
Testing LTL Formula Translation into Büchi
Automata

Heikki Tauriainen and Keijo Heljanko∗

Helsinki University of Technology,

Laboratory for Theoretical Computer Science,

P. O. Box 5400, FIN-02015 HUT, Finland

{Heikki.Tauriainen,Keijo.Heljanko}@hut.fi

12th November 2002

Abstract

Model checkers are often used to verify critical systems, and thus a lot of effort
should be put on ensuring their reliability. We describe techniques for testing linear
temporal logic (LTL) model checker implementations, focusing especially on LTL-
to-Büchi automata translation. We propose a randomized testing approach based
on the cross-comparison of independent translator implementations, and present
methods for test failure analysis. We give experimental results using an automated
tool implementing the testing methodology. This method has helped to detect er-
rors in model checking tools such as SPIN. We also propose extending LTL model
checkers with a simple counterexample validation algorithm.

Keywords: Verification, Model Checking, Temporal Logic, Software Testing

1 Introduction

Model checkers are often used to verify properties of safety- or business-critical sys-
tems. Therefore, it is important that we can trust the model checking results obtained
from the verification of a system. This places high demands on the reliability of the
model checker implementation. To ensure the correctness of model checking results,
it would be a tremendous advantage if the model checking tool had itself been verified
or proved to be correct. However, full verification of complex software of this kind,
especially when implemented in an imperative general-purpose programming language
such as C, is still out of reach of current software verification techniques. Nevertheless,
even methods for only partially improving the robustness of model checkers would still
be welcome.

∗The financial support of Academy of Finland (Projects 43963 and 47754) and the Tekniikan Edistämis-
säätiö Foundation is gratefully acknowledged.

1



Model checking of linear temporal logic (LTL) properties can be done using the
automata-theoretic approach [19]. This model checking method employs a translation
of properties expressed in LTL into finite-state automata over infinite words (Büchi
automata), which are then used to determine whether a given system model satisfies a
given LTL property.

We will propose a method for testing and, by employing the methodology in an
LTL model checker implementation, hopefully improving the robustness of a central
part of the implementation. We focus on the translation of LTL formulas into Büchi
automata, which seems to be among the most difficult steps in automata-theoretic LTL
model checking to implement correctly. The main reason for the difficulty seems to
be due to the fact that the most advanced implementations contain several optimization
methods, which may be nontrivial to implement. These optimizations are nevertheless
required to obtain good model checking performance.

We propose a testing method based on using random input to test several indepen-
dent implementations against each other. This work can be seen as the summary of the
results presented in [15, 16]. The main contributions are:

• Test methods for LTL-to-Büchi translators are presented. These are based on
simple automata-theoretic techniques and the LTL model checking procedure.

• We describe how to find an incorrect implementation in the presence of test fail-
ures. This method uses a witness (concrete evidence on the test failure) to prove
one of the implementations incorrect. The method is based on model check-
ing an LTL formula directly in the witness by applying computation tree logic
(CTL) model checking techniques (an idea, to our knowledge, first presented in
an extended version of [10]).

• We discuss an additional application of the previous technique in LTL model
checking tools to validate the generated counterexamples automatically at run-
time.

• We present experimental results obtained from an automated testing tool incor-
porating the test methods presented in this work. The tool uses randomly gen-
erated input to test several independently implemented LTL-to-Büchi translators
against each other.

The organization of this article is as follows. We start in Sect. 2 by presenting the
required definitions of LTL, automata theory, and LTL model checking. In Sect. 3, we
describe the test methods devised for testing LTL-to-Büchi translators. The techniques
that can be used to analyze test failures to find an incorrect implementation are pre-
sented in Sect. 4. We discuss our testbench implementation in Sect. 5, and continue
with experimental results in Sect. 6. Conclusions with some directions for future work
are presented in Sect. 7.

2 Preliminaries

In this section, we shall review the definitions of the basic theoretical concepts on
which this work is based.

2



2.1 Linear Temporal Logic

Throughout the text, we use AP to denote a finite nonempty set of atomic propositions.
The set of (propositional) linear temporal logic formulas is defined as follows:

• All atomic propositions p ∈ AP are linear temporal logic formulas.

• If ϕ and ψ are linear temporal logic formulas, then so are ¬ϕ, (ϕ ∨ ψ), Xϕ and
(ϕUψ).

• There are no other linear temporal logic formulas.

We use the following traditional semantics for linear temporal logic formulas. Let
ϕ be a linear temporal logic formula, and let ξ be an infinite sequence over 2AP (the
set of subsets of AP). Denote by ξi the infinite subsequence of ξ that begins at the
(i + 1)th element of ξ (i ≥ 0). The |= relation between infinite sequences over 2AP

and linear temporal logic formulas is defined inductively as follows:

• For an atomic proposition p ∈ AP , ξ |= p iff p is contained in the first element
of the sequence ξ.

• ξ |= ¬ϕ iff not (ξ |= ϕ). In this case, we write ξ 6|= ϕ.

• ξ |= (ϕ ∨ ψ) iff ξ |= ϕ or ξ |= ψ.

• ξ |= Xϕ iff ξ1 |= ϕ.

• ξ |= (ϕUψ) iff ∃i ≥ 0 : ξi |= ψ and ∀0 ≤ j < i : ξj |= ϕ.

If ξ |= ϕ holds of an infinite sequence ξ ∈ (2AP )ω, then ξ is called a model of the
formula ϕ. For convenience, we denote the set of all models {ξ ∈ (2AP )ω | ξ |= ϕ}
by Lϕ and call Lϕ the language induced by ϕ.

2.2 Büchi Automata

The class of languages induced by LTL formulas is a subclass of the languages that
can be represented with nondeterministic finite-state automata on infinite words called
Büchi automata (the ω-regular languages; see e.g. [17]). This property has been used
to devise the automata-theoretic approach to LTL model checking [19] and therefore
presents a need for translating LTL formulas into Büchi automata. We use the following
definition.

A Büchi automaton is a tuple A = 〈Σ, Q,∆, Q0, F 〉, where

• Σ is the alphabet,

• Q is the finite set of states,

• ∆ ⊆ Q× Σ ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states, and

3



• F ⊆ Q is the set of accepting states.

An execution of A over an infinite sequence ξ = 〈x0, x1, x2, . . .〉 ∈ Σω is an
infinite sequence of states r = 〈q0, q1, q2, . . .〉 ∈ Qω such that q0 ∈ Q0, and for all
i ≥ 0, (qi, xi, qi+1) ∈ ∆.

Let r = 〈q0, q1, q2, . . .〉 ∈ Qω be an execution of A. We denote by inf(r) ⊆ Q

the set of states that occur infinitely many times in r. We say that r is an accepting
execution of A iff inf(r) ∩ F 6= ∅.

The automaton accepts an infinite word ξ ∈ Σω if and only if there is an accepting
execution of A on ξ. If A has no accepting executions on ξ, then A rejects ξ.

The set of infinite sequences ξ ∈ Σω that are accepted by the automatonA is called
the language accepted (or alternatively, recognized) by A, and it is denoted by LA.

By basic results of automata theory (see e.g. [18]), two Büchi automata A1 =
〈Σ1, Q1,∆1, Q

0
1, F1〉 and A2 = 〈Σ2, Q2,∆2, Q

0
2, F2〉 can be composed together into

another Büchi automaton that accepts precisely those infinite sequences over Σ1 ∩ Σ2

that are accepted by both of the original automata, that is, the languageLA1
∩LA2

. The
result of the composition is called the intersection of A1 and A2; in the following, we
will denote it by A1 ⊗ A2. The intersection automaton can be built by a synchronous
composition of the two original automata that results in an automaton having O(|Q1| ·
|Q2|) states in the worst case; see [18] for one possible construction.

2.3 The LTL Model Checking Problem

The goal of LTL model checking is to determine whether a property expressed as an
LTL formula is satisfied in a finite model of a system to be verified. The model can
be given as a Kripke structure, which represents the system as a state–transition graph
whose each state is augmented with a set of atomic propositions to encode the proper-
ties that hold in the state.

