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automata (LTL-to-Bühi onversion), whih seems to be among the most di�ultsteps in LTL model heking to implement orretly. The method is based onthe omparison of several implementations against eah other. As a onreteexample, we will test the LTL-to-Bühi onversion implementation in the modelheker Spin [6, 5℄ using a random testing methodology. This work an be seenas a ontinuation of the work published in [13℄ with the following extensions:� We desribe a systemati method of using the results of the omparison (to-gether with a single behavior in the system model) to �nd out the partiularimplementation whih failed, an improvement over simply deteting resultinonsistenies. The method is based on model heking an LTL formuladiretly in the witness behavior by applying omputation tree logi (CTL)model heking tehniques. This speial ase of model heking LTL in wit-ness behaviors is based on the ideas �rst presented in an extended versionof [8℄.� We disuss an additional appliation of the previous tehnique in LTL modelheking tools for validating ounterexamples.� We extend the test proedure for LTL-to-Bühi onversion algorithm imple-mentations to make use of non-branhing state sequenes (paths) as reah-ability graphs, taking advantage of some additional heks provided by thediret LTL model heking method in omparing the behavior of the imple-mentations.� We present experimental results on using the test proedure on up-to-dateversions of Spin.The rest of this paper is organized as follows. In Set. 2, we desribe thegeneral testing proedure for omparing the results produed by di�erent LTL-to-Bühi translation algorithm implementations with eah other. Setion 3 in-trodues a pratial implementation of the test proedure into a randomizedtestbenh for LTL-to-Bühi translation algorithm implementations. In Set. 4,we propose a method for validating ounterexamples provided by LTL modelhekers. Setion 5 reports the results of using the test proedure on the LTL-to-Bühi translation algorithm implementations of di�erent versions of Spin.Conlusions with some diretions for future work are presented in Set. 6.2 Testing ProedureIn order to test the orretness of di�erent LTL-to-Bühi onversion algorithmimplementations in pratie, the test proedure itself should be e�ient in �ndingerrors in the implementations. It should also be as reliable and simple as possibleto avoid errors in the test proedure implementation itself.Testing LTL-to-Bühi onversion algorithm implementations requires inputfor the implementations, i.e. LTL formulas to be onverted into Bühi automata.We ould try to test the orretness of a single implementation by using it toonstrut automata from an LTL formula and its negation and then hekingwhether the intersetion of the languages aepted by these two automata is



empty. (This ould be heked with the help of a synhronous omposition ofthe two automata, see e.g. [14℄.) If this result is found to be nonempty, we anonlude that the implementation does not work orretly.However, this simple method has some disadvantages. First of all, if only asingle implementation is used, this hek is not su�ient to show that the ob-tained automata atually represent the formula and its negation orretly. (Asa trivial example, this hek would not detet the error in an otherwise orretBühi automaton generator whih always negates every input formula beforegenerating the automaton.) We an gain more on�dene in the orretness ofthe implementation by performing the language emptiness hek against an au-tomaton onstruted for the negation of the formula using another independentonversion algorithm implementation. Therefore, if we have several implementa-tions available, we an use eah of them to onstrut automata from the formulaand its negation and then hek whether all the pairwise synhronous ompo-sitions of some automaton onstruted for the formula and another automatononstruted for its negation are empty.Another problem with this approah is that we annot use the results of theemptiness heks to infer the orretness of any implementation (even on a singleLTL formula) even if no failures are deteted. Namely, implementations witherrors may generate automata whih pass all these heks but whih still do notaept the exat languages orresponding to the input formulas. (For example,an implementation whih always generates the empty automaton regardless ofthe LTL formula would always pass the emptiness hek with any automaton.)The test method's reliability in this respet ould be inreased by extendingthe proedure with one additional step. In addition to heking the emptinessof the intersetion of the languages aepted by a pair of automata onstrutedfrom the formula and its negation, we ould also hek that the union of theselanguages (one again representable as a Bühi automaton, see e.g. [14℄) formsthe universal language. However, this problem is in general PSPACE-ompletein the size of the resulting Bühi automaton, see e.g. [14℄. In priniple, the uni-versality hek an be done with a Bühi automata omplementation proedure.However, this is a potentially hard-to-implement task [11℄, ontraditing the goalof trying to keep the test proedure implementation as simple as possible.In pratie, it would also be an advantage if the test proedure were ableto give some justi�ation for the inorretness of an implementation instead ofa simple statement that the heks failed without exatly revealing whih oneof the implementations was in error. For instane, a onrete example of aninput inorretly aepted or rejeted by some automaton might be of help indebugging the implementation with errors.As a ompromise between the di�ulty of implementation and the reliabilityand pratial appliability of test results, we will not try to ompare the obtainedautomata diretly. Instead, we use a testing method based on the automata-theoreti model heking proedure for LTL, see e.g. [4, 14, 15℄. Basially, thisinvolves model heking LTL formulas in models of systems and then hek-ing that the model heking results obtained with the help of eah individual



