL formula 7(p) holds in so, the initial state of the Kripke structure
K.

Proof. By induction on the syntactic structure of the formula.

This result allows us to use CTL model checking techniques for checking the
satisfiability of the LTL formula separately in the system behavior. For example,
we can apply a global CTL model checking algorithm (see e.g. [7]) to the path,
evaluating each of the subformulas of 7(p) in turn in each state of the path in
order to finally obtain the truth value of 7(ip) in the initial state. The complexity
of this algorithm is O(|F|-|S|), where |F'| denotes the number of subformulas of
7(p). By the previous theorem, the result tells also the truth value of the LTL
formula ¢ in the execution. This result can then be used to detect which one of
the tested LTL-to-Biichi converter implementations was probably in error in this
test case, i.e. which automaton incorrectly accepted or rejected the execution.

3 Automated Testing of the Implementations

We have implemented the testing procedure of the previous section into a test-
bench for LTL-to-Biichi translation algorithm implementations. The C++ source

3 Actually, due to the special characteristics of the executions, even the semantics of
the CTL path quantifiers A and E coincide. Therefore, we could as well use the E
quantifier without affecting the results presented here.

code for this program is available through Heikki Tauriainen’s homepage at
<URL: http://www.tcs.hut.fi/%7Ehtauriai/>.

3.1 Test Program Operation

The testbench model checks randomly generated LTL formulas in randomly gen-
erated reachability graphs, using each of the different LTL-to-Biichi conversion
algorithm implementations in turn to expand the LTL formulas and their nega-
tions into Biichi automata.

In addition to generating the input, the program performs for each used im-
plementation the global synchronous product computation, together with the
check for states beginning some execution satisfying the property. Finally, the
program compares the results obtained using each LTL-to-Biichi conversion al-
gorithm with each other and reports whether any inconsistencies were detected.
After this, the test procedure is repeated using another randomly generated LTL
formula and/or a reachability graph.

The testing can be interrupted in case any error is detected, for example,
when an implementation fails to generate a Biichi automaton (e.g., due to an
internal assertion violation in the implementation). The program provides a
command-line interface through which the user can examine the formula, the
reachability graph and the Biichi automata generated by the different imple-
mentations more closely, optionally invoking a path checking algorithm for LTL
to determine which one of the implementations was in error.

The test program collects statistics on the failure rates of the different im-
plementations and records the average sizes of the Biichi automata generated by
the individual implementations. Also the average running times of the different
implementations are recorded. These capabilities allow the test program to be
also used for simple benchmarking of the different implementations.

Interfacing the test program with any LTL-to-Biichi translation algorithm
implementation requires writing an additional program module, whose purpose
is to translate the input formulas and the outputted Biichi automata between
the representations used by the testbench and the LTL-to-Biichi converter imple-
mentation. A module is already provided for doing this for SPIN’s input syntax
and the resulting Biichi automata (called “never claims” in SPIN terminology).

3.2 Generating the Input

The testbench implementation uses randomly generated LTL formulas and reach-
ability graphs as input for the test procedure, allowing the user some control over
the behavior of the input generation algorithms through the use of several pa-
rameters.

Simple random testing is by no means sufficient for proving the absolute
correctness of any LTL-to-Biichi conversion algorithm implementation. In addi-
tion, even though seemingly “random” input generation methods are very easy
to come up with, these methods may easily create some kind of bias in the out-
put. This makes it hard to analyze the general efficiency of the test procedure

in finding errors in the tested implementations. However, since the correctness
of the test procedure is independent of any particular input generation method,
we do not consider this to be a major weakness. As a matter of fact, it has
been our experience that even simple random input generation methods have
been quite effective in uncovering flaws in many practical implementations, thus
being helpful in improving their robustness.

We shall now describe the input generation methods used in the testbench
implementation.

Random LTL Formulas. The test program generates the random LTL input
formulas using a recursive algorithm similar to the one in [3] to obtain formu-
las containing an exact given number of symbols (logical operators, Boolean
constants or propositional variables).

The behavior of the algorithm can be customized through the use of sev-
eral parameters. For example, these parameters allow changing the number of
available atomic propositions or setting the relative priorities of choosing any
particular logical operator in the algorithm. This can be also used for disabling
the use of some operators altogether.