Formally, a Kripke structure is a tuple M = 〈S, ρ, π〉, where

• S is the finite set of states,

• ρ ⊆ S × S is the transition relation that satisfies the constraint ∀s ∈ S : ∃s′ ∈
S : (s, s′) ∈ ρ,

• π : S → 2AP is the labeling function that associates each state with a set of
atomic propositions. Semantically, π(s) represents the set of propositions that
hold in a state s ∈ S.

An infinite path in the Kripke structure is an infinite sequence of states
x = 〈s0, s1, s2, . . .〉 ∈ Sω such that for all i ≥ 0, (si, si+1) ∈ ρ.

It is easy to see that every infinite path x = 〈s0, s1, s2, . . .〉 ∈ Sω of the Kripke
structure corresponds to an infinite sequence ξ = 〈π(s0), π(s1), π(s2), . . .〉 ∈ (2AP )ω.
For convenience, we denote π(x) = ξ and call ξ the temporal interpretation of x. The
LTL model checking problem for Kripke structures can then be stated as follows:

Given a Kripke structureM = 〈S, ρ, π〉, a state s ∈ S and an LTL formula
ϕ, does there exist an infinite path x = 〈s0, s1, s2, . . .〉 ∈ Sω (where
s0 = s) such that π(x) |= ϕ holds for x?

4



We call this the local model checking problem for LTL. The global model checking
problem amounts to finding all states s ∈ S that fulfill the previous condition.

We remark that the above formulation of the LTL model checking problem slightly
differs from the classic definition found in the literature [19], where the problem is
usually presented as a question whether some property ψ holds for all infinite paths
that begin at some designated state s. The answer to this question is found in [19] by
checking whether there exists any such path x in the Kripke structure for which the
property π(x) |= ¬ψ holds; consequently, the property π(x) |= ψ then holds for all
infinite paths starting from s only if this is not the case. However, this corresponds
precisely to solving the local model checking problem as defined above for the formula
ϕ = ¬ψ.

In the local model checking problem, the given state s fixes a set of infinite paths
that need to be considered when searching for the answer to the problem. By treating
this set of paths as a language LM,s = {π(x) | x is an infinite path of M starting from
s} ⊆ (2AP )ω , the local LTL model checking problem can be compactly expressed as
the question whether LM,s ∩ Lϕ 6= ∅.

Furthermore, the Kripke structure M = 〈S, ρ, π〉 (with a designated state s ∈ S)
can be seen as a Büchi automaton that recognizes the language LM,s; indeed, it is easy
to check that the automaton AM,s = 〈Σ, Q,∆, Q0, F 〉, where Σ = 2AP , Q = S,
Q0 = {s}, F = Q and ∆ = {(s, a, s′) | (s, s′) ∈ ρ, π(s) = a} accepts an infinite
sequence ξ ∈ (2AP )ω if and only if ξ is the temporal interpretation π(x) of some
infinite path x starting from the state s in the Kripke structure M .

We now know that both the LTL formula ϕ and, by choosing a state s ∈ S, the
Kripke structure M can be transformed into Büchi automata Aϕ and AM,s that rec-
ognize the languages Lϕ and LM,s, respectively. Therefore, the solution for the local
LTL model checking problem in state s can be found by first constructing the Büchi
automatonAM,s⊗Aϕ that accepts the language LM,s∩Lϕ and then checking whether
this automaton accepts any infinite sequence over 2AP . This test, usually called the au-
tomaton emptiness check, can be done with an algorithm that checks whether the inter-
section automaton can reach from any of its initial states a state cycle passing through
some accepting state (see e.g. [9]). The time required for this check is linear in the size
of the intersection automaton. The memory requirements of model checking can often
be improved by using on-the-fly model checking techniques [3, 7, 4, 11], which are
able to detect LTL property violations without constructing the intersection automaton
AM,s⊗Aϕ explicitly by combining the construction of the automataAM,s andAϕ with
an emptiness checking algorithm. However, all actual on-the-fly LTL model checking
tools we know of still isolate the construction of Aϕ (i.e., the LTL-to-Büchi translation
phase) into a separate program module.

A straightforward way to solve the global LTL model checking problem is to solve
the local model checking problem separately for each state s of the Kripke structure.
This procedure requires a total of |S| compositions of the formula automaton Aϕ with
some automaton AM,s built from the Kripke structure; each of the individual compo-
sitions results in an automaton with O(|Q| · |S|) states in the worst case.

It is possible to improve the global model checking procedure so that the formula
automaton Aϕ needs to be composed with the Kripke structure only once, while still
retaining the O(|Q| · |S|) worst-case upper bound for the number of states in the result

5



of the composition. Basically, the composition can be done more efficiently by sharing
the common substructures that would emerge in the individual “local” compositions.
Essentially, the modified composition corresponds to intersecting the formula automa-
ton with the Büchi automaton AM that can be obtained from any AM,s by expanding
its initial state set to cover all states of the automaton. A more detailed description
of this simple idea, together with the changes that it requires to the emptiness check
(which has to be performed globally, too) can be found in [15].

3 Test Methods for LTL-to-Büchi Translators

This section introduces testing methods for LTL-to-Büchi translators. After a brief in-
troduction to the general testing methodology in Sect. 3.1, Sect. 3.2 focuses on test
methods based on the analysis of Büchi automata constructed by the tested imple-
mentations using an LTL formula as input. Although these methods are in principle
powerful in detecting errors in the implementations, they have some practical disad-
vantages that make their full-fledged implementation difficult. Therefore, in Sect. 3.3
we propose alternative, more easily implementable testing methods that make use of
the LTL model checking procedure, thus using both an LTL formula and a Kripke
structure as input. However, due to their greater dependency on the input used for the
tests, these test methods do not share the full power of the Büchi automata analysis
techniques described in Sect. 3.2; the methods have nevertheless been found to work
well in practice [14, 15, 16].

3.1 Principles of the Testing Methodology

Clearly, the methods for testing the correctness of LTL-to-Büchi translation algorithm
implementations should be as powerful as possible for detecting errors in the imple-
mentations. Preferably, the test methods should also be simple and easy to implement
to reduce the effort needed for ensuring the reliability of a tool that is itself used for
testing the translators.

The test methods to be presented here are not intended for proving the correctness
of LTL-to-Büchi translator implementations. In part, this is a consequence of the need
for input, i.e., LTL formulas and Kripke structures. Therefore, the tests should be seen
as simple methods for detecting inconsistencies in the implementations. The key idea
of the tests is to validate the results given by an LTL-to-Büchi translator with those
obtained using other implementations, with the intuitive assumption that independent
implementations are unlikely to fail the formula translation in exactly the same way on
every LTL formula. Errors in the translator implementations should therefore give rise
to inconsistent test results leading to test failures. We note that the principle of validat-
ing the results of several implementations against each other to detect software faults
is similar to the approach used in N -version programming methodology [2, 1]. Our
main goal, however, is in testing individual LTL-to-Büchi translator implementations
instead of combining several implementations into a fault-tolerant software package.

All tests to be presented need LTL formulas to be given as input for the translators;
additionally, the tests of Sect. 3.3 also need Kripke structures to be used for running the

6



LTL model checking procedure. However, the tests are not dependent on any particular
kind of LTL formulas or Kripke structures, which helps to generate test cases automat-
ically using even simple randomly generated formulas and structures. We believe that
the strategy of using randomly generated input is adequate for testing several inde-
pendent implementations and is an acceptable compromise between testing efficiency
and the amount of effort that would otherwise be needed for choosing a representative
sample of input formulas and Kripke structures to be used in the tests.

3.2 Analysis of Büchi Automata

The semantics of LTL gives rise to a pair of correctness tests that can be applied to
the Büchi automata constructed by LTL-to-Büchi translator implementations. In par-
ticular, we shall repeatedly make use of the following facts concerning the relationship
between the languages Lϕ and L¬ϕ that comprise the models of a given LTL formula
ϕ and its negation ¬ϕ, respectively:

Let ϕ be an LTL formula, and let ξ ∈ (2AP )ω . By the semantics of LTL, ξ ∈ Lϕ if
and only if ξ 6∈ L¬ϕ. This implies that

1. The languages Lϕ and L¬ϕ are disjoint, i.e., Lϕ ∩ L¬ϕ = ∅.

2. Each sequence ξ ∈ (2AP )ω belongs to either of the languages Lϕ or L¬ϕ, and
thus Lϕ ∪ L¬ϕ = (2AP )ω .

Let Aϕ and A¬ϕ be two Büchi automata constructed from the LTL formulas ϕ
and ¬ϕ using an LTL-to-Büchi translator. As a requirement for the correctness of
the implementation, we expect Aϕ and A¬ϕ to accept the languages Lϕ and L¬ϕ,
respectively, which are known to be complementary to each other. Consequently, there
should not exist any infinite sequence over 2AP that is accepted by both Aϕ and A¬ϕ;
nor should any infinite sequence over 2AP be rejected by both of these automata.

