
Testing Spin's LTL Formula Conversion intoBü
hi Automata with Randomly Generated InputHeikki Tauriainen and Keijo Heljanko?Helsinki University of Te
hnology,Laboratory for Theoreti
al Computer S
ien
eP. O. Box 5400, FIN-02015 HUT, Finland{Heikki.Tauriainen, Keijo.Heljanko}�hut.fiAbstra
t. The use of model
he
king tools in the veri�
ation of rea
tivesystems has be
ome into widespread use. Be
ause the model
he
kers areoften used to verify
riti
al systems, a lot of e�ort should be put on ensur-ing the reliability of their implementation. We des
ribe te
hniques whi
h
an be used to test and improve the reliability of linear temporal logi
(LTL) model
he
ker implementations based on the automata-theoreti
approa
h. More spe
i�
ally, we will
on
entrate on the LTL-to-Bü
hiautomata
onversion algorithm implementations, and propose using arandom testing approa
h to improve their robustness. As a
ase study,we apply the methodology to the testing of this part of the Spin model
he
ker. We also propose adding a simple
ounterexample validation al-gorithm to LTL model
he
kers to double
he
k the
ounterexamplesgenerated by the main LTL model
he
king algorithm.1 Introdu
tionModel
he
king of linear temporal logi
 (LTL) properties
an be done usingthe automata-theoreti
 approa
h [15℄. This model
he
king method employs atranslation of properties expressed in LTL into �nite-state automata over in�nitewords (Bü
hi automata), whi
h are then used to determine whether a givensystem model satis�es a given LTL property.An essential requirement for the
orre
tness of model
he
king results isthe
orre
tness of the model
he
ker implementation itself. Therefore, a model
he
ker whi
h has itself been veri�ed or proved
orre
t would
ertainly be atremendous advantage in ensuring the
orre
tness of the veri�
ation results.However, full veri�
ation of
omplex software of this kind � espe
ially when im-plemented in an imperative general-purpose programming language su
h as C �is somewhat out of rea
h of
urrent software veri�
ation te
hniques. Neverthe-less, even methods for only partially improving the robustness of model
he
kerswould still be wel
ome.We will propose a method for testing and improving the robustness of apart of a model
he
ker. We fo
us on the translation of LTL formulas into Bü
hi? The �nan
ial support of A
ademy of Finland (Proje
t 47754), the Emil AaltonenFoundation and the Nokia Foundation are gratefully a
knowledged.

automata (LTL-to-Bü
hi
onversion), whi
h seems to be among the most di�
ultsteps in LTL model
he
king to implement
orre
tly. The method is based onthe
omparison of several implementations against ea
h other. As a
on
reteexample, we will test the LTL-to-Bü
hi
onversion implementation in the model
he
ker Spin [6, 5℄ using a random testing methodology. This work
an be seenas a
ontinuation of the work published in [13℄ with the following extensions:� We des
ribe a systemati
 method of using the results of the
omparison (to-gether with a single behavior in the system model) to �nd out the parti
ularimplementation whi
h failed, an improvement over simply dete
ting resultin
onsisten
ies. The method is based on model
he
king an LTL formuladire
tly in the witness behavior by applying
omputation tree logi
 (CTL)model
he
king te
hniques. This spe
ial
ase of model
he
king LTL in wit-ness behaviors is based on the ideas �rst presented in an extended versionof [8℄.� We dis
uss an additional appli
ation of the previous te
hnique in LTL model
he
king tools for validating
ounterexamples.� We extend the test pro
edure for LTL-to-Bü
hi
onversion algorithm imple-mentations to make use of non-bran
hing state sequen
es (paths) as rea
h-ability graphs, taking advantage of some additional
he
ks provided by thedire
t LTL model
he
king method in
omparing the behavior of the imple-mentations.� We present experimental results on using the test pro
edure on up-to-dateversions of Spin.The rest of this paper is organized as follows. In Se
t. 2, we des
ribe thegeneral testing pro
edure for
omparing the results produ
ed by di�erent LTL-to-Bü
hi translation algorithm implementations with ea
h other. Se
tion 3 in-trodu
es a pra
ti
al implementation of the test pro
edure into a randomizedtestben
h for LTL-to-Bü
hi translation algorithm implementations. In Se
t. 4,we propose a method for validating
ounterexamples provided by LTL model
he
kers. Se
tion 5 reports the results of using the test pro
edure on the LTL-to-Bü
hi translation algorithm implementations of di�erent versions of Spin.Con
lusions with some dire
tions for future work are presented in Se
t. 6.2 Testing Pro
edureIn order to test the
orre
tness of di�erent LTL-to-Bü
hi
onversion algorithmimplementations in pra
ti
e, the test pro
edure itself should be e�
ient in �ndingerrors in the implementations. It should also be as reliable and simple as possibleto avoid errors in the test pro
edure implementation itself.Testing LTL-to-Bü
hi
onversion algorithm implementations requires inputfor the implementations, i.e. LTL formulas to be
onverted into Bü
hi automata.We
ould try to test the
orre
tness of a single implementation by using it to
onstru
t automata from an LTL formula and its negation and then
he
kingwhether the interse
tion of the languages a

epted by these two automata is

empty. (This
ould be
he
ked with the help of a syn
hronous
omposition ofthe two automata, see e.g. [14℄.) If this result is found to be nonempty, we
an
on
lude that the implementation does not work
orre
tly.However, this simple method has some disadvantages. First of all, if only asingle implementation is used, this
he
k is not su�
ient to show that the ob-tained automata a
tually represent the formula and its negation
orre
tly. (Asa trivial example, this
he
k would not dete
t the error in an otherwise
orre
tBü
hi automaton generator whi
h always negates every input formula beforegenerating the automaton.) We
an gain more
on�den
e in the
orre
tness ofthe implementation by performing the language emptiness
he
k against an au-tomaton
onstru
ted for the negation of the formula using another independent
onversion algorithm implementation. Therefore, if we have several implementa-tions available, we
an use ea
h of them to
onstru
t automata from the formulaand its negation and then
he
k whether all the pairwise syn
hronous
ompo-sitions of some automaton
onstru
ted for the formula and another automaton
onstru
ted for its negation are empty.Another problem with this approa
h is that we
annot use the results of theemptiness
he
ks to infer the
orre
tness of any implementation (even on a singleLTL formula) even if no failures are dete
ted. Namely, implementations witherrors may generate automata whi
h pass all these
he
ks but whi
h still do nota