The complete set of available operators for use in the generated formulas is
- (logical negation), X (“Next”), O (“Always” or “Globally”), & (“Eventually” or
“Finally”), A (logical conjunction), V (logical disjunction), — (logical implica-
tion), <> (logical equivalence), U (“Until”), and V (“Release”, the dual of U).

Pseudocode for the algorithm is shown in Fig. 2. The argument n for the
algorithm denotes the desired number of symbols in the generated formula.

Reachability Graphs. The algorithm used in the test program implementation
for constructing random reachability graphs is presented in Fig. 3. The goal of
the algorithm is to generate graphs with a given number of states n, with the
additional requirement of ensuring the reachability of every graph state from
the initial state of the graph. Since the test procedure is concerned with infinite
system behaviors, the algorithm will also ensure that each graph state has at
least one successor.

Beginning with the initial state of the graph, the algorithm processes each
node of the graph in turn. In order to ensure the reachability and the graph size
requirements, the algorithm first chooses a random state already known to be
reachable from the initial state (line 8) and connects it to some yet unreachable
state, if there are still any available (lines 14-19). Then, random edges are in-
serted between the chosen node and all other graph nodes (lines 20-27). The
probability of inserting these edges can be controlled with the parameter p. Fi-
nally, if the chosen state still has no successors, it is simply connected to itself
in order to avoid any finite terminating behaviors (lines 28-29).

The truth values of the atomic propositions are chosen randomly in each
processed state (lines 10-13). The parameter ¢ denotes the probability with which
any of the propositions is given the value “TRUE” in a state.

1 function RandomFormula (n : Integer) : LtIFormula

2 begin

3 if n = 1 then begin

4 p := random symbol in AP U {TRrUE, FALSE};
5 return p;

6 end

7 else if n = 2 then begin

8 op := random operator in the set {—, X, 0, ¢}
9 ¢ := RandomFormula(1);

10 return op p;

11 end

12 else

13 op := random operator in the set {—,X,0,0,A,V,—,+, U, V};
14 if op € {—,X, 0, <} then begin

15 ¢ := RandomFormula(n — 1);

16 return op ¢;

17 end

18 else begin

19 x := random integer in the interval [1,n — 2];
20 ¢ := RandomFormula(z);

21 9 := RandomFormula(n — & — 1);

22 return (¢ op);

23 end;

24 end;

25 end;

Fig. 2. Pseudocode for the formula generation algorithm

The algorithm repeats these steps for each state of the graph, until all states
have been processed.

Random paths. The test program can also use an alternative method of gen-
erating random paths as the reachability graphs used as input for the test proce-
dure. These paths simply consist of a given number of states connected to form
a sequence whose last state is connected to some randomly chosen previous state
in the sequence, thereby forming a cycle. The atomic propositions are then given
random truth values in each state as in the previous algorithm.

Generating random paths as reachability graphs has the advantage of allow-
ing us to perform an additional cross-comparison for the model checking results
obtained using the different LTL-to-Biichi translation algorithms. The check is
based on the use of LTL path checking algorithm based on the methods discussed
in Sect. 2.4. This algorithm is first used to evaluate the given LTL formula ¢
in the executions beginning at each state of the path. In this restricted class
of reachability graphs, the previously computed model checking results for the
CTL* formula E ¢ using each LTL-to-Biichi translation algorithm should now
exactly correspond to the results returned by the path checking algorithm in
each state of the path. This follows from the fact that in this class of reachabil-
ity graphs, the semantics of CTL* path quantifiers E and A coincide. For the
same reason, the model checking results computed for the CTL* formula E —p
should be exactly the opposite.

1 function RandomGraph(n : Integer, p : Real € [0.0,1.0],¢ : Real € [0.0,1.0])
: KripkeStructure

2 begin

3 S = {50,51,--. ,8n—1};

4 NodesToProcess := {so};

5 UnreachableNodes := {s1,82,... ,Sn—1};

6 p:=10;

7 while NodesToProcess # 0 do begin

8 s := a random node in NodesToProcess;

9 NodesToProcess := NodesToProcess \ {s};

10 w(s) = 0;

11 for all P € AP do

12 if RandomNumber(0.0,1.0) < ¢ then

13 w(s) :=nw(s) U{P};

14 if UnreachableNodes # 0 then begin

15 s' := a random node in UnreachableNodes;
16 UnreachableNodes := UnreachableNodes \ {s'};
17 NodesToProcess := NodesToProcess U {s'};
18 p:=pU{(s,s")}