The following tests focus on checking for a complementary relationship between
the languages accepted by Aϕ and A¬ϕ. However, we note that this check is still not
sufficient for proving these languages to be equivalent to the languagesLϕ andL¬ϕ; for
example, the check would not detect the error in an LTL-to-Büchi translation algorithm
implementation that by mistake negates each input formula before the translation but
then performs the translation itself correctly. We shall return to the issue of validating
the languages at the end of this subsection after first describing the tests.

Checking the automata Aϕ and A¬ϕ for common accepting inputs can be done by
investigating the intersection of the two automata as described in Sect. 2.3: assuming
that Aϕ and A¬ϕ are correct, the automaton Aϕ ⊗ A¬ϕ should accept precisely the
intersection of the languages Lϕ and L¬ϕ, which is known to be empty, as seen above.
However, the existence of an input accepted by the intersection automaton implies that
at least one of the automata Aϕ or A¬ϕ does not correctly recognize the expected
language, so the LTL-to-Büchi translator (or at least one of several translators) used for
constructing the automata must have an error. We thus obtain the test procedure shown
in Fig. 1.

A successful emptiness check of Aϕ ⊗ A¬ϕ is not sufficient for showing that the
languages accepted by Aϕ and A¬ϕ are complementary: for instance, the test fails to

7



TEST 1: EMPTINESS CHECK FOR THE INTERSECTION OF TWO BÜCHI AUTOMATA

Input: LTL formula ϕ

1. Compute the Büchi automata Aϕ and A¬ϕ using an LTL-to-Büchi translator
implementation (or two different implementations).

2. Compute the intersection automatonAϕ ⊗A¬ϕ.

3. CheckAϕ⊗A¬ϕ for emptiness. If the intersection automaton accepts any input,
then either Aϕ or A¬ϕ does not correctly recognize the language Lϕ or L¬ϕ,
respectively. This suggests that the translation of at least one of the formulas
into a Büchi automaton has failed.

Intersection

LTL−to−Büchi
translator

Emptiness
check

PASS

FAIL

LTL−to−Büchi
translator

LTL formula
ϕ

ϕ

¬ϕ

Aϕ

A¬ϕ

Aϕ⊗A¬ϕ

LAϕ ∩ LA¬ϕ 6=∅

LAϕ ∩ LA¬ϕ=∅

Figure 1: Emptiness check for the intersection of two Büchi automata

8



reveal any errors in an LTL-to-Büchi translator that “cheats” by always constructing an
empty Büchi automaton regardless of the formula given as input for the translator.

Proving that the languages accepted by Aϕ and A¬ϕ are complementary to each
other requires another test based on the fact that no infinite sequence over 2AP should
be rejected by both of the automata. In principle, this can be checked for the automata
Aϕ and A¬ϕ by first constructing the unionAϕ ∪A¬ϕ of Aϕ and A¬ϕ (another Büchi
automaton, see e.g. [18]) and then checking whether the union automaton accepts the
universal language (2AP )ω. The existence of an input rejected by the union automaton
then suggests that the translation of ϕ or ¬ϕ into a Büchi automaton was not performed
correctly.

Unfortunately, checking the universality of a nondeterministic Büchi automaton is
a PSPACE-complete problem in the size of the automaton [18], and it cannot be solved
directly with techniques similar to those used in the automaton emptiness check. In
principle, it is possible to reduce the test into an emptiness check for Büchi automata:
instead of checking the union automaton itself for universality, we could alternatively
check its complement automaton Aϕ ∪ A¬ϕ (a Büchi automaton accepting precisely
those infinite sequences not accepted by Aϕ ∪ A¬ϕ) for emptiness. However, this ap-
proach requires using a Büchi automata complementation procedure, which will (not
surprisingly) cause an exponential (2O(n logn)) blow-up in the size n of the union au-
tomaton [13]. Since the automataAϕ, A¬ϕ and the union automaton may already have
2O(|ϕ|) states in the length |ϕ| of the formula [20], we suspect that a straightforward
implementation of the automaton universality check may prove impractical for all but
the shortest LTL formulas. (This is also the reason why we chose not to implement
Test 2 at all into the LTL-to-Büchi translator testing tool described in Sect. 5, in trying
to keep all algorithms used in the tool as simple as possible to ensure its reliability.)
We nevertheless illustrate the steps that would be needed in the test in Fig. 2.

Complementation of Büchi automata is implicit also in LTL model checking, but it
is usually avoided by complementing the property formula. For example, even though
searching for violations of a property ϕ in some designated state s of a Kripke struc-
tureM actually corresponds to checking the emptiness of the languageLM,s∩Lϕ (i.e.,
the Büchi automaton AM,s ⊗ Aϕ), the automaton Aϕ can be replaced with the equiv-
alent automaton A¬ϕ, which can be constructed directly from the negated formula.
However, a similar approach cannot be used in Test 2 to replace the Büchi automaton
Aϕ ∪ A¬ϕ with an automaton obtained directly from the formula ¬(ϕ ∨ ¬ϕ), since
this breaks the test’s dependency on the automata Aϕ and A¬ϕ. Even the result that an
implementation translates the formula ¬(ϕ ∨ ¬ϕ) correctly into an empty automaton
does not necessarily imply that the automata constructed from the formulas ϕ and ¬ϕ
using the same implementation would together accept the universal language. There-
fore, a Büchi automaton complementation construction is essential for reducing Test 2
correctly to an emptiness check for Büchi automata.

As noted in the beginning of this subsection, checking the automata Aϕ and A¬ϕ

constructed using some LTL-to-Büchi translator for no common accepting or reject-
ing inputs is not sufficient to show the equivalence between the languages recognized
by Aϕ and A¬ϕ and the languages Lϕ and L¬ϕ, respectively. However, performing
the automata intersection emptiness and the automata union universality tests on Büchi
automata constructed using different (independent) LTL-to-Büchi translation algorithm

9



TEST 2: UNIVERSALITY CHECK FOR THE UNION OF TWO BÜCHI AUTOMATA

Input: LTL formula ϕ

1. Compute the Büchi automata Aϕ and A¬ϕ using some LTL-to-Büchi translator
implementation (or two different implementations).

2. Compute the union of Aϕ and A¬ϕ.

3. Use a Büchi automata complementation procedure to compute the complement
of Aϕ ∪ A¬ϕ.

4. Check Aϕ ∪A¬ϕ for emptiness. If this automaton accepts any input word, then
either Aϕ or A¬ϕ does not correctly recognize the language Lϕ or L¬ϕ, respec-
tively. This suggests that the translation of at least one of the formulas into a
Büchi automaton has failed.

LTL−to−Büchi
translator

PASS

FAIL

LTL−to−Büchi
translator

Complement
construction

Union
computation

Emptiness
check

LTL formula
ϕ

ϕ

¬ϕ

Aϕ

A¬ϕ

Aϕ∪A¬ϕ Aϕ∪A¬ϕ

LAϕ∪A¬ϕ
6=∅

LAϕ∪A¬ϕ
=∅

Figure 2: Universality check for the union of two Büchi automata

10



implementations can help to increase the confidence in the correctness of the tested im-
plementations. Intuitively, there should only be a small possibility that two (or more)
independent LTL-to-Büchi translators have implementation errors that cause them to
generate automata recognizing the same language that nevertheless does not corre-
spond to the correct language Lϕ, regardless of the input formula ϕ. Therefore, using
several implementations in the two tests allows validating the automata constructed by
the implementations against each other. More specifically, repeating these tests for ap-
propriate pairs of Büchi automata constructed by the implementations will prove that
all automata constructed from the same LTL formula accept the same language. How-
ever, since it may be unlikely in practice that any of the tested implementations has
been proved to be free of errors (by some other means, perhaps), the tests will not for-
mally allow making the conclusion that the automata are then correct even in the total
absence of test failures.