ept the exa
t languages
orresponding to the input formulas. (For example,an implementation whi
h always generates the empty automaton regardless ofthe LTL formula would always pass the emptiness
he
k with any automaton.)The test method's reliability in this respe
t
ould be in
reased by extendingthe pro
edure with one additional step. In addition to
he
king the emptinessof the interse
tion of the languages a

epted by a pair of automata
onstru
tedfrom the formula and its negation, we
ould also
he
k that the union of theselanguages (on
e again representable as a Bü
hi automaton, see e.g. [14℄) formsthe universal language. However, this problem is in general PSPACE-
ompletein the size of the resulting Bü
hi automaton, see e.g. [14℄. In prin
iple, the uni-versality
he
k
an be done with a Bü
hi automata
omplementation pro
edure.However, this is a potentially hard-to-implement task [11℄,
ontradi
ting the goalof trying to keep the test pro
edure implementation as simple as possible.In pra
ti
e, it would also be an advantage if the test pro
edure were ableto give some justi�
ation for the in
orre
tness of an implementation instead ofa simple statement that the
he
ks failed without exa
tly revealing whi
h oneof the implementations was in error. For instan
e, a
on
rete example of aninput in
orre
tly a

epted or reje
ted by some automaton might be of help indebugging the implementation with errors.As a
ompromise between the di�
ulty of implementation and the reliabilityand pra
ti
al appli
ability of test results, we will not try to
ompare the obtainedautomata dire
tly. Instead, we use a testing method based on the automata-theoreti
 model
he
king pro
edure for LTL, see e.g. [4, 14, 15℄. Basi
ally, thisinvolves model
he
king LTL formulas in models of systems and then
he
k-ing that the model
he
king results obtained with the help of ea
h individual

LTL-to-Bü
hi
onversion algorithm agree. Although this testing method requiresmore input (the system models) in addition to the formulas, it
an also easilyprovide
ounterexamples for
on�rming the in
orre
tness of a parti
ular imple-mentation if the veri�
ation results are in
onsistent. In addition, all steps in thistest pro
edure are relatively straightforward to implement.In this se
tion, we dis
uss the general testing pro
edure and the methods foranalyzing the test results. Sin
e the methods for generating input for the testingpro
edure are independent of the pro
edure itself, we will leave the des
riptionof some possible methods for input generation until Se
t. 3.2.1 Automata-Theoreti
 Model Che
kingWe assume the system model to be given as a �nite-state rea
hability graph, anexpli
it-state representation
apturing all the behaviors of the system as in�nitepaths in the graph. The properties of the system are modeled using a �nite setAP of atomi
 propositions, whose truth values are �xed independently in ea
hstate of the graph.Formally, the rea
hability graph is a Kripke stru
tureK = hS; �; s0; �i, where� S is a �nite set of states,� � � S � S is a total transition relation, i.e. satisfying 8s 2 S : 9s0 2 S :(s; s0) 2 �,� s0 2 S is the initial state and� � : S 7! 2AP is a fun
tion whi
h labels ea
h state with a set of atomi
propositions. Semanti
ally, � (s) represents the set of propositions that holdin a state s 2 S, and the propositions in AP n � (s) are false in s.The exe
utions of the system are in�nite sequen
es of states s0s1 : : : 2 S!su
h that s0 is the initial state of the system and for all i � 0, (si; si+1) 2 �.By using the fun
tion � for labeling ea
h state with a subset of AP in
ludingexa
tly the propositions whi
h are true in the state, the in�nite behaviors of thesystem
an alternatively be represented as in�nite strings of state labels.The task of the
onversion algorithms we wish to test is to expand a givenLTL property expressed as a formula over AP into a Bü
hi automaton. Thisautomaton is supposed to a

ept exa
tly those in�nite strings of state labels(system behaviors) whi
h are models of the formula.Formally, a Bü
hi automaton is a 5-tuple A = h�;Q;�; q0; F i, where� � = 2AP is an alphabet,� Q is a �nite set of states,� � � Q�� �Q is a transition relation,� q0 2 Q is the initial state, and� F � Q is a set of a

epting states.An exe
ution of A over an in�nite word w = x0x1x2 : : : 2 �! is an in�nitesequen
e of states q0q1q2 : : : 2 Q! su
h that q0 is the initial state and for alli � 0, (qi; xi; qi+1) 2 �.

Let r = q0q1q2 : : : 2 Q! be an exe
ution of A. We denote by inf(r) � Q theset of states o

urring in�nitely many times in r. We say that r is an a

eptingexe
ution of A i� inf(r) \ F 6= ;.The automaton a

epts an in�nite word w 2 �! if and only if there is ana

epting exe
ution of A over w.The goal is now to
he
k whether the rea
hability graph and the Bü
hi au-tomaton have any
ommon behaviors, i.e. whether any in�nite behavior of thesystem is a

epted by the Bü
hi automaton. In LTL model
he
king, the answerto this question is used to
on�rm or refute whether the system satis�es a givenLTL property '. This a
tually involves using an automaton A:',
onstru
tedfor the negation of the property. Sin
e the model
he
king of LTL propertiesrequires all system behaviors to be
onsidered, any system behavior a

epted byA:' is su�
ient to falsify the given property.However, in our testing approa
h, we are not interested in making any su
h
on
lusions about the system as a whole. For our needs, it is su�
ient to usethe LTL-to-Bü
hi
onversion algorithms to
onstru
t an automaton A' simplyfor the given property '. In e�e
t, we will be using the
onstru
ted automatonfor a
tually model
he
king the CTL* formula E' instead of the LTL formula' in the system [7℄.A
tually, the rea
hability graph
an be seen as a Bü
hi automaton whoseevery state is a

epting. This allows
he
king the existen
e of
ommon behav-iors by
omputing the syn
hronous produ
t of the rea
hability graph with theproperty automaton (see e.g. [4℄). Intuitively, this
orresponds to enumerating allthe parallel behaviors of the system and the automaton su
h that the behaviorsagree at ea
h step on the truth values of the atomi
 propositions in the propertyformula, when both the system and the automaton start their exe
ution in theirrespe
tive initial states.Computing the syn
hronous produ
t (for details, see e.g. [13℄) results in an-other �nite-state nondeterministi
 Bü
hi automaton having an a

epting exe
u-tion (spe
i�
ally, a
y
li
 state sequen
e with an a

epting state) if and only ifany in�nite system behavior is a

epted by the property automaton. The exis-ten
e of an a

epting exe
ution is equivalent to the question whether any non-trivial maximal strongly
onne
ted graph
omponent with an a