LTL-to-Bühi onversion algorithm agree. Although this testing method requiresmore input (the system models) in addition to the formulas, it an also easilyprovide ounterexamples for on�rming the inorretness of a partiular imple-mentation if the veri�ation results are inonsistent. In addition, all steps in thistest proedure are relatively straightforward to implement.In this setion, we disuss the general testing proedure and the methods foranalyzing the test results. Sine the methods for generating input for the testingproedure are independent of the proedure itself, we will leave the desriptionof some possible methods for input generation until Set. 3.2.1 Automata-Theoreti Model ChekingWe assume the system model to be given as a �nite-state reahability graph, anexpliit-state representation apturing all the behaviors of the system as in�nitepaths in the graph. The properties of the system are modeled using a �nite setAP of atomi propositions, whose truth values are �xed independently in eahstate of the graph.Formally, the reahability graph is a Kripke strutureK = hS; �; s0; �i, where� S is a �nite set of states,� � � S � S is a total transition relation, i.e. satisfying 8s 2 S : 9s0 2 S :(s; s0) 2 �,� s0 2 S is the initial state and� � : S 7! 2AP is a funtion whih labels eah state with a set of atomipropositions. Semantially, � (s) represents the set of propositions that holdin a state s 2 S, and the propositions in AP n � (s) are false in s.The exeutions of the system are in�nite sequenes of states s0s1 : : : 2 S!suh that s0 is the initial state of the system and for all i � 0, (si; si+1) 2 �.By using the funtion � for labeling eah state with a subset of AP inludingexatly the propositions whih are true in the state, the in�nite behaviors of thesystem an alternatively be represented as in�nite strings of state labels.The task of the onversion algorithms we wish to test is to expand a givenLTL property expressed as a formula over AP into a Bühi automaton. Thisautomaton is supposed to aept exatly those in�nite strings of state labels(system behaviors) whih are models of the formula.Formally, a Bühi automaton is a 5-tuple A = h�;Q;�; q0; F i, where� � = 2AP is an alphabet,� Q is a �nite set of states,� � � Q�� �Q is a transition relation,� q0 2 Q is the initial state, and� F � Q is a set of aepting states.An exeution of A over an in�nite word w = x0x1x2 : : : 2 �! is an in�nitesequene of states q0q1q2 : : : 2 Q! suh that q0 is the initial state and for alli � 0, (qi; xi; qi+1) 2 �.



Let r = q0q1q2 : : : 2 Q! be an exeution of A. We denote by inf(r) � Q theset of states ourring in�nitely many times in r. We say that r is an aeptingexeution of A i� inf(r) \ F 6= ;.The automaton aepts an in�nite word w 2 �! if and only if there is anaepting exeution of A over w.The goal is now to hek whether the reahability graph and the Bühi au-tomaton have any ommon behaviors, i.e. whether any in�nite behavior of thesystem is aepted by the Bühi automaton. In LTL model heking, the answerto this question is used to on�rm or refute whether the system satis�es a givenLTL property '. This atually involves using an automaton A:', onstrutedfor the negation of the property. Sine the model heking of LTL propertiesrequires all system behaviors to be onsidered, any system behavior aepted byA:' is su�ient to falsify the given property.However, in our testing approah, we are not interested in making any suhonlusions about the system as a whole. For our needs, it is su�ient to usethe LTL-to-Bühi onversion algorithms to onstrut an automaton A' simplyfor the given property '. In e�et, we will be using the onstruted automatonfor atually model heking the CTL* formula E' instead of the LTL formula' in the system [7℄.Atually, the reahability graph an be seen as a Bühi automaton whoseevery state is aepting. This allows heking the existene of ommon behav-iors by omputing the synhronous produt of the reahability graph with theproperty automaton (see e.g. [4℄). Intuitively, this orresponds to enumerating allthe parallel behaviors of the system and the automaton suh that the behaviorsagree at eah step on the truth values of the atomi propositions in the propertyformula, when both the system and the automaton start their exeution in theirrespetive initial states.Computing the synhronous produt (for details, see e.g. [13℄) results in an-other �nite-state nondeterministi Bühi automaton having an aepting exeu-tion (spei�ally, a yli state sequene with an aepting state) if and only ifany in�nite system behavior is aepted by the property automaton. The exis-tene of an aepting exeution is equivalent to the question whether any non-trivial maximal strongly onneted graph omponent with an aepting statean be reahed from the initial state of the produt. Determining the answer tothis question an be done with the well-known algorithm due to Tarjan [12℄ forenumerating the maximal strongly onneted graph omponents in linear timein the size of the produt automaton.2.2 Result Cross-omparisonThe existene of system behaviors satisfying the property should not dependon the partiular Bühi automaton used for omputing the produt. However,errors in the LTL-to-Bühi onversion algorithm implementations may result ininorret Bühi automata.The basi test objetive is to use the di�erent LTL-to-Bühi onversion al-gorithm implementations to obtain several Bühi automata from a single LTL