Figure 3 illustrates different types of errors that may arise as a result of the incorrect
translation of complementary LTL formulas into Büchi automata and how the errors
relate to the tests described in this section.

3.3 Using the LTL Model Checking Procedure

The main practical disadvantage of Test 2 is the complexity of the universality test
for Büchi automata, both in theoretical sense as well as in terms of implementation
difficulty. Unfortunately, this test is clearly necessary to make it possible to detect
all types of errors shown in Fig. 3, since the automata intersection emptiness check is
not by itself capable of detecting errors in cases where the languages accepted by the
automata are disjoint but their union is not the universal language (2AP )ω .

In this section, we describe two additional tests that make use of the automata-
theoretic LTL model checking procedure described in Sect. 2.3. Due to their inherent
dependency on the input used in the tests (the Kripke structures), these tests may some-
times fail to detect the inconsistencies in a Büchi automaton constructed from some
LTL formula. However, the advantage of these methods is their suitability for imple-
mentation as straightforward emptiness checks of intersections of Büchi automata; this
is a direct consequence of using the LTL model checking procedure, which does not
require more complex operations.

3.3.1 Model Checking Result Cross-comparison

By the semantics of LTL, the truth of an LTL formula ϕ is well-defined in any Kripke
structure M . This fact makes it possible to test the correctness of LTL-to-Büchi trans-
lation algorithm implementations by simply model checking some formula ϕ in M
several times using different LTL-to-Büchi translators for constructing the automaton
Aϕ required in the model checking process, and finally checking whether the obtained
model checking results agree. Assuming that no errors are made in other steps of
the model checking procedure (intersecting the formula automaton with the Kripke
structure and checking the intersection automaton for emptiness), inconsistent model
checking results then imply that at least one of the used LTL-to-Büchi translators failed
to perform the formula translation correctly.

11



Lϕ L¬ϕ

(2AP )ω

Actual relationship between Lϕ and L¬ϕ

Relationship between lan-
guages recognized by two
automata Aϕ and A¬ϕ

Error Detectable by

LAϕ LA¬ϕ

(2AP )ω
The languages recog-
nized by the automata
are not disjoint

Test 1 (emptiness
check of Aϕ ⊗A¬ϕ)

LAϕ LA¬ϕ

(2AP )ω
The union of the lan-
guages recognized by
the automata is not the
universal language

Test 2 (universality
check of Aϕ ∪A¬ϕ)

LAϕ

LA¬ϕ

(2AP )ω
The languages recog-
nized by the automata
are complementary but
still incorrect

Repeating Tests 1
and 2 on automata
constructed us-
ing independent
implementations†

† May still fail to detect an error if none of the participating automata generators has been proved to be correct

Figure 3: Classification of errors resulting from the incorrect translation of either of
two complementary LTL formulas ϕ and ¬ϕ into Büchi automata Aϕ and A¬ϕ

12



The test procedure is shown in Fig. 4. We note that for testing purposes it is not
necessary to use models of “real” systems (which tend to be usually very large) as
input for the model checking process, which allows to reduce the memory and the time
requirements for performing tests in practice. Clearly, it is also useful to perform the
model checking globally (in the sense of the definition in Sect. 2.3) to maximize the
amount of data available for comparison tests.

An unsuccessful model checking result cross-comparison test reveals that the lan-
guages recognized by some two Büchi automataA1

ϕ andA2
ϕ constructed from the same

LTL formula ϕ are not equivalent. However, the inequivalence of the languages ac-
cepted by the automata does not guarantee a test failure: whether any errors are de-
tected in practice depends on the input (the LTL formula ϕ and the Kripke structure
M ) used in the model checking procedure. Furthermore, the cross-comparison ap-
proach necessitates the use of at least two different (independent) implementations for
formula translation.

Admittedly, the cross-comparison test does not actually provide any formal evi-
dence that the languages accepted by the automata Aiϕ are equivalent to the expected
language Lϕ in case no failures are detected. The practical value of the test is again
justified by the intuitive assumption that independent implementations are unlikely to
fail the formula translation in the same way on every input formula. However, as will
be discussed in Sect. 4, a failed comparison test can always be used to find at least one
Büchi automaton that is definitely incorrect, even if none of the participating automata
recognizes the language Lϕ accurately.

Using the LTL model checking procedure for testing the correctness of LTL-to-
Büchi translators presents the additional need for generating Kripke structures to be
used in the model checking process. While it is easy to come up with simple methods
for building Kripke structures automatically, it is difficult to estimate how the choice
of structures may affect the possibility of finding errors in the implementations. Nat-
urally, increasing the number of states in the structures helps to obtain more data for
comparison tests from a single Kripke structure, but the characteristics of Kripke struc-
tures that are “optimal” for finding errors in the implementations are likely to depend
even on the details of each tested LTL-to-Büchi translator. However, the proposed test
methods are independent of any specific way of generating the input, which makes it
easy to perform tests even with random formulas and Kripke structures.

3.3.2 Model Checking Result Consistency Check

Repeating the model checking result cross-comparison test using another LTL formula
or Kripke structure gives an opportunity for further comparison of the implementations.
In particular, repeating the test for the negation ¬ϕ of some previously tested LTL
formula ϕ while keeping the Kripke structure fixed provides an additional correctness
check for each LTL-to-Büchi translator.

Let M = 〈S, ρ, π〉 be a Kripke structure. A global model check of a formula ϕ in
the structure should find the set Sϕ of states s ∈ S for which there exists an infinite
path x (starting from s) through the structure such that π(x) |= ϕ holds. Similarly,
repeating the global model checking procedure for the negated formula ¬ϕ should
result in another set of states S¬ϕ ⊆ S comprising the initial states of all infinite paths

13



TEST 3: MODEL CHECKING RESULT CROSS-COMPARISON TEST

Input: LTL formula ϕ, Kripke structure M = 〈S, ρ, π〉

1. Convert the formula ϕ into Büchi automata Aiϕ using each LTL-to-Büchi trans-
lation algorithm implementation i.

2. Compute the intersection automata AM ⊗ Aiϕ (where AM the automaton de-
scribed at the end of Sect. 2.3).

3. Perform a global emptiness check on each intersection automaton AM ⊗ Aiϕ to
obtain sets Si of states s ∈ S for which there exists an infinite path x starting
from s such that π(x) is accepted by Aiϕ.

4. Test whether Si = Sj for all i, j (i 6= j). If this does not hold, one of the LTL-to-
Büchi translation algorithms must have failed to translate the formulaϕ correctly
into a Büchi automaton.

LTL−to−Büchi
translator 1

IntersectionIntersection

Emptiness check Emptiness check

translator 2
LTL−to−Büchi

Result comparison

PASS FAIL

Kripke structureLTL formula
ϕ M =〈S,ρ,π〉

ϕ ϕ
M

M→AM

A1

ϕ
A2

ϕ

AM AM

AM ⊗A1

ϕ AM ⊗A2

ϕ

S1 S2

S1 = S2 S1 6= S2

Figure 4: Model checking result cross-comparison test

14



in M that satisfy the formula ¬ϕ.
Because each state of the Kripke structure is required to have at least one successor,

there is at least one infinite path beginning from each state of the structure. Therefore,
by the semantics of LTL, if no infinite path beginning from a state s ∈ S has the
property ϕ (s 6∈ Sϕ), then all paths must satisfy the property ¬ϕ (that is, s ∈ S¬ϕ) and
vice versa, and thus Sϕ ∪ S¬ϕ = S. If this fact does not hold for the obtained model
checking results, the translation of either (or even both) of the formulasϕ and ¬ϕ into a
Büchi automaton has been performed incorrectly. The test steps are illustrated in Fig. 5.
(We remark that due to the possibility that there may exist more than one infinite path
beginning at the state s ∈ S, it is not necessarily an error if Sϕ ∩ S¬ϕ 6= ∅.)

A failed model checking result consistency check implies the existence of an in-
finite sequence over 2AP that is not accepted by either of the automata Aϕ and A¬ϕ

constructed from the formulas ϕ and ¬ϕ, respectively. These errors are of exactly the
same type as those that can be detected by Test 2 (applied to the automatonAϕ∪A¬ϕ)
described in Sect. 3.2 (see Fig. 3). Therefore, the model checking result consistency
check may add to the power of an automated testing tool if the tool only implements
Test 1, which is not capable of detecting any of such errors. In addition, unlike the
model checking result cross-comparison test, the result consistency check is applicable
even when there is only a single LTL-to-Büchi translator available.