epting state
an be rea
hed from the initial state of the produ
t. Determining the answer tothis question
an be done with the well-known algorithm due to Tarjan [12℄ forenumerating the maximal strongly
onne
ted graph
omponents in linear timein the size of the produ
t automaton.2.2 Result Cross-
omparisonThe existen
e of system behaviors satisfying the property should not dependon the parti
ular Bü
hi automaton used for
omputing the produ
t. However,errors in the LTL-to-Bü
hi
onversion algorithm implementations may result inin
orre
t Bü
hi automata.The basi
 test obje
tive is to use the di�erent LTL-to-Bü
hi
onversion al-gorithm implementations to obtain several Bü
hi automata from a single LTL

formula. Ea
h of the automata is then syn
hronized separately with the rea
ha-bility graph, and the results are
he
ked for the existen
e of a

epting
y
les. As-suming that all the used LTL-to-Bü
hi implementations are error-free (in whi
h
ase all the obtained automata will a

ept the same language), this
he
k shouldalways produ
e the same set of system states from whi
h an a

epting
y
le
anbe rea
hed. Any in
onsisten
ies in the results suggest an error in some
onver-sion algorithm implementation. We will show in Se
t. 2.4 how we distinguish thein
orre
t implementation from those for whi
h the results are
orre
t.The syn
hronization of the system with the property automaton is oftenperformed only with respe
t to the unique initial states of the two automata.However, we pro
eed by syn
hronizing the property automaton separately inevery state of the rea
hability graph, i.e.
onsidering ea
h state of the rea
habilitygraph in turn as the initial state. In this way, we
an obtain more test datafor
omparison from a single rea
hability graph. The additional
omputation
orresponds to
he
king the existen
e of behaviors satisfying the property inevery state of the system, instead of only in its initial state. We
all this theglobal syn
hronous produ
t.It is straightforward to extend the standard method for
omputing the prod-u
t to perform all the syn
hronizations simultaneously. Basi
ally, this requiresensuring that the initial state of the property automaton is paired with ea
hstate of the rea
hability graph while maintaining the produ
t
losed under itstransition relation. This approa
h also takes advantage of the possible sharingof substru
tures between the di�erent produ
t automata, resulting in the sameworst-
ase result size (jQj � jSj) as in the single-state method. (The a
tual o
-
urren
e of the worst
ase is, however,
ertainly mu
h more probable with thisapproa
h.)The
he
k for a

epting
y
les is also easily extended to the global produ
t.The only di�eren
e here is that the produ
t automaton now has more than onestate in whi
h the rea
hability of any a

epting
y
le must be
he
ked.As a result, we obtain for ea
h Bü
hi automaton
onversion algorithm imple-mentation a set of yes/no answers to the question of the existen
e of behaviorssatisfying the LTL formula beginning at ea
h state of the rea
hability graph.Assuming the Bü
hi automata were
onstru
ted from an LTL formula ', theseanswers
orrespond to the truth values of the CTL* formula E' in ea
h sys-tem state.1 These answers
an then be
ompared against ea
h other in ea
hindividual state as des
ribed above.2.3 Che
king the Results for Consisten
yOn
e the previous testing pro
edure has been
ompleted for a single LTL for-mula, it is useful to repeat the whole pro
edure again for the negation of thesame formula. In addition to another result
ross-
omparison
he
k, this allows1 By exploring the global syn
hronous produ
t with an on-the-�y version of Tarjan'salgorithm, we
ould thus use the approa
h also as an e�
ient LTL model
he
kingsubroutine for an on-the-�y CTL* model
he
ker. (See [1℄.)

a simple
onsisten
y
he
k to be performed on the two result sets obtained usingea
h individual LTL-to-Bü
hi
onversion algorithm implementation.The
he
k is based on the fa
t that no system state
an simultaneously satisfyan LTL property and its negation, even though both may well remain unsatis�edin the state. (For an LTL property, this will o

ur if there are several behaviorsbeginning at the state, some of whi
h satisfy the property individually, whileothers satisfy its negation.) However, the nonexisten
e of a behavior satisfyingthe LTL property implies that the negation of the property holds in that state.Therefore, it follows that the answer to the existen
e of an a

epting exe
ution
annot be negative for both the formula and its negation in any state, as thatwould imply that both the property and its negation hold in the state at thesame time.This
he
k is very easy to perform on the two result sets obtained using aparti
ular LTL-to-Bü
hi
onversion algorithm implementation. Any violation ofthe previous fa
t immediately
on�rms an error in the implementation.The basi
 steps of the test pro
edure are illustrated in Fig. 1.
Reachability

Graph

LTL formulaϕ

ϕϕ

Result
Comparison

Result
Comparison

LTL -> Büchi converter 1

Search for States with
Accepting Executions

Search for States with
Accepting Executions

Global
Synchronous

Product

Global
Synchronous

Product

product
automaton

product
automaton

Search for States with
Accepting Executions

Search for States with
Accepting Executions

Global
Synchronous

Product

Global
Synchronous

Product

product
automaton

product
automaton

nLTL -> Büchi converter

Consistency Check Consistency Check

ϕAn
ϕAn

ϕ
1A ϕA1

ϕ ϕ

Fig. 1. Basi
 test pro
edure2.4 Cross-
omparison Result AnalysisThe result
ross-
omparison
he
k is not in itself enough to reveal the imple-mentation or implementations in error. Of
ourse, running several independentimplementations against ea
h other may help to single out the in
orre
t one if apattern
an be dete
ted in the o