19 end;

20 for all s € S do

21 if RandomNumber(0.0,1.0) < p then begin

22 pi=pU{(s,s)}

23 if s’ € UnreachableNodes then begin

24 UnreachableNodes := UnreachableNodes \ {s'};
25 NodesToProcess := NodesToProcess U {s'};
26 end;

27 end;

28 if there is no edge (s,s’) in p for any s’ € S then
29 pi=pU(s,s);

30 end;

31 return (S, p, so, T);

32 end;

Fig. 3. Pseudocode for the reachability graph generation algorithm

Therefore, using single paths as random reachability graphs gives an addi-
tional algorithm to be used in testing the different implementations against each
other, providing also for limited testing of a single LTL-to-Biichi conversion al-
gorithm implementation: if the input consisted of more general graphs, at least
two implementations would always be required in order to be able to perform
any testing based on the cross-comparison of the results given by the different
implementations.

4 Application of the LTL Path Checking Algorithm in
LTL Model Checking Tools

We suggest an additional application of the methods of Sect. 2.4 for model
checking LTL formulas in single state sequences. Namely, an LTL path checking
algorithm could also be used in practical LTL model checking tools for validat-
ing the counterexamples produced by the tool. Integrating the path checking
algorithm as an additional last step of the model checking process into a model
checker could give some assurance that the counterexample produced by the tool
is really correct. In addition, any errors detected in this phase suggest possible
errors in the model checker implementation.

The results of a global CTL model checking algorithm, when applied to the
verification of an LTL property in a single system behavior, can also be easily
used to automatically produce a proof or a refutation for the property in the
behavior. We have used this idea in the testbench implementation for justifying
to the user the claim for the failure of one of the tested LTL-to-Biichi conversion
implementations when analyzing contradictory results.

5 Testing SPIN’s LTL-to-Biichi Conversion

We used our test program implementation for testing the LTL-to-Biichi conver-
sion algorithm implemented in the model checker SPIN [6, 5]. The implemen-
tation is originally based on the algorithm presented in [4] with several opti-
mizations. We used the testbench on SPIN versions 3.3.7, 3.3.8, 3.3.9 and 3.3.10,
which was the most recent version available at the time of writing.

As a reference implementation, we used another implementation based on an
open source C++ class library [10] (extended with some locally developed code),
originally a part of the Abo System Analyser (ASA) model checking package [9].
This is an independent, very straightforward implementation of the Biichi au-
tomaton construction algorithm in [4]. Even though the tested implementations
are based on the same algorithm, we find the independence of the actual imple-
mentations far more relevant, since our focus is not on testing the correctness
of the abstract algorithm (which is already known to be correct [4]). We have
also used the testbench on implementations based on different algorithms for
converting LTL formulas into Biichi automata, such as the algorithm of [15]
implemented in the tool PROD [16], but due to some limitations in PROD’s

input syntax (namely, the lack of support for the X and V operators) we did
not include that implementation in the tests made here.

We ran the tests using both the more general random graph algorithm and the
random path algorithm for generating reachability graphs with 100 states (in the
random graph algorithm, a random edge between two states was added with the
probability 0.2). The random LTL formulas used as input for the LTL-to-Biichi
translation algorithm implementations consisted of 4 to 7 symbols. Five atomic
propositions (with equal probability of being used in a formula) were available
for use in the generated formulas. In generating the reachability graphs, each
proposition had an equal probability of being true or false in each individual
state of the graph. For each reachability graph generation method and for each
different number of formula symbols, we ran each LTL-to-Biichi converter imple-
mentation on 4,000 randomly generated formulas and their negations. In total,
each individual implementation was therefore run on 64,000 input formulas. Ad-
ditionally, a new reachability graph was generated after every tenth generated
formula.

The randomly generated formulas were partitioned into four batches of equal
size, using in each batch a different subset of formula symbols in generating the
formulas. The symbol sets used in the different batches were

(1) atomic propositions; no Boolean constants; operators —, O 0, A,V, =, 3,
u,v

(2) atomic propositions; Boolean constants TRUE and FALSE; the same operators
as in (1)

(3) atomic propositions; no Boolean constants; all operators in (1) together with
the X operator

(4) atomic propositions; all Boolean constants and logical operators.