Assuming that an automated LTL-to-Büchi translator testing tool implements also
Test 3 (the model checking result cross-comparison test), it can be shown that Test 4
then needs to be applied only to automataAϕ andA¬ϕ generated using the same trans-
lator. More precisely, performing Test 4 on model checking results obtained using
different LTL-to-Büchi translators will not reveal any errors that cannot be detected
by Test 3 (between all implementations) combined with a separate result consistency
check for each implementation [15].

Finally, we wish to point out that performing the model checking result consistency
test requires constructing Büchi automata that can be readily used as input for the
tests described in Sect. 3.2. Therefore, all tests described in the current section can be
combined together with only a little effort.

4 Test Failure Analysis

All tests described in the previous section are very similar in the way they are per-
formed. Basically, each test involves first constructing Büchi automata from LTL for-
mulas and from Kripke structures. This phase is followed by pairwise composition
of the automata, and finally the results of the composition are checked for expected
properties specific to each test.

As a consequence of the need for using several Büchi automata (possibly generated
by different LTL-to-Büchi translators), test failures do not directly indicate which au-
tomata (i.e., which LTL-to-Büchi translator implementations) involved in the tests actu-
ally caused the failures. Even though Test 1 (the Büchi automata intersection emptiness
test), Test 2 (the automata union universality test) and Test 4 (the model checking re-
sult consistency check) can be used for testing even a single LTL-to-Büchi translator,
the mere occurrence of test failures is insufficient information for determining which

15



TEST 4: MODEL CHECKING RESULT CONSISTENCY CHECK

Input: LTL formula ϕ, Kripke structure M = 〈S, ρ, π〉

1. Construct the automata Aϕ and A¬ϕ from the formulas ϕ and ¬ϕ using some
LTL-to-Büchi translator.

2. Construct the intersection automataAM ⊗Aϕ andAM ⊗A¬ϕ (whereAM is the
automaton described at the end of Sect. 2.3).

3. Perform a global emptiness check on the intersection automaton AM ⊗ Aϕ to
obtain the set Sϕ of states s ∈ S for which there exists an infinite path x starting
from s such that π(x) is accepted by Aϕ.

4. Repeat Step 3 for the intersection automatonAM ⊗A¬ϕ. Denote the answers in
this case by S¬ϕ.

5. Test whether there exists a state s ∈ S which is not contained in either of the sets
Sϕ or S¬ϕ. If such a state exists, the model checking results are inconsistent.
This suggests that either the translation of ϕ or ¬ϕ into a Büchi automaton has
failed.

IntersectionIntersection

Emptiness check Emptiness check

PASS FAIL

Kripke structure

Result comparison

LTL−to−Büchi
translator

LTL formula
ϕ M =〈S,ρ,π〉

ϕ ¬ϕ M

M→AM

Aϕ
A¬ϕ

AM AM

AM ⊗Aϕ AM ⊗A¬ϕ

Sϕ S¬ϕ

Sϕ ∪ S¬ϕ = S Sϕ ∪ S¬ϕ 6= S

Figure 5: Model checking result consistency check

16



one of the automata generated by the translator is incorrect. The situation seems even
worse with Test 3 (the model checking result cross-comparison test) due to the need
for always using different implementations for formula translation.

A method which could be suggested to find an incorrect implementation from many
implementations is to search for patterns in the occurrence of failures. For example, if
a translator sometimes fails a test against all other tested translators, which in turn pass
all tests against each other, it is intuitively likely that there is an error in that one trans-
lator. The effectiveness of the approach might be improved by increasing the number
of independent LTL-to-Büchi translators taking part in the tests. Unfortunately, this
simple approach is not feasible in case there are only a few implementations available
or if the implementations are not mutually independent (e.g., if the tested implementa-
tions are only different versions of some translator). For this reason, we suggest using
an alternative technique that is able to find a provably incorrect Büchi automaton by
analyzing a single test failure.

Each test involves checking the emptiness of some Büchi automaton as one of its
last steps. We know that the nonemptiness of a Büchi automatonA = 〈Σ, Q,∆, Q0, F 〉
implies that there exists an infinite sequence ξ ∈ Σω accepted by the automaton. Such
sequences (called witnesses) are essential to our approach for distinguishing a faulty
LTL-to-Büchi translator from several translators, as the witnesses give the necessary
evidence for proving the incorrectness of an implementation. In practice, a witness
can be constructed as a side result of the emptiness check that is performed on some
nonempty Büchi automaton; see e.g. [9] for details. Even though the witness is an
infinite sequence, it can always be represented with two finite strings over the alphabet
Σ: a finite prefix followed by a cycle that repeats itself indefinitely.

The role of the witness in each of the four presented tests is as follows:

• The failure of Test 1 can be confirmed by exhibiting a witness ξ ∈ (2AP )ω

that is accepted by the automaton Aϕ ⊗ A¬ϕ constructed as the intersection of
two Büchi automata Aϕ and A¬ϕ corresponding to two complementary LTL
formulas ϕ and ¬ϕ, respectively. The witness (that should not be accepted by
both automata, by the semantics of LTL) can be constructed during the emptiness
check of Aϕ ⊗A¬ϕ.

• In principle, Test 2 can be performed by checking the emptiness of the automa-
ton Aϕ ∪ A¬ϕ constructed from the union of two Büchi automata. In case the
emptiness check for the automatonAϕ ∪ A¬ϕ fails, the witness found during the
check is an infinite sequence over 2AP that is in this case incorrectly rejected by
one of the automata Aϕ and A¬ϕ.

• An inconsistency detected in Test 3 reveals a state s and an infinite path x starting
from s (in a Kripke structure M = 〈S, ρ, π〉) such that π(x) is accepted by one
but rejected by another Büchi automaton constructed from the same LTL formula
ϕ. In this case, the witness is the sequence π(x), and it can be constructed during
the emptiness check whose result suggests that LM,s ∩ Lϕ 6= ∅.

• A failure in Test 4 gives rise to a witness that corresponds to an infinite sequence
rejected by both automata constructed from two complementary LTL formulas

17



Table 1: Finding an incorrect Büchi automaton using a witness ξ

Test Büchi Reason for Incorrect automaton
automata test failure ξ |= ϕ ξ 6|= ϕ

1 Aϕ, A¬ϕ

Both Aϕ

and A¬ϕ

accept ξ
A¬ϕ Aϕ

2 Aϕ, A¬ϕ

Neither Aϕ

nor A¬ϕ

accepts ξ
Aϕ A¬ϕ

3 A1
ϕ

, A2
ϕ

A1
ϕ accepts
ξ, but A2

ϕ

rejects ξ

A2
ϕ

A1
ϕ

4 Aϕ, A¬ϕ

Neither Aϕ

nor A¬ϕ

accepts ξ
Aϕ A¬ϕ

(see Sect. 3.3.2). The witness can be obtained as the temporal interpretation of
any infinite path starting from a state in which the model checking results are
inconsistent.

Each of the above cases considers a pair of Büchi automata, another one of which
is definitely known to erroneously accept or reject the witness. Assuming that we
know (or can determine) whether the formula ϕ holds in the witness ξ, we can then
definitively distinguish an incorrect automaton from the two automata. Table 1 shows
the various possibilities.

For example, when analyzing a failure in Test 1, the witness ξ is an infinite sequence
over 2AP accepted by two supposedly complementary Büchi automata Aϕ and A¬ϕ

constructed from some formula ϕ and its negation, respectively. If we find that ξ |= ϕ

holds, then the automaton constructed for the negation of the formula is definitely
incorrect, since it should reject ξ. However, if ξ 6|= ϕ, then the automaton constructed
for the positive formula erroneously accepts ξ, and therefore it must be incorrect.

Determining the incorrect automaton from two candidates as shown in Table 1 also
reveals a faulty LTL-to-Büchi translation algorithm implementation. However, we are
not allowed to assume anything about the correctness of the other implementation.
Namely, all that we know about the automaton constructed by that implementation
is that it accepts or rejects one particular witness as expected. It is possible that the
automaton might still not recognize the correct language, but this cannot be confirmed
by the analysis.