urren
e of result in
onsisten
ies, e.g. when the

implementations generally agree with ea
h other with the ex
eption of a singleimplementation whi
h sometimes fails the
he
k with all the other implementa-tions.However, simply sear
hing for patterns in the dete
ted in
onsisten
ies maynot be an adequate strategy if the used implementations are not independent,or if in some
ases only few of the many tested implementations are a
tually
orre
t, while all the others give in
orre
t results. Therefore, we will need moresystemati
 methods to distinguish the in
orre
t implementation from the
orre
tones.Our approa
h for dete
ting the implementation with errors is based on �rst�nding (see below) a
on
rete example behavior of the system (i.e., a witness)for whi
h the model
he
king results obtained using two di�erent LTL-to-Bü
hi
onversion algorithm implementations disagree. The LTL formula is then model
he
ked in this example behavior separately. Instead of using for this purpose ageneral LTL model
he
king algorithm, whose implementation
orre
tness wouldbe equally di�
ult to
on�rm as that of the implementations we wish to test, weuse a dire
t LTL model
he
king algorithm for a single state sequen
e. This ap-proa
h is based on the intuition that a restri
ted algorithm is easier to implement
orre
tly than any of the tested translation algorithms and should therefore bemore reliable. Using this algorithm to model
he
k the formula separately in theexample behavior, we obtain a strong suggestion about whi
h one of the testedLTL-to-Bü
hi
onversion algorithm implementations had failed.The �rst step of the analysis is to �nd a system state in whi
h the result setsobtained using two LTL-to-Bü
hi translation algorithms disagree. In this state,another result set
laims the existen
e of an in�nite system behavior satisfyingthe LTL formula. We use the produ
t automaton asso
iated with this result setto extra
t an a
tual in�nite system behavior whi
h is a

epted by the Bü
hi au-tomaton used for
onstru
ting the produ
t. This
an be done using the standardmodel
he
king te
hniques for extra
ting
ounterexamples (a
tually witnesses inour
ase), see e.g. [2℄.It is important to note that the obtained in�nite system exe
ution always
onsists of a pre�x of system states followed by a state
y
le whi
h repeatsin�nitely often. Another important property of the exe
ution is that ea
h of itsstates has exa
tly one su

essor. The exe
ution is therefore an in�nite path inthe rea
hability graph. These
hara
teristi
s of the exe
ution allow us to applyCTL model
he
king te
hniques for evaluating the given LTL formula in theexe
ution.2 (We use the standard semanti
s for CTL, see e.g. [7℄.)2 This idea was �rst presented as a remark in an extended version of [8℄, available at<URL: http://www.
s.ri
e.edu/%7Evardi/papers/>.

Let � be a fun
tion mapping LTL formulas to CTL formulas, de�ned re
ur-sively as follows:�(True) = True�(False) = False�(P) = P for all atomi
 propositions P 2 AP�(:') = :�(')�(' _) = �(') _ �()�(X') = AX �(')�('U) = A��(')U �()�Intuitively, this transformation simply repla
es all temporal operators in theoriginal LTL formula with a
orresponding quanti�ed CTL operator.3 It is
learthat the transformation
an be done in linear time in the size of the formula.Let K = hS; �; s0; �i be a �nite-state Kripke stru
ture representing the wit-ness behavior extra
ted using the produ
t automaton as des
ribed above. Ea
hstate of this stru
ture has exa
tly one su

essor, and every state of the stru
tureis rea
hable from its initial state. Let x = s0s1s2 : : : 2 S! denote the uniquein�nite state sequen
e whi
h begins in the initial state s0 2 S.Let ' be an LTL formula over the atomi
 propositions in AP . We have thefollowing:Theorem 1. The in�nite state sequen
e x satis�es the LTL formula ' if andonly if the CTL formula �(') holds in s0, the initial state of the Kripke stru
tureK.Proof. By indu
tion on the synta
ti
 stru
ture of the formula.This result allows us to use CTL model
he
king te
hniques for
he
king thesatis�ability of the LTL formula separately in the system behavior. For example,we
an apply a global CTL model
he
king algorithm (see e.g. [7℄) to the path,evaluating ea
h of the subformulas of �(') in turn in ea
h state of the path inorder to �nally obtain the truth value of �(') in the initial state. The
omplexityof this algorithm is O(jF j � jSj), where jF j denotes the number of subformulas of�('). By the previous theorem, the result tells also the truth value of the LTLformula ' in the exe
ution. This result
an then be used to dete
t whi
h one ofthe tested LTL-to-Bü
hi
onverter implementations was probably in error in thistest
ase, i.e. whi
h automaton in
orre
tly a

epted or reje
ted the exe
ution.3 Automated Testing of the ImplementationsWe have implemented the testing pro
edure of the previous se
tion into a test-ben
h for LTL-to-Bü
hi translation algorithm implementations. The C++ sour
e3 A
tually, due to the spe
ial
hara
teristi
s of the exe
utions, even the semanti
s ofthe CTL path quanti�ers A and E
oin
ide. Therefore, we
ould as well use the Equanti�er without a�e
ting the results presented here.

ode for this program is available through Heikki Tauriainen's homepage at<URL: http://www.t
s.hut.fi/%7Ehtauriai/>.3.1 Test Program OperationThe testben
h model
he
ks randomly generated LTL formulas in randomly gen-erated rea
hability graphs, using ea
h of the di�erent LTL-to-Bü
hi
onversionalgorithm implementations in turn to expand the LTL formulas and their nega-tions into Bü
hi automata.In addition to generating the input, the program performs for ea
h used im-plementation the global syn
hronous produ
t
omputation, together with the
he
k for states beginning some exe
ution satisfying the property. Finally, theprogram
ompares the results obtained using ea
h LTL-to-Bü
hi
onversion al-gorithm with ea
h other and reports whether any in
onsisten
ies were dete
ted.After this, the test pro
edure is repeated using another randomly generated LTLformula and/or a rea
hability graph.The testing
an be interrupted in
ase any error is dete
ted, for example,when an implementation fails to generate a Bü
hi automaton (e.g., due to aninternal assertion violation in the implementation). The program provides a
ommand-line interfa
e through whi
h the user
an examine the formula, therea
hability graph and the Bü
hi automata generated by the di�erent imple-mentations more
losely, optionally invoking a path
he
king algorithm for LTLto determine whi
h one of the implementations was in error.The test program
olle
ts statisti
s on the failure rates of the di�erent im-plementations and re
ords the average sizes of the Bü
hi automata generated bythe individual implementations. Also the average running times of the di�erentimplementations are re
orded. These
apabilities allow the test program to bealso used for simple ben
hmarking of the di�erent implementations.Interfa
ing the test program with any LTL-to-Bü
hi translation algorithmimplementation requires writing an additional program module, whose purposeis to translate the input formulas and the outputted Bü
hi automata betweenthe representations used by the testben
h and the LTL-to-Bü
hi
onverter imple-mentation. A module is already provided for doing this for Spin's input syntaxand the resulting Bü
hi automata (
alled �never
laims� in Spin terminology).3.2 Generating the InputThe testben
h implementation uses randomly generated LTL formulas and rea
h-ability graphs as input for the test pro
edure, allowing the user some
ontrol overthe behavior of the input generation algorithms through the use of several pa-rameters.Simple random testing is by no means su�
ient for proving the absolute
orre
tness of any LTL-to-Bü
hi
onversion algorithm implementation. In addi-tion, even though seemingly �random� input generation methods are very easyto
ome up with, these methods may easily
reate some kind of bias in the out-put. This makes it hard to analyze the general e�
ien
y of the test pro
edure