formula. Eah of the automata is then synhronized separately with the reaha-bility graph, and the results are heked for the existene of aepting yles. As-suming that all the used LTL-to-Bühi implementations are error-free (in whihase all the obtained automata will aept the same language), this hek shouldalways produe the same set of system states from whih an aepting yle anbe reahed. Any inonsistenies in the results suggest an error in some onver-sion algorithm implementation. We will show in Set. 2.4 how we distinguish theinorret implementation from those for whih the results are orret.The synhronization of the system with the property automaton is oftenperformed only with respet to the unique initial states of the two automata.However, we proeed by synhronizing the property automaton separately inevery state of the reahability graph, i.e. onsidering eah state of the reahabilitygraph in turn as the initial state. In this way, we an obtain more test datafor omparison from a single reahability graph. The additional omputationorresponds to heking the existene of behaviors satisfying the property inevery state of the system, instead of only in its initial state. We all this theglobal synhronous produt.It is straightforward to extend the standard method for omputing the prod-ut to perform all the synhronizations simultaneously. Basially, this requiresensuring that the initial state of the property automaton is paired with eahstate of the reahability graph while maintaining the produt losed under itstransition relation. This approah also takes advantage of the possible sharingof substrutures between the di�erent produt automata, resulting in the sameworst-ase result size (jQj � jSj) as in the single-state method. (The atual o-urrene of the worst ase is, however, ertainly muh more probable with thisapproah.)The hek for aepting yles is also easily extended to the global produt.The only di�erene here is that the produt automaton now has more than onestate in whih the reahability of any aepting yle must be heked.As a result, we obtain for eah Bühi automaton onversion algorithm imple-mentation a set of yes/no answers to the question of the existene of behaviorssatisfying the LTL formula beginning at eah state of the reahability graph.Assuming the Bühi automata were onstruted from an LTL formula ', theseanswers orrespond to the truth values of the CTL* formula E' in eah sys-tem state.1 These answers an then be ompared against eah other in eahindividual state as desribed above.2.3 Cheking the Results for ConsistenyOne the previous testing proedure has been ompleted for a single LTL for-mula, it is useful to repeat the whole proedure again for the negation of thesame formula. In addition to another result ross-omparison hek, this allows1 By exploring the global synhronous produt with an on-the-�y version of Tarjan'salgorithm, we ould thus use the approah also as an e�ient LTL model hekingsubroutine for an on-the-�y CTL* model heker. (See [1℄.)



a simple onsisteny hek to be performed on the two result sets obtained usingeah individual LTL-to-Bühi onversion algorithm implementation.The hek is based on the fat that no system state an simultaneously satisfyan LTL property and its negation, even though both may well remain unsatis�edin the state. (For an LTL property, this will our if there are several behaviorsbeginning at the state, some of whih satisfy the property individually, whileothers satisfy its negation.) However, the nonexistene of a behavior satisfyingthe LTL property implies that the negation of the property holds in that state.Therefore, it follows that the answer to the existene of an aepting exeutionannot be negative for both the formula and its negation in any state, as thatwould imply that both the property and its negation hold in the state at thesame time.This hek is very easy to perform on the two result sets obtained using apartiular LTL-to-Bühi onversion algorithm implementation. Any violation ofthe previous fat immediately on�rms an error in the implementation.The basi steps of the test proedure are illustrated in Fig. 1.
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Fig. 1. Basi test proedure2.4 Cross-omparison Result AnalysisThe result ross-omparison hek is not in itself enough to reveal the imple-mentation or implementations in error. Of ourse, running several independentimplementations against eah other may help to single out the inorret one if apattern an be deteted in the ourrene of result inonsistenies, e.g. when the



implementations generally agree with eah other with the exeption of a singleimplementation whih sometimes fails the hek with all the other implementa-tions.However, simply searhing for patterns in the deteted inonsistenies maynot be an adequate strategy if the used implementations are not independent,or if in some ases only few of the many tested implementations are atuallyorret, while all the others give inorret results. Therefore, we will need moresystemati methods to distinguish the inorret implementation from the orretones.Our approah for deteting the implementation with errors is based on �rst�nding (see below) a onrete example behavior of the system (i.e., a witness)for whih the model heking results obtained using two di�erent LTL-to-Bühionversion algorithm implementations disagree. The LTL formula is then modelheked in this example behavior separately. Instead of using for this purpose ageneral LTL model heking algorithm, whose implementation orretness wouldbe equally di�ult to on�rm as that of the implementations we wish to test, weuse a diret LTL model heking algorithm for a single state sequene. This ap-proah is based on the intuition that a restrited algorithm is easier to implementorretly than any of the tested translation algorithms and should therefore bemore reliable. Using this algorithm to model hek the formula separately in theexample behavior, we obtain a strong suggestion about whih one of the testedLTL-to-Bühi onversion algorithm implementations had failed.The �rst step of the analysis is to �nd a system state in whih the result setsobtained using two LTL-to-Bühi translation algorithms disagree. In this state,another result set laims the existene of an in�nite system behavior satisfyingthe LTL formula. We use the produt automaton assoiated with this result setto extrat an atual in�nite system behavior whih is aepted by the Bühi au-tomaton used for onstruting the produt. This an be done using the standardmodel heking tehniques for extrating ounterexamples (atually witnesses inour ase), see e.g. [2℄.It is important to note that the obtained in�nite system exeution alwaysonsists of a pre�x of system states followed by a state yle whih repeatsin�nitely often. Another important property of the exeution is that eah of itsstates has exatly one suessor. The exeution is therefore an in�nite path inthe reahability graph. These harateristis of the exeution allow us to applyCTL model heking tehniques for evaluating the given LTL formula in theexeution.2 (We use the standard semantis for CTL, see e.g. [7℄.)2 This idea was �rst presented as a remark in an extended version of [8℄, available at<URL: http://www.s.rie.edu/%7Evardi/papers/>.