Using the witness to separate the definitely incorrect implementation from two can-
didates requires knowledge of whether the formula ϕ holds in the witness. This can be
determined by model checking the formula ϕ separately in the witness, which can be
seen as the temporal interpretation of an infinite path in a Kripke structure whose states
are connected into a sequence that ends in a loop (see Fig. 6).

It might seem questionable to use another model checking procedure to determine
whether the propertyϕ holds in the witness. Obviously, applying e.g. the full automata-

18



Figure 6: A Kripke structure whose states are connected into a sequence ending in a
loop (state labels omitted)

theoretic LTL model checking procedure to the witness requires constructing a Büchi
automaton from the formula ϕ; unfortunately, we cannot use any of the tested LTL-to-
Büchi translators for this purpose if we are uncertain about their reliability.

However, the simple structure of the witnesses permits model checking the formula
ϕ in the witness directly using a restricted LTL model checking algorithm designed for
Kripke structures that share their shape with the witnesses. This is supported by the
fact that in such structures, the semantics of LTL essentially coincides (see an extended
version of [10], [16]) with the semantics of computation tree logic (see e.g. [9]), for
which simple model checking algorithms are available. For example, we can model
check the LTL formula ϕ in the witness by applying a textbook algorithm [9] to the
CTL formula τ(ϕ), where the mapping τ is defined inductively as follows:1

τ(p) = p for all atomic propositions p ∈ AP

τ(¬ϕ) = ¬τ(ϕ)

τ
(

(ϕ ∨ ψ)
)

=
(

τ(ϕ) ∨ τ(ψ)
)

τ(Xϕ) = EX τ(ϕ)

τ
(

(ϕUψ)
)

= E
(

τ(ϕ) U τ(ψ)
)

More specifically, it is straightforward to show by structural induction on the for-
mula that ξ |= ϕ iff M, s0 |= τ(ϕ), where s0 is the state without any predecessors in
the Kripke structure that forms the witness. (Alternatively, one can use a direct LTL
model checking algorithm for witnesses, such as the one described in [15].)

We point out that a direct witness model checking algorithm can have more general
application even in real LTL model checking tool implementations. For example, such
an algorithm can easily be used to validate counterexamples (examples of computation
paths that violate a given LTL property) that a model checking tool might find during
the analysis of some system to be verified. Integrating a counterexample validation
algorithm into a model checker provides the tool with basic capabilities of detecting
automatically some of the situations that might result in model checking errors, more
specifically, by preventing the tool from suggesting incorrect counterexamples for the
verified properties.

1Actually, the formula transformation is independent of the particular path quantifier used in the CTL
formulas due to the fact that the formulas will be model checked in restricted Kripke structures, each state of
which has exactly one successor. Thus the A quantifier could well be used instead of the E quantifier.

19



5 A Randomized Testbench for LTL-to-Büchi
Translators

We have implemented most of the test methods discussed in Sect. 3, excluding Test 2
(the universality check for the union of two Büchi automata, see Sect. 3.2), into a soft-
ware tool (a “testbench”) for automatic testing of LTL-to-Büchi translation algorithm
implementations. The testbench (an extended version of those described in [14, 16])
also includes an implementation of a restricted LTL model checking algorithm used in
the analysis of test results to determine which of the tested LTL-to-Büchi translators
failed, as described in Sect. 4. The C++ source code for the program can be obtained
from <URL: http://www.tcs.hut.fi/~htauriai/lbtt/>.

The testbench uses randomized algorithms for generating LTL formulas and Kripke
structures needed as input for the tests. The overall goal in the design of the algorithms
was to keep them simple. We did not consider the precise distribution of the output
generated by the algorithms, for example, that the random LTL formulas should be dis-
tributed “uniformly” in some probabilistic sense. (However, see [15] for a description
on how the parameters of the formula generation algorithm can be adjusted to ensure
that each generated formula will have the same expected number of occurrences of
each operator.) After all, since none of the described tests can be used to prove ex-
haustively the correctness of an LTL-to-Büchi translator, a “poor” sample of input will
even in the worst case only result in a suboptimal test failure rate. The algorithms used
in the testbench are shown as examples in Figs. 7 and 8. We point out the following
features of the algorithms (for a more detailed discussion, see [15]):

• The LTL formula generation algorithm (Fig. 7) follows an approach similar to
the one introduced in [5] by generating formulas with a parse tree having a given
number n of nodes. The behavior of the algorithm can be altered by restricting
the set of operators to be used in the formulas. Besides the basic LTL operators
¬, ∨, X and U , the testbench supports several other common operators that can
be defined using these basic operators, such as the logical connectives ∧ (con-
junction), → (implication) and ↔ (equivalence) and the temporal operators 3

(eventually), 2 (always) and R (release, the dual of U). In addition, the Boolean
constants > (true) and ⊥ (false) can be used in place of atomic propositions.

• The random Kripke structure generation algorithm (Fig. 8) generates structures
with a connected component consisting of a given number n of states with the
constraint that every state of the structure must have at least one successor. The
behavior of the structure generation algorithm can be adjusted with the parameter
d that approximates the probability of having a transition between any pair of
states in the structure, together with the parameter t that gives the probability
with which any of the atomic propositions is considered to hold in any state of
the structure.

• As an alternative to graph-like Kripke structures, the testbench also allows using
randomly generated paths, i.e., Kripke structures in which the states are con-
nected into a linear sequence ending in a transition back to some earlier state
of the sequence (see Fig. 6). This permits using the restricted witness model

20



1 function RandomFormula (n : Integer) : LtlFormula
2 if n = 1 then begin
3 p := random symbol in AP ∪ {>,⊥};
4 return p;
5 end
6 else if n = 2 then begin
7 op := random unary operator;
8 ϕ := RandomFormula(1);
9 return op ϕ;
10 end
11 else begin
12 op := random operator in the set of all available operators;
13 if op is unary then begin
14 ϕ := RandomFormula(n − 1);
15 return op ϕ;
16 end
17 else begin (* op is binary *)
18 x := random integer in the interval [1, n− 2];
19 ϕ := RandomFormula(x);
20 ψ := RandomFormula(n − x− 1);
21 return (ϕ op ψ);
22 end;
23 end;
24 end;

Figure 7: Pseudocode for the LTL formula generation algorithm

checking algorithm as another algorithm in Test 3 (the model checking result
cross-comparison check), which makes it possible to apply all tests even to a
single translation algorithm implementation.

After generating an LTL formula and a Kripke structure, the testbench invokes ev-
ery tested LTL-to-Büchi translator in turn to obtain Büchi automata from the formula
and its negation. The testbench then performs Test 1, Test 3 and Test 4 on the automata,
repeating Tests 1 and 3 for each appropriate pair of automata generated by two differ-
ent implementations. The test procedure can then be repeated using a different LTL
formula or a different Kripke structure.

Should a test result in a failure, the testbench can be instructed to use the inter-
nal model checking algorithm for witnesses to find an incorrect Büchi automaton. To
justify its answer, the testbench also shows a proof whether the formula holds in the
witness or not, and, if an automaton incorrectly accepts the witness, an accepting exe-
cution that the automaton has when given the witness as input.

6 Experimental Results

The test methods were experimented on the following independent LTL-to-Büchi trans-
lator implementations:

ÅSA+ An LTL-to-Büchi translator derived from Mauno Rönkkö’s C++ class library [12]
implementing the translation algorithm presented in [7].