Each available operator had an equal priority of being selected into a gen-
erated formula by the algorithm in Sect. 3.2; however, each Boolean constant
(when included in the symbol set) had the smaller probability of 0.05 of being se-
lected, compared to the probability of 0.18 used for each of the five propositional
variables.

The tests were run using Linux PCs. Table 1 shows the failure rates of each
implementation during the conversion of an LTL formula into a Biichi automa-
ton. All the tested implementations except SPIN 3.3.9 sometimes failed to pro-
duce acceptable output (interpreted as a failure to generate an automaton).
The reported failures of the reference implementation are due to its failure to
produce any output after running for 12 hours. On the other hand, all SPIN
versions never consumed more than only a few seconds of running time, showing
the straightforward reference implementation very inefficient in practice.

All but one SPIN version failed in some cases to produce acceptable output.
Occasionally, the never claims produced by SPIN versions 3.3.7 and 3.3.8 were
syntactically incorrect. Moreover, in some cases both versions failed due to an
internal error on some input formulas (all of which contained the logical equiv-
alence operator «+») without producing any output. Version 3.3.9 never failed

Table 1. Biichi automaton generation failure statistics

Number Imple- Number of Biichi
of mentation |automaton generation
symbols failures (of 4,000
in attempts)
formula
OTATBTM®
4 ASA 0 0 0 0

SpIN 3.3.7 38 | 72 | 84 | 92
Spin 3.3.8 38 72 84 92
SpIN 3.3.9 0 0 0 0
SpiN 3.3.10 0 0 0 0

5 ASA 0 0 0 0
SPIN 3.3.7 | 100 | 158 | 138 | 167
SPIN 3.3.8 | 100 | 158 | 138 | 167
SpiN 3.3.9 0 0 0 0
SPIN 3.3.10 | 10 | 13 | 13 | 9

6 ASA 0 0 0 0
SpIN 3.3.7 142 | 168 | 215 | 198
SpPIN 3.3.8 142 | 168 | 215 | 198
SpiN 3.3.9 0 0 0 0
SpiN 3.3.10 8 7 8 5
7 ASA 1 2 2 2
SpIN 3.3.7 138 | 220 | 248 | 293
SpiN 3.3.8 138 | 220 | 248 | 293
SpiN 3.3.9 0 0 0 0
Spin 3.3.10 12 4 10 5

to produce correctly formatted output; however, version 3.3.10 again failed on
some input formulas, reporting an internal error instead.

Finally, Tables 2 and 3 contain the number of input formulas failing the result
cross-comparison check between the implementations. The tables also include the
total number of failed consistency checks for each individual implementation. The
results of Table 2 were obtained using randomly generated reachability graphs
as input for the testing procedure, while the results of Table 3 are based on using
randomly generated paths as input. The results are grouped according to the
used set of formula symbols.

The results show that there were cases in which SPIN versions 3.3.7, 3.3.8 and
3.3.9 failed the result cross-comparison check with version 3.3.10 and the refer-
ence implementation, however SPIN 3.3.9 failed only if the input formulas were
allowed to contain Boolean constants or X operators. SPIN 3.3.10 never failed
the result cross-comparison check with the reference implementation. SPIN ver-
sions 3.3.7, 3.3.8 and 3.3.9 also occasionally failed the result consistency check.
However, the relatively rare occurrence of these failures seems to suggest that the
result cross-comparison check is more powerful of these methods for detecting
errors in an implementation. However, unlike the consistency check, this test al-
ways requires a separate analysis of the results produced by two implementations
to determine which one of them is incorrect.

The test results show a clear improvement in the robustness of SPIN’s LTL-
to-Biichi conversion algorithm implementation since version 3.3.7. SPIN 3.3.10

Table 2. Result cross-comparison statistics (random graphs)