in �nding errors in the tested implementations. However, sin
e the
orre
tnessof the test pro
edure is independent of any parti
ular input generation method,we do not
onsider this to be a major weakness. As a matter of fa
t, it hasbeen our experien
e that even simple random input generation methods havebeen quite e�e
tive in un
overing �aws in many pra
ti
al implementations, thusbeing helpful in improving their robustness.We shall now des
ribe the input generation methods used in the testben
himplementation.Random LTL Formulas. The test program generates the random LTL inputformulas using a re
ursive algorithm similar to the one in [3℄ to obtain formu-las
ontaining an exa
t given number of symbols (logi
al operators, Boolean
onstants or propositional variables).The behavior of the algorithm
an be
ustomized through the use of sev-eral parameters. For example, these parameters allow
hanging the number ofavailable atomi
 propositions or setting the relative priorities of
hoosing anyparti
ular logi
al operator in the algorithm. This
an be also used for disablingthe use of some operators altogether.The
omplete set of available operators for use in the generated formulas is: (logi
al negation), X (�Next�), 2 (�Always� or �Globally�), 3 (�Eventually� or�Finally�), ^ (logi
al
onjun
tion), _ (logi
al disjun
tion), ! (logi
al impli
a-tion), $ (logi
al equivalen
e), U (�Until�), and V (�Release�, the dual of U).Pseudo
ode for the algorithm is shown in Fig. 2. The argument n for thealgorithm denotes the desired number of symbols in the generated formula.Rea
hability Graphs. The algorithm used in the test program implementationfor
onstru
ting random rea
hability graphs is presented in Fig. 3. The goal ofthe algorithm is to generate graphs with a given number of states n, with theadditional requirement of ensuring the rea
hability of every graph state fromthe initial state of the graph. Sin
e the test pro
edure is
on
erned with in�nitesystem behaviors, the algorithm will also ensure that ea
h graph state has atleast one su

essor.Beginning with the initial state of the graph, the algorithm pro
esses ea
hnode of the graph in turn. In order to ensure the rea
hability and the graph sizerequirements, the algorithm �rst
hooses a random state already known to berea
hable from the initial state (line 8) and
onne
ts it to some yet unrea
hablestate, if there are still any available (lines 14�19). Then, random edges are in-serted between the
hosen node and all other graph nodes (lines 20�27). Theprobability of inserting these edges
an be
ontrolled with the parameter p. Fi-nally, if the
hosen state still has no su

essors, it is simply
onne
ted to itselfin order to avoid any �nite terminating behaviors (lines 28�29).The truth values of the atomi
 propositions are
hosen randomly in ea
hpro
essed state (lines 10�13). The parameter t denotes the probability with whi
hany of the propositions is given the value �True� in a state.

1 fun
tion RandomFormula (n : Integer) : LtlFormula2 begin3 if n = 1 then begin4 p := random symbol in AP [fTrue;Falseg;5 return p;6 end7 else if n = 2 then begin8 op := random operator in the set f:;X;2;3g;9 ' := RandomFormula(1);10 return op ';11 end12 else13 op := random operator in the set f:;X;2;3;^;_;!;$;U;Vg;14 if op 2 f:;X;2;3g then begin15 ' := RandomFormula(n � 1);16 return op ';17 end18 else begin19 x := random integer in the interval [1; n� 2℄;20 ' := RandomFormula(x);21 := RandomFormula(n � x� 1);22 return ('op);23 end;24 end;25 end;Fig. 2. Pseudo
ode for the formula generation algorithmThe algorithm repeats these steps for ea
h state of the graph, until all stateshave been pro
essed.Random paths. The test program
an also use an alternative method of gen-erating random paths as the rea
hability graphs used as input for the test pro
e-dure. These paths simply
onsist of a given number of states
onne
ted to forma sequen
e whose last state is
onne
ted to some randomly
hosen previous statein the sequen
e, thereby forming a
y
le. The atomi
 propositions are then givenrandom truth values in ea
h state as in the previous algorithm.Generating random paths as rea
hability graphs has the advantage of allow-ing us to perform an additional
ross-
omparison for the model
he
king resultsobtained using the di�erent LTL-to-Bü
hi translation algorithms. The
he
k isbased on the use of LTL path
he
king algorithm based on the methods dis
ussedin Se
t. 2.4. This algorithm is �rst used to evaluate the given LTL formula 'in the exe
utions beginning at ea
h state of the path. In this restri
ted
lassof rea
hability graphs, the previously
omputed model
he
king results for theCTL* formula E' using ea
h LTL-to-Bü
hi translation algorithm should nowexa
tly
orrespond to the results returned by the path
he
king algorithm inea
h state of the path. This follows from the fa
t that in this
lass of rea
habil-ity graphs, the semanti
s of CTL* path quanti�ers E and A
oin
ide. For thesame reason, the model
he
king results
omputed for the CTL* formula E:'should be exa
tly the opposite.

1 fun
tion RandomGraph(n : Integer; p : Real 2 [0:0; 1:0℄; t : Real 2 [0:0; 1:0℄): KripkeStru
ture2 begin3 S := fs0; s1; : : : ; sn�1g;4 NodesToPro
ess := fs0g;5 Unrea
hableNodes := fs1; s2; : : : ; sn�1g;6 � := ;;7 while NodesToPro
ess 6= ; do begin8 s := a random node in NodesToPro
ess;9 NodesToPro
ess := NodesToPro
ess n fsg;10 �(s) := ;;11 for all P 2 AP do12 if RandomNumber(0:0; 1:0) < t then13 �(s) := �(s) [fPg;14 if Unrea
hableNodes 6= ; then begin15 s0 := a random node in Unrea
hableNodes;16 Unrea
hableNodes := Unrea
hableNodes n fs0g;17 NodesToPro
ess := NodesToPro
ess [fs0g;18 � := � [f(s; s0)g;19 end;20 for all s0 2 S do21 if RandomNumber(0:0; 1:0) < p then begin22 � := � [f(s; s0)g;23 if s0 2 Unrea
hableNodes then begin24 Unrea
hableNodes := Unrea
hableNodes n fs0g;25 NodesToPro
ess := NodesToPro
ess [fs0g;26 end;27 end;28 if there is no edge (s; s0) in � for any s0 2 S then29 � := � [(s; s);30 end;31 return hS; �; s0; �i;32 end;Fig. 3. Pseudo
ode for the rea
hability graph generation algorithm