SPIN v3.x.x The LTL-to-Büchi translator algorithm implemented in the model checker
SPIN [8] by Gerard J. Holzmann. The implementation is originally based on the

21



1 function RandomGraph(n : Integer, d : Real ∈ [0.0, 1.0],
t : Real ∈ [0.0, 1.0])

: KripkeStructure
2 S := {s0, s1, . . . , sn−1};
3 NodesToProcess := {s0};
4 UnreachableNodes := {s1, s2, . . . , sn−1};
5 ρ := ∅;
6 while NodesToProcess 6= ∅ do begin
7 s := a random node in NodesToProcess;
8 NodesToProcess := NodesToProcess \ {s};
9 π(s) := ∅;
10 for all P ∈ AP do
11 if RandomNumber(0.0, 1.0) < t then
12 π(s) := π(s) ∪ {P};
13 if UnreachableNodes 6= ∅ then begin
14 s′ := a random node in UnreachableNodes;
15 UnreachableNodes := UnreachableNodes \ {s′};
16 NodesToProcess := NodesToProcess ∪ {s′};
17 ρ := ρ ∪ {(s, s′)};
18 end;
19 for all s′ ∈ S do
20 if RandomNumber(0.0, 1.0) < d then begin
21 ρ := ρ ∪ {(s, s′)};
22 if s′ ∈ UnreachableNodes then begin
23 UnreachableNodes := UnreachableNodes \ {s′};
24 NodesToProcess := NodesToProcess ∪ {s′};
25 end;
26 end;
27 if there is no edge (s, s′) in ρ for any s′ ∈ S then
28 ρ := ρ ∪ (s, s);
29 end;
30 return 〈S, ρ, π〉;
31 end;

Figure 8: Pseudocode for the Kripke structure generation algorithm

22



translation algorithm in [7], but it includes many improvements to the basic al-
gorithm, some of which are described in [6].

Tests 3 and 4 have been applied to testing this implementation already since its
version 3.3.3. The tests have been able to find errors in various versions of the
tool [14, 16]. To illustrate the effect of testing on improving the robustness of
the tool, we included versions 3.3.3, 3.3.9, 3.4.3 and 3.4.7 of the tool in the
experiments. We however note that this might have created a bias in the results,
making SPIN perhaps seem more unreliable than the other implementations. We
emphasize that the behavior of SPIN v3.4.7 was consistent with all the other
implementations in our tests.

LTL2AUT An LTL-to-Büchi translator written by the authors of [5]. The implemen-
tation includes three different translation algorithms: the previously mentioned
GPVW algorithm [7], the GPVW+ algorithm based on some improvements pro-
posed already in [7], and the LTL2AUT algorithm of [5]. We tested the imple-
mentation using all the available algorithms.

PROD The LTL-to-Büchi translator included in the Pr/T net reachability analyzer
PROD [21]. The implementation is based on the algorithm presented in [19].
The version of the tool used for the tests was from 21st of February 2001 (PROD

3.3.09). The testing method has also helped to improve a previous version of this
implementation.

We used the same testing environment and testing strategy as in [15]. The tests
were performed by running each of the translators on randomly generated fixed-size (5
to 12 parse tree nodes) LTL formulas and their negations using 1,000 random formulas
of each parse tree size with at most five different atomic propositions in each formula.
For Tests 3 and 4 we used Kripke structures generated with the algorithm shown in
Fig. 8 using parameters n = 50, d = 0.1 and t = 0.5.

Because the PROD implementation supported only a subset of the logical and tem-
poral operators that could have been used with the other implementations, we restricted
the operator set to {¬,∨,∧,→, U ,3,2}. The formula generation parameters were ad-
justed for each parse tree size such that each generated formula had the same expected
number of occurrences of each different operator [15].

The test results are shown in Tables 2 and 3. Each cell of Table 2 contains two
numbers giving the failure rates in Test 1 (the Büchi automata intersection emptiness
check) and Test 3 (the model checking result cross-comparison test) between a pair of
implementations. Every table cell, excluding the diagonal cells of the matrices cor-
responding to each formula parse tree size, gives the number of failed tests among a
maximum of 2,000 (in the bottom row, 16,000) tests performed. (Because the matri-
ces are symmetric, the numbers above the diagonal of each matrix have been omitted.)
Since Test 3 is not relevant when both automata involved in the test are generated by the
same implementation, the diagonal cells report only the failure rates in Test 1, which
could be performed only half as many times on each implementation against itself.

Because ÅSA+, LTL2AUT (all three variants), PROD and version 3.4.7 of the SPIN

model checker did not fail any of the tests between each other, the results of these

23



Table 2: Failure rates for Tests 1 and 3

Random
formula
parse

tree size

Imple-
menta-

tion

Number of test failures
<Test 1 failures> / <Test 3 failures>

[Diagonal cells: 1000 tests; other cells: 2000 tests]

Å/L/P/7† SPIN v3.3.3 SPIN v3.3.9 SPIN v3.4.3

Å/L/P/7 0 / 0
S3.3.3 21 / 4 20 / –

5 S3.3.9 0 / 0 21 / 4 0 / –
S3.4.3 0 / 0 21 / 4 0 / 0 0 / –

Å/L/P/7 0 / 0
S3.3.3 32 / 8 31 / –

6 S3.3.9 0 / 0 32 / 8 0 / –
S3.4.3 0 / 0 32 / 8 0 / 0 0 / –

Å/L/P/7 0 / 0
S3.3.3 49 / 9 48 / –

7 S3.3.9 0 / 0 49 / 9 0 / –
S3.4.3 0 / 0 49 / 9 0 / 0 0 / –

Å/L/P/7 0 / 0
S3.3.3 66 / 14 61 / –

8 S3.3.9 0 / 1 65 / 13 0 / –
S3.4.3 0 / 0 66 / 14 0 / 1 0 / –

Å/L/P/7 0 / 0
S3.3.3 69 / 16 69 / –

9 S3.3.9 0 / 0 69 / 16 0 / –
S3.4.3 0 / 0 69 / 16 0 / 0 0 / –

Å/L/P/7 0 / 0
S3.3.3 73 / 19 66 / –

10 S3.3.9 0 / 1 71 / 18 0 / –
S3.4.3 0 / 0 73 / 19 0 / 1 0 / –

Å/L/P/7 0 / 0
S3.3.3 87 / 19 83 / –

11 S3.3.9 0 / 2 87 / 17 0 / –
S3.4.3 0 / 0 87 / 19 0 / 2 0 / –

Å/L/P/7 0 / 0
S3.3.3 101 / 31 91 / –

12 S3.3.9 0 / 3 102 / 32 0 / –
S3.4.3 0 / 1 102 / 30 0 / 2 0 / –

Å/L/P/7 0 / 0
S3.3.3 498 / 120 469 / –

TOTAL S3.3.9 0 / 7 496 / 117 0 / –
S3.4.3 0 / 1 499 / 119 0 / 6 0 / –

24



Table 3: Failure rates for Test 4

Random
formula
parse

tree size

Å/L/P/7†

SPIN v3.3.3
SPIN v3.4.3

SPIN v3.3.9

5 0 0
6 0 0
7 0 0
8 0 1
9 0 0
10 0 1
11 0 1
12 0 2

TOTAL 0 5

†ÅSA+, LTL2AUT, PROD, SPIN v3.4.7

algorithms are shown in the tables under the common name “Å/L/P/7”. The indepen-
dence of the implementations increases the confidence in their reliability. However, all
previous versions of SPIN occasionally failed the test against the other tested imple-
mentations.

For example, version 3.4.3 of SPIN was involved in a single model checking re-

sult cross-comparison failure on the LTL formula 22

(

p4 ∧
(

p2 U (¬¬p3 ∧ 3p4)
)

)

.

Analyzing the failure with the witness model checking algorithm confirmed an error
in the implementation: it is easy to check that the formula ϕ holds in the infinite se-
quence ξ = 〈{p1, p3, p4}, {p1, p3, p4}, {p1, p3, p4}, . . .〉; on this input, however, the
automaton generated by the SPIN v3.4.3 implementation can only loop through its
nonaccepting single initial state indefinitely, thus rejecting the input. This confirms
that the automaton generated by the translator is incorrect. While it can be argued
that the randomly generated formula, being equivalent to the more simple formula
2

(

p4 ∧ (p2 U p3)
)

(which SPIN v3.4.3 does not translate to an automaton that causes
a test failure), has redundancy in it, the faults detected in any implementation should
nevertheless be always repaired to remove the possibility that they might cause model
checking errors. The results show that the error behind the example case has been fixed
in SPIN v3.4.7.

The failure rates in Test 1 are higher than those of Test 3, which suggests that Test 3
might be less efficient in detecting errors in practice, perhaps due to its need for more
input, the properties of which may seriously affect the efficiency of the testing pro-
cedure. However, Test 1 is by itself not capable of detecting all types of errors (see
Fig. 3), as evidenced also in practice by the example above. Other experiments [15]
have observed the error rates to be quite close to each other when using a different set of

25



formula operators; it is clear, however, that the effect of the formula generation param-
eters on the test failure rate always depends also on the implementations participating
in the tests and cannot therefore be estimated easily in any general way.