Formula Imple- Total Total number of result
symbol set | mentation number of | cross-comparison failures /
consistency number of comparisons
check performed
failures
(1) ASA SeiN 3.3.10
ASA 0,/4000 — 0/7989
SpIN 3.3.7 0/3894 907/7788 907/7777
SpiN 3.3.8 0/3894 907/7788 907/77TT
SpiN 3.3.9 0/4000 0/8000 0/7989
SpiN 3.3.10 0/3989 0/7989 —
(2) ASA 0/3998 — 0/7985
SpIN 3.3.7 4/3841 849 /7680 849 /7669
SpiN 3.3.8 4/3841 849/7680 849/7669
SpiN 3.3.9 1/4000 1/7998 1/7987
SpiN 3.3.10 0/3987 0/7985 —
(3) ASA 0/3998 — 0/7983
SpIN 3.3.7 0/3811 624 /7647 623/7635
SpiN 3.3.8 0/3811 624/7647 623/7635
SpiN 3.3.9 0/4000 0/7998 0/7985
SpiN 3.3.10 0/3985 0/7983 —
(4) ASA 0/3999 — 0/7988
SpIN 3.3.7 4/3777 747/7582 747/7572
SpIN 3.3.8 4/3777 T47/7582 747/7572
SpiN 3.3.9 0/4000 64/7999 64/7989
SpiN 3.3.10 0/3989 0/7988 —

Table 3. Result cross-comparison statistics (random paths)

Formula Imple- Total Total number of result
symbol set | mentation number of | cross-comparison failures /
consistency number of comparisons
check performed
failures
(1) ASA SpiN 3.3.10
ASA 0/3999 — 0/7980
SpIN 3.3.7 0/3897 926/7793 926/7775
SpIN 3.3.8 0/3897 918/7793 918/7775
SpIN 3.3.9 0/4000 0/7999 0/7981
SpiN 3.3.10 0/3981 0/7980 —
(2) ASA 0/4000 — 0/7989
SpIN 3.3.7 6/3850 923/7700 923/7690
SpIN 3.3.8 6/3850 921 /7700 920/7690
SpIN 3.3.9 0/4000 0/8000 0/7989
SpiN 3.3.10 0/3989 0/7989 —
(3) ASA 0/4000 — 0/7984
SpIN 3.3.7 51/3820 825/7666 825/7650
SpiN 3.3.8 50/3820 822/7666 819/7650
SpIN 3.3.9 0/4000 0/8000 0/7984
SpiN 3.3.10 0/3984 0/7984 —
(4) ASA 0/3999 — 0/7991
SpIN 3.3.7 60/3820 898/7666 899/7659
SpiN 3.3.8 60/3820 891/7666 892/7659
SpIN 3.3.9 0/4000 76/7999 76/7992
SpiN 3.3.10 0/3992 0/7991 —

was the first to pass all result cross-comparison checks with the reference imple-
mentation. However, in these tests this version was slightly more unstable than
its immediate predecessor due to the occasional automaton generation failures.
This may be a result of some new optimizations made in the newer version to
reduce the size of the generated automata, which reminds that extreme care
should always be taken when making optimizations into an implementation in
order to retain its stability and correctness. This reveals another possible appli-
cation for the test procedure as a regression testing method to be used in the
development of new versions of an LTL-to-Biichi algorithm implementation.

6 Conclusions

We have presented a random testing method for LTL-to-Biichi conversion algo-
rithm implementations. The approach was quite effective in uncovering errors in
the SPIN model checker, and this has been our experience also with other model
checkers on which we have run a smaller set of tests. (Of the four independent
implementations we have tested, the reference implementation ASA has been
the only one in which no errors have ever been detected using this method.)

This work can be seen as the continuation of the work in [13]. We have
improved the methodology presented there by using counterexample validation
algorithms (essentially, a global CTL model checker) to decide which one of
several disagreeing implementations is incorrect. Also the use of random paths
is first introduced here. We present a larger set of experimental results with
up-to-date SPIN versions. New to this work is additionally the idea of using a
counterexample validation algorithm as the last step of an LTL model checker.

In the future, we would like to extend the approach to also test nondetermin-
istic finite automata generated from (syntactic) safety LTL formulas using the
approaches presented in [8]. These (safety) LTL-to-NFA conversion algorithm
implementations would need a different (more simple) emptiness checking sub-
routine, but the results could then be compared against the results obtained
from the LTL-to-Biichi conversion tests for the same formula.

We will also continue using the test program on other LTL-to-Biichi converter
implementations based on different conversion algorithms than the one used here.
For example, it would be interesting to try the test program on the LTL2AUT
implementation of [3]. The testbench implementation itself could also be still
improved with some of the methods for the direct comparison of Biichi automata
as described in the beginning of Sect. 2 (the emptiness check for the synchronous
composition of two automata, however without the universality test for the union
of the automata).