Therefore, using single paths as random rea
hability graphs gives an addi-tional algorithm to be used in testing the di�erent implementations against ea
hother, providing also for limited testing of a single LTL-to-Bü
hi
onversion al-gorithm implementation: if the input
onsisted of more general graphs, at leasttwo implementations would always be required in order to be able to performany testing based on the
ross-
omparison of the results given by the di�erentimplementations.4 Appli
ation of the LTL Path Che
king Algorithm inLTL Model Che
king ToolsWe suggest an additional appli
ation of the methods of Se
t. 2.4 for model
he
king LTL formulas in single state sequen
es. Namely, an LTL path
he
kingalgorithm
ould also be used in pra
ti
al LTL model
he
king tools for validat-ing the
ounterexamples produ
ed by the tool. Integrating the path
he
kingalgorithm as an additional last step of the model
he
king pro
ess into a model
he
ker
ould give some assuran
e that the
ounterexample produ
ed by the toolis really
orre
t. In addition, any errors dete
ted in this phase suggest possibleerrors in the model
he
ker implementation.The results of a global CTL model
he
king algorithm, when applied to theveri�
ation of an LTL property in a single system behavior,
an also be easilyused to automati
ally produ
e a proof or a refutation for the property in thebehavior. We have used this idea in the testben
h implementation for justifyingto the user the
laim for the failure of one of the tested LTL-to-Bü
hi
onversionimplementations when analyzing
ontradi
tory results.5 Testing Spin's LTL-to-Bü
hi ConversionWe used our test program implementation for testing the LTL-to-Bü
hi
onver-sion algorithm implemented in the model
he
ker Spin [6, 5℄. The implemen-tation is originally based on the algorithm presented in [4℄ with several opti-mizations. We used the testben
h on Spin versions 3.3.7, 3.3.8, 3.3.9 and 3.3.10,whi
h was the most re
ent version available at the time of writing.As a referen
e implementation, we used another implementation based on anopen sour
e C++
lass library [10℄ (extended with some lo
ally developed
ode),originally a part of the Åbo System Analyser (ÅSA) model
he
king pa
kage [9℄.This is an independent, very straightforward implementation of the Bü
hi au-tomaton
onstru
tion algorithm in [4℄. Even though the tested implementationsare based on the same algorithm, we �nd the independen
e of the a
tual imple-mentations far more relevant, sin
e our fo
us is not on testing the
orre
tnessof the abstra
t algorithm (whi
h is already known to be
orre
t [4℄). We havealso used the testben
h on implementations based on di�erent algorithms for
onverting LTL formulas into Bü
hi automata, su
h as the algorithm of [15℄implemented in the tool PROD [16℄, but due to some limitations in PROD's

input syntax (namely, the la
k of support for the X and V operators) we didnot in
lude that implementation in the tests made here.We ran the tests using both the more general random graph algorithm and therandom path algorithm for generating rea
hability graphs with 100 states (in therandom graph algorithm, a random edge between two states was added with theprobability 0.2). The random LTL formulas used as input for the LTL-to-Bü
hitranslation algorithm implementations
onsisted of 4 to 7 symbols. Five atomi
propositions (with equal probability of being used in a formula) were availablefor use in the generated formulas. In generating the rea
hability graphs, ea
hproposition had an equal probability of being true or false in ea
h individualstate of the graph. For ea
h rea
hability graph generation method and for ea
hdi�erent number of formula symbols, we ran ea
h LTL-to-Bü
hi
onverter imple-mentation on 4,000 randomly generated formulas and their negations. In total,ea
h individual implementation was therefore run on 64,000 input formulas. Ad-ditionally, a new rea
hability graph was generated after every tenth generatedformula.The randomly generated formulas were partitioned into four bat
hes of equalsize, using in ea
h bat
h a di�erent subset of formula symbols in generating theformulas. The symbol sets used in the di�erent bat
hes were(1) atomi
 propositions; no Boolean
onstants; operators :;3;2;^;_;!;$,U;V(2) atomi
 propositions; Boolean
onstantsTrue and False; the same operatorsas in (1)(3) atomi
 propositions; no Boolean
onstants; all operators in (1) together withthe X operator(4) atomi
 propositions; all Boolean
onstants and logi
al operators.Ea
h available operator had an equal priority of being sele
ted into a gen-erated formula by the algorithm in Se
t. 3.2; however, ea
h Boolean
onstant(when in
luded in the symbol set) had the smaller probability of 0.05 of being se-le
ted,
ompared to the probability of 0.18 used for ea
h of the �ve propositionalvariables.The tests were run using Linux PCs. Table 1 shows the failure rates of ea
himplementation during the
onversion of an LTL formula into a Bü
hi automa-ton. All the tested implementations ex
ept Spin 3.3.9 sometimes failed to pro-du
e a

eptable output (interpreted as a failure to generate an automaton).The reported failures of the referen
e implementation are due to its failure toprodu
e any output after running for 12 hours. On the other hand, all Spinversions never
onsumed more than only a few se
onds of running time, showingthe straightforward referen
e implementation very ine�
ient in pra
ti
e.All but one Spin version failed in some
ases to produ
e a

eptable output.O

asionally, the never
laims produ
ed by Spin versions 3.3.7 and 3.3.8 weresynta
ti
ally in
orre
t. Moreover, in some
ases both versions failed due to aninternal error on some input formulas (all of whi
h
ontained the logi
al equiv-alen
e operator $) without produ
ing any output. Version 3.3.9 never failed