Let � be a funtion mapping LTL formulas to CTL formulas, de�ned reur-sively as follows:�(True) = True�(False) = False�(P ) = P for all atomi propositions P 2 AP�(:') = :�(')�(' _  ) = �(') _ �( )�(X') = AX �(')�('U ) = A��(')U �( )�Intuitively, this transformation simply replaes all temporal operators in theoriginal LTL formula with a orresponding quanti�ed CTL operator.3 It is learthat the transformation an be done in linear time in the size of the formula.Let K = hS; �; s0; �i be a �nite-state Kripke struture representing the wit-ness behavior extrated using the produt automaton as desribed above. Eahstate of this struture has exatly one suessor, and every state of the strutureis reahable from its initial state. Let x = s0s1s2 : : : 2 S! denote the uniquein�nite state sequene whih begins in the initial state s0 2 S.Let ' be an LTL formula over the atomi propositions in AP . We have thefollowing:Theorem 1. The in�nite state sequene x satis�es the LTL formula ' if andonly if the CTL formula �(') holds in s0, the initial state of the Kripke strutureK.Proof. By indution on the syntati struture of the formula.This result allows us to use CTL model heking tehniques for heking thesatis�ability of the LTL formula separately in the system behavior. For example,we an apply a global CTL model heking algorithm (see e.g. [7℄) to the path,evaluating eah of the subformulas of �(') in turn in eah state of the path inorder to �nally obtain the truth value of �(') in the initial state. The omplexityof this algorithm is O(jF j � jSj), where jF j denotes the number of subformulas of�('). By the previous theorem, the result tells also the truth value of the LTLformula ' in the exeution. This result an then be used to detet whih one ofthe tested LTL-to-Bühi onverter implementations was probably in error in thistest ase, i.e. whih automaton inorretly aepted or rejeted the exeution.3 Automated Testing of the ImplementationsWe have implemented the testing proedure of the previous setion into a test-benh for LTL-to-Bühi translation algorithm implementations. The C++ soure3 Atually, due to the speial harateristis of the exeutions, even the semantis ofthe CTL path quanti�ers A and E oinide. Therefore, we ould as well use the Equanti�er without a�eting the results presented here.



ode for this program is available through Heikki Tauriainen's homepage at<URL: http://www.ts.hut.fi/%7Ehtauriai/>.3.1 Test Program OperationThe testbenh model heks randomly generated LTL formulas in randomly gen-erated reahability graphs, using eah of the di�erent LTL-to-Bühi onversionalgorithm implementations in turn to expand the LTL formulas and their nega-tions into Bühi automata.In addition to generating the input, the program performs for eah used im-plementation the global synhronous produt omputation, together with thehek for states beginning some exeution satisfying the property. Finally, theprogram ompares the results obtained using eah LTL-to-Bühi onversion al-gorithm with eah other and reports whether any inonsistenies were deteted.After this, the test proedure is repeated using another randomly generated LTLformula and/or a reahability graph.The testing an be interrupted in ase any error is deteted, for example,when an implementation fails to generate a Bühi automaton (e.g., due to aninternal assertion violation in the implementation). The program provides aommand-line interfae through whih the user an examine the formula, thereahability graph and the Bühi automata generated by the di�erent imple-mentations more losely, optionally invoking a path heking algorithm for LTLto determine whih one of the implementations was in error.The test program ollets statistis on the failure rates of the di�erent im-plementations and reords the average sizes of the Bühi automata generated bythe individual implementations. Also the average running times of the di�erentimplementations are reorded. These apabilities allow the test program to bealso used for simple benhmarking of the di�erent implementations.Interfaing the test program with any LTL-to-Bühi translation algorithmimplementation requires writing an additional program module, whose purposeis to translate the input formulas and the outputted Bühi automata betweenthe representations used by the testbenh and the LTL-to-Bühi onverter imple-mentation. A module is already provided for doing this for Spin's input syntaxand the resulting Bühi automata (alled �never laims� in Spin terminology).3.2 Generating the InputThe testbenh implementation uses randomly generated LTL formulas and reah-ability graphs as input for the test proedure, allowing the user some ontrol overthe behavior of the input generation algorithms through the use of several pa-rameters.Simple random testing is by no means su�ient for proving the absoluteorretness of any LTL-to-Bühi onversion algorithm implementation. In addi-tion, even though seemingly �random� input generation methods are very easyto ome up with, these methods may easily reate some kind of bias in the out-put. This makes it hard to analyze the general e�ieny of the test proedure