Test 4 (the model checking result consistency test) had significantly worse perfor-
mance than either of the two other tests and could detect errors only in SPIN v3.3.9.
However, because of the many factors that may all affect the tests, it is still recom-
mended to use all the available tests to maximize testing efficiency, since each of these
three tests is capable of detecting errors that cannot be detected by the two other tests.
This view is further supported by the fact that all these tests are straightforward to im-
plement into a common framework. However, if Test 2 were also available, Tests 3
and 4 would no longer be needed, since Test 2 finds all errors detectable by Test 4.
In addition, Test 1 and Test 2 could be used together to prove the equivalence of lan-
guages accepted by two automata constructed using different translators, thus making
also Test 3 redundant.

We refer to [15] for further experimental results, together with more detailed dis-
cussion on the different types of failures encountered in the tests.

7 Conclusions

Model checkers are often used to verify systems which are critical in either safety
or business sense. Since these tools are used to reason about the properties of such
systems, it is essential that their user is able to rely on the verification results reported
by the tool.

We have presented methods that can be used for testing implementations of LTL-
to-Büchi translation algorithms, which form one of the core components of any LTL
model checker based on the automata-theoretic model checking approach [19]. The
test methods are based on simple automata-theoretic techniques and the LTL model
checking procedure. Most of the methods (excluding Test 2 described in Sect. 3.2) are
easy to implement using basic model checker implementation techniques.

Test failure analysis has been presented. It uses a witness (i.e., an infinite sequence
on which the test failure exists) to prove one of the implementations incorrect. This
analysis employs a special, simple-to-implement model checking procedure to check
whether an LTL formula holds in the witness.

We have combined the test methods and failure analysis to an automated testbench.
This testbench uses random formulas and Kripke structures to test several independent
LTL-to-Büchi translator implementations against each other. The testbench implemen-
tation was able to uncover errors in several versions of the SPIN model checker. We
have obtained similar results with other model checkers, too; of the implementations
we have tested, the LTL2AUT [5] and the ÅSA [12] translators have been the only
implementations in which no errors have ever been detected using the testbench.

There are several other places in LTL model checkers, which could probably be
improved with random testing, but which we have not covered here (for example, the
emptiness checking and partial order reduction algorithms). However, we think that
the LTL-to-Büchi translation algorithm, including all the possibly used optimizations,
is one of the most difficult algorithms to implement.

26



In the future, we would like to extend the approach to also test nondeterminis-
tic finite automata (NFA) generated from safety LTL formulas using the approaches
presented in [10]. These (safety) LTL-to-NFA translation algorithm implementations
would need a different emptiness checking subroutine. The model checking results ob-
tained could be then compared against the results obtained using the model checking
procedure employing the LTL-to-Büchi translation algorithm for the same formula.

We propose that LTL model checkers should be extended with a counterexample
validation algorithm as described at the end of Sect. 4. The implementation of this
algorithm is quite simple, as it can be done e.g. by using a straightforward implementa-
tion of a CTL model checker. The running time overhead of such an algorithm should
be negligible, as it is linear both in the size of the formula and the length of the coun-
terexample. Such an algorithm would increase the confidence in the counterexamples
provided by the model checker implementation. Of course, separate validation of coun-
terexamples only helps in detecting false negatives but not false positives; however, it
would still be a step in the right direction.

Admittedly, simple random testing is not adequate for proving the correctness of
any LTL-to-Büchi translator. As can be seen in the experiments made with various ver-
sions of SPIN, the effectiveness of random testing in finding errors decreases rapidly as
the implementation improves. Increasing the number of tests or the size of the formulas
and Kripke structures used in the tests might improve the odds of finding errors, but
the fact that no amount of testing is sufficient to prove the absolute correctness of an
implementation makes this approach somewhat unappealing.

Therefore, the testing techniques are probably best suited for assisting in the devel-
opment of a new translator to test its robustness before releasing the implementation, in
the hope of detecting some of the remaining errors and omissions in the implementa-
tion. The test methods might also be applicable to regression testing when making op-
timizations or other improvements to a translation algorithm implementation, in order
to test whether the implementation seems to preserve its reliability between different
releases.

Acknowledgements

We would like to thank Mauno Rönkkö, Kimmo Varpaaniemi, Marco Daniele and Ger-
ard J. Holzmann for helping us to integrate their respective LTL-to-Büchi translation
algorithm implementations in the experiments made in this work. We are also grateful
to the anonymous referees of the SPIN’2000 Workshop and STTT, whose feedback was
very important in improving this work.

References

[1] A. Avižienis. The N -version approach to fault-tolerant software. IEEE Transac-
tions on Software Engineering, SE-11(12):1491–1501, 1985.

[2] A. Avižienis and L. Chen. On the implementation ofN -version programming for
software fault tolerance during program execution. In Proceedings of the 1st IEEE

27



International Computer Software and Applications Conference (COMPSAC 77),
pages 149–155, 1977.

[3] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

[4] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proceedings
of the World Congress on Formal Methods in the Development of Computing
Systems (FM’99), volume I, volume 1708 of Lecture Notes in Computer Science,
pages 253–271. Springer-Verlag, 1999.

[5] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), volume 1633 of Lecture Notes in Com-
puter Science, pages 249–260. Springer-Verlag, 1999. See also “Software pack-
ages” at <URL: http://www.cs.rice.edu/CS/Verification/>.

[6] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings
of the 11th International Conference on Concurrency Theory (CONCUR’2000),
volume 1877 of Lecture Notes in Computer Science, pages 153–167. Springer-
Verlag, 2000.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proceedings of 15th Workshop Protocol
Specification, Testing, and Verification, pages 3–18. Chapman & Hall, 1995.

[8] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

[9] E. Clarke Jr., O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

[10] O. Kupferman and M. Y. Vardi. Model checking of safety properties. In
Proceedings of the 11th International Conference on Computer Aided Verifi-
cation (CAV’99), volume 1633 of Lecture Notes in Computer Science, pages
172–183. Springer-Verlag, 1999. See also an extended version at <URL:
http://www.cs.rice.edu/vardi/papers/>.

[11] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informat-
icae, 43(1–4):175–193, 2000.

[12] M. Rönkkö. A distributed object oriented implementation of an algo-
rithm converting a LTL formula to a generalised Buchi automaton, 1999.
Available only on the WWW. See Mauno Rönkkö’s homepage at <URL:

http://www.abo.fi/~mauno.ronkko/>.

[13] S. Safra. On the complexity of ω-automata. In Proceedings of the 29th IEEE
Symposium on Foundations of Computer Science, pages 319–327. IEEE Com-
puter Society Press, 1988.

28



[14] H. Tauriainen. A randomized testbench for algorithms translating linear temporal
logic formulae into Büchi automata. In Proceedings of the Workshop Concur-
rency, Specification and Programming 1999 (CS&P’99), pages 251–262. Warsaw
University, 1999.

[15] H. Tauriainen. Automated testing of Büchi automata translators for linear
temporal logic. Technical Report A66, Laboratory for Theoretical Com-
puter Science, Helsinki University of Technology, 2000. Available at <URL:
http://www.tcs.hut.fi/Publications/reports/ A66abstract.html>.

[16] H. Tauriainen and K. Heljanko. Testing SPIN’s LTL formula conversion into
Büchi automata with randomly generated input. In Proceedings of the 7th Inter-
national SPIN Workshop on Model Checking of Software (SPIN’2000), volume
1885 of Lecture Notes in Computer Science, pages 54–72. Springer-Verlag, 2000.

[17] W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume III, pages 385–455. Springer-
Verlag, 1997.

[18] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in
Computer Science, pages 238–265. Springer-Verlag, 1996.

[19] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the 1st IEEE Symposium on Logic in Computer
Science (LICS’86), pages 332–344. IEEE Computer Society Press, 1986.

[20] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

[21] K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advanced tool for
efficient reachability analysis. In Proceedings of the 9th International Confer-
ence on Computer Aided Verification (CAV’97), volume 1254 of Lecture Notes in
Computer Science, pages 472–475. Springer-Verlag, 1997.

29