Table 1. Bü
hi automaton generation failure statisti
sNumberofsymbolsinformula Imple-mentation Number of Bü
hiautomaton generationfailures (of 4,000attempts)(1) (2) (3) (4)4 ÅSA 0 0 0 0Spin 3.3.7 38 72 84 92Spin 3.3.8 38 72 84 92Spin 3.3.9 0 0 0 0Spin 3.3.10 0 0 0 05 ÅSA 0 0 0 0Spin 3.3.7 100 158 138 167Spin 3.3.8 100 158 138 167Spin 3.3.9 0 0 0 0Spin 3.3.10 10 13 13 96 ÅSA 0 0 0 0Spin 3.3.7 142 168 215 198Spin 3.3.8 142 168 215 198Spin 3.3.9 0 0 0 0Spin 3.3.10 8 7 8 57 ÅSA 1 2 2 2Spin 3.3.7 138 220 248 293Spin 3.3.8 138 220 248 293Spin 3.3.9 0 0 0 0Spin 3.3.10 12 4 10 5to produ
e
orre
tly formatted output; however, version 3.3.10 again failed onsome input formulas, reporting an internal error instead.Finally, Tables 2 and 3
ontain the number of input formulas failing the result
ross-
omparison
he
k between the implementations. The tables also in
lude thetotal number of failed
onsisten
y
he
ks for ea
h individual implementation. Theresults of Table 2 were obtained using randomly generated rea
hability graphsas input for the testing pro
edure, while the results of Table 3 are based on usingrandomly generated paths as input. The results are grouped a

ording to theused set of formula symbols.The results show that there were
ases in whi
h Spin versions 3.3.7, 3.3.8 and3.3.9 failed the result
ross-
omparison
he
k with version 3.3.10 and the refer-en
e implementation, however Spin 3.3.9 failed only if the input formulas wereallowed to
ontain Boolean
onstants or X operators. Spin 3.3.10 never failedthe result
ross-
omparison
he
k with the referen
e implementation. Spin ver-sions 3.3.7, 3.3.8 and 3.3.9 also o

asionally failed the result
onsisten
y
he
k.However, the relatively rare o

urren
e of these failures seems to suggest that theresult
ross-
omparison
he
k is more powerful of these methods for dete
tingerrors in an implementation. However, unlike the
onsisten
y
he
k, this test al-ways requires a separate analysis of the results produ
ed by two implementationsto determine whi
h one of them is in
orre
t.The test results show a
lear improvement in the robustness of Spin's LTL-to-Bü
hi
onversion algorithm implementation sin
e version 3.3.7. Spin 3.3.10

Table 2. Result
ross-
omparison statisti
s (random graphs)Formulasymbol set Imple-mentation Totalnumber of
onsisten
y
he
kfailures Total number of result
ross-
omparison failures /number of
omparisonsperformed(1) ÅSA Spin 3.3.10ÅSA 0/4000 � 0/7989Spin 3.3.7 0/3894 907/7788 907/7777Spin 3.3.8 0/3894 907/7788 907/7777Spin 3.3.9 0/4000 0/8000 0/7989Spin 3.3.10 0/3989 0/7989 �(2) ÅSA 0/3998 � 0/7985Spin 3.3.7 4/3841 849/7680 849/7669Spin 3.3.8 4/3841 849/7680 849/7669Spin 3.3.9 1/4000 1/7998 1/7987Spin 3.3.10 0/3987 0/7985 �(3) ÅSA 0/3998 � 0/7983Spin 3.3.7 0/3811 624/7647 623/7635Spin 3.3.8 0/3811 624/7647 623/7635Spin 3.3.9 0/4000 0/7998 0/7985Spin 3.3.10 0/3985 0/7983 �(4) ÅSA 0/3999 � 0/7988Spin 3.3.7 4/3777 747/7582 747/7572Spin 3.3.8 4/3777 747/7582 747/7572Spin 3.3.9 0/4000 64/7999 64/7989Spin 3.3.10 0/3989 0/7988 �Table 3. Result
ross-
omparison statisti
s (random paths)Formulasymbol set Imple-mentation Totalnumber of
onsisten
y
he
kfailures Total number of result
ross-
omparison failures /number of
omparisonsperformed(1) ÅSA Spin 3.3.10ÅSA 0/3999 � 0/7980Spin 3.3.7 0/3897 926/7793 926/7775Spin 3.3.8 0/3897 918/7793 918/7775Spin 3.3.9 0/4000 0/7999 0/7981Spin 3.3.10 0/3981 0/7980 �(2) ÅSA 0/4000 � 0/7989Spin 3.3.7 6/3850 923/7700 923/7690Spin 3.3.8 6/3850 921/7700 920/7690Spin 3.3.9 0/4000 0/8000 0/7989Spin 3.3.10 0/3989 0/7989 �(3) ÅSA 0/4000 � 0/7984Spin 3.3.7 51/3820 825/7666 825/7650Spin 3.3.8 50/3820 822/7666 819/7650Spin 3.3.9 0/4000 0/8000 0/7984Spin 3.3.10 0/3984 0/7984 �(4) ÅSA 0/3999 � 0/7991Spin 3.3.7 60/3820 898/7666 899/7659Spin 3.3.8 60/3820 891/7666 892/7659Spin 3.3.9 0/4000 76/7999 76/7992Spin 3.3.10 0/3992 0/7991 �

was the �rst to pass all result
ross-
omparison
he
ks with the referen
e imple-mentation. However, in these tests this version was slightly more unstable thanits immediate prede
essor due to the o

asional automaton generation failures.This may be a result of some new optimizations made in the newer version toredu
e the size of the generated automata, whi
h reminds that extreme
areshould always be taken when making optimizations into an implementation inorder to retain its stability and
orre
tness. This reveals another possible appli-
ation for the test pro
edure as a regression testing method to be used in thedevelopment of new versions of an LTL-to-Bü
hi algorithm implementation.6 Con
lusionsWe have presented a random testing method for LTL-to-Bü
hi
onversion algo-rithm implementations. The approa
h was quite e�e
tive in un
overing errors inthe Spin model
he
ker, and this has been our experien
e also with other model
he
kers on whi
h we have run a smaller set of tests. (Of the four independentimplementations we have tested, the referen
e implementation ÅSA has beenthe only one in whi
h no errors have ever been dete
ted using this method.)This work
an be seen as the
ontinuation of the work in [13℄. We haveimproved the methodology presented there by using
ounterexample validationalgorithms (essentially, a global CTL model
he
ker) to de
ide whi
h one ofseveral disagreeing implementations is in
orre
t. Also the use of random pathsis �rst introdu
ed here. We present a larger set of experimental results withup-to-date Spin versions. New to this work is additionally the idea of using a
ounterexample validation algorithm as the last step of an LTL model
he
ker.In the future, we would like to extend the approa
h to also test nondetermin-isti
 �nite automata generated from (synta
ti
) safety LTL formulas using theapproa
hes presented in [8℄. These (safety) LTL-to-NFA
onversion algorithmimplementations would need a di�erent (more simple) emptiness
he
king sub-routine, but the results
ould then be
ompared against the results obtainedfrom the LTL-to-Bü
hi
onversion tests for the same formula.We will also
ontinue using the test program on other LTL-to-Bü
hi
onverterimplementations based on di�erent
onversion algorithms than the one used here.For example, it would be interesting to try the test program on the LTL2AUTimplementation of [3℄. The testben
h implementation itself
ould also be stillimproved with some of the methods for the dire
t
omparison of Bü
hi automataas des
ribed in the beginning of Se
t. 2 (the emptiness
he
k for the syn
hronous
omposition of two automata, however without the universality test for the unionof the automata).A very surprising result in the experiments was that using randomly gener-ated paths as input rea
hability graphs for the testing pro
edure resulted in aslightly higher failure rate in the tested implementations. However, sin
e thereare so many fa
tors a�e
ting the test pro
edure (details of the input generationalgorithms, the parti
ular
ombination of values
hosen for the test parameters,even the tested implementations themselves), it is impossible to say anything