in �nding errors in the tested implementations. However, sine the orretnessof the test proedure is independent of any partiular input generation method,we do not onsider this to be a major weakness. As a matter of fat, it hasbeen our experiene that even simple random input generation methods havebeen quite e�etive in unovering �aws in many pratial implementations, thusbeing helpful in improving their robustness.We shall now desribe the input generation methods used in the testbenhimplementation.Random LTL Formulas. The test program generates the random LTL inputformulas using a reursive algorithm similar to the one in [3℄ to obtain formu-las ontaining an exat given number of symbols (logial operators, Booleanonstants or propositional variables).The behavior of the algorithm an be ustomized through the use of sev-eral parameters. For example, these parameters allow hanging the number ofavailable atomi propositions or setting the relative priorities of hoosing anypartiular logial operator in the algorithm. This an be also used for disablingthe use of some operators altogether.The omplete set of available operators for use in the generated formulas is: (logial negation), X (�Next�), 2 (�Always� or �Globally�), 3 (�Eventually� or�Finally�), ^ (logial onjuntion), _ (logial disjuntion), ! (logial implia-tion), $ (logial equivalene), U (�Until�), and V (�Release�, the dual of U).Pseudoode for the algorithm is shown in Fig. 2. The argument n for thealgorithm denotes the desired number of symbols in the generated formula.Reahability Graphs. The algorithm used in the test program implementationfor onstruting random reahability graphs is presented in Fig. 3. The goal ofthe algorithm is to generate graphs with a given number of states n, with theadditional requirement of ensuring the reahability of every graph state fromthe initial state of the graph. Sine the test proedure is onerned with in�nitesystem behaviors, the algorithm will also ensure that eah graph state has atleast one suessor.Beginning with the initial state of the graph, the algorithm proesses eahnode of the graph in turn. In order to ensure the reahability and the graph sizerequirements, the algorithm �rst hooses a random state already known to bereahable from the initial state (line 8) and onnets it to some yet unreahablestate, if there are still any available (lines 14�19). Then, random edges are in-serted between the hosen node and all other graph nodes (lines 20�27). Theprobability of inserting these edges an be ontrolled with the parameter p. Fi-nally, if the hosen state still has no suessors, it is simply onneted to itselfin order to avoid any �nite terminating behaviors (lines 28�29).The truth values of the atomi propositions are hosen randomly in eahproessed state (lines 10�13). The parameter t denotes the probability with whihany of the propositions is given the value �True� in a state.



1 funtion RandomFormula (n : Integer) : LtlFormula2 begin3 if n = 1 then begin4 p := random symbol in AP [ fTrue;Falseg;5 return p;6 end7 else if n = 2 then begin8 op := random operator in the set f:;X;2;3g;9 ' := RandomFormula(1);10 return op ';11 end12 else13 op := random operator in the set f:;X;2;3;^;_;!;$;U;Vg;14 if op 2 f:;X;2;3g then begin15 ' := RandomFormula(n � 1);16 return op ';17 end18 else begin19 x := random integer in the interval [1; n� 2℄;20 ' := RandomFormula(x);21  := RandomFormula(n � x� 1);22 return ('op );23 end;24 end;25 end;Fig. 2. Pseudoode for the formula generation algorithmThe algorithm repeats these steps for eah state of the graph, until all stateshave been proessed.Random paths. The test program an also use an alternative method of gen-erating random paths as the reahability graphs used as input for the test proe-dure. These paths simply onsist of a given number of states onneted to forma sequene whose last state is onneted to some randomly hosen previous statein the sequene, thereby forming a yle. The atomi propositions are then givenrandom truth values in eah state as in the previous algorithm.Generating random paths as reahability graphs has the advantage of allow-ing us to perform an additional ross-omparison for the model heking resultsobtained using the di�erent LTL-to-Bühi translation algorithms. The hek isbased on the use of LTL path heking algorithm based on the methods disussedin Set. 2.4. This algorithm is �rst used to evaluate the given LTL formula 'in the exeutions beginning at eah state of the path. In this restrited lassof reahability graphs, the previously omputed model heking results for theCTL* formula E' using eah LTL-to-Bühi translation algorithm should nowexatly orrespond to the results returned by the path heking algorithm ineah state of the path. This follows from the fat that in this lass of reahabil-ity graphs, the semantis of CTL* path quanti�ers E and A oinide. For thesame reason, the model heking results omputed for the CTL* formula E:'should be exatly the opposite.



1 funtion RandomGraph(n : Integer; p : Real 2 [0:0; 1:0℄; t : Real 2 [0:0; 1:0℄): KripkeStruture2 begin3 S := fs0; s1; : : : ; sn�1g;4 NodesToProess := fs0g;5 UnreahableNodes := fs1; s2; : : : ; sn�1g;6 � := ;;7 while NodesToProess 6= ; do begin8 s := a random node in NodesToProess;9 NodesToProess := NodesToProess n fsg;10 �(s) := ;;11 for all P 2 AP do12 if RandomNumber(0:0; 1:0) < t then13 �(s) := �(s) [ fPg;14 if UnreahableNodes 6= ; then begin15 s0 := a random node in UnreahableNodes;16 UnreahableNodes := UnreahableNodes n fs0g;17 NodesToProess := NodesToProess [ fs0g;18 � := � [ f(s; s0)g;19 end;20 for all s0 2 S do21 if RandomNumber(0:0; 1:0) < p then begin22 � := � [ f(s; s0)g;23 if s0 2 UnreahableNodes then begin24 UnreahableNodes := UnreahableNodes n fs0g;25 NodesToProess := NodesToProess [ fs0g;26 end;27 end;28 if there is no edge (s; s0) in � for any s0 2 S then29 � := � [ (s; s);30 end;31 return hS; �; s0; �i;32 end;Fig. 3. Pseudoode for the reahability graph generation algorithm