A very surprising result in the experiments was that using randomly gener-
ated paths as input reachability graphs for the testing procedure resulted in a
slightly higher failure rate in the tested implementations. However, since there
are so many factors affecting the test procedure (details of the input generation
algorithms, the particular combination of values chosen for the test parameters,
even the tested implementations themselves), it is impossible to say anything

conclusive about which one of these graph generation methods might be “bet-
ter” for uncovering errors in the implementations. The relationship between the
test parameters and the failure rates would certainly make an interesting issue
to investigate in the future.

We propose that LTL model checkers should be extended with a counterex-
ample validation algorithm as described in Sect. 4. The implementation of this
algorithm is quite straightforward, as it can be done based on even a straight-
forward implementation of a CTL model checker. The running time overhead
of such an algorithm should be quite negligible, as it is linear both in the size
of the formula and the length of the counterexample. Such an algorithm would
increase the confidence in the counterexamples provided by the model checker
implementation, and could hopefully help in finding some of the yet unknown
implementation errors in the tool. Of course, separate validation of counterex-
amples only helps in detecting false negatives but not false positives; however,
it would still be a step in the right direction.

There are several other places in LTL model checkers which could proba-
bly be improved with random testing but which we have not covered here (for
example, emptiness checking and partial order reduction algorithms). However,
we think that the LTL-to-Biichi conversion algorithm, including all the possibly
used optimizations, is one of the most difficult algorithms to implement, and
thus should also be regression tested whenever new versions are implemented.

An optimal situation would of course be that the implementation of a model
checker were fully verified (and still have adequate performance). Until that is
the case, we aim at a more humble goal: to validate a part of the model checker
using random testing.

Acknowledgements

The random testing method has been used on SPIN starting from version 3.3.3,
on which the first preliminary tests were made in the summer of 1999. More
extensive tests have been done on versions 3.3.8, 3.3.9 and 3.3.10 since January
2000. We would like to thank Gerard J. Holzmann for creating new and improved
versions of SPIN during the period this work was done.

We would also like to thank Tommi Junttila for critical comments on this
work and Mauno Ronkko for creating a reliable reference implementation. We
are also grateful to the anonymous referees whose feedback was very important
in improving this work.

References

[1] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking
for CTL". In Proceedings of 10th Annual IEEE Symposium on Logic in Computer
Science (LICS’95), pages 388-397. IEEE Computer Society Press, 1995.

[2] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275-288, 1992.

3]

[4]

[5]
[6]
[7]
8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation
for linear temporal logic. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), pages 249-260. Springer, 1999. LNCS
1633.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proceedings of 15th Workshop Protocol
Specification, Testing, and Verification, pages 3—18, 1995.

G. Holzmann. On-the-fly, LTL model checking with Spin. <URL:
http://netlib.bell-labs.com/netlib/spin/whatispin.html>.

G. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, May 1997.

E. Clarke Jr., O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
O. Kupferman and M. Y. Vardi. Model checking of safety properties. In Proceed-
ings of 11th International Conference on Computer Aided Verification (CAV’99),
pages 172-183. Springer, 1999. LNCS 1633.

J. Lilius. ASA: The Abo System Analyser, September 1999. <URL:
http://www.abo.fi/%7Ejolilius/mc/aasa.html>.

M. RonkkS. A distributed object oriented implementation of an algorithm
converting a LTL formula to a generalised Buchi automaton, 1998. <URL:
http://www.abo.fi/%7Emauno.ronkko/ASA/1tlalg.html>.

S. Safra. Complezity of automata on infinite objects. PhD thesis, The Weizmann
Institute of Science, 1989.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, June 1972.

H. Tauriainen. A randomized testbench for algorithms translating linear temporal
logic formulae into Biichi automata. In Proceedings of the Workshop Concurrency,
Specification and Programming 1999 (CS€P’99), pages 251-262. Warsaw Univer-
sity, September 1999.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency: Structure versus Automata, pages 238-265, 1996. LNCS 1043.
M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of the 1st IEEE Symposium on Logic in Com-
puter Science (LICS’86), pages 332-344. IEEE Computer Society Press, 1986.
K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advanced tool for
efficient reachability analysis. In Proceedings of the 9th International Conference
on Computer Aided Verification (CAV’97), pages 472-475. Springer, June 1997.
LNCS 1254.