on
lusive about whi
h one of these graph generation methods might be �bet-ter� for un
overing errors in the implementations. The relationship between thetest parameters and the failure rates would
ertainly make an interesting issueto investigate in the future.We propose that LTL model
he
kers should be extended with a
ounterex-ample validation algorithm as des
ribed in Se
t. 4. The implementation of thisalgorithm is quite straightforward, as it
an be done based on even a straight-forward implementation of a CTL model
he
ker. The running time overheadof su
h an algorithm should be quite negligible, as it is linear both in the sizeof the formula and the length of the
ounterexample. Su
h an algorithm wouldin
rease the
on�den
e in the
ounterexamples provided by the model
he
kerimplementation, and
ould hopefully help in �nding some of the yet unknownimplementation errors in the tool. Of
ourse, separate validation of
ounterex-amples only helps in dete
ting false negatives but not false positives; however,it would still be a step in the right dire
tion.There are several other pla
es in LTL model
he
kers whi
h
ould proba-bly be improved with random testing but whi
h we have not
overed here (forexample, emptiness
he
king and partial order redu
tion algorithms). However,we think that the LTL-to-Bü
hi
onversion algorithm, in
luding all the possiblyused optimizations, is one of the most di�
ult algorithms to implement, andthus should also be regression tested whenever new versions are implemented.An optimal situation would of
ourse be that the implementation of a model
he
ker were fully veri�ed (and still have adequate performan
e). Until that isthe
ase, we aim at a more humble goal: to validate a part of the model
he
kerusing random testing.A
knowledgementsThe random testing method has been used on Spin starting from version 3.3.3,on whi
h the �rst preliminary tests were made in the summer of 1999. Moreextensive tests have been done on versions 3.3.8, 3.3.9 and 3.3.10 sin
e January2000. We would like to thank Gerard J. Holzmann for
reating new and improvedversions of Spin during the period this work was done.We would also like to thank Tommi Junttila for
riti
al
omments on thiswork and Mauno Rönkkö for
reating a reliable referen
e implementation. Weare also grateful to the anonymous referees whose feedba
k was very importantin improving this work.Referen
es[1℄ G. Bhat, R. Cleaveland, and O. Grumberg. E�
ient on-the-�y model
he
kingfor CTL�. In Pro
eedings of 10th Annual IEEE Symposium on Logi
 in ComputerS
ien
e (LICS'95), pages 388�397. IEEE Computer So
iety Press, 1995.[2℄ C. Cour
oubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-e�
ientalgorithms for the veri�
ation of temporal properties. Formal Methods in SystemDesign, 1:275�288, 1992.

[3℄ M. Daniele, F. Giun
higlia, and M. Y. Vardi. Improved automata generationfor linear temporal logi
. In Pro
eedings of the 11th International Conferen
e onComputer Aided Veri�
ation (CAV'99), pages 249�260. Springer, 1999. LNCS1633.[4℄ R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-�y automati
veri�
ation of linear temporal logi
. In Pro
eedings of 15th Workshop Proto
olSpe
i�
ation, Testing, and Veri�
ation, pages 3�18, 1995.[5℄ G. Holzmann. On-the-�y, LTL model
he
king with Spin. <URL:http://netlib.bell-labs.
om/netlib/spin/whatispin.html>.[6℄ G. Holzmann. The model
he
ker Spin. IEEE Transa
tions on Software Engi-neering, 23(5):279�295, May 1997.[7℄ E. Clarke Jr., O. Grumberg, and D. Peled. Model Che
king. MIT Press, 2000.[8℄ O. Kupferman and M. Y. Vardi. Model
he
king of safety properties. In Pro
eed-ings of 11th International Conferen
e on Computer Aided Veri�
ation (CAV'99),pages 172�183. Springer, 1999. LNCS 1633.[9℄ J. Lilius. ÅSA: The Åbo System Analyser, September 1999. <URL:http://www.abo.fi/%7Ejolilius/m
/aasa.html>.[10℄ M. Rönkkö. A distributed obje
t oriented implementation of an algorithm
onverting a LTL formula to a generalised Bu
hi automaton, 1998. <URL:http://www.abo.fi/%7Emauno.ronkko/ASA/ltlalg.html>.[11℄ S. Safra. Complexity of automata on in�nite obje
ts. PhD thesis, The WeizmannInstitute of S
ien
e, 1989.[12℄ R. Tarjan. Depth-�rst sear
h and linear graph algorithms. SIAM Journal onComputing, 1(2):146�160, June 1972.[13℄ H. Tauriainen. A randomized testben
h for algorithms translating linear temporallogi
 formulae into Bü
hi automata. In Pro
eedings of the Workshop Con
urren
y,Spe
i�
ation and Programming 1999 (CS&P'99), pages 251�262. Warsaw Univer-sity, September 1999.[14℄ M. Y. Vardi. An automata-theoreti
 approa
h to linear temporal logi
. In Logi
sfor Con
urren
y: Stru
ture versus Automata, pages 238�265, 1996. LNCS 1043.[15℄ M. Y. Vardi and P. Wolper. An automata-theoreti
 approa
h to automati
 pro-gram veri�
ation. In Pro
eedings of the 1st IEEE Symposium on Logi
 in Com-puter S
ien
e (LICS'86), pages 332�344. IEEE Computer So
iety Press, 1986.[16℄ K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advan
ed tool fore�
ient rea
hability analysis. In Pro
eedings of the 9th International Conferen
eon Computer Aided Veri�
ation (CAV'97), pages 472�475. Springer, June 1997.LNCS 1254.