Therefore, using single paths as random reahability graphs gives an addi-tional algorithm to be used in testing the di�erent implementations against eahother, providing also for limited testing of a single LTL-to-Bühi onversion al-gorithm implementation: if the input onsisted of more general graphs, at leasttwo implementations would always be required in order to be able to performany testing based on the ross-omparison of the results given by the di�erentimplementations.4 Appliation of the LTL Path Cheking Algorithm inLTL Model Cheking ToolsWe suggest an additional appliation of the methods of Set. 2.4 for modelheking LTL formulas in single state sequenes. Namely, an LTL path hekingalgorithm ould also be used in pratial LTL model heking tools for validat-ing the ounterexamples produed by the tool. Integrating the path hekingalgorithm as an additional last step of the model heking proess into a modelheker ould give some assurane that the ounterexample produed by the toolis really orret. In addition, any errors deteted in this phase suggest possibleerrors in the model heker implementation.The results of a global CTL model heking algorithm, when applied to theveri�ation of an LTL property in a single system behavior, an also be easilyused to automatially produe a proof or a refutation for the property in thebehavior. We have used this idea in the testbenh implementation for justifyingto the user the laim for the failure of one of the tested LTL-to-Bühi onversionimplementations when analyzing ontraditory results.5 Testing Spin's LTL-to-Bühi ConversionWe used our test program implementation for testing the LTL-to-Bühi onver-sion algorithm implemented in the model heker Spin [6, 5℄. The implemen-tation is originally based on the algorithm presented in [4℄ with several opti-mizations. We used the testbenh on Spin versions 3.3.7, 3.3.8, 3.3.9 and 3.3.10,whih was the most reent version available at the time of writing.As a referene implementation, we used another implementation based on anopen soure C++ lass library [10℄ (extended with some loally developed ode),originally a part of the Åbo System Analyser (ÅSA) model heking pakage [9℄.This is an independent, very straightforward implementation of the Bühi au-tomaton onstrution algorithm in [4℄. Even though the tested implementationsare based on the same algorithm, we �nd the independene of the atual imple-mentations far more relevant, sine our fous is not on testing the orretnessof the abstrat algorithm (whih is already known to be orret [4℄). We havealso used the testbenh on implementations based on di�erent algorithms foronverting LTL formulas into Bühi automata, suh as the algorithm of [15℄implemented in the tool PROD [16℄, but due to some limitations in PROD's



input syntax (namely, the lak of support for the X and V operators) we didnot inlude that implementation in the tests made here.We ran the tests using both the more general random graph algorithm and therandom path algorithm for generating reahability graphs with 100 states (in therandom graph algorithm, a random edge between two states was added with theprobability 0.2). The random LTL formulas used as input for the LTL-to-Bühitranslation algorithm implementations onsisted of 4 to 7 symbols. Five atomipropositions (with equal probability of being used in a formula) were availablefor use in the generated formulas. In generating the reahability graphs, eahproposition had an equal probability of being true or false in eah individualstate of the graph. For eah reahability graph generation method and for eahdi�erent number of formula symbols, we ran eah LTL-to-Bühi onverter imple-mentation on 4,000 randomly generated formulas and their negations. In total,eah individual implementation was therefore run on 64,000 input formulas. Ad-ditionally, a new reahability graph was generated after every tenth generatedformula.The randomly generated formulas were partitioned into four bathes of equalsize, using in eah bath a di�erent subset of formula symbols in generating theformulas. The symbol sets used in the di�erent bathes were(1) atomi propositions; no Boolean onstants; operators :;3;2;^;_;!;$,U;V(2) atomi propositions; Boolean onstantsTrue and False; the same operatorsas in (1)(3) atomi propositions; no Boolean onstants; all operators in (1) together withthe X operator(4) atomi propositions; all Boolean onstants and logial operators.Eah available operator had an equal priority of being seleted into a gen-erated formula by the algorithm in Set. 3.2; however, eah Boolean onstant(when inluded in the symbol set) had the smaller probability of 0.05 of being se-leted, ompared to the probability of 0.18 used for eah of the �ve propositionalvariables.The tests were run using Linux PCs. Table 1 shows the failure rates of eahimplementation during the onversion of an LTL formula into a Bühi automa-ton. All the tested implementations exept Spin 3.3.9 sometimes failed to pro-due aeptable output (interpreted as a failure to generate an automaton).The reported failures of the referene implementation are due to its failure toprodue any output after running for 12 hours. On the other hand, all Spinversions never onsumed more than only a few seonds of running time, showingthe straightforward referene implementation very ine�ient in pratie.All but one Spin version failed in some ases to produe aeptable output.Oasionally, the never laims produed by Spin versions 3.3.7 and 3.3.8 weresyntatially inorret. Moreover, in some ases both versions failed due to aninternal error on some input formulas (all of whih ontained the logial equiv-alene operator $) without produing any output. Version 3.3.9 never failed



Table 1. Bühi automaton generation failure statistisNumberofsymbolsinformula Imple-mentation Number of Bühiautomaton generationfailures (of 4,000attempts)(1) (2) (3) (4)4 ÅSA 0 0 0 0Spin 3.3.7 38 72 84 92Spin 3.3.8 38 72 84 92Spin 3.3.9 0 0 0 0Spin 3.3.10 0 0 0 05 ÅSA 0 0 0 0Spin 3.3.7 100 158 138 167Spin 3.3.8 100 158 138 167Spin 3.3.9 0 0 0 0Spin 3.3.10 10 13 13 96 ÅSA 0 0 0 0Spin 3.3.7 142 168 215 198Spin 3.3.8 142 168 215 198Spin 3.3.9 0 0 0 0Spin 3.3.10 8 7 8 57 ÅSA 1 2 2 2Spin 3.3.7 138 220 248 293Spin 3.3.8 138 220 248 293Spin 3.3.9 0 0 0 0Spin 3.3.10 12 4 10 5to produe orretly formatted output; however, version 3.3.10 again failed onsome input formulas, reporting an internal error instead.Finally, Tables 2 and 3 ontain the number of input formulas failing the resultross-omparison hek between the implementations. The tables also inlude thetotal number of failed onsisteny heks for eah individual implementation. Theresults of Table 2 were obtained using randomly generated reahability graphsas input for the testing proedure, while the results of Table 3 are based on usingrandomly generated paths as input. The results are grouped aording to theused set of formula symbols.The results show that there were ases in whih Spin versions 3.3.7, 3.3.8 and3.3.9 failed the result ross-omparison hek with version 3.3.10 and the refer-ene implementation, however Spin 3.3.9 failed only if the input formulas wereallowed to ontain Boolean onstants or X operators. Spin 3.3.10 never failedthe result ross-omparison hek with the referene implementation. Spin ver-sions 3.3.7, 3.3.8 and 3.3.9 also oasionally failed the result onsisteny hek.However, the relatively rare ourrene of these failures seems to suggest that theresult ross-omparison hek is more powerful of these methods for detetingerrors in an implementation. However, unlike the onsisteny hek, this test al-ways requires a separate analysis of the results produed by two implementationsto determine whih one of them is inorret.The test results show a lear improvement in the robustness of Spin's LTL-to-Bühi onversion algorithm implementation sine version 3.3.7. Spin 3.3.10



Table 2. Result ross-omparison statistis (random graphs)Formulasymbol set Imple-mentation Totalnumber ofonsistenyhekfailures Total number of resultross-omparison failures /number of omparisonsperformed(1) ÅSA Spin 3.3.10ÅSA 0/4000 � 0/7989Spin 3.3.7 0/3894 907/7788 907/7777Spin 3.3.8 0/3894 907/7788 907/7777Spin 3.3.9 0/4000 0/8000 0/7989Spin 3.3.10 0/3989 0/7989 �(2) ÅSA 0/3998 � 0/7985Spin 3.3.7 4/3841 849/7680 849/7669Spin 3.3.8 4/3841 849/7680 849/7669Spin 3.3.9 1/4000 1/7998 1/7987Spin 3.3.10 0/3987 0/7985 �(3) ÅSA 0/3998 � 0/7983Spin 3.3.7 0/3811 624/7647 623/7635Spin 3.3.8 0/3811 624/7647 623/7635Spin 3.3.9 0/4000 0/7998 0/7985Spin 3.3.10 0/3985 0/7983 �(4) ÅSA 0/3999 � 0/7988Spin 3.3.7 4/3777 747/7582 747/7572Spin 3.3.8 4/3777 747/7582 747/7572Spin 3.3.9 0/4000 64/7999 64/7989Spin 3.3.10 0/3989 0/7988 �Table 3. Result ross-omparison statistis (random paths)Formulasymbol set Imple-mentation Totalnumber ofonsistenyhekfailures Total number of resultross-omparison failures /number of omparisonsperformed(1) ÅSA Spin 3.3.10ÅSA 0/3999 � 0/7980Spin 3.3.7 0/3897 926/7793 926/7775Spin 3.3.8 0/3897 918/7793 918/7775Spin 3.3.9 0/4000 0/7999 0/7981Spin 3.3.10 0/3981 0/7980 �(2) ÅSA 0/4000 � 0/7989Spin 3.3.7 6/3850 923/7700 923/7690Spin 3.3.8 6/3850 921/7700 920/7690Spin 3.3.9 0/4000 0/8000 0/7989Spin 3.3.10 0/3989 0/7989 �(3) ÅSA 0/4000 � 0/7984Spin 3.3.7 51/3820 825/7666 825/7650Spin 3.3.8 50/3820 822/7666 819/7650Spin 3.3.9 0/4000 0/8000 0/7984Spin 3.3.10 0/3984 0/7984 �(4) ÅSA 0/3999 � 0/7991Spin 3.3.7 60/3820 898/7666 899/7659Spin 3.3.8 60/3820 891/7666 892/7659Spin 3.3.9 0/4000 76/7999 76/7992Spin 3.3.10 0/3992 0/7991 �



was the �rst to pass all result ross-omparison heks with the referene imple-mentation. However, in these tests this version was slightly more unstable thanits immediate predeessor due to the oasional automaton generation failures.This may be a result of some new optimizations made in the newer version toredue the size of the generated automata, whih reminds that extreme areshould always be taken when making optimizations into an implementation inorder to retain its stability and orretness. This reveals another possible appli-ation for the test proedure as a regression testing method to be used in thedevelopment of new versions of an LTL-to-Bühi algorithm implementation.6 ConlusionsWe have presented a random testing method for LTL-to-Bühi onversion algo-rithm implementations. The approah was quite e�etive in unovering errors inthe Spin model heker, and this has been our experiene also with other modelhekers on whih we have run a smaller set of tests. (Of the four independentimplementations we have tested, the referene implementation ÅSA has beenthe only one in whih no errors have ever been deteted using this method.)This work an be seen as the ontinuation of the work in [13℄. We haveimproved the methodology presented there by using ounterexample validationalgorithms (essentially, a global CTL model heker) to deide whih one ofseveral disagreeing implementations is inorret. Also the use of random pathsis �rst introdued here. We present a larger set of experimental results withup-to-date Spin versions. New to this work is additionally the idea of using aounterexample validation algorithm as the last step of an LTL model heker.In the future, we would like to extend the approah to also test nondetermin-isti �nite automata generated from (syntati) safety LTL formulas using theapproahes presented in [8℄. These (safety) LTL-to-NFA onversion algorithmimplementations would need a di�erent (more simple) emptiness heking sub-routine, but the results ould then be ompared against the results obtainedfrom the LTL-to-Bühi onversion tests for the same formula.We will also ontinue using the test program on other LTL-to-Bühi onverterimplementations based on di�erent onversion algorithms than the one used here.For example, it would be interesting to try the test program on the LTL2AUTimplementation of [3℄. The testbenh implementation itself ould also be stillimproved with some of the methods for the diret omparison of Bühi automataas desribed in the beginning of Set. 2 (the emptiness hek for the synhronousomposition of two automata, however without the universality test for the unionof the automata).A very surprising result in the experiments was that using randomly gener-ated paths as input reahability graphs for the testing proedure resulted in aslightly higher failure rate in the tested implementations. However, sine thereare so many fators a�eting the test proedure (details of the input generationalgorithms, the partiular ombination of values hosen for the test parameters,even the tested implementations themselves), it is impossible to say anything



onlusive about whih one of these graph generation methods might be �bet-ter� for unovering errors in the implementations. The relationship between thetest parameters and the failure rates would ertainly make an interesting issueto investigate in the future.We propose that LTL model hekers should be extended with a ounterex-ample validation algorithm as desribed in Set. 4. The implementation of thisalgorithm is quite straightforward, as it an be done based on even a straight-forward implementation of a CTL model heker. The running time overheadof suh an algorithm should be quite negligible, as it is linear both in the sizeof the formula and the length of the ounterexample. Suh an algorithm wouldinrease the on�dene in the ounterexamples provided by the model hekerimplementation, and ould hopefully help in �nding some of the yet unknownimplementation errors in the tool. Of ourse, separate validation of ounterex-amples only helps in deteting false negatives but not false positives; however,it would still be a step in the right diretion.There are several other plaes in LTL model hekers whih ould proba-bly be improved with random testing but whih we have not overed here (forexample, emptiness heking and partial order redution algorithms). However,we think that the LTL-to-Bühi onversion algorithm, inluding all the possiblyused optimizations, is one of the most di�ult algorithms to implement, andthus should also be regression tested whenever new versions are implemented.An optimal situation would of ourse be that the implementation of a modelheker were fully veri�ed (and still have adequate performane). Until that isthe ase, we aim at a more humble goal: to validate a part of the model hekerusing random testing.AknowledgementsThe random testing method has been used on Spin starting from version 3.3.3,on whih the �rst preliminary tests were made in the summer of 1999. Moreextensive tests have been done on versions 3.3.8, 3.3.9 and 3.3.10 sine January2000. We would like to thank Gerard J. Holzmann for reating new and improvedversions of Spin during the period this work was done.We would also like to thank Tommi Junttila for ritial omments on thiswork and Mauno Rönkkö for reating a reliable referene implementation. Weare also grateful to the anonymous referees whose feedbak was very importantin improving this work.Referenes[1℄ G. Bhat, R. Cleaveland, and O. Grumberg. E�ient on-the-�y model hekingfor CTL�. In Proeedings of 10th Annual IEEE Symposium on Logi in ComputerSiene (LICS'95), pages 388�397. IEEE Computer Soiety Press, 1995.[2℄ C. Couroubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-e�ientalgorithms for the veri�ation of temporal properties. Formal Methods in SystemDesign, 1:275�288, 1992.
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